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Abstract 

Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain 
an elegant spatial transformation of extracted feature points, many point set matching algorithms (PMs) have been 
developed to match two point sets by optimizing multifarious distance functions. There are ample reviews related to 
medical image registration and PMs which summarize their basic principles and main algorithms separately. How-
ever, to data, detailed summary of PMs used in medical image registration in different clinical environments has not 
been published. In this paper, we provide a comprehensive review of the existing key techniques of the PMs applied 
to medical image registration according to the basic principles and clinical applications. As the core technique of 
the PMs, geometric transformation models are elaborated in this paper, demonstrating the mechanism of point 
set registration. We also focus on the clinical applications of the PMs and propose a practical classification method 
according to their applications in different clinical surgeries. The aim of this paper is to provide a summary of point-
feature-based methods used in medical image registration and to guide doctors or researchers interested in this field 
to choose appropriate techniques in their research.
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1 Introduction
Medical image registration, i.e., aligning two medical 

images by finding an optimistic spatial transformation, 

plays a very important role in image-guided surgery and 

disease diagnosis. �is alignment means that the same 

anatomical structures on two matching images corre-

spond with each other spatially. One of the two purposes 

of medical image registration is to synthesize the associ-

ated information contained in multiple modality images, 

and the other is to comprehend images obtained from the 

same instrument at different times and positions. Accord-

ing to the nature of the registration bases, registration 

methods can be classified into two categories: extrinsic 

and intrinsic. �e registration bases of extrinsic registra-

tion methods are often features attached to patients or 

clinical instruments. Markers, frameworks and artificial 

implantations are widely used bases in extrinsic medical 

image registration. Intrinsic medical image registration 

considers the information containing in the images as 

bases, such as the centerline of vessels and the outline of 

bones. Intrinsic medical image registration methods usu-

ally fall into two categories: intensity-based methods and 

feature-based methods [1]. Intensity-based approaches 

employ difference measurements based on the pixel 

intensities, while feature-based methods use distance-

based measures of the features extracted from the input 

images to be aligned. Feature-based algorithms are widely 

employed because of their briefness, simplicity and low 

computational complexity over intensity-based meth-

ods. More importantly, multimodal registration using 

computer tomography (CT), magnetic resonance imag-

ing (MR), positron emission tomography (PET), X-ray 

and other modality medical imaging methods is the main 

task of medical image registration. �e intensity differ-

ences among the multimodal images vary considerably 

due to the different imaging principles, which prohibit 

the development of intensity-based registration meth-

ods. Feature similarities among the multimodal images 

are more explicit than the intensity differences, and as a 
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result that feature-based methods play an important role 

in medical image registration [2].

In this review, we focus on the point features used in 

medical image registration, because points are the most 

commonly used features in clinical applications. Point-

feature-based registration means that the geometrical 

transformation between two images is only obtained 

through the characteristics of the feature points. �e geo-

metrical transformation can be classified into the rigid 

transformation and the non-rigid transformation accord-

ing to whether there are feature deformations or not. 

Rigid geometric transformations are often used in the 

registration of rigid structures, such as bones. Another 

important application of a rigid transformation is to 

obtain a rough pre-registration result before a more com-

plex and precise geometric transformation. Non-rigid 

geometrical transformations are usually used to finalize 

the precise registration or the registration of structures 

accompanied with deformations.

Point acquisition is the first step towards the PMs in 

medical image registration. �e points extracted from 

the medical images can greatly reduce the amount of 

information to simplify the computational complexity. 

�ese extracted points are usually expressed as point 

sets to calculate the spatial transformation. �e frame-

work in Figure  1 shows the detailed process regarding 

how to a convert medical image registration to a point 

set matching problem. �e acquisition of the transfor-

mation model is a key component of point set matching. 

Transformation models are usually chosen according to 

different criteria, including the deformation of point sets, 

time and accuracy requirements of the registration, and 

the signal to noise ratio. Point set matching algorithms 

are the fundamental methods used to find the geometric 

transformation between two point sets, and have gained 

immense developments in image registration [3, 4].

As shown in Table 1, there have been several reviews 

of medical image registration methods and point set 

matching algorithms. Markelj et  al. [1] surveyed the 

techniques used in 3D/2D registration methods for 

image-guided vascular interventions where CT, MRI, 

and X-ray images are the fundamental resources. In 

their paper in 2017, they also covered numerous avail-

able PMs as well as methods to assess them [3]. Matl 

et al. [2] contributed a living review of vascular image 

registration in which abundant vessel based registration 

methods were discussed from variant aspects. Oliveira 

et al. [5] reviewed medical image registration method-

ologies focusing on their geometric transformations, 

similarity measures, optimizers and accuracy assess-

ment techniques. Sotiras et  al. [6] conducted a survey 

regarding deformable medical image registration in 

which many nonrigid point set matching algorithms 

were discussed deliberately. Multi-modality medical 

image registration is the most commonly applied field 

of feature-based medical image alignment. James et al. 

[7] provided a joint view of different image modali-

ties applied in medical image fusion. Point sets are 

more familiar in image-guided vascular interventions 

in which segmented vascular bifurcations, centerlines, 

and edges can serve as the source of feature points.
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Figure 1 Procedure of the PMs in medical image registration

Table 1 Reviews of medical image registration and the PMs

Reference Year Content

[1] 2012 A review of 3D-2D registration methods for 
image-guided interventions

[2] 2017 Vascular image registration techniques: A living 
review

[3] 2017 Recent developments and trends in point set 
registration methods

[5] 2014 Medical image registration: a review

[6] 2013 Deformable Medical Image Registration: A Survey

[7] 2014 Medical image fusion: A survey of the state of 
the art
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�e PMs in medical image registration are efficient 

and time-saving, which is crucial in clinical applica-

tions. Nevertheless, a review focusing on point-feature-

based medical image registration methods has not been 

published. �e aim of this paper is to provide a sum-

mary of the PMs used in medical image registration. 

�e remainder of the paper is organized by the follow-

ing: In Section 2, the related techniques of the PMs are 

discussed. In Section 3, Clinical applications of the PMs 

are classified by the type of clinical surgery. In Sec-

tion 4, a discussion and a conclusion are given to sum-

marize the paper.

2  Related Techniques of the PMs
PMs in medical image registration depend deeply on 

the acquisition of feature points. �ere are various point 

acquisition methods, which are discussed in detail in 

Section  2.1. When feature points are obtained, the aim 

of the registration between two medical images is deter-

mined by the optimal geometric spatial transformation 

between the two feature point sets. Subsequently, three 

core steps of the geometric transformation are intro-

duced in Sections  2.2 to 2.4, including transformation 

methods, optimizers, and an assessment of the transfor-

mation methods.

2.1  Point Acquisition

Feature points applied in medical image registration fall 

into two categories: extrinsic and intrinsic points. Extrin-

sic points are obtained by affixing certain artificial mark-

ers to patients or clinical instruments, while intrinsic 

points are often acquired relying on anatomical struc-

tures contained in the medical images.

