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Abstract Through complementarity interactions, mixed-
species forests can be more productive than monocultures,
and this effect can increase with tree-species richness. How-
ever, this is not always the case. This review examines the
processes and stand structural attributes that can influence
diversity-productivity relationships (DPRs); how they influ-
ence resource availability, resource uptake, and resource-use
efficiency; and also describes some important differences be-
tween tree-diversity versus grassland-diversity experiments.
The size of the complementarity effects caused by these pro-
cesses and stand structures varies along spatial and temporal
gradients in resource availability and climate. These spatial
and temporal dynamics have now been examined in many
studies, and the general patterns are summarized using a sim-
ple framework; complementarity is predicted to increase as
the availability of resource BX^ declines (or climatic condition
X becomes harsher) if the species interactions improve the
availability, uptake, or use efficiency of resource X (or inter-
actions improve climatic condition X). Importantly, this
framework differs from the stress-gradient hypothesis to ac-
count for a wider range of inter-specific plant interactions (not
only facilitation) by considering contrasting methods used to
quantify species interactions while accounting for stand struc-
ture. In addition, complementarity (as opposed to facilitation)

for a given species combination can increase as growing con-
ditions improve in forests, contrary to predictions of the stress-
gradient hypothesis with regards to facilitation. This review
indicates that while the effects of tree-species diversity on
growth and other forest functions are now receiving a lot of
attention, far less is known about the effects of structural di-
versity on growth or forest functioning. Direct measurements
of the processes, as opposed to focusing mainly on growth
responses, could greatly contribute to our understanding of
structural diversity effects.
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Introduction

Mixed-species stands can be more productive than mono-
cultures. A global meta-analysis of studies comparing
mixtures and monocultures found that mixed-species
stands were on average 24 % more productive than the
mean of the monocultures of the given species combina-
tion, site, and age [1••]. While many of the mixtures in-
cluded in the meta-analysis contained only two species,
numerous studies have shown that the productivity of for-
ests can increase as the number of tree species increases
(Fig. 1). These diversity-productivity relationships
(DPRs) result from the growth dynamics of all species
within the mixture and from their interactions.

To interpret Fig. 1, it is critical to consider that DPRs
are also affected by stand density, resource availability,
climatic conditions, stand age, disturbances, and whether
species compositions are confounded with diversity
levels; the species that are included at lower levels of
diversity should be the same as those included at higher
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diversity levels to avoid sampling effects (Table 1). When
the effects of these factors are separated from the diversity
effects, the mechanisms driving the DPRs can become
clearer and the slopes of the DPRs tend to be lower. For
example, most of these factors were accounted for in the
meta-analysis shown by the thick brown line in Fig. 1.

This review examines DPRs in forests, the processes,
stand structures, and interactions that drive them and how
they change along spatial and temporal gradients in re-
source availability or climatic conditions. Tree diversity
is quantified differently in different studies. The most
common is tree-species richness (number of tree species),
followed by tree-species diversity, which is similar to tree
species richness but also accounts for the evenness of the

contribution of each species [2]. Other measures consider
functional diversity and phylogenetic diversity; however,
these are less commonly calculated, are harder to mea-
sure, and do not necessarily describe a higher proportion
of the variation in productivity than tree-species richness
or tree-species diversity [3, 4•]; these latter ones will be
used in this review.

While this review focuses on forests, it is important to
acknowledge that DPRs in grassland communities have
received a lot of attention, with a wide range of DPR
slopes reported [5], consistent with the forest communities
in Fig. 1. However, there are several important differences
between tree-species communities and grassland commu-
nities that can make comparisons challenging, even when
some of the processes, or the resulting patterns, are the
same. For example, grassland studies often run for several
lifetimes of many component species [6], whereas tree
studies tend to run only for a (short) proportion of the
potential life span of the trees. As a result, there are
higher levels of mortality, recruitment (possibly also clon-
al reproduction), and species replacement during grass-
land community studies [6, 7], thereby influencing species
proportions, evenness, age structures, etc. This does not
occur to the same extent in planted tree diversity experi-
ments because many of the individuals present at the start
are often still there after many years, it is unlikely or rare
that species are lost from plots over short- to medium-
term periods, and no (or very few) new individuals will
have been recruited into the canopy layer of the commu-
nity [8, 9]. This is an important distinction because in
natural forests where recruitment was accounted for in
the analyses, the positive DPRs resulted from higher re-
cruitment in plots with higher tree-species diversity, as
opposed to species interactions between, or faster growth
of, the already established trees [10]. There can therefore
be contrasting processes behind the temporal dynamics of
grassland mixtures compared with tree mixtures where
recruitment does not occur (or is accounted for in the
analyses).

