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Abstract 

  Metal spinning technology has seen a rapid development in recent years. Novel spinning processes, such as 

non-axisymmetric spinning, non-circular cross-section spinning and tooth-shaped spinning, are being developed. 

This has challenged the limitation of traditional spinning technology being used for manufacturing axisymmetric, 

circular cross-section, and uniform wall-thickness parts. In this paper, the classification of the traditional spinning 

processes is proposed based on the material deformation characteristics, the relative position between roller and 

blank, mandrel spinning and mandrel-free spinning, and temperature of the blank during spinning. The 

advancement of recently developed novel spinning processes and corresponding tool design and equipment 

development are reviewed. The classification of the novel spinning processes is proposed based on the relative 

position between the rotating axes, the geometry of cross-section and the variation of wall-thickness of spun parts. 

The material deformation mechanism, processing failures and spun part defects of the aforementioned three 

groups of novel spinning processes are discussed by analyzing four representative spinning processes of industrial 

applications. Furthermore other novel spinning processes and their classification as reported in the literature are 

summarized. 
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Nomenclature 

P  resultant spinning force of the roller  

Pz, Pr, P t spinning force components of the roller along the axial, radial and tangential direction 

c,z, c,r average axial and radial contact stresses between the roller and the workpiece 

Az, Ar projective axial and radial contact areas between the roller and the workpiece 

h offset value  

 oblique angle  

け rotational angle of the roller  

rと roundness radius of the roller 

f feed rate of the roller 

Dr diameter of the roller 

D0 original diameter of the tubular blank 

D diameter of the tubular workpiece after each roller path  

〉 nominal reduction of the blank radius per path, 
0( ) / 2D D    

S distance from the revolution plane of the roller to the datum plane  

く' installation angle of the roller 

t0 initial thickness of the blank 

D0’ diameter of the circumscribed circle of the blank 

t0/D0’ thickness-diameter ratio of the blank 

Pzmax, 

Prmax, 

P tmax 

maximum roller force components along the axial, radial and tangential direction  

h height of the workpiece during spinning 

n rotational speed of the mandrel 

C clearance between the mandrel and the roller 

〉C relative clearance between the mandrel and the roller, 〉C=100%(C-t0)/t0 

fz feed rate of the roller along the axial direction 

tf wall thickness of the workpiece 
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ht maxmum thinning ratio of the wall thickness 

g semi-cone angle of the workpiece 

g0 semi-cone angle of the mandrel 

〉g springback angle of the workpiece, 〉g=g-g0 

 

1. Introduction 

Metal spinning is one of the near-net shape forming processes widely used for manufacturing axisymmetric, 

thin walled-thickness and hollow circular cross-section parts. The process involves the feeding motion of one or 

more rollers against a metal blank or tube rotating together with the main spindle of a machine to obtain desired 

axisymmetrical and hollow geometries by inducing continuous and localized plastic deformation on the blank or 

tube [1]. Due to the nature of localized material deformation, this process has inherent advantages, such as low 

forming loads, simple tooling, good dimensional accuracy, high material utilization, low production costs and 

improved mechanical properties, be apt to obtain lightweight parts with flexibility in manufacturing. Metal 

spinning in modern times has been widely used in various industries requiring high precision material processing, 

such as aviation, aerospace, automotive, defence, medical, energy and electronics industry. Spinning process is 

capable of forming components of diameter ranging from 3 mm to 10 m, and thicknesses from 0.4 to 25 mm [2, 

3].  

In recent years, novel spinning processes are being developed which challenges the limitation of traditional 

spinning technology being used for manufacturing axisymmetric, circular cross-section, and uniform 

wall-thickness parts [2, 4]. Xia [5] developed a 3D non-axisymmetric spinning process, in which the workpiece 

was free from the rotational motion during processing and the roller set was installed on the main spindle and 

rotated together with the main spindle of the machine. Using the developed process a thin-walled hollow part with 

a partial axis paralleling or being a certain inclined angle to the original axis of the workpicec can be produced 

without the need of using subsequent welding processes. Awiszus et al. [6, 7] developed a non-circular spinning 

process, thin-walled hollow parts with tripod shaped cross-section were manufactured, by a standard spinning 

lathe with a pair of diametrically opposite, spring-controlled rollers. Schmoeckel and Hauk [8] proposed a new 

flow-splitting spinning method, where the tool configuration design consisted of one splitting roll and two 

supporting rolls, and the distance between the splitting roll and each supporting roll was adjusted to a specified 

value, therefore overcame the limitation of attainable radial splitting depths successfully. Xia et al. [9] developed a 

stagger inner gear spinning method, where three rollers were 120º equally positioned along the circumference of 
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the workpiece and there was a certain distance between rollers along both the axial and radial directions of the 

workpiece. The method has been successfully used to form various cup-shaped thin-walled inner gears [9]. The 

development of these novel spinning processes has broadened the scope of the traditional spinning technology 

being used to manufacture axisymmetric, circular cross-section, and uniform wall-thickness parts for various 

industrial applications. However, these newly developed spinning processes do not belong to any existing 

spinning processes if using the traditional classification method, thus the classification of the recently developed 

novel spinning processes is necessary. In this paper, the advancement of novel spinning processes is reviewed and 

a classification of the non-axisymmetric spinning, non-circular cross-section spinning, and tooth-shaped spinning 

is proposed. Examples of industrial applications of the novel spinning processes are analysed to provide an insight 

into the material deformation characteristics during forming. 

 

2. Classification of traditional spinning processes 

The classification of the traditional spinning processes has been developed mainly according to the deformation 

characteristics of the blank material, the relative position between the roller and the blank, spinning with or 

without mandrel, and the temperature of the blank. The classification is usually based on the following four 

methods: 

2.1. Conventional spinning and power spinning-Method 1  

According to the deformation characteristics of the blank material, spinning can be divided into conventional 

spinning and power spinning or compression forming and flow forming [1]. In conventional spinning or 

compression forming, the wall-thickness of the blank remains nearly constant throughout the process, thus the 

final wall-thickness of the spun part is equal to the thickness of the blank [2]. In contrast, the wall-thickness of the 

blank is reduced in power spinning or flow forming. Power spinning or flow forming is further divided into shear 

spinning for conical parts and flow spinning for tubular parts. The shear spinning is characterized by the fact that 

the radial position of an element in the blank remains the same during material deformation. This requires that the 

initial thickness of the blank t0 and the final thickness of the conical shell tf are correlated by the sine law, tf= 

t0sing, where g is the semi-cone angle of the workpiece [10]. In flow spinning, the final thickness is related to the 

increase in length of the spun part [11], and it is further classified as forward and backward spinning [12]. While 

some researchers propose to classifty spinning into conventional spinning and flow forming, in this paper, the 

authors prefer the classification of conventional spinning and power spinning as the flow forming is now 

commonly used to refer to the tubular part spinning. Fig. 1 outlines the classification of the traditional spinning 
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processes based on the deformation characteristics of the blank material.  

 

Fig. 1. Classification of traditional spinning processes based on deformation characteristics of the blank material. 