2.1.1  Extrinsic Point Acquisition

Extrinsic points are usually markers attached to frames, 

skins, bones or organ surfaces. �ese points are com-

monly used to distinguish soft tissues when there are not 

enough distinguishable structures to provide reliable ref-

erences [8–12]. �e number of extrinsic points used for 

registration is small and in most cases, the correspond-

ences between the extrinsic points are usually known 

before registration. Precise closed-form solutions opti-

mized by a least square method are usually used to obtain 

the spatial transformation. However, the focus of this 

paper is not on extrinsic points but on the intrinsic point 

sets where the number of points is large and the corre-

spondence between two point sets are usually unknown.

2.1.2  Intrinsic Point Acquisition

Intrinsic points are subsampled from features, such as 

centerlines, outlines, corers, surfaces, and some special 

points, which are obtained from the medical images 

without attaching markers to the patients. Consequently, 

the intrinsic points cause less interference to patients 

and surgeries. As shown in Table  2, the centerline is 

one of the most widely used features to obtain feature 

points for the rising demand of vasculature registration 

in minimally invasive vascular interventions (MIVI). 

Many vessel thinning and centerline extracting meth-

ods are used to obtain the proper centerlines. Methods 

such as the vessel segmentation, vasculature filter, and 

centerline representation [13–16], have been employed 

to extract the centerlines in the registration of coronary 

or liver vessels [17–21]. In other interventions, such as 

an abdominal aortic aneurysm (AAA) intervention [22], 

graph-based segmentation [23] and a sequential topo-

logical thinning process [24] are used to generate the 

centerline of the abdominal aorta. Centerlines also play 

an important role in the registration of multi-phase CT 

images [25], retinal images [26] and airway trees [27]. 

Bifurcations are special centerline points containing sig-

nificant vascular information which makes bifurcation 

a vital component of centerline-based vasculature reg-

istration [28, 29]. Retinal image registration is a special 

branch of vasculature-based registration because retinal 

image registration is restrained to 2D-2D image registra-

tion in a relatively small and equal range. By embedding 

these particular properties of the retinal image into the 

registration process, many developed registration algo-

rithms in computer vision and natural image registra-

tion are introduced into retinal image registration. Edge 

points are extracted from notable features [30] embed-

ding the geometry information into the registration. 

Local features, such as corners, speed-up robust feature 

(SURF) points and scale invariant feature transform 

(SIFT) points, are also extracted to improve registration 

accuracy by incorporating local features into the registra-

tion [31–33].

Table 2 Intrinsic point sets acquisition

Reference Point acquisition Source

[13–24] Centerline CTA or XA/DSA

[25] Centerline Multi-phase CT

[26] Retinal images

[27] Airway datasets

[28, 29] Bifurcation 3D/2D centerline

[30] Edge point Retinal images

[31–33] Local features

[34, 36] Contours X-ray views

[35] Contours HDR CT images

[38–42] Sub-sampling Bone surface
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For 3D-3D medical image registration, points are usu-

ally extracted from surfaces and curves of 3D models.

Contours obtained from the cross sections of 3D mod-

els are the most frequently used curves in 3D-3D medi-

cal image registration [34–36]. Reconstructed surfaces, 

such as bone surfaces or other organ surfaces, cannot be 

used directly during registration because these surfaces 

contain abundant data, which will increase the com-

putational complexity of the registration dramatically. 

�erefore subsampling methods are widely used in sur-

face registrations to reduce the amount of data. Uniform 

sampling, random sampling, normal space sampling and 

relevance-based sampling [37] are the most commonly 

used subsampling methods to acquire point sets effi-

ciently. �e automatic surface sub-sampling method is 

extensively used in the US and CT bone surface registra-

tion [38–41]. Manually picked sampling is an effective 

but time-consuming approach, which is also used in the 

registration of US, MR and CT bone surfaces [42].

2.2  Geometric Transformation Methods

�e geometric method registers two images by minimiz-

ing a distance calculation criterion. Before describing any 

methods, we introduce the known and unknown vari-

ables of the problem. �e rigid transformation between 

the target point set (M) and the source point set (S) can 

be expressed as follows:

where R and t represent the rotation and translation 

parameters, respectively, in the transformation. If M 

and S are 3D point sets, then R and t represent the three 

rotation parameters and three translation parameters 

respectively. While in the 2D-2D rigid registration, there 

are only four parameters comprising two rotation param-

eters and two translation parameters. �e iterative clos-

est point (ICP) algorithm (Section  2.2.1) is the most 

classical and prominent method for rigid point set reg-

istration. However, it is difficult to describe the complex 

(1)M = R ∗ S + t

correspondence between M and S when there are defor-

mations. �e following formula only describes the crite-

ria for non-rigid registration:

In this formula, f represents the transformation 

model, and θ represents parameters in the transforma-

tion model. �e robust point matching (RPM) algorithm 

(Section 2.2.2) is proposed using a spline function as the 

transformation model. �e graph matching (GM) algo-

rithm (Section 2.2.3) is proposed when f is described as 

a method to match two graphs. �e minimized energy 

function (MEF) method (Section  2.2.4) is also widely 

used in describing deformations incorporating the energy 

function into the transformation model. �e Gaussian 

mixture model (GMM) (Section 2.2.5) and the coherent 

point drift (CPD) algorithm (Section 2.2.6) are proposed 

using the distribution of two point sets to model the dif-

ference between the two point sets. �e distance trans-

formation (DT) method (Section  2.2.7) shows several 

special distance measurements, which are more effec-

tive than the Euler distance measurement, in describing 

the difference between two point sets. �e application of 

these transformation models in clinical surgery is shown 

in Table 3.

2.2.1  ICP

�e ICP algorithm, introduced by Besl and McKay [4], 

considers that the target point set (M) can be registered 

to the source point set (S) interactively after a rigid trans-

formation. �e fundamental principle of the ICP algo-

rithm can be expressed as follows:

where mi ∈ M and si ∈ S . M is aligned to S, while 

dist(R, t) reaches the minimum value. �e ICP algo-

rithm has been significantly developed. Many variants of 

the ICP method have been proposed to affect all phases 

(2)M = f (S, θ)

(3)dist(R, t) =
1

N

n∑

i=1

||Rmi + t − si||
2

Table 3 Application of PMs in di�erent surgery

PMs Surgery

Vasculature intervention Retinopathy Laparoscopic surgery Orthopaedics Others

ICP [20, 29, 47] [26, 28, 33] [81, 82, 84] [34, 36, 38, 39] [78]

RPM [49] [31] – – [35]

GM [29] [28] – – –

GMM [68] [30, 41, 42] – [40] –

CPD [25] – – – [71]

DT [18, 19] [40] [83] – –

MEF [17, 21, 22, 61] – – – –
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of the algorithm. For error minimization, the classical 

ICP algorithm uses the Euclidean distance to construct 

a quadratic objective function subjected to a nonlinear 

constraint, while Sebastien developed a variant of the 

ICP algorithm called EM-ICP by applying the EM prin-

ciple and an annealing scheme to avoid local minima 

[43]. Fitzgibbon proposed the LM-ICP method [44] 

where the objective function of the distance error was 

optimized with the Levenberg–Marquardt algorithm 

[45]. �e ICP algorithm is simple and has a low compu-

tational complexity, which also supports parallel com-

puting. Nevertheless, the ICP algorithm suffers from its 

accurate demands of an initial estimation and limited 

application for only rigid transformations considerably. 

