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Abstract: Numerical models can be used for many purposes in oil and gas engineering, such as
production optimization and forecasting, uncertainty analysis, history matching, and risk assessment.
However, subsurface problems are complex and non-linear, and making reliable decisions in reservoir
management requires substantial computational effort. Proxy models have gained much attention in
recent years. They are advanced non-linear interpolation tables that can approximate complex models
and alleviate computational effort. Proxy models are constructed by running high-fidelity models to
gather the necessary data to create the proxy model. Once constructed, they can be a great choice for
different tasks such as uncertainty analysis, optimization, forecasting, etc. The application of proxy
modeling in oil and gas has had an increasing trend in recent years, and there is no consensus rule on
the correct choice of proxy model. As a result, it is crucial to better understand the advantages and
disadvantages of various proxy models. The existing work in the literature does not comprehensively
cover all proxy model types, and there is a considerable requirement for fulfilling the existing gaps in
summarizing the classification techniques with their applications. We propose a novel categorization
method covering all proxy model types. This review paper provides a more comprehensive guideline
on comparing and developing a proxy model compared to the existing literature. Furthermore,
we point out the advantages of smart proxy models (SPM) compared to traditional proxy models
(TPM) and suggest how we may further improve SPM accuracy where the literature is limited. This
review paper first introduces proxy models and shows how they are classified in the literature. Then,
it explains that the current classifications cannot cover all types of proxy models and proposes a
novel categorization based on various development strategies. This new categorization includes
four groups multi-fidelity models (MFM), reduced-order models (ROM), TPM, and SPM. MFMs
are constructed based on simplifying physics assumptions (e.g., coarser discretization), and ROMs
are based on dimensional reduction (i.e., neglecting irrelevant parameters). Developing these two
models requires an in-depth knowledge of the problem. In contrast, TPMs and novel SPMs require
less effort. In other words, they do not solve the complex underlying mathematical equations of
the problem; instead, they decouple the mathematical equations into a numeric dataset and train
statistical/AI-driven models on the dataset. Nevertheless, SPMs implement feature engineering
techniques (i.e., generating new parameters) for its development and can capture the complexities
within the reservoir, such as the constraints and characteristics of the grids. The newly introduced
parameters can help find the hidden patterns within the parameters, which eventually increase
the accuracy of SPMs compared to the TPMs. This review highlights the superiority of SPM over
traditional statistical/AI-based proxy models. Finally, the application of various proxy models in
the oil and gas industry, especially in subsurface modeling with a set of real examples, is presented.
The introduced guideline in this review aids the researchers in obtaining valuable information on the
current state of PM problems in the oil and gas industry.

Keywords: proxy model; surrogate model; traditional proxy; smart proxy; multi-fidelity; reduced-order;
sensitivity analysis; sampling; machine learning; application
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1. Introduction

In the late 1990s, with the increase in the computational power of computers, industries
increased the use of numerical models to solve complex problems. Numerical modeling is
a mathematical representation of physical or chemical behaviors wherein the governing
properties in the process are spatially and temporally characterized [1]. It plays a significant
role in the development, uncertainty analysis, and optimization of many processes in
various areas such as engineering, geology, geophysics, applied mathematics, and physics.
Numerical models can reduce time and cost compared to more traditional trial and error
methods [2]. Nevertheless, achieving accurate results quickly has always been a challenge,
even using numerical models or software implementing them. Numerical models divide
the problem into a large number of small cells and solve it based on discrete calculus,
considering the initial conditions, boundary conditions, and underlying assumptions [3].
The accuracy of a numerical model depends on the size of the cells used to capture the
governing equations of the problem or grid spacing. A fine-grid numerical model is also
referred to as a high-fidelity model [4]. There is always a trade-off between the accuracy
and speed of numerical models. Performing an analysis with a low number of cells might
be quick; however, it sacrifices the quality of the results, or it does not yield convergence.
Conversely, a high number of cells increases the computational time, so obtaining the
results at the various realizations of the problem is very time-consuming [5]. In recent years,
improvements in computational hardware and software, and the emergence of the parallel
processing of CPUs have boosted the speed of running numerical models. However, as
computers become more powerful, users, in turn, are demanding more, such as applying
more parameters or removing simplifying assumptions, in order to increase the quality of
the results. Therefore, the availability of computing resources remains a limiting factor,
and researchers are looking for ways to reduce the computational load related to the use of
numerical models or the software implementing them.