 

2.2. Inner spinning and outer spinning-Method 2 

According to the relative position between the roller and the blank, spinning can be divided into inner spinning 

and outer spinning (or necking spinning and expanding spinning) [13]. In traditional spinning, the mandrel is 

generally mounted inside of the blank, the roller presses the blank from the outside, the process is termed as outer 

spinning. However, in some special cases, such as expanding spinning as shown in Fig. 2, the relative position of 

roller and blank is exchanged, the roller presses the blank from the inside, thus the process is termed as inner 

spinning [14]. 

   

(a) spun part without bottom.       (b) spun part with bottom. 

1-Supporting plate  2-Outer spinning mandrel  3-Locking pin  4-Roller  5-Pushing plate   

6-Combination spinning mandrel  7-Chuck  8-Jackcatch  9-Roller head 

Fig. 2. Schematic of expanding spinning [13]. 

 

2.3. Mandrel spinning and mandrel-free spinning-Method 3 

Depending on if a specific mandrel is used in the process, spinning can be divided into mandrel spinning and 

mandrel-free spinning. In traditional spinning, a specific mandrel is usually required for each product, the blank is 

clamped rigidly against the mandrel by means of a tailstock and the shape of the mandrel bears the final profile of 

the desired product [1]. However, when the reduction of the blank radius is too great or the opening end of a 

product requires to be necked or sealed by spinning, such as necking or sealing of a gas container as shown in Fig 
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3a [15], neck forming should be processed under the mandrel-free condition. Forthermore, in some special cases, 

such as spinning a blank with large dimension as shown in Fig 3b [16], an inner supporting roller is generally 

used to replace the mandrel in order to reduce the weight of the mandrel.  

        
 (a) neck-spinning.             (b) spinning with a supporting roller. 

Fig. 3. Schematic of mandrel-free spinning [15, 16].  

 

2.4. Cold spinning and hot spinning-Method 4 

Depending on the temperature of the blank during spinning, spinning can be divided into cold spinning 

(spinning at room temperature) and hot spinning (spinning above the recrystallization temperature) [17]. 

Conventional spinning processes are typically performed at room temperature, but for parts with large thickness 

and made of high strength materials which have poor ductility for cold spinning, heating is generally applied to 

the blank in order to reduce the forming forces required during spinning. A hot spinning process is attractive in 

forming brittle and high strength materials [2,18]. 

Summarizing the above four classification methods, the classification of the traditional spinning processes is 

presented in Fig. 4. 

Spinning technology

Deformation characteristics

Conventional spinning

  Neck

spinning

Relative position between roller and blank

Power spinning

Ribing

Temperature

Inner spinning

Sealing Shear spinning Flow forming

Forward

spinning

Outer spinning

Separating

Cold spinning Hot spinning

Backward

spinning

Local

forming
Expanding

spinning

With or without mandrel

Mandrel spinning Mandrel-less spinning

 

Fig. 4. Classification of traditional spinning processes. 

 

3. Classification and analysis of material deformation mechanism of novel spinning processes  

Different from the classication of traditional spinning processes as shown in Fig. 4, the classification of novel 

spinning processes is proposed based on (1) the relative position between the rotating axes, (2) the geometry of 
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cross-section, and (3) the variation of wall-thickness of spun part. According to the material deformation 

characteristics of the following three groups of novel spinning processes: non-axisymmetric spinning, non-circular 

cross-section spinning, tooth shaped spinning, the classification can be defined as: 

3.1. Non-axisymmetric spinning-Method 1 

Depending on the relative position between rotating axes of the spun part, novel spinning processes can be 

divided into axisymmetric spinning and non-axisymmetric spinning, the latter can be further subdivided into the 

offset spinning and the oblique spinning, as shown in Fig. 5 [5]. In axisymmetric spinning, there is only one 

rotational axis of the spun part, the cross-section is circular, as shown in Fig. 5(a). In non-axisymmetric spinning, 

there are two or more rotational axes, one axis of the spun part may be parallel or tilted to other axes of the part, 

but the cross-section perpendicular to the rotational axis is still circular, as shown in Fig. 5(b).  

 

(a) axisymmetric.     (b) non-axisymmetric. 

Fig. 5. Axisymmetric and non-axisymmetric parts [5].  

 

In the work reported by Xia et al. [19], during non-axisymmetric spinning, the tubular blank is fixed by the 

clamp, the manufacturing of non-axisymmetric parts can be realized using the spinning machine by the planetary 

motion of a wedge-shaped roller-set, the axial and radial feeding, and the rotation of the workpiece in the 

horizontal plane of the clamp, as shown in Fig. 6, while the offset or inclination of the blank is realized through 

the translation or rotational motion of the clamp. The three rollers, positioned 120º apart and uniformly distributed 

along the circumference of the blank, rotate with the main spindle of the machine and feed in the radial direction 

simultaneously. The alternating forward and backward path spinning method is proposed by Xia et al. [20,21], as 

shown in Fig. 7. The method not only shortens the production time, but also improves the dimensional accuracy of 

the spun part by generating the material deformation flow under improved control.  
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1-Radial feed of rollers  2-Revolution movement of rollers  3-Axial feed of clamp   

4-Rotational motion of clamp  5-Radial translational movement of clamp  

Fig. 6. Working principle of non-axisymmetric spinning [19]. 

 

For offset tube spinning, prior to spinning per path, firstly the tubular blank is offset at an required distance in 

the direction perpendicular to the axis of the blank, then during forming, the tubular blank is fed along the 

direction of rotating axis of the roller until the total offset of roller paths reaches the required amount h0, as shown 

in Fig. 7 (a) [22]. 

For oblique tube spinning, prior to spinning per path, firstly the tube blank is inclined at a specific angle in 

relation to the horizontal surface of workbench, then during forming, the tubular blank is allowed to move along 

the direction of the rotating axis of the roller until the total oblique angle reaches the required amount 0 after 

several roller paths, as shown in Fig. 7 (b) [23].  

       

(a) offset tube. 

     

 (b) oblique tube. 

Fig. 7. Schematic of non-axisymmetric spinning process [20].  
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As reported by Xia et al. [20], the distributions of equivalent stresses and strains are non-uniformly distributed 

during offset and obilique tube spinning. The location of the maximum equivalent stress and strain are at the 0° 

area (as shown in Fig.7) where the offset or inclination is the greatest (as shown in Fig.7); while the minimum 

equivalent stress and strain are at the 180° area (as shown in Fig.7). For the oblique tubes, the distribution of 

strains varies gradually along the axial direction, which is different from that of the offset tube. 

   The theoretical calculation formulas of the spinning forces for the offset tubes [22] and oblique tubes [23] 

were obtained based on the Slab Method. Xia et al. reported that in order to selecte sufficient power suppliers for 

the lateral and longitudinal servo-actuators, and the main motor of the spinning machine to meet the spinning 

process requirement, the spinning force P was decomposed to the radial, axial and tangential force components, Pr, 

Pz and P t, as shown in Fig. 8 [24].  

2 2 2

r t zP P P P                                                                               (1) 

 

Fig. 8. Spinning force P and its components Pr, Pz and Pt [24]. 

 

Both the theoretical analysis and experimental measurements confirm that the tangential spinning force 

component is considerably small when comparing with the radial and axial spinning force components, the axial 

and radial spinning force components, Pr and Pz, can be calculated as follows [20, 22, 23]: 

r , r

z , z

c r

c z

P A

P A





 

                                                                      (2) 

where, c,r and c,z are the average radial and axial contact stresses between the roller and blank respectively; Ar 

and Az are the projective radial and axial contact areas between the roller and blank, respectively, as shown in Fig. 