Another drawback that confines the application of the 

ICP approach is that the local minimum is obtained ulti-

mately instead of a global minimum, even though Yang 

et al. [46] introduced a globally optimal solution Go-ICP 

based on the branch-and-bound algorithm under the 

L2-norm closest-point error metric. Another application 

is to combine the ICP algorithm with some global algo-

rithms to obtain a global minimum [19, 29]. However, 

it is difficult to balance the speed and accuracy of the 

calculation.

Due to the characteristics of the ICP algorithm, it has 

been widely used in the rigid registration of medical 

images, such as the registration of 3D reconstructed rigid 

surfaces[34, 36, 38, 40] and vasculature without regarding 

the heartbeat and breathing[26, 28, 33, 47]. Nevertheless, 

the ICP method is not suitable for some non-rigid regis-

tration especially with large deformations.

2.2.2  RPM

�e robust point matching method (RPM) was initially 

put forward to simultaneously find the correspondence 

and transformation parameters between two point sets 

[48]. A deterministic annealing method was used to guar-

antee the convexity of the error function of the RPM. �e 

RPM uses a coordinate descent approach to calculate the 

transformation parameters and a soft-assign algorithm 

to estimate the correspondence between two point sets. 

Many variants of the RPM are proposed to modify the 

phases of the method from establishing a correspond-

ence to optimizing the transformation parameters. Chui 

et  al. developed the TPS-RPM [49] algorithm by using 

a thin plate spline (TPS) to parameterize the non-rigid 

mapping procedure because the TPS can describe affine 

and non-affine deformation elegantly. Zheng et  al. [50] 

developed the RPM-LNS method by employing a simple 

graph to note the neighborhood structure of the point 

sets, which can transform the alignment of two point sets 

to the optimal matching between two graphs. �e RPM-

LNS method is generalized by the TPRL algorithm which 

relaxes the labeling process with an optimal compatibil-

ity coefficient. �e Shape context is also an extensively 

employed descriptor to present the correspondence 

between points among the point sets [51–54].

As a non-rigid point set matching algorithm, the RPM 

has obtained several successes in the registration of 

medical images with small deformations, such as retinal 

images [31] and high-dose-rate (HDR) CT images for 

gynecological cancer detection [35]. As is well known, 

the quality of medical images is unsatisfactory due to the 

poor imaging mechanism, which substantially suffers 

from the noises of surgical instruments and the physi-

ological activities of patients. �e RPM performs poorly 

during the registration with high noise and outliers, 

which limited the application of RPM dramatically.

2.2.3  GM

Graph matching (GM) based approaches treat point 

sets as graphs. GM generally builds an adjacency matrix 

to present the correspondence between two graphs, 

where the nodes represent the correspondence between 

points and the weights stand for the pairwise agree-

ments between potential correspondences [55]. �e cor-

rect assignments of the matching points are judged by 

whether the matching pairs are able to form a strongly 

connected cluster of the adjacency matrix. �e graph 

shift (GS) method was proposed to eliminate the draw-

backs of the GM approach to reduce its sensitivity to 

noises and outliers [56]. Subsequently, numerous algo-

rithms have emerged to improve the robustness or 

computational complexity of the GM approach [57, 58]. 

Sousa et  al. [59] combined the advantages of GM with 

the CPD method by adding the topological contribution 

of the GM into the CPD method to develop a stronger 

method.

GM is a proper approach to describe the topologi-

cal structure of some vessels in which bifurcations can 

directly represent the nodes of a graph. Consequently, 

in medical image registration, GM has been mainly 

employed to register medical images with clear topologi-

cal structures [28, 29].

2.2.4  MEF

�e energy method was first proposed for mechanics [60] 

and now has been increasingly used in more fields. For 

deformable medical image registration, a similarity meas-

urement is frequently presented as an energy function, 

which incorporates the deformation information and 

no deformation information of two images. �e energy 

equation of the MEF usually consists of two items: the 

internal energy item and the external energy item. For 

vessel-based coronary image registration with the con-

straint of temporal continuity [20], the external energy 
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Eexternal is generated by the transformation between 

the two images to be aligned, while the internal energy  

Einternal represents the information of only one point set, 

including the displacement EDisp, the smoothness ESmooth 

and the myocardium constraint EMyocard. As mentioned 

above, the total energy function can be expressed as

where r is the transformation parameter, xi is one of 

the centerline points in the segmented fluoroscopy 

images, x̂i represents the centerline point of the model, 

H(x) ∈ {0, 1} is used to reject the outliers and μ, β and γ 

are energy-balancing free parameters.

To describe the deformable registration of vascular 

structures, an energy function was proposed to map 

the deformable registration process [61]. �e external 

item of this energy function is a difference measurement 

between two point sets, and the internal energy consists 

of a length preservation item and a smoothness preserva-

tion item. �is method is also used in an efficient graph-

based 2D/3D deformable image registration algorithm, 

which is applied in abdominal aortic aneurysm interven-

tions [62].

2.2.5  GMM

�e Gaussian mixture model (GMM) algorithm for point 

set registration was proposed by Jian et  al. [63]. �ese 

authors used the Gaussian mixture model to describe 

the distribution of the two given point sets M and S and 

treat the registration of two point sets as the alignment 

between two Gaussian mixtures by minimizing their 

L2-distance. �e principle of GMM can be described as 

follows:

where θ stands for the transformation parameter of S 

to align with M. �e expectation maximization (EM) 

[64] method was employed to minimize the L2-distance 

and maximize the kernel correlation of the point sets. 

Although widely applied, the EM algorithm is quite sen-

sitive to initial values, and its component number need 

to be pre-determined. To eliminate these drawbacks of 

EM, Yang et  al. proposed a robust EM clustering algo-

rithm which uses all the data points as the initialization. 

�e authors have overcome the difficulties of choosing a 

(4)

E(r) = Eexternal(r) + EDisp(r) + Esmooth(r) + EMyocard(r)

=

K
∑

i=1

H(xi)[x̂i − (xi + ri)] + µ

K
∑

i=1

|ri|
2

+ β

K
∑

i=1

|ṙi|
2 + γ

∑

{i,j∈K }

(

|ri − rj|

|xi − xj|

)2

(5)

dL2(S,M, θ) =

∫
(gmm(S) − gmm(T (M, θ)))2dx

initial values and constructing a competition schema by 

embedding a penalty term into the EM algorithm [65]. To 

improve the accuracy of the GMM for 3D rigid/non-rigid 

registration, a convex hull indexed Gaussian mixture 

model (CH-GMM) [66] was proposed by incorporat-

ing the proximity area conservation and projection con-

sistency into a weighted GMM model. Dylan et  al. [67] 

did not represent the distribution of the point set as a 

GMM directly but approximated the output function by 

training a one-class support vector machine (SVM) by a 

GMM. �is method exploits the robust correspondence 

presentation of the SVM with sparse parametrization and 

occlusive outlier rejection to improve the robustness of 

the algorithm and minimize the L2-distance between two 

support vector-parameterized Gaussian mixtures.