In the oil and gas industry, and especially in reservoir modeling, there are many
sources of data, such as drilling, seismic, well tests, production, etc., that are collected very
quickly, which may change the understanding of subsurface conditions and uncertainties.
In parallel, field development plans need to be updated in shorter periods, and performing
real-time analysis can be very beneficial to understanding the evolving conditions in
the reservoir. However, having a real-time analysis limits the usage of these expensive
numerical models, or the software implementing them. As a result, the application of
computationally efficient proxy models (PMs) has been investigated in recent years.

PMs, also called surrogate models, or metamodels, are substitutes or approximations
of numerical models, mathematical models, a combination of them (such as models behind
a complex software), or even an experimental test. A simple description of proxy models is
that they are advanced interpolation tables from which we can quickly interpolate ranges
of non-linear data to find an approximate solution. Figure 1 demonstrates the use of these
equivalent terms in the literature extracted from the Web of Science Core Collection by
searching the exact keywords in the titles of the papers published since 1990 [6]. As shown
in this figure, there has been an increasing trend in the use of these models since 2000,
and “surrogate modeling” is the most widely applied term in the literature. In this paper,
the term “proxy modeling” has been selected and will be used henceforth. Additionally,
“high-fidelity model” will be used to describe the model (numerical, mathematical, or a
combination) that the PM is trying to approximate.

In proxy modeling, a modest sample of input parameters is chosen, and the high-
fidelity model is run within the given space of the parameters to obtain the outputs. Then,
the PM fits these data. This PM is only valid for the given set of inputs and corresponding
search spaces. The advantage of a PM is that once it is developed, it only requires a few
seconds to run. PMs provide the increased speed required for decision making compared
to high-fidelity models; however, the accuracy of the models remains a challenge. It should
be noted that the advantage of using a PM is its high speed, and that a high-fidelity model
still provides the most accurate results over all the spatial and temporal locations.
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There are different objectives for using PMs, including sensitivity analysis (SA), un-
certainty quantification, risk analysis, and optimization [7]. This review paper highlights
the use of proxy modeling in the oil and gas industry, in particular, reservoir modeling
and related areas such as history matching, field development planning, and reservoir
characterization. Forrester et al. [7] discuss four common applications of PMs: (1) providing
accelerated results from expensive high-fidelity models such as a software; (2) calibration
mechanisms for predictive models with limited accuracy; (3) dealing with noisy or missing
data; and (4) gaining insight into the functional relationships between parameters. It must
be remembered that PMs utilize and boost the usage of high-fidelity models by creating an
approximation, and achieving the objectives still requires the implementation of the high-
fidelity models as the initial and main step in the proxy modeling development process.

This review aims to provide a set of guidelines for PM development by introducing the
different classes of PM, the methodology, and their applications in oil and gas. In Section 2,
different classes of PMs are reviewed, as well as the proposed classification in this paper;
the steps to create a PM are explained in Section 3; and the application of PMs in oil and
gas engineering is discussed in Section 4.

In this work, we provide a new classification of PMs, including multi-fidelity models
(MFMs), reduced-order models (ROMs), traditional proxy models (TPMs), and smart
proxy models (SPMs). The existing classification in the literature could not cover all proxy
modes [8–15], and in some studies, different proxy models are even considered as one
model [16,17]. To fully comprehend the models, the advantages and disadvantages of each
class are discussed. The superiority of fast-to-construct TPMs and SPMs compared to other
time-consuming models (MFM and ROM) is demonstrated. Both TPMs and SPMs require
less scientific knowledge of the problems because they decouple the mathematical equations
of the problem into a numeric dataset. However, SPMs preserve the complexities within the
reservoir, such as the faults, boundaries, and characteristics of the grids, compared to TPMs.
As a result, SPMs provide higher accuracy by considering more related parameters within
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the reservoir. In this paper, we discuss more thoroughly the methodology to construct an
SPM, describing in detail the different steps, such as sampling and training the underlying
model. In the existing SPM literature [18–23], only one technique for each step is tested.
For example, only one type of underlying model (ANN) or one type of sampling technique
(Latin hypercube sampling) is tested. We identify this as a gap in the literature where SPM
models can be improved through a more rigorous sensitivity analysis of method selection
on the overall SPM accuracy.