9.  
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(a) offset tube spinning.                            (b) oblique tube spinning. 

Fig. 9. Projective contact areas between roller and workpiece [22, 23].  

 

Fig.10 shows the results of the variations of spinning force during non-axisymmetric tubes spinning obtained 

by the above theoretical calculations. It shows that during non-axisymmetric tubes spinning, spinning force 

components vary periodically along with one revolution of the roller rotating around the workpiece. Fig.10 (a) 

shows the effect of rotational angle of roller け on Pr and Pz during offset spinning when roundness radius of the 

roller rと=10 mm, feed rate of the roller f=1 mm/r, offset value h=2.5 mm and nominal reduction of the blank 〉=5 

mm. It shows that the maximum spinning force occurs at the position of け=0º, and the minimum spinning force 

occurs at the position of け=180º. Fig.10 (b) shows the effect of rotational angle of roller け on spinning force during 

oblique spinning when feed rate of the roller f=1 mm/r, oblique angle =3º, nominal reduction of the blank 〉=3 

mm and the distance from the revolution plane of the roller to the datum plane S=10 mm. It shows that during one 

revolution of the roller around the workpiece, the maximum and minimum spinning forces appear once 

respectively [25].  

              

                      (a) offset spinning.                           (b) oblique spinning. 

Fig.10. Effect of rotational angle of roller on spinning force [25].  

 

3.2. Non-circular cross-section spinning-Method 2 

According to the cross-section geometry of spun parts, the novel spinning processes can be divided into circular 

cross-section spinning and non-circular cross-section spinning. For a non-circular cross-section the radial distance 
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from the perimeter of the spun part to the geometric center of the cross-section is a variable, as shown in Fig. 11.  

 

(a) circular cross-section.   (b) non-circular cross-section. 

Fig. 11. Circular cross-section and non-circular cross-section spun parts.  

 

Research investigations based on many experiments have shown that the spinning processes can be successfully 

used to produce a variety of complex hollow parts with non-circular cross-sections [26]. Xia et al. developed a 

non-circular spinning method based on profiling driving method to produce various hollow parts with polygonal 

cross-sections, such as triangle arc-type cross-section [27], quadrilateral arc-type [28], and five straight-edge 

roundness-type [29]. Lai et al. [30] successfully produced hollow parts with three straight-edge roundness-type 

cross-sections, also based on the profiling driving method. Cheng et al. [31] reported that for the spinning of the 

circular cross-section parts, the roller should be fed along the radial direction of workpiece at a slow and constant 

speed. However, for the spinning of the non-circular cross-section parts, the radial feeding of roller varies because 

of the variation of distance from the edge of the part to the geometric center of cross-section of the mandrel [31]. 

 In the work reported by Xia et al., as shown in Fig. 12 [27], O1 is the rotational center of the mandrel, O2 is 

the center of the roller, の1 is the rotation speed of the mandrel, の2 is the rotation speed of the roller. When the 

roller is fed along the axial direction, it also has a high radial speed with reciprocated movement which results in 

dynamic behaviour of the roller interacting with the workpiece. It shows that during non-circular cross-section 

spinning, from the center of side-edge to the junction of two side-edges of arcs, the roller should be moved 

backward at a high speed as the increased distance from the edge of the part to the geometric center of 

cross-section of the mandrel; conversely, the roller should be moved forward at a high speed. To obtain a uniform 

wall thickness of spun part, the clearance between the mandrel and the roller should be set exactly the same as the 

blank thickness. 

 

app:ds:%20%20polygonal


 

 12/39 

    

(a) axial section.                       (b) top view. 

Fig. 12. Spinning of hollow-part with triangle arc-type cross section [27].  

 

Fig.13 shows the hollow-part with a triangle cross-section and Fig. 14 shows the variation of the longitudinal 

section (the section along the axial direction) of the workpiece during spinning [31]. When the forming height h ≤ 

1.5 mm, the flange area of the blank remains upright without wrinkling, as shown in Fig. 14. However when 1.5 

mm < h < 5.7 mm, the wrinkles occur at the flange area of the straight-side while the filleted-corner tilt backward. 

When 5.7 mm ≤ h ≤ 10.5 mm, more wrinkles appear at the flange area of the straight-side, while the 

filleted-corner becomes upright, as shown in Fig. 15. From h > 10.5 mm to the finish of spinning, the flange area 

at both of the straight-side and filleted-corner tilt forward, and the wrinkles are rolled over by the roller gradually 

when the roller moves over the blank. As reported by Cheng. et al. [32], during non-circular hollow-part spinning, 

the material flows from both sides of the filleted-corner to the straight-side, compressive stresses occur along the 

circumferential direction, as shown in Fig.15, which causing wrinkles to occur easily at the flange area of the 

straight-side. 

   

(a) blank.                (b) axial section.               (c) top view.                   (d) 3D model. 

Fig. 13. Hollow part of triangular cross-section [33].  

 

 

Fig.14 Deformation sequence of longitudinal cross-section of the workpiece during spinning [32]. 

Straight-side Filleted-corner 

Filleted-corner 

Straight-side 
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Fig.15. Wrinkle at straight-side [32]. 

 

As reported by Cheng, et al. [32], during non-circular hollow-part spinning with triangle cross-section, both 

equivalents stresses and strains periodically vary every 120º along the circumferential direction. There are obvious 

differences in magnitude of the equivalent stresses and strains between the straight-side and filleted-corner 

(Fig.13(c)). The maximum equivalent stress occurs at the opening-end, area A and B, as shown in Fig. 16(a). The 

maximum equivalent strain occurs at the bottom-corner of the straight-side, area C, and the side-wall centre of the 

filleted-corner, area D, as shown in Fig. 16(b).  

                

(a) equivalent stress.                     (b) equivalent strain. 

Fig. 16. Distributions of equivalent stresses and strains [32]. 

 

To understand the variation of spinning forces during non-circular spinning, a hollow-part with triangular 

cross-section, as shown in Fig. 13, is selected as a case study and a series of experiments is carried out to measure 

spinning forces. The variation of spinning forces and the effect of the main processing parameters on the spinning 

forces are obtained using experimental measurement. An octagon ring transducer containing four octagon rings, as 

shown in Fig. 17, is designed and installed in the roller seat to measure the spinning forces. Three components of 

the spinning force along the radial, tangential, and axial direction of the roller can be measured by the octagon 

ring transducer. The roller is installed in the roller seat, 20 pieces of strain gauages are attached onto the surface of 

the octagon ring transducer. By this method, the spinning force components are measured and processed by 

computer and data acquisition software, as shown in Fig. 18 [33].  

Wrinkle 
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Fig.17. Octagon ring transducer [33]. 

 

 
1-Spinning mandrel  2-Spinning roller  3-Octagon ring transducer  4-Bridge wire  5-PC  

6-Bridge box  7-Dynamic strain gauge  8-Numerical control system  

Fig. 18. System used for measuring spinning forces [33].  