As a probabilistic method, the GMM has achieved excel-

lent results in medical image registration where the num-

ber of feature points is considerable. �e feature points in 

medical images of vessels are sufficient, because the cen-

terlines and edges can be directly used as the source of the 

feature points. Consequently, the GMM is widely used in 

the registration of medical images of vasculature [68] or 

retinopathy [30, 40, 41]. However, the GMM relies greatly 

on the initial position of the GMM centers, which restrict 

the application of GMM and affect the registration result 

severely. As a global registration algorithm, another defi-

ciency of the GMM is that it does not incorporate the 

detailed information among the feature points into reg-

istration, thus the registration accuracy decreases greatly 

when the detailed information plays an important role in 

the alignment procedure. �e most challenging task of 

the GMM is that a specific component number should be 

selected in advance, in which expert experience and a pre-

analysis of the images to be aligned are needed.

2.2.6  CPD

�e coherent point drift (CPD) algorithm, a probabilistic 

method extended from the GMM for both rigid and non-

rigid registration of two point sets, considers the registra-

tion of point sets as a maximum likelihood estimation 

problem which can be described as follows:

where σ2 is the equal isotropic covariance of the GMMs 

and θ represents the transformation parameters, X = (x1, 

…, xn)T is the data point set and Y =  (y1, …, yn)T repre-

sents the GMM centroids [69, 70]. �e author regards the 

motion of the Gaussian centroids from the initial posi-

tion to their final position as a temporal motion process. 

(6)

Q(θ , σ 2) =
1

2σ 2

N∑

n=1

M∑

m=1

Pold(m|xn)||xn − T(ym, θ)||2

+
NPD

2
log σ 2
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To preserve the topological structure of the point sets, 

the GMM centroids are restricted to move coherently 

as a group. Although the CPD approach performs more 

accurately and robustly than its competitors in the regis-

tration of two point sets with noise, outliers and missing 

points, it also has two shortcomings. One issue is that the 

weight parameter w that estimates the level of noise and 

number of outliers in the GMMs is manually selected, 

and the other issue is that the CPD method does not take 

the neighborhood information of the points in the same 

point sets into account. To overcome these two short-

comings of the original CPD algorithm, Peng et  al. [71] 

proposed a robust CPD algorithm, which uses the shape 

context [51–54] to describe the neighborhood structure 

of the points and employs the EM framework to calculate 

and optimize w automatically. �e robust CPD algorithm 

is a great improvement of the traditional CPD approach, 

where detailed information is incorporated into the reg-

istration procedure. To accelerate or enhance the CPD 

algorithm, numerous variants of the CPD approach are 

proposed focusing on the different phases of the algo-

rithm [72–75].

Similar to the GMM, CPD is also a probabilistic 

method in which it is difficult to describe the local neigh-

borhood structure of the feature points. Although many 

local similarity descriptors have been proposed to elimi-

nate the drawbacks of the CPD methods, there are still 

great difficulties in describing the complex anatomical 

structures as well as the local deformation of the medi-

cal images. Despite the fact that applications in medical 

image registration are restricted by the drawbacks men-

tioned above, the CPD method is still successfully applied 

in the registration of multi-phase coronary CT images 

[25] and adjacent CT slices [71].

2.2.7  DT

�e distance transformation (DT) method does not use 

the traditional L2-distance but some novel and ingen-

ious distance measurements to calculate the difference 

between the two point sets. Here, we summarize two 

typical DT algorithms used in medical image registration.

To calculate the distance between the projected cor-

onary CTA centerlines C and the X-ray images X, a 

sigmoid-like function was proposed by expanding the 

Euclidean distance [18]. �e distance measure can be 

described as:

(7)S(u, v) =

n−1∑

k=1

1

|x|

∑

x∈X

h(D(X ,C(u, v))),

(8)
h(d) = 2 −

2

1 + exp(−d2
/

ha)
,

where u = (s, r) represents the offset and scaling param-

eter, v represents the transformation parameters which 

vary according to the transformation types, ha is a con-

trol parameter, and D represents the function to calculate 

the Euclidean distance. For the same purpose, Baka et al. 

proposed the G1/G2 distance measure for 2D-3D vascu-

lature registration [17], in which the distance measure is 

a composition, including a 2D Euclidean measure, an ori-

entation difference and a Frangi vasculature score Fj. the 

distance measure can be expressed as follows:

where Dij is the 2D Euclidean distance between the pro-

jected vessel point i and the centerline point j, γij is the 

angle between the 2D centerline direction and the pro-

jected 3D vessel direction, and α is a parameter deter-

mining the influence of Fj. �ere are also several other 

DT methods modified from the Euclidean distance [19, 

21] or other point set matching approaches [29].

2.3  Optimization of the Geometric Transformation

�e iterative point set registration problem is a funda-

mental optimization problem to search for the maximum 

or minimum value of the similarity measurements. As 

shown in Table 4, according to the objective function as 

elaborated in Section  2.2, we classify the optimization 

methods into two categories: an unconstrained nonlinear 

optimizer and a statistical optimization model.

�e correspondence of the point-to-point registration 

is established based on each single point pair. Several 

(9)

θij = α(1 − Fj) +

(

1 − | cos γij| exp

(

−
D2
ij

σ 2

))

,

Table 4 Optimizers used in  PSM-based medical image 

registration

Classi�cation Reference Optimization

Unconstrained 
nonlinear 
optimizer

[8, 21] Gradient descent

[18, 40] Non-linear least squares optimizer (NLS)

[19, 20] Powell-Brent optimizer

[22, 27]
[61]

Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) optimizer

[29, 36] Downhill simplex algorithm

[33] Levenberg-Marquardt (LM)

[38] Gauss-Newton framework

[17] Nelder–Mead optimizer

Statistical 
optimization 
model

[25, 35]
[71]

Expectation-maximization (EM)

[34] Minimum description length (MDL)

[42] Barnes-Hut algorithm

[67] Support vector machine (SVM)
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unconstrained nonlinear optimizers have been used 

to determine the correspondence between two point 

sets, including the non-linear least squares optimizer 

(NLS) [17, 39], Levenberg–Marquardt (LM) algorithm 

[33], downhill simplex algorithm [29, 34], Nelder–Mead 

optimizer [21], Gauss-Newton framework [38], Gra-

dient descent [8, 20], Powell-Brent optimizer [18, 19], 

and Broyden–Fletcher–Goldfarb–Shanno (BFGS) opti-

mizer [22, 27, 61]. �e references that contain detailed 

descriptions of these algorithms are displayed in Table 4. 