2. Proxy Modeling Classification

PMs can be categorized in various ways, such as by their objective/application, the
approximation strategy used, or their time dependency. Figure 2 presents the various ways
PMs are classified in the literature.
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Eldred and Dunlavy [9], Panjalizadeh et al. [10], Mohaghegh [11], Bartz and Zaefferer [12], Barton
and Meckesheimer [13], and Jaber et al. [14]).

Ahmed and Qin [8] divided PMs into two groups, black-box-based and physics-based
approaches, according to the approximation strategy. In a black-box-based approach, the
high-fidelity model cannot be modified, and the PM makes a less expensive approximation
of the relationship between inputs and outputs. Conversely, a physics-based approach
modifies the governing equations of the problem to make it computationally cheaper,
which will be discussed later in this section. Black-box PMs are further divided into
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parametric and nonparametric, according to the nature of the unknown parameters. In
both parametric and nonparametric models, the output parameters are determined using
the initial training set; however, parametric models do not implement the training set to
make the predictions, whereas nonparametric models do [24]. Polynomial regression (PR)
is an example of a parametric model, and kriging (KG), artificial neural networks (ANN),
radial basis functions (RBF), multivariate adaptive regression splines (MARS), and support
vector regression (SVR) are examples of non-parametric approaches.

Eldred and Dunlavy [9] classified PMs into data-fit, multi-fidelity (also called hier-
archy), and reduced-order types (also called projection-based reduced models). Data-fit
models, which are primarily used for the evaluation of experimental data, involve the
interpolation or regression of the generated results from a few runs of the high-fidelity
model. PR, KG, MARS, ANN, and many other methods are examples of data-fit PMs.
In data-fit models, the underlying physics does not change, and they are identified as
non-physics-based approaches.

A multi-fidelity model, which is a physics-based approach, attempts to solve a low-
speed, high-fidelity problem by replacing it with a high-speed, low-fidelity model [24].
Fidelity here is used to describe the level at which a model could reproduce the physics
of the desired phenomenon. The process of achieving a lower-fidelity model can be
fulfilled through coarser discretization [25], simplifying physics assumptions [26], etc. In an
ROM, a high-fidelity model projects down into a low-dimensional system with equivalent
characteristics that have fewer degrees of freedom [27]. In other words, an ROM lowers the
dimensionality of the primary system by neglecting irrelevant parameters while holding
the characteristics and physics over defined space. They are based on the discretization
of the underlying partial differential equations of the high-fidelity models. ROMs can be
grouped [15] based on the type of system (linear, partially linear or non-linear, parametric
or non-parametric, and time-dependent or time-independent). Some popular techniques to
solve ROMs are proper orthogonal decompositions (POD) [28], trajectory-piecewise linear
(TPWL) [29], and the discrete empirical interpolation method (DEIM) [30], and they are
further explained in Section 4.2. In some studies, the terms “multi-fidelity model” and
“reduced-order model” have been interchangeably used, and they are considered within
one group [16,17]; however, the majority of the literature considers them as separate models.

There are pros and cons to each of the three types of PMs in this classification (data-fit,
MFM, and ROM). Data-fit models are easy to use in low-dimensional problems; however, if
the number of parameters increases, their application is problematic. Additionally, data-fit
models cannot approximate functions other than first- and second-order responses, and
the high-fidelity models need to be run many times [31]. To use MFMs, a significant
engineering effort is required, and they are usually implemented in an opportunistic
manner with the made assumptions. In contrast, the data-fit and reduced-order models
are mathematically derived from the high-fidelity model [24]. Although the use of ROMs
requires a good understanding of simulation codes for projection, they do not require
numerous computational models (that might not always be accessible), in comparison with
MFMs [9]. Data-fit models and ROMs can be compared in different aspects. One is that
the procedure of generating the PMs using the data-fit models is non-intrusive, and it is
only needs to define the system inputs and obtain the outputs by running the high-fidelity
model. On the other hand, this procedure is intrusive for ROMs, and system operators
should be projected into a reduced subspace [24]. Another feature of ROMs is that they
are capable of estimating the errors and bounds between the high-fidelity model and the
reduced one [32]. Additionally, ROMs are considered as physics-based models; therefore,
they have the advantage of better prediction accuracy compared with the data-fit models,
and as they retain the underlying physics, they are even capable of extrapolating away
from the initially given space. As a result, they can evolve dynamically in time [9].