 

In the spinning force measurement experiment, a one-path deep-drawing spinning process using a flat sheet 

blank is adopted, as shown in Fig. 19, where Dr, rと and く’ is the diameter, roundness radius and installation angle 

of the roller respectively, h is the height of forming part during spinning. The blank material is cold rolled steel 

sheet with thickness t0=2 mm. As shown in Fig. 20, Pr, P t and Pz is the three spinning force components measured 

by the octagon ring transducer along the radial, tangential and axial directions of the roller, when the roller feed 

rate f=0.4 mm/r, rotational speed of the mandrel n=60 r/min and thickness-diameter ratio of the blank t0/D0’=0.013, 

where D0’ is the diameter of the circumscribed circle of the blank, as shown in Fig.13(a) [33]. 

がh

ρr

U

Mandrel

Trailstock

      Blank

(Workpiece)

Roller
O

D
r

W

 

Fig. 19. One-path deep-drawing spinning [33]. 
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Fig. 20 shows that similar to the conventional spinning (as reported by Wang et al. [ 34]) and the 

non-axisymmetric spinning (as reported by Xia et al. [35]), in the spinning of triangular cross-section hollow part 

the axial component of spinning force Pz is the greatest, the tangential spinning force P t is the smallest and the 

radial spinning force Pr is the second highest. Different from the conventional spinning (as reported by Wang et al. 

[34]) but similar to the non-axisymmetric spinning (as reported by Xia et al. [35]), Pz, Pr and P t vary periodically 

with the mandrel rotational angle. The experimental results also show that similar to the conventional spinning (as 

reported by Khamis Esa et al. [36]) and the non-axisymmetric spinning (as reported by Xia et al. [35]), the values 

of maximum spinning force (Pzmax, Prmax and P tmax) increase with the increase of the roller feed rate f. However 

different from the conventional spinning (as reported by Wang et al. [34]) and the non-axisymmetric spinning (as 

reported by Xia et al. [35]) processes, Pzmax, Prmax and P tmax increase with the increase of the mandrel rotational 

speed n in the spinning of triangular cross-section hollow part. 

 

1-Bottom-corner  2-Side-wall  3-Opening-end 

Fig. 20. Variation of spinning force components with time in spinning triangular cross-section hollow-part [33]. 

 

3.3. Tooth shaped spinning-Method 3 

According to the variation of the wall-thickness of spun parts, the novel spinning processes can be divided into 

uniform wall-thickness spinning and tooth shaped spinning, the latter can be further subdivided into lateral tooth 

spinning and longitudinal tooth spinning, as shown in Fig. 21. In the lateral tooth spinning, the distribution of wall 

thickness is partially thickening and partially thinning along the axial direction after spinning, as shown in Fig. 

21(a).  
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(a) lateral tooth spinning.    (b) longitudinal tooth spinning. 

Fig. 21. Lateral tooth and longitudinal tooth spinning.  

 

3.3.1. Lateral tooth spinning 

Belt pulley spinning is a typical example of application of the lateral tooth spinning process, as shown in Fig. 

21(a). As an important power transmission part, pulleys are widely used in automobile industry, agricultural 

machinery, pumps and machines. As reported by Packham et al. [37], pulleys are usually produced by machining 

after casting or forging, which lead to the disadvantages of material wastage, low production efficiency, low 

product dimensional accuracy resulting poor dynamic performance. 

Recent development of spinning technology has enabled pulleys to be produced by spinning to replace casting 

and forging processes. Fig. 22 shows one example of six-wedge poly-pulley used for automotive applications as 

reported by Cheng et al. [38]. As shown in Fig. 22, the wall-thickness of the tooth shaped portion of the pulley is 

at least 2.8+0.2 mm by split spinning, while the bottom thickness of pulley is only 2.5+0.2 mm. Therefore, a local 

thickening process has been developed to achieve near-net shape forming to reduce material wastage and number 

of manufacturing procedures required.  

The whole manufacturing procedure of poly-wedge pulley spinning includes blanking, drawing and spinning 

processes, as reported by Cheng et al. [38]. The cup-shaped blank used for spinning is made by deep drawing 

process, as shown in Fig. 23. The spinning procedure includes five processes, performing, drumming, thickening, 

toothing and finishing, as shown in Fig. 24. The first process is performing by feeding the performing roller 1 

along the radial direction together with the upper mandrel moving downward along the axial direction. The side 

wall of the cup-shaped blank obtained by deep drawning is deformed into the shallow drum-shaped workpiece, as 

shown in Fig. 24(a). The second process is drumming by moving the upper mandrel downward individually until 

the bottom of the preformed shallow drum-shaped blank contacts with the lower mandrel tightly. The side wall of 

the shallow drum-shaped blank obtained by performing is further deformed into the deep drum-shape blank, as 

shown in Fig. 24(b). The third process is thickening by feeding the thickening roller 2 along the radial direction 

until the side wall of the deep drum-shaped blank is flatened, as shown in Fig. 24(c). The fourth process is tooth 

performing by feeding the toothing roller 3 along the radial direction to form the rough tooth profile, as shown in 
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Fig. 24(d). The final process is finishing by feeding the finishing roller 4 along the radial direction to shape the 

tooth profile accurately, as shown in Fig. 24(e).  

  

Fig. 22. Schematic of six-wedge poly-pulley [38]. 

 

 

Fig. 23. Preforming drawing blank [38]. 

 

          

(a) preforming.       (b) drumming        (c) thickening         (d) tooth preforming.        (e) finishing.   

Fig. 24. Schematic of five processes of poly-wedge pulley spinning [38]. 

 

As reported by Xia et al. [39], during performing, the maximum radial tensile strain occurs at necking area of 

performing blank, as shown in Fig. 25(a). During drumming, bulging is the main deformation mode which occurs 

in the middle of drum-shape blank, therefore compressive strains occur in the inner layer of the bulging area and 

tensile strains occur in the outer layer, as shown in Fig. 25(b). During thickening, tensile strains occur mainly in 

the radial direction while compressive strains occur mainly in the axial and tangential direction. As shown in Fig. 

25(c), the material flows into both ends of the blank along axial dircetion from the middle of the side-wall, 

behaves similarly as that in the radial compression and thickening. 

http://dict.cnki.net/dict_result.aspx?searchword=%e6%8b%89%e5%ba%94%e5%8f%98&tjType=sentence&style=&t=tensile+strain
http://dict.cnki.net/dict_result.aspx?searchword=%e7%bc%a9%e5%be%84%e6%88%90%e5%bd%a2&tjType=sentence&style=&t=necking+forming
http://dict.cnki.net/dict_result.aspx?searchword=%e5%be%84%e5%90%91%e5%8e%8b%e7%bc%a9&tjType=sentence&style=&t=radial+compression
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(a) preforming.                 (b) drumming                       (c) thickening 

Fig. 25. Axial strain distributions during various processes of spinning [39]. 

 

3.3.2. Longitudinal tooth spinning  

Longitudinal tooth spinning includes inner gear spinning and inner rib spinning [40]. The cup-shaped inner 

gears are widely used in the transmission with benefits of compact structure and light weight. They are usually 

produced by machining and welding, which results in multi stage manufacturing processes and long production 

cycle. As an incremental forming process, the inner gear spinning has the advantages of simple forming tools, low 

material wastage and reduced energy consumption, and low forming loads [41]. 