There are also large differences in the physiology and
structure of trees compared with grasses and herbs. For
example, the proportion of carbon partitioned to tissues
used to capture and use resources (leaves and fine roots),
as opposed to structural support tissues, was found to be
approximately three times greater in grassland ecosystems
compared with forest ecosystems in a global meta-
analysis [11]. This has implications for many of the fac-
tors listed in Table 1, both in terms of the processes and
the stand structural attributes. For example, within a sin-
gle year, short-lived plants can replace nearly all above-
ground structures, thereby rebuilding the whole canopy. In
contrast, trees take much longer to develop their crowns
and small differences in tree crown architectural

Fig. 1 Relationships between productivity and tree-species richness.
Productivity was quantified as growth in terms of basal area, biomass,
wood, or carbon mass. For a given study, the y axis shows the mean
productivity of a given richness level Pmix

� �

divided by the mean pro-

ductivity of each monoculture in that study Pmono

� �

or the treatment with
the lowest species richness if no monocultures were examined. For some
studies, the Bmeans^ were calculated from regression lines. Studies that
included standing stocks rather than growth were not included unless they
were young plantations because standing stock is not necessarily corre-
lated with productivity, particularly not at densities beyond canopy clo-
sure [121], and diversity-standing stock relationships can therefore be
influenced by a different combination of factors compared with DPRs.
The thick lines indicate the studies that accounted for factors that may
have been confounded with species richness such as site characteristics,
species pools, and stand density, either via the statistical analyses or
because they were planted experiments. Note that while the Pmono is often
lower than Pmix; there may still have been monocultures that were more
productive than the most productive mixtures
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characteristics can accumulate year after year to have
much larger effects as the stand canopy develops [7,
12]. This difference in the turnover rate of above-ground
structures may also make forests less resilient than grass-
lands to disturbances [12].

In addition to these dynamics, the actual approaches
used to quantify species mixing effects can vary between
tree- and grassland-diversity experiments. For example,
results presented for grassland experiments are often at
the plot level and include means or totals for either a
given species or the whole community. In contrast, it is
relatively easy to examine the growth, resource capture,
and resource use of individual trees or neighborhoods
within a forest, and results are often also presented at
the individual level in order to further understand the
stand-level patterns, such as via allometric relationships,
competition indices, and size distributions [13].

Processes Influencing Diversity-Productivity

Relationships

The production ecology equation (Eq. (1) [14, 15]) provides a
framework to describe how different processes and species
interactions can influence the growth of mixed-species forests.

Gross primary production ¼ resource supply

� fraction of resource acquired � resource use efficiency ð1Þ

For example, when the focus is on growth responses to
light-related species interactions, above-ground biomass
growth (Mg ha−1 year−1) can be described using Eq. (1) as a
function of the availability of photosynthetically active radia-
tion (GJ ha−1 year−1), the proportion of radiation that was
absorbed (a fraction), and light-use efficiency (Mgbiomass per
GJ of absorbed radiation). Equation (1) has been used previ-
ously to examine the interactions in mixed-species stands in
relation to nutrients [16], water [17–20], and light [21, 22].

Many processes can influence diversity-productivity rela-
tionships in forests (Table 1). They are generally based on
inter-specific differences in physiology, phenology, or mor-
phology or intra-specific differences that result from inter-
specific interactions. These processes are often grouped into
those that represent competitive reduction or facilitation. Fa-
cilitation occurs when one species improves the resource
availability, climatic or biotic conditions for another species,
subsequently improving its growth or survival [23]. Examples
of facilitative processes include symbiotic nitrogen fixation
[24]; hydraulic lift [25]; and improved climatic conditions,
e.g., prevention of frost [26]. In contrast, competitive reduc-
tion occurs when the intense intra-specific competition in
monocultures is replaced by less intense inter-specific compe-
tition in mixtures [23]. Examples of competitive reduction
processes include temporal, spatial, or chemical stratification

within root systems and canopies that reduce competition for
soil resources or light. Collectively, facilitation and competi-
tive reduction are often referred to as complementarity.