�e applicable conditions and selection criteria of these 

optimize algorithms are elaborated in detail in the book 

by Press et al. [76] if the distance measure between two 

point sets has been modeled as a convex function. If the 

distance measure is non-convex, then Khoo et al. provide 

a proper method to convert a non-convex function into a 

convex function to improve the registration efficiency by 

relaxing some constrains [77].

Several probabilistic registration methods, whose cor-

respondence is set up on the distribution of points, can-

not be optimized by traditional optimization methods. 

Some statistical optimization models have been applied 

to optimize these point set matching algorithms such as 

the GMM and the CPD method. �e minimum descrip-

tion length (MDL) [36], Barnes-Hut algorithm [41], 

expectation-maximization (EM) [25, 35, 71] and support 

vector machine (SVM) [67] are presented as methods 

based on the point set distribution.

In summary, an optimization method satisfies a certain 

objective function. We only provide a general direction 

for the selection of optimization methods. Specific opti-

mization method should be chosen after referring to the 

professional books [76].

2.4  Assessment of the Geometric Transformation

A registration has little value unless its accuracy can 

be evaluated. Several approaches have been proposed 

to assess the registration accuracy, which is shown in 

Table  5. Various distance measures have been used in 

the PMs of medical image registration, so the evaluation 

method is usually a certain error function to assess the 

registration dissimilarity between the two point sets.

�e root mean square error (RMS) or mean square 

error (MSE) has been the most commonly used approach 

to evaluate the registration results. �ese criterions effec-

tively evaluate the registration between two point sets 

subsampled from the vessel centerlines or bifurcations 

in vasculature interventions [17, 20, 21, 29, 31, 47, 61], 

contour or surfaces of bone in orthopaedics [34, 42], edge 

points and some other local feature points of multiple 

kinds of medical images[8, 27, 35, 71, 78], because these 

criterions can take advantage of the distance measures 

directly without introducing additional errors. However, 

the drawback of the RMS is also its dependency on the 

distance measure. When the distance measure is not cho-

sen properly, the RMS will rise dramatically, which will 

reduce the value of the evaluation criteria. �e target reg-

istration error (TRE) calculates the distance between the 

corresponding points that might represent surgically tar-

geted tissues. �ese approach is an objective and accurate 

measurement, which is applied when there are known 

ground-truth positions of the validation points [22, 38, 

39, 41, 42]. �e success rate (SR) is a unique evaluation 

in the PMs by counting the successfully registered point 

pairs. �e SR has been applied in retinal image registra-

tions to assess the successful registration rate of center-

line points or bifurcations of retinal vessels [28, 33].

Some methods use more than one evaluation method 

to obtain a more convincing result. �e FRE and SRE are 

used to estimate registration accuracy between point sets 

subsampled from CT and US bone surfaces [40, 41]. �e 

residual error and the standard deviation are chosen to 

evaluate registration between a 3D coronary projection 

and XA images, where the pixels of the vessel are consid-

ered as the point sets to be aligned [19]. �e MEE, MAE, 

and RMS work as standards when the authors compared 

their proposed method with many earlier algorithms to 

confirm that their method exhibited a more persuasive 

performance in the registration of retinal images [30, 31].

Robustness, speed, convergence, and stability are also 

frequently used to evaluate and compare the perfor-

mance of numerous PMs [3]. �e design of the evalua-

tion image data sets, the definition of the corresponding 

ground truth and accuracy, the selection of evaluation 

criteria, the design of evaluation metrics and the design 

of the evaluation protocol are prerequisites in the stand-

ardization of medical image evaluation methodology 

[79]. However, a gold evaluation criterion to assess the 

performance of the PMs in medical image registration 

methods has not been published.

Table 5 Registration accuracy assessment methods

Reference Evaluation method

[8, 18, 21, 27, 29, 31] [17, 35, 36, 39, 
47, 61, 71, 78, 85, 87]

Root mean square error(RMS)
or
Mean square error (MSE)

[20] Residual error and standard devia-
tion

[22, 38–41] Target registration error (TRE)

[28, 33] Success rate(SR)

[30, 31] Median error (MEE), Maximum 
error(MAE) and RMS

[41, 42] TRE and Surface registration error 
(SRE)
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3  Clinical Applications of the PMs
Medical images vary considerably in different clinical 

surgeries. �e previous section provides a comprehen-

sive view of the PMs used in medical image registra-

tion. However, PMs are also influenced by the various 

circumstances in different clinical surgery. For vascular 

intervention (Section 3.1), the urgent requirement is the 

registration between 3D CTA/MRA models to the 2D 

X-ray/DSA images. For retinal image registration (Sec-

tion 3.2), time and position are the prominent differences 

between two retinal images. Although the registration of 

bones is rigid, the modalities of the medical images are 

complex in orthopeadic surgery (Section  3.3), including 

ultrasound (US), CT and X-ray images. �e PMs are also 

applied in some other clinical applications (Section  3.4) 

such as the registration of airways, ventricle surfaces, 

lung surfaces or a 3D reconstruction of CT or MR slices.

3.1  PMs in Vascular Intervention Surgeries

Enhancing interventional visualization is an essential part 

of image-guided interventions by integrating different 

modality information extracted from intraoperative and 

preoperative images into one single coordinate frame-

work [1]. Combining complementary information taken 

from various imaging modalities or taken at the different 

times helps the surgeons obtain a comprehensive aware-

ness of the vasculature and provides a better diagnosis of 

diseases. �e 3D computed tomography (CT) or mag-

netic resonance images (MRI) usually acquired as pre-

interventional data, and 2D X-ray projected images are 

typically collected as the intro-interventional data. �e 

alignment between CT/MRI and X-ray images forms a 

3D/2D image registration scheme.

�ere are abundant classical methods to classify 3D/2D 

vasculature registration, as described in a living review 

developed by Stefan Matl et al. [2]. �e most commonly 

used methods are pixel or voxel similarities based simi-

larity measurements and feature based transformation 

estimations. �e intensity information between the dif-

ferent modality images diverges greatly from each other, 

while the anatomical structures of vessels, such as cen-

terlines and bifurcation points can demonstrate the dis-

similarity between the two images more competently. 

Meanwhile, features after segmentation contain less data, 

which can reduce the computational complexity dra-

matically. Features used for vasculature registration are 

often geometrical entities such as isolated points or point 

sets sampled from curves, contours or surfaces. Con-

sequently, the basis of most feature-based registration 

methods is point set registration. Point set registration of 

vasculature generally consists of the following five parts:

1) Segmentation and preprocessing of 3D and 2D 

images,

2) Centerlines or edges extraction,

3) Point resampling of the centerlines or the edges,

4) Point preprocessing,

5) Minimizing the distance between two point sets.

�e first three steps of the five parts mentioned above 

are shown in Figure  2, which shows two approaches to 

convert the 3D-2D abdominal aorta image registration 

to align two 2D vascular centerlines that can be used as 

point sets directly in the PMs. �e PMs applied in vas-

culature interventions vary seriously in different clinical 

applications. Table  6 at the end of this paper shows an 

overview of the relationship between �e PMs and their 

clinical applications.