Xia et al. reported that during inner gear spinning [9], the material flowed along both the axial and radial 

directions, but also along the circumferential direction due to the partially thickening (in the area of gear-tooth) 

and partially thinning (in the area of tooth-groove), as shown in Fig. 26. Fig. 27 shows the working principle of 

the thin-walled inner-gear stagger spinning using three rollers, where a certain distance is specified between 

rollers along both the axial and radial directions as reported by Xia et al. [42]. As shown in Fig. 27, the mandrel 2 

with external shaped teeth is mounted on the spindle 1 of the machine; the cup-shaped blank 3 is placed on the 

mandrel 2 and fitted by the tailstock 4, which rotates together with the spindle and mandrel. The three rollers are 

uniformly distributed along the circumferential direction of the blank with 120° apart.  

 

Fig. 26. Material flow of inner gear spinning [9].  

 

In the cup-shaped inner gear spinning reported by Xia et al. [40], the rollers feed 〉 along the radial direction 
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firstly, and then move from the bottom-end to the open-end of the blank along the axial direction. The teeth are 

formed on inner surface of the cup-shaped blank under the combined action of the roller and the mandrel. 

 

Fig. 27. Schematic of cup-shaped inner gear spinning [40]. 

 

As reported by Xia et al. [9], during the inner gear spinning, the material flows from the the bottom to the 

opening end of the cup-shaped workpiece along the axial direction. As shown in Fig. 28(a), the axial flow of the 

material in the gear groove is greater than that in the gear tooth due to the radial constraint, which results in 

non-uniform material deformation between the gear tooth and gear groove. The radial flow of material is much 

more complex especillay in the inner-side of the workpiece, the material being extruded in the gear goove flows to 

the goove of the mandrel under the compression of roller resulting in the negative radial displacement, while the 

radial flow of material in the gear tooth is small, as shown in Fig. 28(b). Along the circumferential direction, the 

volume of material flows from the outer surface to the inner surface is gradually decreased, as shown in Fig. 28(c). 

The material flow of the gear tooth, where the contact is firstly made with the roller, is the most important due to 

the fact that the circumferential constraint is the smallest.  

 

(a) axial direction                   (b) radial direction              (c) circumferential direction 

Fig. 28. Distributions of material displacement [9]. 

Summarizing the above three classification methods, the classification of the recently developed novel spinning 

processes is presented in Fig. 29. 

gear-tooth 
tooth-goove tooth-goove 

gear-tooth gear-tooth 
tooth-goove 
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Fig. 29. Classification of novel spinning processes. 

 

3.4. Discussion on other classification methods of novel spinning 

In addition to the above proposed classification method of novel spinning processes, there are reports of other 

classification methods for novel spinning processes. Music et al. grouped the novel spinning processes as flexible 

spinning, asymmetric spinning and hot spinning [2]. In the authors’ opinion, the classification of flexible spinning 

mentioned by Music et al. is similar to the conventional spinning or the shear spinning, which may be grouped by 

the following approaches, namely spinning a pre-formed shell [43], replacing the mandrel with a roller [16], 

spinning with a moving blank holder [44], spinning with a simple cylindrical mandrel [45] and spinning with a 

multi-roller tool set [2]. During the processes of spinning of a pre-formed shell [43], replacing the mandrel with a 

roller [16] and spinning with a simple cylindrical mandrel [45], the thicknesses of the workpiece obeys the 

sine-law, therefore these processes of mandrel-free spinning belong to shear spinning. In the other processes, the 

thickness of the workpiece undergoes minimal changes, thus these processes can be considered belonging to 

conventional spinning. The hot spinning is an old-age process and widely used technologe, especially in forming 

thick parts or hard-to-deform materials. During the hot spinning process, the nitrogen or inert gas is usually used 

as protective atmosphere which does not react with the workpiece, thus the mechanical properties of spun parts 

improve greatly due to the refining of the microstructure and the decreasing of the forming defects [18]. 

According to the deformation characteristics of material, the hot spinning can also be classified as conventional 

spinning and power spinning [18]. 

In recent years, some other novel spinning processes are also emerged. Sekiguchi et al. [46, 47] attempted to 

form conical parts with variable circumferential wall thickness through spinning; inclining the flange plane of the 

workpiece during the process was the fundamental strategy of this method. A part was formed as shown in 

sequence from (a) to (e) in Fig. 30, by maintaining the centripetal force FY parallel to the flange plane at a 

constant value using a force-control method and constraining the tip of the roller on the plane. Owing to the 

rotation of the workpiece on the spindle, the coordinate system used in the force/position control of the roller was 
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tilted depending on the inclination angle  of the plane and the rotational angle of the spindle. By applying this 

method, it was predicted that the wall thickness distribution could be varied while retaining the same shape by 

altering the inclination angle of its flange plane during the process. The final wall thickness of a conical part was 

determined by the half-angle, inclination angle and the original thickness of the blank in accordance to the sine 

law [47]. Therefore this spinning method can be classified as shear spinning.  

 

Fig. 30. Schematic of the experiment on controlling the wall thickness distribution in force-controlled shear spinning [47]. 

(g-half-angle; -inclination angle; t0-initial thickness; t-final wall thickness; FY-centripetal force; z-axial position; h-height of product; 

h0-initial forming height; h1-oblique forming height; r0-radial positionof point A; r1-radial position of point B; re-estimated radial 

displacement of flange; とR- roundness radius of tool; j-tilt angle of roller). 

 

4. Review of process advances and applications of novel spinning processes 

Various novel spinning processes have been developed to produce a range of geometries in recent years. This 

section presents some examples of the development of novel spinning processes for industrial applications and 

analysis of tool design and their associated controls as well as spun part defects and material processing failures. 

4.1. Non-axisymmetric spinning 

Xia et al. [35] has successfully produced the offset parts (where various rotating axes are parallel to each other) 

and the oblique parts (there is a certain angle between the rotating axes) by using the non-axisymmetric spinning 

processes, without the need of post-processing such as welding. Fig. 31 shows a typical automobile exhaust tube 

with offset axis on the left-end side and oblique axis on the right-end side, as reported by Xia et al. [20]. The 

traditional manufacturing method of the part is to separate the final geometry into three sections, the middle 

section of the circular tube (II) is welded with the two end tubes (I and III). Each of the end tubes are divided into 

two stamping parts from its center line (O1-O1 and O2-O2) respectively, then welded together. By using this 

traditional manufacturing method, not only the welding quality cannot be guaranteed but also the production cost 

is much higher because a number of the manufacturing procedures are required. By replacing the traditional 
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method with the spinning process, not only thermal distortions and potential fatigue cracks caused by welding can 

be avoided effectively; but also the mechanical properties and dimensional accuracy of tubes can be improved. 

 

Fig. 31. Example of vehicle exhausts tube [20]. 

 

Xia et al. [35] developed the non-axisymmetric tube spinning process and associated equipment and tools, to 

manufacture non-axisymmetric thin-walled hollow parts with two or more rotational axes in one piece by using 

6061 aluminium alloy tubes of 100 mm in diameter and 1.8 mm in thickness, as shown in Fig. 32, the deviation of 

wall thickness, straightness and ovality of spun part are 0.2 mm, 1.4 mm and 1.0 mm respectively. Comparing 

with the traditional manufacturing method, i.e., welding following stamping, the utilization of material increases 

from 70% to 90%, the production procedures are reduced from 10-passes to 2-passes. Therefore, the production 

cost is reduced significantly by spinning. Xia et al. [24] also developed a multi-function CNC spinning machine 

for the non-axisymmetric process, as shown in Fig. 33.  