The processes in Table 1 are not independent of each other.
For example, increases in resource availability are likely to
result in an increase in light- and water-use efficiencies [27,
28]. Increases in growth rates due to processes such as sym-
biotic nitrogen fixation may accelerate the development of
stand structural diversity and hence influence processes relat-
ed to structure (see column 2 in Table 1).

This inter-dependence also makes it difficult to sepa-
rate the effects of facilitation and competitive reduction or
even whether a given species is having a complementary
or competitive effect on a single resource. For example, a
given species can have different traits that simultaneously
increase and decrease the availability of a given resource,
e.g., for the resource water, low interception rates through
pendulate leaves but high transpiration rates through
dense fine-root systems. Therefore, just because a process
is found to change in a mixture does not mean it has a
significant net effect on growth because there may be
opposing effects on the same resource or the process itself
may simply be too weak to significantly influence growth.
For example, growth often increases in mixtures contain-
ing nitrogen-fixing species, and this is often, at least part-
ly, due to improved nitrogen availability and uptake,
while a number of other interactions may also contribute
[24]. However, sometimes there can be high rates of ni-
trogen fixation but no growth increase because nitrogen is
not one of the most limiting resources at the site [29]. The
production ecology equation and even more so, mass bal-
ance approaches, are useful tools to determine the contri-
butions and importance of different processes [13, 30].
For example, a mass balance approach was used to deter-
mine whether greater above-ground productivity of mix-
tures was associated with greater total productivity or a
shift in biomass partitioning between below-ground and
above-ground biomass pools, or both. In some cases, the
increase in above-ground production resulted only from a
shift in partitioning, while in other cases, it was also as-
sociated with increased total productivity [31, 32].

As indicated in Table 1, many complementarity pro-
cesses have already been identified. Therefore, the follow-
ing sections will focus on factors such as spatial or tem-
poral gradients in resource availability or climatic condi-
tions or stand structure that can also modify diversity-
productivity relationships.

Spatial and Temporal Dynamics

The relative difference in productivity between monocultures
and mixtures often increases with increasing tree-species rich-
ness (Fig. 1). The rate of increase typically declines as tree-
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species richness increases. However, there is clearly consider-
able variability between the DPRs in Fig. 1 and the slope of
these DPRs can change along spatial or temporal gradients in
resource availability or climatic conditions, even for a given
species pool. An understanding of these spatial and temporal
dynamics is essential to predict when and where different
types of processes (Table 1) are likely to lead to small versus
large increases in ecosystem functions in mixtures compared
with monocultures.

It is important to note that we are referring to spatial and
temporal changes in the DPR of a given species pool; the
species at low levels of diversity are exactly the same as those
at high levels of diversity. This reduces the possibility of a
sampling or selection effect (Table 1). We are also focusing
on studies without recruitment. In forests, growth due to re-
cruitment can sometimes influence DPRs considerably more
than the growth of the main (pre-existing) tree population
[10], whichmay actually sometimes have a neutral DPRwhile
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Fig. 2 A framework showing how the relative complementarity of given
combinations of species change along temporal or spatial gradients in
resource availability or climatic conditions. The solid red line in a

shows a general pattern where complementarity increases as the
availability of resource BX^ declines (or climatic condition X becomes
harsher) because the species interactions improve the availability, uptake,
or use efficiency of resource X (or interactions improve climatic condition
X). For example, if X is light, then complementarity might increase as
light availability per tree declines (e.g., along a gradient of increasing
stand leaf area index) and species interactions improve light absorption
or light-use efficiency. The blue dashed line in a is a case where the
species interactions do not lead to any change in complementarity along
the gradient because complementarity does not result from interactions
that influence X or there is no complementarity for this species combina-
tion. Part b shows how different types of interactions could lead to