In coronary intervention, the biggest challenge is that 

coronary vessels move along with a beating heart. �ere-

fore the registration of coronary images must incor-

porate the movement of the heart into the procedure. 

Nonrigid registration for large deformations exactly 

Figure 2 Point set registration of an abdominal aorta. (a) DSA, (b) 
reconstructed 3D CTA model, (c) binarization of the DSA, (d) DRR 
image, (e) 3D centerline, (f) centerline of DSA, (g) centerline of DRR, 
(h) projection of 3D centerline
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fits this condition. Baka et al. [68] extended the original 

GMM algorithm for 3D-3D point set registration to the 

3D-2DOGMM algorithm incorporating vascular orien-

tation into the alignment of the preoperative computed 

tomography angiography (CTA) and the intraoperative 

X-ray angiography of coronary interventions. �e point 

sets in OGMM were obtained from the coronary center-

line points, which appropriately represent the topological 

Table 6 Summary of PMs and their applications in medical image registration

Reference no. Point acquisition Source Distance 
measure

PMs Optimize 
strategy

Evaluation 
method

Surgery

[18] Centerline CTA/ DSA G1/G2 – NLS RMS Coronary inter-
vention[19] Centerline Skx(µ; ν) – Powell-Brent Projection error

[20] Pixels of ves-
selness

– DT-basedICP Powell-Brent Residual error 
and standard 
deviation

[21] Centerline Euclidean dis-
tance

Minimize energy 
function

Gradient descent RMS

[25] Centerline – Group-wise CPD EM RMS

[68] Centerline L2 distance OGMM – Median accura-
cies

[22] Centerline CTA/ DSA – GM-MEF BFGS TRE AAA 

[61] Bifurcation CTA/ DSA Penalized Euclid-
ean distance

MEF BFGS RMS

[26] Centerline Retinal images L2 distance DB-ICP EM RMS Retinopathy

[28] Bifurcations L2 distance GM-ICP – SR

[30] Edge point L2 distance GMM EM MEE, MAE, RMS

[31] SURF points – SURF–PIIFD–RPM – –

[32] Harris corners – Harris-PIIFD – MAE

[33] Corner points and 
face points

– GDB-ICP LM SR

[27] Centerline Airway datasets – Tensor Fields BFGS MSE Respiratory

[29] Bifurcation CTA/ DSA Ficp ICP + Graph 
based

Downhill simplex RMS Liver interven-
tions

[17] Centerline EDT – Nelder–Mead Distance errors

[34] Contours X-ray views L2 distance ICP Down Hill Sim-
plex

– Orthopaedics

[36] Contours L2 distance ICP MDL RMS

[38] Randomly gener-
ated

Bone surface 
meshes

– IMLP Gauss-Newton TRE

[39] Sub-sampling US/ MR/CT – Stochast-ICP Simulated 
annealing

RMS and TRE

[40] Sub-sampling US / CT Euclidean dis-
tance

– NLS TRE

[41] LGF L2 distance GMM based Barnes-Hut 
algorithm

SRE and TRE

[42] Sub-sampling L2 distance GMM GPU FRE and SRE

[35] Sub-sampling Segmented CT – TPS-RPM EM RMSE Gynecological 
cancer

[47] Centerline CTA/ DSA Variant of ICP RMS Neuro-inter-
vention

[71] Contours CT /MRI slices – Robust CPD EM RMSE Reconstruction

[81] Surface points Kidney surface ICP TRE Laparoscopic 
surgery[82] Liver surface ICP RMS

[83] Liver surface DT FRE

[84] Tissue surface ICP TRE

[90] SIFT feature 
points

MRI slices – KFM-PDM – MSE Reconstruction
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structure of vessels. �e distance measurement calculat-

ing the difference between two point sets is adjusted in 

this model to achieve a more accurate result. �e OGMM 

algorithm first incorporates the distinctive features of 

vessels into the registration process. �is improvement 

causes the OGMM to outperform the ICP algorithms, G1 

and other distance transformation algorithms [17–20] 

in accuracy and convergence rate. Another procedure to 

improve the performance of the OGMM is to modify the 

optimization process. Khoo et al. [77] developed a convex 

programming framework to optimize the correspond-

ence and the relative transformation between the point 

sets simultaneously. �is effective framework can obtain 

a global optimum by transforming a non-convex process 

to a convex process by relaxing some restrictions of the 

optimization. By incorporating some priori information, 

such as transformation invariant features and gradient 

information, into the preprocessing of registration, the 

author concluded that the relaxed convex version con-

verges to the solution of the original program despite 

the sharp sensitivity to noise. Combining this algorithm 

with some local information based methods takes advan-

tages of both local and global methods to obtain a more 

accurate optimum. Motivated by the application of coro-

nary matching in multi-phase cardiac spiral CT, a group-

wise CPD algorithm [25] was proposed that embed the 

temporal consistency constraints between the point sets 

into registration to overcome one of the biggest prob-

lems of multi-phase point set registration. �e point sets 

are obtained from manually annotating centerlines and 

branch points. �e coronary vessels deform sharply as 

the heart beats, so the registration between the multi-

phase CT is a nonrigid process where the CPD algo-

rithm performs effectively. Although the algorithm has 

achieved elegant results in the registration of multi-phase 

coronary vessels, it is very restrictive with too many arti-

ficial interventions.

Liver vasculature intervention is another vital surgery 

to detect liver cancer, liver biopsy, liver cirrhosis, portal 

hypertension and other liver diseases. Kim et  al. pre-

sented an EDT [80] based algorithm to register the cho-

sen relevant 3D vessels of CTA and the given DSA image 

[21]. �e EDT method was applied in this algorithm to 

calculate the distance between two point sets extracted 

from the projected CTA images and DSA images. �e 3D 

vascular structure was divided into several segmented 

subtrees which ensure that the given DSA is aligned with 

the most similar subtree. Groher et al combined ICP with 

GM to obtain a novel 2D-3D liver vasculature registra-

tion algorithm. �is combination takes advantage of the 

low computational complexity of ICP and the topological 

information of GM, which helps the registration process 

converge to an optimum result quickly and robustly [29].

Abdominal aortic aneurysm intervention (AAA) is 

also influenced severely by heart beating. �e diameter 

of aorta is larger than the liver and the coronary vessels. 

Additionally, there are fewer branches in the aortic ves-

sels. Consequently, the most commonly applied PMs 

in AAA intervention is MEF [22, 61], which not only 

describes the large deformation but also preserves the 

smoothness and length features of the aorta.

Deformation of cerebrovascular tissue in neuro- inter-

vention is so slight that can be ignored, so medical image 

registration in neuro-intervention is generally considered 

to be a rigid registration. �e variants of ICP are efficient 

to align two cerebrovascular images [47].