Another way to classify PMs is based on time dependency, i.e., static and dynamic
modeling [10]. Static PMs are typically built for one or a few discrete time steps and are
not valid for processes at other times. In static modeling, only the spatial phenomenon
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is important. On the contrary, if temporal dependence is added, then the phenomenon is
treated as dynamic rather than static, and it is called dynamic or time-dependent proxy
modeling. Dynamic models are constructed for the whole desired time interval, not just
discrete times [10]. There may be some spatial dependency in the context of static modeling,
but no orders in time are effective. In contrast, in temporal or dynamic modeling, past,
present, and future concepts exist. In a temporal definition, the sample locations happen in
the past, and the predictions extrapolate the future [33]. Some of the popular techniques to
deal with spatial problems are described in Section 3.3. To model temporal problems, other
techniques, such as a recurrent neural networks, are needed. For details about the models
that deal with temporal datasets, please refer to the book written by Lazzeri [34].

Mohaghegh [11] divides PMs into two main categories: traditional and smart. The
previously discussed methods (data-fit, MFM, and ROM) fall into the “traditional” proxy
model (TPM) category. “Smart” proxy models (SPMs) are trained using machine learning
and pattern recognition techniques and require some additional steps in the development
process, compared to TPMs. The development steps will be discussed in detail in Section 3.
SPMs are capable of reproducing the high-fidelity models without reducing the physics
and order of the original system, and they do not decrease the resolution of the model in
time or space [35]. SPMs can be developed as grid-based or well-based models depending
on the objective of the study [36]. The SPM is referred to as well-based if the objective is to
make predictions for parameters at the well locations, such as production rates for oil, gas,
and water [37]. In reservoir engineering, production optimization and history matching
fall within this class of SPM. If it is desired to build the SPM with outputs at the grid level,
it is considered grid-based. Pressure and saturation prediction for different phases are
examples of parameters at the grid level, and monitoring their alteration is of paramount
importance during injection scenarios where front propagation tracking is needed [38].
Gholami et al. [18] developed another class of SPM; a coupled SPM, which is a combination
of well-based and grid-based models and is able to generate the results both in well and
grid levels simultaneously. Gholami used a workflow to transfer the parameters between
grid-based and well-based models, and she used a cascading procedure to produce the
results when the model moves forward in time.

If the objective for generating the proxy model is optimization, it is called surrogate
model-based optimization (SBO). Bartz and Zaefferer [12] grouped the SBOs into three
types: single, multi-fidelity, and ensemble models. In single SBO, there is only one model to
construct the PM in the specified search space. Multi-fidelity and ensemble SBOs use more
than one model to approximate the high-fidelity model; however, the multi-fidelity models
describe the high-fidelity model in different levels of detail, whereas the ensemble model
presents it at the same level of detail. Any of the single, multi-fidelity, or ensemble SBOs
can then be coupled with either deterministic or non-deterministic optimization algorithms
to optimize the output. Barton and Meckesheimer [13] described SBO in two groups based
on the way they search for the optimum. One group updates in an iterative manner and
looks for local optimums, and the other finds the global optimum with only one fitting
chance. ANN and KG are examples of a global surrogate model, which can be coupled
with a non-deterministic (evolutionary) optimization algorithm to find the global optimum.
On the other hand, for the local surrogate model, we can name RSM as an example that can
be coupled with a deterministic algorithm to find the local optimums [39].

Other classifications for PMs can be seen in the literature; for example, Jaber et al. [14]
divide PMs into statistical and virtual intelligence models. The statistical models involve
using RSM, and the virtual intelligence models employ machine learning techniques.

We discussed earlier in this section that Mohaghegh considered the PMs in two
broad classes of SPMs and TPMs. However, PMs in this work are classified into four
classes: MFMs, ROMs, TPMs, and SPMs. Each of these classes has a different development
procedure. The development methodology for SPM and TPM will be discussed in Section 3.
Figure 3 summarizes the different classes of PMs mentioned under the classification used
in this review, and it groups them into four main categories.
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3. Methodology

The development of ROMs is based on the projection of the problem into a lower-
dimensional case, and MFMs are based on simplifying physics. Detailing the procedure
to develop these two proxy types is not the purpose of this work. Instead, it is more
focused on the TPMs and SPMs. TPMs in this paper include all classes of PMs that
have a development procedure similar to the one shown in Figure 4, such as data-fit,
parametric and non-parametric, statistical or virtual intelligence, and static or dynamic.
The development strategy of SPM is also presented in Figure 4 based on the strategy
introduced by Mohaghegh [11].

Energies 2022, 15, x FOR PEER REVIEW 7 of 32 
 

 

 
Figure 3. Newly defined proxy model categories—MFM, ROM, TPM, and SPM. 