contrasting complementarity patterns along a single gradient. The dashed
purple line in b is an example of a community where the species interac-
tions improve water availability, uptake, or use efficiency. These types of
interactions result in larger complementarity effects as water becomes
more limiting. The solid orange line in b is an example of a community
where the species interactions improve light absorption or light-use effi-
ciency and therefore complementarity increases with soil resource avail-
ability; as water and nutrient availabilities increase, stands can develop
large leaf areas but competition for light will also increase, so any inter-
actions that improve light absorption or use efficiency will become in-
creasingly useful. Linear relationships are shown, but while many similar
relationships reviewed by Forrester [34••] were approximately linear,
there is currently not enough empirical information to determine what
the shapes of these relationships might be. Modified from [45] and [34••]
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the total stand (due to recruitment) has a positive or negative
DPR. We therefore do not consider the effects of recruitment
because it can result frommany different types of disturbances
and lead to many different factors listed in Table 1, pushing it
beyond the scope of the simple framework described in this
section.

A Framework for Predicting Spatial and Temporal Changes

in Complementarity

We found no studies in forests with species pools of >2
species that examined spatial dynamics and only one that
examined temporal dynamics. That study showed that the
slope of a DPR in Iberian forests was higher during wet
years and lower during dry years [33]. Many more studies
have examined the spatial and temporal dynamics of spe-
cies interactions in two-species mixtures. A review of
these studies showed that the spatial and temporal chang-
es in complementarity followed the simple pattern shown
in Fig. 2 [34••]. When species interactions improve the
availability, uptake, or use efficiency of a resource that
is becoming more limiting along the spatial or temporal
gradient, complementarity also tends to increase along
that gradient (Fig. 2).

Figure 2b indicates how the importance of water- and
light-related interactions may change along a gradient. It
is important to note that Fig. 2b presents only an example
of a specific case of the general framework shown in
Fig. 2a. The pattern in Fig. 2b does not mean to imply
that water-related interactions cannot also be important on
the same (moist) sites where light-related interactions are
important [34••]. For example, on moist sites located at
the right-hand side of the x axis in Fig. 2b, there may be
temporal changes in water availability due to droughts,
such that during dry periods, water-related interactions
become more important than during average conditions
for that site. Similarly, as a stand develops over time,
which may be located on a site anywhere along the x axis,
the competition for light, water, or nutrients may increase,
thereby increasing the importance of these types of inter-
actions as the stand develops; the opposite could also
occur. Increases and decreases in complementarity with
increasing age have been reported for tree mixtures, and
when some of the processes in Table 1 were also mea-
sured, the patterns were consistent with the framework in
Fig. 2 [34••]. Nevertheless, it is clear that this simple
framework cannot simultaneously show all the different
spatial or temporal gradients, or different processes, that
are typically occurring in a single forest. The prediction of
dynamics resulting from several simultaneously occurring
processes can be achieved using process-based models
that contain many of the processes or structural attributes
listed in Table 1 [35, 36].

The Stress-Gradient Hypothesis as a Special Case

Within the Conceptual Framework for Describing

Complementarity in Forests

Many studies about mixed-species forests use the stress-
gradient hypothesis to interpret results. The framework in
Fig. 2 is similar but also distinctly different to the stress-
gradient hypothesis, which suggests that facilitation will in-
crease, and competition decrease, as conditions become
harsher [37]. The stress-gradient hypothesis is a special case
that fits within the framework in Fig. 2 but differs from it in
three main ways. Firstly, the stress-gradient hypothesis deals
with facilitation and not with competitive reduction interac-
tions. The stress-gradient hypothesis therefore excludes many
of the processes listed in Table 1, including all light-related
processes as well as all water-/nutrient-related processes in-
volving chemical, temporal, and spatial stratification.

Secondly, the quantification of facilitation itself usually
differs in forest studies compared with those done under harsh
environmental conditions where the stress-gradient hypothe-
sis was developed [34••]. In stress-gradient hypothesis studies,
facilitation is often quantified as the difference in growth,
survival, or fitness of a plant growing with neighbors com-
pared to a plant without neighbors. This no-neighbor situation
is uncommon in forests, where facilitation and competitive
reduction are often quantified as the difference in growth (or
survival) of mixtures compared with monocultures. The
stress-gradient hypothesis studies therefore confound species
composition with stand density [34••], which is a critical fac-
tor affecting forest growth and complementarity [4•], as ex-
plained below. Also, competitive reduction interactions can-
not be quantified using a no-neighbor situation as a control,
making it less common for the studies used to develop the
stress-gradient hypothesis to consider competitive reduction
interactions.