 

a) offset tubes.               (b) oblique tubes.           (c) tube with offset and oblique end 

Fig. 32. Non-axisymmetric spun parts [35]. 

 

 

Fig. 33. HGPX-WSM multi-function CNC spinning machine [24]. 

 

As reported by Xia et al. [19], during the non-axisymmetric spinning, axial cracks may occur during multi-pass 

Offset Oblique Offset+ Oblique 

 

a b c 
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neck-spinning due to the reduced ductility caused by material work-harding. Fig. 34 shows an axial crack 

occurred during the 8th forward pass spinning when the nominal reduction of the blank radius per pass 〉i is 4 mm. 

It shows that the fracture occurs at the initial spinning area during forward path spinning. Fig. 35(a) shows the 

spun workpieces produced by using different feed rates. Fig. 35(b) shows that all cracks locate at 0° area where 

the maximum deformation occurs. Because of the effect of work-hardening during multi-pass neck-spinning 

process, cracks occur if a small feed rate is adopted but can be avoided if appropriate spinning process parameters 

are selected. 

 

              Fig. 34. Occurance of crack if nominal reduction of blank radius 〉i is too large [19]. 

 

          

(a) spun workpieces using different feed rates f.         (b) location of crack. 

Fig. 35. Cracks at the opening end of the spun workpiece [19].  

 

4.2. Non-circular cross-section spinning 

Amano and Tamura reported a non-circular spinning method by using a radially offset roller on a modified 

spinning lathe to produce the hollow parts with elliptical cross-section [26]. Gao et al. developed another 

mechanical setup in which the spindle axis coincident with the revolution was offset [48]. In the experiment, the 

aluminium sheet of 1 mm in thicknesses is used as the blank. Fig. 36 shows the spinning device and the spun 

workpieces of elliptical cross-section with f110 mm in long axis and f90 mm in short axis. As can be seen in Fig. 

36(a), the transmission shaft is installed on the holding chuck of a lathe at one end, while the holster is fixed onto 
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the slideway of the lathe. Two slide blocks are fixed onto the revolving drum. The three-jaw chuck is installed on 

the rotor disc, on which two orthogonal sliding chutes are attached. The slide blocks and the block mounted at the 

end of the shaft extend into the two sliding chutes and can slide along them. Therefore, the rotor disc and the 

revolving drum can be rotated by the lathe through the transmission shaft. The sheet blank is fixed onto the end 

surface of the mandrel by a supporting tail. The roller is installed in a small tool carrier of the lathe, so that the 

path of the roller can be controlled by the motion of the tool carrier. By changing the path of the roller, the 

spinning of parts with different elliptical shapes can be realized, and the maximum wall-thickness thinning ratio of 

spun workpiece is 16% [48]. 

       

a) diagram of spinning machine.                             (b) elliptical spun parts.  

1-transmission shaft  2-revolving drum  3-holster  4-slide block  5-clamping  6-rotor disc 

7-elliptical mandrel  8-roller  9-supporting tail  10-blank  11-slideway  12-three-jaw chuck 

Fig. 36. Elliptical spinning device based on two slide blocks and elliptical spun parts [48]. 

Arai [49] developed a novel metal spinning method based on hybrid position/force control for manufacturing 

non-circular cross-section parts and developed the corresponding equipment. The parts with quadrilateral 

roundness-type cross-section were successfully produced by using the pure aluminium (1050-O, annealed) sheet 

of 120 mm in diameter and 0.78 mm in thickness, as shown in Fig. 37 [49]. Using this method, the roller is 

controlled by following the contour of the mandrel to force the material to deform onto the mandrel. This enables 

a non-axisymmentric spun part to be produced which bearing the same geometry as the mandrel, and the 

springback is small and the product tightly conforming onto the mandrel. 

 

a) spinning machine.                (b) spun parts. 

Fig. 37. Linear motor driven metal spinning machine and spun parts [49].  

a b 
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Awiszus et al. developed a spinning method with a pair of diametrically opposite, spring-controlled rollers on 

a standard spinning lathe, and the parts with tripod shaped cross-section were successfully produced by using pure 

aluminium sheet of 120 mm in diameter and 1.5 mm in thickness, as shown in Fig. 38 [6]. The important factors 

which affect the distribution of wall-thickness of formed parts were investigated, and the non-circular 

cross-section parts with 24% wall-thickness thinning ratio were obtained by adopting the motion control of the 

rollers, and combining with the optimized forming processing parameters.  

 

a) spinning device.                   (b) spun parts. 

Fig. 38. Tripod shaped spinning device and spun parts [6]. 

 

Shimizu et al. developed a synchronous spinning machine, in which the rotational motion and feeding of the 

mandrel as well as the feeding of the rollers were controlled by the electric pulses to maintain the synchronization 

among the movements, as shown in Fig. 39 [50]. The trajectory of the rollers was tracking controlled by software, 

which taking into account the effect of the deviation generated by step-by-step pulse control on spinning process; 

the elliptical cross-section parts were produced by using pure aluminium sheets of 1 mm in thickness. 

 

Fig. 39. Synchronous spinning device and elliptical cross-section spun part [50]. 

 

Sekiguchi et al. developed a spinning method which can be used to produce curved shapes and 

non-axisymmetric sectional shapes without using a dedicated die. A numerically controlled spinning lathe was 

a 

b 

Product 
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used to force the spherical head tool onto the prehemmed blank disc fixed on the spindle axis via a general 

purpose mandrel, with the tool moving along a trajectory which was calculated based on the desired shape. The 

fundamental strategy of the method was to move the tool along the axial and radial directions synchronously with 

the rotation of the spindle axis, to form the product according to the virtual curved axis instead of the real 

spindle-axis, as shown in Fig. 40. Since the flange plane of the workpiece is inclined from the normal plane of the 

spindle axis, the position of the roller and the angle of the spindle should be controlled synchronously. Various 

curved and non-axisymmetric sectional shapes of spun workpiece were obtained by using the pure aluminum 

sheets of 150 mm in diameter and 1.5 mm in thicknesses, and the maximum wall-thickness thinning ratio is 60%, 

as shown in Fig. 41 [51]. 

 

Fig. 40. Schematic of synchronous spinning of curved parts [51]. 

 

a) bending angle 0°.  (b) bending angle 20°. (c) bending angle 25°.  (d) bending angle 60°. 

Fig. 41. Curved conical spun parts [51]. 

 

Xia et al. developed a spinning process based on profiling driving method to manufacture the polygonal 

non-circular cross-section parts and developed the corresponding spinning device, as shown in Fig. 42 [33,52]. 