3. Methodology 
The development of ROMs is based on the projection of the problem into a lower-

dimensional case, and MFMs are based on simplifying physics. Detailing the procedure 
to develop these two proxy types is not the purpose of this work. Instead, it is more fo-
cused on the TPMs and SPMs. TPMs in this paper include all classes of PMs that have a 
development procedure similar to the one shown in Figure 4, such as data-fit, parametric 
and non-parametric, statistical or virtual intelligence, and static or dynamic. The develop-
ment strategy of SPM is also presented in Figure 4 based on the strategy introduced by 
Mohaghegh [11]. 

 
Figure 4. Traditional proxy model (TPM) and smart proxy model (SPM) development schematic. 

A proxy model cannot be built without a high-fidelity model. For example, in the 
case of reservoir modeling, the high-fidelity model is the numerical simulator. The main 
steps to construct a TPM include the following: (1) define the objective, inputs, and output 
parameters for the high-fidelity model with their range, (2) perform the sensitivity analy-
sis if needed, (3) perform the sampling and generation of different design scenarios, (4) 
run the high-fidelity model to produce the preliminary results, (5) train and validate a 
new underlying model, and (6) employ a TPM to generate results. 

In the first step, which may be considered the most crucial, the reason to construct 
the TPM is determined. The high-fidelity model (or subsequent TPM) may be used to ac-
complish many objectives. Optimizing a parameter such as total production rate or wa-
tercut in a waterflooding scenario, obtaining the lowest net present value, or history 
matching are examples of objectives. Then, depending on the objective, the essential pa-
rameters with their ranges for the output of the problem must be selected. For example, 
in the waterflooding case, injection rates, water viscosity, well production rates, etc., can 
be the effective parameters. A reservoir environment is considered a non-linear and com-
plex problem in which many parameters play a role. Dealing with many parameters in 
such an environment and running the simulator based on all the parameters is sometimes 

Figure 4. Traditional proxy model (TPM) and smart proxy model (SPM) development schematic.

A proxy model cannot be built without a high-fidelity model. For example, in the
case of reservoir modeling, the high-fidelity model is the numerical simulator. The main
steps to construct a TPM include the following: (1) define the objective, inputs, and output
parameters for the high-fidelity model with their range, (2) perform the sensitivity analysis
if needed, (3) perform the sampling and generation of different design scenarios, (4) run
the high-fidelity model to produce the preliminary results, (5) train and validate a new
underlying model, and (6) employ a TPM to generate results.

In the first step, which may be considered the most crucial, the reason to construct
the TPM is determined. The high-fidelity model (or subsequent TPM) may be used to
accomplish many objectives. Optimizing a parameter such as total production rate or
watercut in a waterflooding scenario, obtaining the lowest net present value, or history
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matching are examples of objectives. Then, depending on the objective, the essential
parameters with their ranges for the output of the problem must be selected. For example,
in the waterflooding case, injection rates, water viscosity, well production rates, etc., can be
the effective parameters. A reservoir environment is considered a non-linear and complex
problem in which many parameters play a role. Dealing with many parameters in such
an environment and running the simulator based on all the parameters is sometimes very
costly and time-consuming. In such a case, SA can find the non-influential inputs and
reduce the number of them. So, sensitivity analysis is essential in constructing the PM in
cases with a high number of inputs, and is performed before the sampling step [40,41], and
it can lower the dimensionality of the model [42]. This will be reviewed in Section 3.1. In
the sampling step, we design the experiment, we distribute the parameters in their ranges,
and the high-fidelity model runs at these designed selections of parameters. Section 3.2
discusses the sampling techniques in more detail. After running the high-fidelity model
and recording the desired output, the new machine learning model trains and validates the
inputs and outputs. An issue in this step is the significant number of potential modeling
techniques, and sometimes it is difficult to determine what technique is suitable for specific
applications. A brief description of the different models is presented in Section 3.3. Finally,
the built model, which is referred to as the TPM, can predict the output parameter in a
much shorter time for the initially selected design parameters. The TPM can then be used
for other purposes such as SA, optimization, uncertainty quantification, etc.