A third difficulty is that there are usually several simulta-
neously occurring processes driving the complementarity ef-
fects in mixed-species forests. Somemay be facilitative, while
others reduce competition. However, the contribution of each
process to the total complementarity effect is very difficult to
quantify and this is rarely attempted.

As a result of the three distinctions, described above, be-
tween stress-gradient hypothesis studies and forest studies, it
is rare that forest studies fit the criteria on which the stress-
gradient hypothesis is based unless it is clear that facilitative
processes (see Table 1) contributed most strongly to the com-
plementarity effect or where the effects of facilitation can be
separated from those of competitive reduction. However, we
are not aware of any study in forests where facilitative inter-
actions occurred in the absence of competitive reduction in-
teractions or where the effects of facilitation had been separat-
ed from those of competitive reduction. The importance of the
three distinctions described above is also illustrated by the fact
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that recent meta-analyses about the stress-gradient hypothesis
do not include any studies about tree-tree interactions in for-
ests [38, 39].

Despite these three distinctions between the studies used to
develop the stress-gradient hypothesis compared with forest
studies (and the framework in Fig. 2), several studies in forests
have used the stress-gradient hypothesis to explain why com-
plementarity increases as environmental conditions become
harsher or along gradients of declining site productivity
(e.g., [40, 41]). However, while the patterns in those studies
were consistent with the stress-gradient hypothesis, a global
meta-analysis found no consistent pattern [1••], and contrary
to the stress-gradient hypothesis, positive relationships be-
tween complementarity and growing conditions were found
in about 25 % of forest studies in a literature review [34••].
The framework in Fig. 2 predicts that complementarity can
increase with resource availability or climatic conditions when
the interactions between species improve light absorption or
light-use efficiency. That is, as soil fertility or water availabil-
ity increases, forests can develop larger leaf areas and so com-
petition for light will probably increase. Therefore, any inter-
actions that improve light absorption or light-use efficiency in
the participating species could become increasingly important
[22]. While the light-related interactions in Table 1 could also
significantly increase light absorption in forests on infertile
and dry sites, they are less likely to contribute to a positive
DPR on such sites because growth is more limited by other
resources. Figure 2 also explains why complementarity effects
inmanymixtures containing nitrogen-fixing species [24] were
not correlated with site productivity or climatic conditions (as
predicted by the stress-gradient hypothesis) and were instead
related to soil nitrogen availability [34••].

This framework (Fig. 2) was developed by focusing on
individual tree species within a mixture. We suggest that it is
also applicable to the total community complementarity effect,
the sum of all tree species within the stand. That is, while some
species within a diverse mixture may grow faster than in their
monoculture, other species may suffer and grow slower in the
mixture; however, the total complementarity effect of all spe-
cies within the given mixture is hypothesized to follow the
same pattern as shown in Fig. 2.

Stand Structure

Many of the processes in Table 1 depend on differences in
structures between mixtures and monocultures. Accounting
for stand structure is critical when examining DPRs, when
linking tree- and stand-level patterns, and is often an important
consideration in experimental designs. There are many ways
to define stand structure [42], and the processes in Table 1
could be divided into three broad aspects of stand structure,
horizontal, vertical, and their variability in terms of structural
diversity. Vertical structure is largely expressed in the

stratification of crowns and root systems. Horizontal structure
could be quantified as the horizontal variability in microsites
[43], in terms of stand density, or as the evenness of mixing
species (or age or size classes) in terms of species proportions
or spatial arrangement that may be patterned fine (tree-by-
tree) intermediate (row-by-row or cluster-by-cluster) or coarse
(group-by-group or patch-by-patch), where the spatial extent
of a group or patch covers at least the crown projection areas
of several mature trees of a given species.