The device consists of spinning mandrel 1, tailstock 2, worktable 3 (A), spinning roller 4, worktable 5 (B), 

profiling roller 6, profiling mandrel 7, guide strip 8, and gears 9. The spinning roller and the profiling roller are 

fixed on worktable B. The feed movement of the spinning roller is a resultant movement of the worktable A along 

Z-axis direction driven by a servo-actuator and the worktable B along a guide strip along X-axis direction driven 

by the profiling mandrel. The spinning mandrel and the profiling mandrel are driven by a pair of gears, rotated 

synchronously. The clearance between the spinning roller and the spinning mandrel is exactly controlled to the 

wall-thickness by the profiling mandrel. The complex tracking of the roller in 3D space is obtained by using 

b c a d 
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software ADAMS [52]. By using this method, several types of polygonal parts are produced, as shown in Fig. 43, 

such as (a) three straight-edges roundness-type produced by Lai et al. [30]; (b) triangle arc-type produced by Xia 

et al. [27]; (c) quadrilateral arc-type produced by Xia et al. [28]; (d) five straight-edges roundness-type produced 

by Xia et al. [29]. These non-circular parts with various cross-section are obtained by using the cold rolled steel 

sheet SPCC of 2 mm in thickness, the maximum wall-thickness thinning ratio is ranging form 14 to 24% and the 

springback angle is less than 2.2° [31, 53]. 

 

1-Spinning mandrel  2-Tailstock  3-Worktable A  4-Spinning roller  5-Worktable B  

 6-Profiling roller  7-Profiling mandrel  8-Guide strip  9-Gears 

Fig. 42. Spinning device based on profiling driving method [52]. 

 

  (a) three straight-edges roundness-type. (b) triangle arc-type. 

 

      (c) quadrilateral arc-type. (d) five straight-edges roundness-type. 

Fig. 43. Spun parts with non-circular cross-section [30,27,28,29]. 

 

a b 

c d 
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(a) intermediate generatrix.                (b) springback angle. 

Fig. 44. Evalution of geometrical accuracy [53]. 

 

Thickness uniformity and springback are two important indicators to evaluate the geometrical accuracy of 

spun parts of the non-circular cross-section spinning. Processing parameters affecting the spun part accuracy 

include: diameter of the roller Dr, roundness radius of the roller rと, relative clearance between the mandrel and the 

roller 〉C (ΔC=100%(C-t0)/t0, C is the clearance between the mandrel and the roller), rotational speed of the 

mandrel n and feed rate of the roller along axial direction fz. As shown in Fig. 44, defining ht as the maximum wall 

thickness thinning ratio along the intermediate generatrix direction of the filleted-corner 』 or straight-side II 

surfaces; ht =100%×(tft0)/t0, where tf is the actual wall thickness of the workpiece. 〉g is the springback angle of 

the workpiece, 〉g=gg0, where g is the semi-cone angle of the workpiece and g0 is the semi-cone angle of the 

mandrel [53]. 

As reported by Xia [53], during non-circular hollow-part spinning with triangle cross-section, the effects of 

the relative clearance 〉C and the feed ratio of roller fz on the maximum wall thickness thinning ratio ht are 

obvious, and the effects of the rotational speed of mandrel n and the diameter of roller Dr are slight; the effect 

sequence on the maximum wall thickness thinning ratio ht is the relative clearance 〉C, the feed ratio of roller fz, 

the roundness radius of roller rと, the rotational speed of mandrel n and the diameter of roller Dr. The effects of the 

roundness radius of roller rと on the springback angle 〉g is the most obvious, and the effects of the relative 

clearance 〉C and the diameter of roller Dr are slight; the influence sequence on the springback angle 〉g is the 

roundness radius of roller rと, the rotational speed of mandrel n, the feed ratio of roller fz, the diameter of roller Dr 

and the relative clearance 〉C. 

 

4.3. Tooth shaped spinning 

4.3.1. Lateral-tooth spinning 

For the manufacture of V-shaped pulleys, dynamic dampers and automobile wheels, blanks having cup shape 

on both sides are required [54]. An alternative forming method for such geometrical shapes is a special process of 

spinning, the so-called splitting process, as shown in Fig. 45 [55]. This is performed by feeding a tapered roller 
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radially into a rotating disk blank. Initial research findings such as the conventional splitting process are 

documented in [56,57]. When manufacturing components by the conventional splitting process, several problems 

have been observed. Firstly, the process produces tensile stresses at the bottom of the split which can cause the 

formation of a crack. The severing material deformation frequently results in a crack preceding the splitting roller 

below the workpiece surface which then can cause production-related failure of the component in subsequent 

operation. Secondly, positioning the splitting roller and the disk blank relative to each other is problematic thus 

splitting of the workpiece will not take place necessarily parallel to the disk plane. The consequence of this is that 

different material thickness prevails in the angular areas. These process-bound disadvantages of the conventional 

splitting are to be eliminated by means of an innovative flow-splitting method developed by Schmoeckel and 

Hauk, as shown in Fig. 46 [8]. By using this method, the tool configuration consists of three rollers, one splitting 

roller and two supporting rollers. While the splitting roller causes the material of the blank to flow into the two 

flange areas, the supporting rollers interact with the deformation zone of the blank underneath the deformation 

zone. The flange with a given wall-thickness can be formed by adjusting the distance between the splitting roller 

and each supporting roller. During the beginning of the forming process, the supporting rollers keep the blank 

from buckling. Once the edge of the blank undergoes deformation, the supporting rolls induce compressive 

stresses and thus increase the formability of the material.  

 

a) before forming             (b) in the forming          (c) shaping 

      Fig. 45. Schematic illustration of splitting spinning process [55]. 

 

Fig. 46. Split spinning forming device and parts [8]. 

 

parts 
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Cheng et al. developed a near-net shape forming process for manufacturing six-wedge belt pulleys by using 

08AL steel sheets of 2.5 mm in thickness, as shown in Fig. 47(a) [38]. The required tooth shape and size can be 

formed directly by spinning without machining. Only minor machining procedure is required at the outlines as 

marked by A and B, as shown in Fig. 22. The deviation of the bottom diameter and the V-groove angle is 0.36 

mm and 0.25°, respectively [38]. Comparing with the belt pulleys manufactured by machining after casting and 

forging processes, the material utilization by using spinning process increases from 40% to 70%. Furthermore, 

the spun pulley has inherent advantages, such as low manufacturing cost, improved material strength, thus 

prelonged service life. A vertical pulley spinning machine, HGQX-LS45-CNC is developed by Cheng et al., as 

shown in Fig. 47(b) [38]. The machine has an embedded system based on ARM (Advanced RISC Machines) 

which is used as the main CNC controller. The four mounting seats with different shapes of the rollers are driven 

by servo-motors.  

However some defects may occur during the pulley spinning, such as diameter expanding at bottom section, 

flanging at opening end of the workpiece and unsymmetrical drumming during drumming process, as shown in 

Fig. 48. Side wall folding, insufficient bottom size and flash at opening end during thickening may also occur, as 

shown in Fig. 49 [38]. 

 

a) spun pulley.        (b) HGQX-LS45-CNC spinning machine. 

Fig. 47. Spun pulley and spinning machine [38].  