PMs utilized in vascular intervention surgery as men-

tioned above, have gained significant achievements in 

some specific applications. Nevertheless, there are some 

deficiencies in these methods, which limit their clinical 

applications. First, the viewable range of CTA and DSA 

images differs greatly, which increases the rate of miss-

ing points and noise of the registration and enlarges the 

dissimilarity between two point sets. Consequently, the 

fit of PMs for point sets with large number of differences 

should be developed to eliminate this restriction. Sec-

ond, only the centerline points or bifurcation points are 

used in the registration process, other vessel information 

including diameters and curvatures are rarely considered 

in the proposed papers. Future algorithms should take 

these features into consideration. Finally, all the algo-

rithms mentioned above could not describe the deforma-

tion of vessels accurately, so future algorithms should be 

more capable of describing the deformation of the vascu-

lar images.

3.2  PMs in Retinal Image Registration

Retinal images play an important role in the diagnosis of 

multiple eye diseases such as diabetic retinopathy, age-

related macular, degeneration and glaucoma. Multiple 

imaging protocols have been applied to obtain images of 

the different parts of the fundus. Fundus angiography is a 

better technique to observe blood flow, obstruction and 

other vascular lesions [26]. It is necessary to register mul-

tiple retinal image fragments or retinal images in multi-

ple modes to obtain an entire retina image of a patient, 

to comprehend retinal image information in multiple 

modes and compared the vascular changes of a specific 

patient at different times.

Branches and intersections are the key information in 

accordance with the special structures of retinal images. 

However, there are so many branches and intersec-

tions that they are very similar to each other. �e retinal 

lesions or poor quality images block part of the vascu-

lature. �e brightness of retinal angiography is altered 

greatly at the different imaging stages. All the constraints 
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above increase the difficulty of retinal image registration. 

Contraposing these problems, the above researchers have 

proposed a variety of methods.

�e dual-bootstrap ICP [26] was proposed by Stew-

art et  al. which takes advantage of not only branches 

and intersections, but also some local information 

with high precision and similarity. Point sets are auto-

matically abstracted from the given retinal images. �e 

dual-bootstrap step calculates the covariance matrix of 

the estimated transformation to initialize and modify 

the transformation parameters, while the ICP step uti-

lizes the robust ICP algorithm to minimize the distance 

between two point sets. �e combination of the dual-

bootstrap and ICP eliminates the drawback of the ICP 

that calls for an accurate initialization. �e GM method 

is an excellent approach to make full use of the vascular 

topological structure information for registration. Deng 

et al. introduced the GM-ICP algorithm [28] which com-

bined the GM and ICP to efficiently find the global corre-

spondences between the vascular bifurcations. However, 

the GM-ICP is deeply affected by the sufficiency of con-

sistent structures, which limits its application in medical 

image registration. Another technique [30] incorporating 

both local and global information of the retinal image is 

the Lo-GMM which integrates local image details into 

a GMM model (Lo-GMM). �is method can effectively 

obtain a global result by aligning the probability den-

sity distribution of the vascular edge points in two reti-

nal images. �e local image features contain abundant 

information which can improve the registration accuracy 

greatly, but the computational complexity of the algo-

rithm increases sharply with embedding of too much 

local information.

Researchers attempted to use invariant features, 

such as the partial intensity invariant feature descriptor 

(PIIFD), and the speed up robust features (SURF), of reti-

nal images to avoid the detection of vascular bifurcations. 

�e PIIFD and Harris corners are used to obtain point 

sets in the PIIFD-Harris algorithm [32]. Corner points, 

instead of bifurcations, serve as control point candidates 

which reduce the computational complexity and improve 

the automation of the registration procedure. Wang et al. 

proposed the SURF–PIIFD–RPM method combining the 

invariant features with RPM algorithm to register retinal 

images with deformations automatically [31]. Poor qual-

ity and nonvascular images, which are not considered in 

the PIIFD-Harris method, are also incorporated in the 

experiments of the SURF–PIIFD–RPM. �is method 

takes advantage of the RPM in outlier rejection to 

improve the robustness of the algorithm, so that desired 

result can be obtained, even when the overlapping area 

between two retinal images is very small.

Retinal image alignment is restricted to 2D-2D registra-

tion due to imaging principles and medical applications. 

Different from vessel registration in vascular interven-

tions, features applied in retinal image registration are 

not only branches, intersections, centerline points and 

edge points, but also invariant features, such as Har-

ris and SURF features. �e view range of the retinal 

images is exactly the same as each other, which facilitates 

the registration by ignoring scaling parameters. Future 

development should consider improving the registration 

accuracy as well as reduce the computational complexity 

when the overlapping areas are insufficient.

3.3  PMs in Orthopaedic Surgery

Registrations of bones in orthopaedic surgery are often 

rigid registrations. Feature points used for registration 

are usually derived from bone surfaces which are vis-

ible in both the reconstructed bone model and the tar-

get anatomy during surgery. Ultrasound (US) images, 

which do no harm to patients and surgeons, are gradu-

ally used in orthopaedic surgeries to assist the registra-

tion of preoperative and intraoperative images. US is safe 

and inexpensive and can be used in real-time. However, 

ultrasound also suffers from its sensitivity to noise and 

limited fields of view. High resolution and high signal to 

noise ratio of US make it the most commonly used meth-

ods in clinical operations despite its high price. Register-

ing tracked intraoperative US images with preoperative 

CT data has been proposed as an effective mechanism 

for computer assisted orthopaedic surgery (CAOS) [41]. 

Feature points extracted from bone surfaces are fre-

quently used to generate data sets in the pre-procedure 

of the PMs. Consequently, the point matching algorithms 

play an important role in the registration of US and CT 

images. Other modalities of medical images are also 

applied to increase the amount of useful surgical infor-

mation and decrease the cost of surgery.

StochastICP [39, 42], a robust variant of ICP, has been 

proposed to register point sets derived from femur and 

skull surfaces. �e robustness and precision of the sto-

chastICP are improved greatly compared to the tradi-

tional ICP algorithm, however, stochastICP calls for a 

manual adjustment to obtain a proper initial position. 

�e iterative most-likely point (IMLP) method, another 

variant of ICP [38], is used for the registration of human 

hip and femur meshes. Real-time US and CT registration 

is a key component of orthopaedic surgeries. Brounstein 

et  al. [40] introduced the GMM algorithm to the regis-

tration of two point sets extracted from local bone phase 

images. �e largest innovation of this method is that 

these points are chosen on the basis of local curvatures, 

which ensure this method to obtain a more accurate 

global optimum. �e GMM method also demonstrates 
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a high calculation speed to meet real-time requirements 

and is a good descriptor of bone surfaces for incorporat-

ing the local curvature of points. �ere are also many 

applications of the PMs in other bone-related surgery 

processes, such as 3D reconstruction of bones by fluoro-

scopic images and alignment of X-ray bone slices [34, 36].