Stand Density

Stand density, defined as the total number of trees per hectare,
stand biomass, stand basal area, etc. can significantly affect
DPRs. At very low densities, all interactions between trees
will be weak, whether they are competitive or complementary.
As density increases, so will the intensity of the interactions.
Complementarity effects have been found to increase [44–46]
and decrease [44, 47, 48], as stand density increases. The
direction of the effect will depend on the resources (or climatic
conditions) that are limiting growth and whether increasing
density increases the strength of complementarity interactions
for those resources more than it increases competition. Studies
based on large inventory data sets have shown that stand den-
sity can be a stronger determinant of productivity than tree-
species richness [4•, 49•]. All of these studies illustrate the
importance of accounting for stand density when analyzing
DPRs.

These studies also demonstrate different approaches to ac-
count for density. In planted tree diversity experiments, the
initial density is controlled (same for each treatment) and the
processes in Table 1 will then contribute to the development of
inter-treatment differences in density; the different densities,
and their effect on growth, become part of the treatment and
may not need to be accounted for in analyses [13]. Therefore,
these studies often compare treatments without adjusting for
density (all plantation studies in Fig. 1). Alternatively, when
density effects are of interest, neighborhood indices are used
to separate the effects of density from the tree-species richness
or tree-species identity effects (e.g., [13, 20, 44, 50, 51]). Both
approaches are also used to analyze mixed-species plots
established in existing forests, where initial density was not
controlled and is not known. Here, differences in density may
result from differences in age, soil/climatic conditions, previ-
ous management, disturbances, etc., and not species diversity.
Therefore, in plots established in existing forest, it is important
to ensure that the stand density of different diversity levels is
the result of species interactions and not different manage-
ment, stand disturbances, ages, and soil or climatic conditions
[13]. Since quantitative information about previous manage-
ment or natural disturbances is often unreliable or unavailable,
most studies specifically focus on stands that are close to the
maximum stand density and select at least one plot for each
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treatment at each site [52, 53]. When this cannot be done,
these factors have been accounted for by using structured
equation models [3, 4•, 49•], multiple regression and grouping
the data by site and density [54], and by analyzing tree-level
patterns using neighborhood indices [45, 55, 56].

Evenness

The importance of evenness has long been recognized and
incorporated into experimental designs such as replace-
ment series [57, 58]. Generally, when there are comple-
mentarity effects, they are highest in the most evenly
mixed treatments, e.g., the 1:1 treatments of two-species
mixtures [24] or the treatments with the highest
Shannon’s index in more diverse plots [1••]. This occurs
because the effects of processes listed in Table 1 are likely
to be strongest, when each individual of a given species
can directly interact with individuals of different species,
rather than in distribution patterns where a high propor-
tion of individuals of a given species interacts only with
conspecific individuals rather than with those of a less
common species, e.g., evenness in terms of spatial distri-
butions. High evenness also indicates that even if the
numbers of each species are similar, the contribution of
biomass is also similar, as opposed to one or a few species
dominating the others (e.g., [59]).

Stand- or Neighborhood-Level Analysis of Stand Density

and Evenness Effects

Stand density and evenness are stand-level variables, but it is
not necessary to examine their effects on DPRs using large
Bstand-level^ plots, which requires a lot of time and money.
Instead, they can be examined at the neighborhood level using
neighborhood indices [13]. This makes use of the typical var-
iability in the neighborhood of individual trees within a single
forest plot in terms of stand density, species composition, and
species proportions. Many studies have used neighborhood
indices to examine and separate the effects of density, tree
size, resource availability, and species proportions on produc-
tivity, resource uptake, or resource-use efficiency without the
need for plot-level treatments/gradients in species diversity
[20, 22, 44, 51, 56]. These neighborhood-level analyses will
probably be valuable tools for future studies of DPRs because
they also allow the analysis of older forest development
phases, which are not yet represented by experiments. How-
ever, they will complement, not replace, stand-level ap-
proaches because those are required to examine stand-level
patterns and processes or interactions with ecological distur-
bances that cannot be quantified by measurements at organ,
tree or neighborhood levels.