The creation of an SPM has a few additional steps compared to the TPM, as shown in
Figure 4. The most crucial part of the SPM, like TPMs, is determining the objective for model
construction. Then, a set of effective parameters is picked, and sampling is performed
within the specified range for the parameters. In the next step, the high-fidelity model is run
to generate different realizations of the model. Then, a combination of static and dynamic
parameters (including both inputs and outputs) is extracted from the high-fidelity model,
and they are used to create a new database [11]. Generating new parameters is called
feature engineering, which leads to finding new hidden patterns in the dataset. In TPM
construction, we do not involve this step, and the proxy only makes a relationship between
the initial design parameters and the output. Hence, SPM provides higher accuracy in
approximating the output parameters compared to TPM. Feature engineering also helps
SPM to accurately predict the grids’ characteristics. In comparison, TPM suffers in grid-
level predictions because a trained model on a limited number of input parameters cannot
predict the complex changes in all grids. Neither a TPM nor SPM solves the mathematical
equations of a high-fidelity model. They basically decouple the equations, constraints,
and complexities of the problem into a numeric dataset. This dataset then can be used
to train a(n) AI/statistical model to approximate the desired output. Decoupling the
equations makes the TPM and SPM superior to MFM or ROM. It is worth mentioning that
the MFM and ROM are the simplified or reduced form of the high-fidelity model, and their
construction still needs a great knowledge of the problem. However, TPM and SPM require
less scientific knowledge, and they need less time and effort in development.

For a well-based dataset, the rows (observations) in the new dataset are the wells in the
reservoir model, and the columns are the extracted parameters from the high-fidelity model
at the well level and various time steps. However, for a grid-based dataset, the rows are the
individual grids within the high-fidelity model, and the columns are parameters extracted
at the grid level and various time steps. For example, Gholami et al. [18] considered various
parameters such as porosity, permeability, pressure, saturation for phases, location of the
grids, distances to the boundary and closest offset well, production data, bottom-hole
pressure (BHP), etc., as the parameters of the grid-based dataset. The authors introduced
a tiering system to consider the impact of the surrounding grids as well, and the static
and dynamic parameters related to the tiers were imported into the dataset. Such datasets
for the generation of the smart proxies would be massive, and reducing both the number
of observations and parameters prior to the proxy development would be needed. In
the aforementioned work [18], the authors reduced the size of the dataset (from 396,000
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to 55,000 observations, and over 1000 parameters to 310 only for one of the realizations
out of 13) through grid lumping in the Z-direction and feature selection techniques. The
number of parameters in the dataset depends on the number of introduced tiers, offset
wells, and the previous timesteps that are going to be cascaded into the new timestep. After
forming the dataset, the rest of the steps are similar to those of the TPM.

The main advantage of using an SPM is that it only takes a few seconds to approxi-
mate the full reservoir. However, this is only an advantage if the SPM construction time
is reasonable. An SPM produces a massive amount of data, which are extracted from
different scenarios or realizations of the high-fidelity model. So, picking a small number
of sample points is required to avoid generating such a massive dataset and to decrease
the construction time [43]. The number of required runs usually depends on the geological
properties and operational constraints, and it should cover as much necessary information
as possible, depending on the purpose of the study. For instance, in the work carried
out by Gholami et al. [18], the total number of realization runs was only 13 for the four
design parameters, or in the research by He [19], the number of runs was only three for
the two parameters of porosity and permeability in a history-matching process. SPM is a
novel approach and expects to provide higher accuracy than TPM. TPM approximates the
outputs only based on the initial designing parameters, while SPM creates an approxima-
tion by involving many new parameters. The newly introduced parameters usually have
positive importance on the outputs [11]. The usage of SPM is more significant in grid-based
models where it can predict the outputs at the grid level. A TPM with only a few input
parameters lacks the prediction ability for the individual grids in the reservoir. There are
only a few SPM examples in the literature, and they almost used the same strategy for
development [18–23]. We suggest that conducting a sensitivity analysis comparing various
techniques for the main steps involved in SPM construction can improve the overall SPM
accuracy and development time. For example, only the ANN model for the underlying
model construction step, stationary Latin hypercube sampling for the sampling step, or
similar tiering systems have been tested for the data extraction step. As a result, it is crucial
to know the main techniques for each step. Then, it is important to apply the techniques
for future research, and compare them to check how each technique improves the SPM
in terms of accuracy and construction time. The next sections provide a comprehensive
review of the existing procedure and specific step techniques required in TPM and SPM.