 

The defect of diameter expanding at workpiece bottom section during drumming is shown in Fig. 47(a), this is 

due to that the radial feed of roller 1 is too small, which should be at least 2 times of workpiece thickness; the 

defect of flanging at opening end during drumming is shown in Fig. 48(b), this is due to that the setting height of 

roller 1 is inadequately selected; the defect of unsymmetrical drumming is shown in Fig. 48(c), this is due to that 

the distribution of the side wall thickness of the cup-shaped workpiece obtained by deep drawing is uneven [38]. 

a 

b 
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             (a) diameter expanding           (b) flanging       (c) unsymmetrical drumming 

                            Fig. 48. Defects during drumming process [38]. 

 

The defect of side wall folding is shown in Fig. 49(a), a swallowtail along annular channel occurs on the side 

wall of workpiece during thickening. The reason for the defect is the existence of unsymmetrical drum during 

drumming process, as shown in Fig. 48(c). The defects of insufficient bottom size and flash at opening end are 

shown in Fig. 49(b). The reason for the defects is that the setting height of thickening roller is inapporitate [38]. 

 

                              (a) side wall floding         (b) insufficient size and flash  

                                  Fig. 49. Defects during thickening [38]. 

4.3.2. Longitudinal-tooth spinning  

In recent years, considerable works have been carried out in longitudinal-tooth spinning. Xia et al. reported that 

the defects, such as the non-uniform distribution of tooth height along the axial and tangential directions and the 

wave-shaped opening-end of workpiece, are greatly affected by the processing parameters [42]. Sun et al. reported 

that the compressive deformation along tangential direction on the internal surface of part leads to a reduction in 

root circle of spun part, and the local loading and frictional effects result in the non-uniform radial deformation on 

the external surface of spun part [41]. Furthermore, in the work reported by Xia et al. [40], the process 

optimization is carried out by using the Response Surface Method (RSM) to obtain good dimensional accuracy of 

spun inner gears. A set of optimum processing parameters is obtained by taking the tooth fullness as the 

optimization target, and taking the thickness of circular blank and the reduction of wall-thickness of cup-shaped 

blank as the optimization parameters. Various spun inner gears are produced based on the selected optimum 

parameters by using the ASTM A36 steel steel tube of 76 mm in diameter and 2.5 mm in thickness, as shown in 

Fig. 50 [58]. For the involute inner gear, the deviation of the tooth profile and spiral line, and the radial runout is 

0.022 mm, 0.025 mm and 0.057 mm, respectively [40]. Spinning has shown a promising progress to become a 

new technique in gear manufacturing. It overcomes drawbacks of traditional machining processing, such as low 
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production efficiency, low precision and strict requirement for machining tools. By maintaining continuous 

material flow during deformation, the inner spun gear has improved fatigue strength, good wearability and 

prelonged service life. A stagger spinning device with three-rollers distributed uniformly along circumferential 

direction of the blank is developed by Xia et al., as shown in Fig. 51 [58]. By using this device, the position of 

each roller can be adjusted individually both along the axial and radial directions.  

 

a) Rectangular inner gear.          (b) Involute inner gear. 

Fig. 50. Trapezoid and involutes inner gear spun parts [58].  

 

1- Spindle  2- Mandrel  3-Blank  4-Roller  5-Tailstock 

Fig. 51. Stagger spinning device with three-rollers [58]. 

 

The spinning processes of tubular parts with longitudinal inner ribs are also extensively researched in recent 

years. The difference between these two types of spun parts is that there is no bottom on the end of the tubular 

parts comparing to the longitudinal inner ribs. Although the geometry of these two types of spun parts is similar, 

the application is very different. The use of inner gears is to transfer the motion and power, the forming quality of 

the inner gear is essential, especially the forming accuracy. However, the application of inner ribs is to enhance 

the stiffness and strength of tubular parts, only the accuracy of forming height of inner rib is required to be 

maintained. 

Jiang et al. developed a backward ball spinning process to produce thin-walled tubular parts with longitudinal 

inner ribs. The tubular parts with six longitudinal inner ribs are produced, as shown in Fig. 52 [59]. The height of 

ribs, the distributions, refinements and orientations of material grain sizes are simulated based on the rigid-plastic 

finite element methods, also by the design optimization of the ball dimension.  

a b 
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 Fig. 52. Tubular spun product with inner ribs [59]. 

 

Some defects have been observered during the gear spinning, such as non-uniformly distribution of tooth height 

along axial and tangential direction, as shown in Fig. 53 [42]. 

The tooth heigh is non-uniform distributed along axial direction when the radial reduction of wall-thickness is 

small, the spinning force is insufficient, or the formability of material plastic deformation is poor. For the 

non-deformed part of material close to the opening-end of the workpiece, its volume decreases with the 

proceeding of process, this results in a decrease of constraint force to the material flow along the axial direction. 

Consequently the material tends to flow along axial direction rather than along the radial direction; and tooth 

height gradually decreases from the bottom section to the opening-end of the workpiece, as shown in Fig. 53(a). 

For a smaller radial reduction of wall-thickness, the material first contacts with the side of the space of tooth 

groove of the mandrel thus fill the area fully, and the space in the side to be contacted latterly is not filled fully (as 

shown in Fig. 26), which leads to a non-uniform distribution of the tooth height along the tangential direction, as 

shown in Fig. 53(b). When the mandrel rotates, the contact area between the roller and the mandrel changes from 

gear-tooth of the mandrel to tooth-groove of the mandrel, which results in gradually decreasing of extrusion force 

applied to the material by the roller and the mandrel (as shown in Fig. 26). The volume of material flowing into 

the tooth-groove of the mandrel decreases correspondingly, which produces an uneven surface of the tooth tip.  

               

                    (a) axial direction                           (b) tangential direction 

Fig. 53. Non-uniform distribution of tooth height [42]. 

 

5. Conclusions 

In this paper, a classification method of metal spinning processes covering a broad range of spun part gemoetry 
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is presented, which not only includes the classification of traditional spinning processes, but also includes the 

novel spinning processes emerged in the recent years.  

The traditional spinning processes are classified based on the deformation characteristics of material, the 

relative position between roller and blank, mandrel or mandrel-free spinning, and the temperature of the blank 

during spinning.  

Recently developed novel spinning processes and equipment are reviewed in details, these include 

non-axisymmetric spinning, non-circular cross-section spinning, tooth shaped spinning. The classification of the 

novel spinning processes is proposed based on the relative position between rotational axes, the geometry of 

cross-section and the variation of wall-thickness of spun part. The development of these novel processes has 

allowed the spinning to be used for various new industrial applications.  

The reviwed novel spinning processes are mainly used to manufacture the parts with complex geometries which 

have found applications in the automobile industry. The materials used in these novel spinning processes are 

mainly pure aluminium, aluminium alloy and low carbon steel tubes or sheets. Majoirty of the spun parts 

manufactured by the novel spinning processes have met the quality requirement of their specific applications. 

However, for high precision applications, the dimensional accuracy, such as the wall-thickness deviation of the 

non-circular cross-section parts, need to be further improved.  

Recent researches of the novel spinning processes are mainly focus on the macro formability and the forming 

part quality, future prospects should be developing the controlling method of microstructure evolution during 

spinning and mechanical properties of the spun parts. Furthermore, in order to manufacture spun parts with high 

dimendional accuracy and good in-service performance, the integrated optimisation method of quality and 

performance of the spinning processes should be developed. Finally, the types of materials used in the novel 

spinning should be expanded, and the hot spinning process of the difficult-to-deform metal materials should be 

explored.  
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