Structural Diversity Can Increase and Decrease Productivity

in Forests, Even in Monocultures

All of the processes in Table 1 that relate to structural
attributes can, at least theoretically, also occur in mono-
cultures. Indeed, structural diversity was positively corre-
lated with forest productivity (Fig. 3) or above-ground
biomass [60] in Canadian forests. Therefore, part of the
diversity effects shown in Fig. 1 probably result from
structural diversity rather than the species interactions
and species diversity per se. From the framework of
Fig. 2 and the production ecology equation, structural
diversity will be most useful when it improves the capture
or use efficiency of resources that are limiting. For exam-
ple, structural diversity may be very valuable for process-
es related to microclimatic conditions, e.g., light absorp-
tion or CO2 uptake, but of less direct value in stands

Fig. 3 Relationships between productivity and tree-species diversity, size
diversity (in terms of tree diameters or tree heights), or functional diver-
sity. Species and size diversity were calculated using Shannon’s index
[128], and functional diversity was calculated from the functional disper-
sion (a multidimensional index of functional diversity), which is the av-
erage distance of individual species from the centroid (center of mass) of
all species, weighted by their relative abundance [130]. The productivity
was quantified in terms of basal area increment, volume increment, or
carbon increment. For a given study, the y axis shows the mean produc-
tivity of a given diversity level Pdiverse

� �

divided by the mean productiv-

ity of the least diverse stands in that study Phomogeneous

� �

: For some
studies, the Bmeans^ were calculated from regression lines. The thick

lines indicate the studies that accounted for factors that may have been
confounded with diversity such as site characteristics, species pools, and
stand density, either via the statistical analyses or because they were
planted experiments
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limited by resources less dependent on structure or where
complementarity effects are dominated by processes that
are less dependent on structure, such as nutrient cycling.
Similarly, structural diversity can be calculated in differ-
ent ways (e.g., using diameter versus height in Fig. 3
[61]), each of which is likely to vary in its representation
of processes in Table 1 and may change as stands develop
and their structures change.

However, this structural diversity effect is not straightfor-
ward because it can simultaneously have a negative effect on
stand growth, at least in the absence of genetic diversity. These
negative effects can be significant, e.g., >10 % reduction in
stand growth [62••, 63•, 64]. To separate the effects of struc-
tural diversity from species and genetic diversity, fast-growing
clonal eucalypt plantations were examined, where structural
diversity was increased in a Bheterogeneous^ treatment by
planting a third of the trees on day one, another third on day
40, and the other third on day 80. By age of 6 years, the wood
biomass was 14 % lower in the more structurally diverse
stands. These absorbed a similar amount of light, but they
were less light-use efficient than the more homogeneous
stands [63•]. That is, in the structurally diverse stands, the
benefit the dominant trees had in terms of greater light absorp-
tion and light-use efficiency was outweighed by a reduction in
the light absorption and light-use efficiency of the suppressed
trees. However, similar experiments have not been carried out
with shade-tolerant tree species, where the effect of structure
on light-use efficiency may differ from the above experiments
with highly shade-intolerant species.

Structural Diversity and Recruitment

As noted above, the framework of Fig. 2 is based on forest and
plantation studies without recruitment. The many potential
processes and structures that lead to recruitment and the many
potential effects that recruited tree cohorts could have on
growth and other ecosystem functions are beyond the scope
of this review. Nevertheless, recruitment and mortality will
influence the structural diversity of a forest and can them-
selves be correlated with the structural and species diversities
[10]. Very few studies have examined DPRs in forests with
recruitment, or quantified the contribution of the recruited
cohort, the original cohort, and mortality, to tree species or
size diversity-productivity relationships in forests [10, 65–67].

Quantifying the Effect of Structural Diversity on Forest

Functioning

Even in forests and planted experiments without any recruit-
ment, the structural diversity of a stand is highly dynamic and
its effects on productivity might be driven by several very
different processes (Table 1) and therefore change in impor-
tance along spatial and temporal gradients in resource

availability and climatic conditions (Fig. 2). These are very
difficult to either monitor over long-stand developmental
phases or to reconstruct (e.g., [68]). Therefore, we suggest that
an efficient way forward is not to simply quantify and separate
the effects of structural diversity and species diversity using
indices (e.g., Shannon’s index) and growth measurements but
to combine this with a more process-based approach using the
production ecology equation, the framework in Fig. 2, and by
linking tree- and stand-level patterns.