3.1. Sensitivity Analysis (SA)

Sensitivity Analysis (SA) can be used to study how the outputs of a model change
due to the variation in the inputs of the specified ranges. The input parameter is called
“sensitive” if the variation in its range significantly changes the output. Additionally, a
parameter is considered “insensitive” or “robust” if the output does not change a lot [44].
SA establishes the importance of parameters and the inner workings of the models, which
can lower the dimensionality of the model [42].

Performing an SA can be significant; for instance, a reservoir model that is represen-
tative of a very non-linear environment includes many parameters. As a result, many
sample points are required to cover all the search space for the parameters, and running a
high-fidelity model for all the designed points is very costly. In such a case, with a large
number of parameters for the model, SA is an essential step in generating the TPM, and is
performed before the sampling step [40,41]. Consequently, SA can find the non-influential
parameters and reduce the number of inputs. SA can sometimes be considered as an
objective for constructing a TPM [42,45]. The relationship of inputs with the output in a
model could be complex and challenging. In this case, a TPM can be constructed based on
all the inputs. This TPM can then be used for SA and run numerous times to find the effect
of inputs on the output very quickly.

SA is categorized into local sensitivity analysis (LSA) and global sensitivity analysis
(GSA) [46]. In LSA, the inputs are subjected to small perturbations at specific points, and
the changes in the output parameter are studied. LSA is also known as the one-at-a-time or
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univariate method [46,47]. It studies the derivative of output to only one input parameter
while keeping the rest of the inputs constant. It cannot investigate the effect of all inputs
varying at the same time. LSA is popular for models with a low uncertainty level [48], but
it is not suitable for complex reservoir modeling problems. On the other hand, in GSA,
the behavior of the output over the entire range of the inputs is studied [46]. Some of the
common methods for GSA are based on Monte Carlo (MC) sampling, Sobol, or Morris
methods, which are based on probability distributions [49]. MC-based sampling methods
allow us to analyze the influence of the parameters, but using them is computationally
expensive [50]. The MC-based sampling methods can also be used to find the global
optimum of a problem. The Sobol method works based on the variance decomposition
theory. It investigates the interaction and contribution of input parameters to the output in
a certain number of sample points compared to MC [51]. The Morris method, an extension
of LSA, studies multiple points in the parameter range instead of only one [52]. More
information on GSA methods can be found in Song et al. [53]. Typically, GSA methods
that are based on probability distributions need more runs of the high-fidelity model. As a
result, they are computationally more expensive compared to LSA.

3.2. Sampling

Sampling is defined as the process of obtaining data points over the search space of
the parameters to be able to construct a PM. The quality and performance of a PM depend
strongly on the number of sample points in the specified range of parameters [54]. As
discussed earlier, one of the merits of using PMs is to provide a fast and accurate duplicate
of the high-fidelity model. Regardless of the underlying model, having a large number of
sample points to construct the PMs eventually results in an accurate model; however, the
computational cost in the generation of the PMs would be significant. Another effective
factor in increasing this cost is the number of implemented parameters in the process of
creating the model, which has a direct relationship with the number of sample points as
well. High computational cost in the construction of the PMs diminishes their applicability
compared with the high-fidelity model. This is known as the curse of dimensionality [8,55].
This cost is usually incurred prior to the implementation of the PM in running the high-
fidelity model at sample points and steps in designing the model. The objective in sampling
is to acquire the maximum information using the minimum possible number of sample
points or the minimum number of high-fidelity model runs. Therefore, the selection of a
proper sampling strategy to construct a trustworthy PM is of immense importance. Conse-
quently, once the PM is constructed, hundreds or thousands of runs can be completed in a
fraction of a second, which is essential in production optimization and field development
planning in the oil and gas field.

Sampling strategies are grouped into the two broad classes of stationary (also known as
one-shot, static, priori, domain-based, or model-free strategies) and sequential (also known
as model-based, adaptative, or posteriori) sampling. The workflow of both techniques is
demonstrated in Figure 5.