3.4  PMs in Laparoscopic Surgery

Laparoscopic surgery (LS) is another interventional tech-

nique to access the abdominal anatomy of the patient. LS 

is minimally invasive in contrast to the traditional open 

surgery which involves cutting the skin and dividing the 

underlying tissues to gain a direct access to the surgical 

target. However, LS can only provide the surgeons with 

a restricted and small view of the surgical field, which 

abandoned the navigation of the surgery. To improve the 

visualization capability of LS, medical image registration 

is required to comprehend the various images taken in 

pre- or intra-laparoscopic surgery. Makers play an impor-

tant role in the majority of automatic approaches for reg-

istering the endoscopic images, where rigid PMs, such as 

ICP and its variants, are widely used to obtain an accu-

rate registration. Benincasa et al. [81] used ICP to regis-

ter the surface points of the kidney to enlarge the view 

of the intraoperative surface. In image guided liver sur-

gery, Cash et al. [82] used the ICP algorithm to register 

the preoperative and intraoperative representation of the 

liver surface in the rigid registration procedure. Matching 

surface correspondences is one of the key components of 

shape-based guidance, and Santos proposed an approach 

based on the distance error to establish the surface cor-

respondences of the liver surface reconstructed from 

volume scanners, such as CT and MRI, and 3D range 

scanners to initialize the fine surface matching algo-

rithms for intra-operative soft tissue registration [83]. 

PMs also ensure that optical techniques for 3D surface 

reconstruction procedure are effective, even when there 

are thousands of feature points [84–87].

3.5  PMS in Other Surgical Applications

Registration of airway trees is a unique procedure where 

the orientation and thickness of the airway trees cannot 

be ignored. Wassermann et  al. [27] introduced the ten-

sor field into the registration of point sets collected from 

airway trees where each point is associated with a sym-

metric matrix representing the orientation and thickness 

of the airway trees. �e tensor field, which is represented 

sparsely, is transformed from a shape feature matrix to 

convert the alignment of two images to the registration 

of two tensor fields. �e tensor field algorithm is tested 

in both synthetic and human airways to validate that its 

registration accuracy is superior to GMM and other up-

to-date algorithms.

Almhdie [78] proposed a comprehensive ICP (CICP) 

algorithm to align two point sets collected from left ven-

tricle and lung surfaces. A look-up matrix was introduced 

to timprove the performance of the original ICP. �e pro-

posed CICP algorithm performs better than the original 

ICP (OICP) and Picky ICP (PICP) methods in not only 

the precision of the point correspondence estimation but 

also the resistance to noise and outliers. TPS-RPM was 

employed for matching cavity surface points to facilitate 

the dose accumulation among the high-dose-rate treat-

ment fractions [35].

3D reconstruction is a vital procedure in medical 

image guided surgery where CT and MRI are both taken 

as pieces of slices initially. �ere will be dislocations 

between every two layers of the sequence of digital image 

as CT/MR slices due to the patient’s breathing, heart 

beating, and other physiological activities. Consequently, 

the first step of the segmentation and 3D reconstruction, 

which is based on the slices, is to register the upper and 

lower adjacent slice images. Although the active contour 

and active shape methods [46, 88, 89] have been pro-

posed for the registration of slice images, the two main 

drawbacks of slice registration have not been conquered 

fundamentally. One drawback is that the quality of the 

initial position directly affects the registration result and 

speed, and the other is that the robustness and preci-

sion is rapidly reduced when there are inter-subject ana-

tomical variabilities. To overcome these two drawbacks, 

Zhang et  al. [90] proposed the KFM-PDM algorithm to 

align two point sets extracted from SIFT feature points 

of two neighboring MRI slices. A global deformable geo-

metric model is obtained based on the point distribu-

tion model (PDM) of the obtained point sets. �e Key 

Features Model (KFM), such as highly repeatable and 

highly robust SIFT features, was employed to adjust the 

initialized transformation parameters. �e method has 

been freed from the harsh demand for the initial posi-

tion of registration and improves its robustness while the 

inter-subject anatomical variabilities appear. However, 

manually extracted feature points restricted the applica-

tion of PDM in other clinical scenes. CPD algorithm is a 

robust and efficient method for point set registration and 

has been used widely in the medical image registration. 

Peng et  al. improved the CPD algorithm by using the 

shape context (SC-CPD) algorithm [51–54] to find the 

correspondence between the point sets and to calculate 

the outlier ratio automatically to avoid manual assign-

ments [71]. Point sets are extracted from the edges of 

slices to incorporate more information for registration. 

Although the registration accuracy is improved in the 

algorithm, the rising computational complexity cannot 

satisfy the real-time requirement of clinical applications. 

As an emerging algorithm, the applications of the CPD 
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approach in medical image registration still have room 

for improvement.

4  Conclusions
(1) In this paper, we focus on point-feature-based 

medical image registration which is extensively 

used in clinical applications. �is paper is struc-

tured around the two core aspects: registration 

techniques and clinical application. For each com-

ponent, particular emphasis is placed on classifying 

the methods according to their theoretical founda-

tions and applications.

(2) Independent of extrinsic points or intrinsic points, 

the precisely point acquisition is of great impor-

tance in the pre-procedure of the PMs. �e accu-

racy of registration is affected severely by the pre-

cision of point extraction, therefore future work 

should explore more accurate feature segmented 

algorithms and points extraction methods. In addi-

tion, with the rapid development of the PMs, more 

precise and effective algorithms will be introduced 

into medical image registration.

(3) Choosing proper geometric transformation meth-

ods is crucial after the feature points are acquired. 

If the correspondence between two point sets is 

known before registration, the least square method 

is sufficient to minimize the distance between two 

point sets. However, in most cases, the correspond-

ence is unknown. Under these circumstances, 

parameters, such as the degree of deformation, the 

registration accuracy, and the signal-to-noise ratio, 

should be taken into consideration to choose an ele-

gant geometric transformation. �e RPM, GMM, 

and CPD are effective for non-rigid registration 

with large deformations, while ICP performs well 

at rigid and rough registration with low computa-

tional complexity. If considerable noises are con-

sisted among the extracted point sets, algorithms 

with a low sensitivity to noise such as CPD should 

be chosen.

(4) Clinical application is a new classification crite-

rion that has been seldom related in the previous 

studies. As shown in Table 2 and Table 3, vascular 

interventional surgery is the most widely used field 

of the PMs. �e main reason is that the centerlines, 

bifurcations and edge points of blood vessels can 

be used directly as the source of the feature points. 

Vascular interventional surgery of different vessels 

has different standards in the acquisition of feature 

points. For abdominal aortic vasculature, the vascu-

lature diameter is very large, and centerline cannot 

describe the vessel structure precisely, so the edges 

of vessels are usually extracted as the source of the 

feature points. For liver vessels and vessels of other 

organs, diameters of these vessels are narrow and 

have limited influence on the registration accuracy, 

so the centerline of the vessel can directly serve as 

the origin of feature point sets.

(5) In summary, feature-based medical image registra-

tion has greatly benefitted from its real-time per-

formance and registration accuracy. With the rapid 

development of feature extraction technology, fea-

ture-based methods will experience an upcoming 

explosion.
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