Next Steps

Much information has now been gathered about how tree
species interact in forests, how large the complementarity ef-
fects on growth can be, and how these effects can be quanti-
fied [13, 16, 24, 69, 70]. The dynamics of these complemen-
tarity effects along spatial and temporal gradients in resources
and climate are less well understood [34••] but are now receiv-
ing more attention because forest managers want to know
where in the landscape, and in which phases of stand devel-
opment, mixtures are beneficial. There are at least three main
approaches that could be employed to develop this under-
standing and facilitate the transfer of information to practi-
tioners. These include (1) experiments to provide empirical
information under controlled conditions, (2) analyses of forest
inventory data to provide regionally validated information
across large spatial and temporal gradients, and (3) process-
based models that link this knowledge and synthesize it into
tools that can be used by forest managers.

A lot of attention has been given to the designs of planted
experiments, and experiments established in existing forests,
that provide detailed information about the processes in
Table 1 while controlling for variation in resource avail-
ability, climate, stand density, age, species proportions, etc.
[57, 58, 71–73]. In regards to measurements, the list of pro-
cesses in Table 1 indicates the contribution that intra- and
inter-specific differences in morphology, allometry, physiolo-
gy, and phenology make to determine complementarity ef-
fects. While it should therefore be clear that it is necessary to
take these differences into account when calculating comple-
mentarity effects or upscaling from the tree to the stand levels,
they are sometimes ignored, such as when allometric or phys-
iological information from monocultures is also applied to
mixtures. This could strongly distort predictions of comple-
mentarity effects, resulting in misleading conclusions, and
should be accounted for in future studies [13].

Carefully designed experiments are valuable sources of
data, but they can be expensive and labour intensive to estab-
lish and maintain. These can be complemented with inventory
data, which provide regionally validated information about
complementarity effects with a broad spatial and long tempo-
ral resolution. These data need to be analyzed carefully to
account for factors such as stand density [13, 74] and variation
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in soil resources and climatic conditions. For example, site
indices are commonly used in forestry to summarize the ef-
fects of all climatic and soil resources that affect growth, but
these are problematic when analyzing complementarity ef-
fects because they do not indicate which resources or climatic
conditions change along the gradient. Yet, some of these re-
sources determining growth may change in opposite direc-
tions with gradients in site indices, and it is these factors, not
the site indices, that drive the complementarity effects [34••].

Experiments and inventory analyses are limited to the com-
binations of species, species proportions, site or climate char-
acteristics, and management that were included in the data
sets. However, there is often interest in the effects of different
climatic conditions and novel combinations of species or man-
agement. Validated process-based forest growth models could
be used to examine these scenarios [35, 36]. A recent review
of forest growth models found that many could be used for
mixed-species forests but very few have been validated by
comparing their predictions of complementarity effects
against measured complementarity effects [36].

Conclusions

Positive DPRs in forests are the result of many different types
of species interactions. The importance of these different pro-
cesses or interactions change as resource availability and cli-
matic conditions change from site to site and as stands devel-
op. Complementarity effects for a given species combination
generally change along spatial or temporal gradients in re-
source availability or climate (Fig. 2), but these dynamics have
not yet received much attention at richness levels of >2. Prog-
ress with understanding the spatial and temporal dynamics of
DPRs is likely to be made using a process-based approach
within the framework of the production ecology equation.
These studies could be complemented with inventory data to
obtain regionally validated information and also to develop
process-based models that can be used to examine a much
larger number of species compositions, site and climatic con-
ditions, and silvicultural treatments and essentially to become
management tools for foresters [35]. Finally, while many of
the world’s forests are mixed-species stands, the framework in
Fig. 2 indicates that these are not always more productive than
monocultures. It is worth noting that the fastest-growing
stands in the world include very uniform, clonal Eucalyptus
plantations with volume increments of >80 m3 ha−1 year−1

[64], and these plantations are now specifically managed to
be uniform to increase productivity. Species or structural di-
versities cannot increase the productivity of very efficient
stands that are already at or near the physiological optimum
and where a number of the benefits frommixed-species stands
are addressed through management inputs such as fertilizers
and control of weeds and pest species. It would be difficult to

find species capable of competing with such trees in a mixture,
and it is important to know when, where, and how this diver-
sity is likely to be useful.
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