In stationary sampling, the sample points are distributed throughout the whole design
space based on a pattern [57]. In stationary sampling, after the selection of the design
points, the high-fidelity model is evaluated at each of the specified input sets, and the
corresponding output is obtained. Consequently, the PM is constructed, and it can be
applied for further decisions. The advantages of stationary sampling are ease of deployment
and uniform coverage of the domain. However, if the performance of the PM was not
approved at any stage, the whole procedure should be performed from the beginning with
new and more numerous sample points, which increases the cost of computation. The
situation becomes even worse when the problem is highly non-linear and many parameters
are involved in the process of constructing the PM, which together increases the number of
sample points and makes the modeling inefficient and unreasonable [58]. The stationary
sampling methods focus on a uniform fill-up of the domain with sample points, and they
usually have a fixed pattern in all of the cases under study. Some famous techniques in this
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category are factorial designs (full and factorial designs), optimal designs, Latin hypercube
sampling (LHS), orthogonal array sampling (OAS), and random sampling such as MC.
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In the simplest case of full factorial design, which only considers two levels for each
parameter, 2K sample points are generated, where k is the number of parameters. The
sample points are maximized in the distance using the full factorial design; however, the
number of sample points increases rapidly when the number of parameters increases [59].
The fractional factorial design, a sub-class of the full factorial design, does not consider
some sample points in the full factorial design without losing information, making it
viable for higher dimensions [60]. Different designs, such as the Plackett–Burman design
(PBD), central composite design (CCD), Box–Behnken design (BBD), and Taguchi, fall into
the category of fractional factorial designs [61]. In optimal designs, the parameters are
determined without bias and with minimum variance; hence, they require a lower number
of sample points [62].

LHS, as a stratified sampling technique, divides each parameter into N bins or equal
intervals. Then, each bin for each of the parameters fills with only one sample point. In
LHS, there is control over the number of sample points, which is a big advantage in the
construction of a PM, where we are looking to limit the number of high-fidelity runs [63].
However, not all Latin hypercube designs uniformly distribute the sample points in the
domain, and it is necessary to optimize the space-filling procedure. Viana et al. reviewed
some of the techniques to optimize the LHS to better fill up the domain under study [64].

OAS is a generalization of LHS, and it uniformly distributes the sample points in
the dimensional projection of the parameter dimensional domain [56,65]. In OAS, four
parameters—sample point size, domain dimension, the number of bins per dimension,
and the strength—need to be defined. For example, OAS (9, 2, 3, 2) includes nine sample
points, two domain dimensions, three bins per dimension, and a strength of two. LHS is
considered as an OAS with a strength of one. To understand the construction procedure,
and for details about OAS, refer to the work carried out by Hedayat et al. [65]. The selection
of the four parameters of OAS is sometimes challenging. Additionally, different selections
for bins and the placement of samples in the bins might exist for each problem, limiting
OAS usage [58]. In MC, the independent samples are randomly generated, and this process
is repeated many times to achieve the desired quantity.
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In sequential sampling, the sample size starts with an initial and limited number of
points, and new data points are added to the existing ones. The model then stops once it
reaches a preferred performance and accuracy [66]. Hence, using this approach, the total
time to develop a PM is significantly reduced, as less deployment of the high-fidelity model
is needed than when using the stationary sampling technique [67]. There are two main
objectives in sequential sampling, known as exploration and exploitation. Exploration
means evenly filling up the search space and avoiding redundant new samples. The
intention of the exploration part of sequential sampling is the same as stationary sampling,
and it tries to find new pivotal regions such as discontinuities and the global optimum.
In exploration, the new samples are chosen only based on the initial samples, not the
responses of the high-fidelity model [56]. The methods with exploration objectives are
usually referred to as exploration-based sequential sampling. Markov chain Monte Carlo
(MCMC), low-discrepancy sequence methods (such as Sobol and Halton), nested LHS, and
quasi LHS are examples of this subcategory.

MCMC is based on a sequence of random sampling from a probability distribution. In
MCMC, the sample points are generated systematically in such a way that the new sample
point is probabilistically dependent on the prior sample point [68]. In the low-discrepancy
sequences, the term “low-discrepancy” implies that the sample points are, more or less,
equally spread within the domain of parameters. A low-discrepancy sequence is a sequence
with the property that all the new points are as far as possible from the existing points.
In Sobol and Halton sequences [69,70], the sample points are randomly produced within
the parameters’ domain without overlapping the existing points in a progressive manner.
However, Sobol outperforms Halton as the number of dimensions increases [71]. We can
use nested and quasi-LHS to sequentially generate the sample points for LHS. Nested LHS
includes various designs requiring one as the subset of another one [72]. The evaluation
performs on the smallest subset, and if the results are not desirable, the superset could be
evaluated. This process can continue to the next supersets. Here, each subset is known as a
layer, which is an LHS with a level of accuracy [73]. In quasi-LHS, the new sample points
are added to keep the distance from the existing design points [74].

Exploitation-based sampling techniques look for regions that have already been recog-
nized as key domains and add the new sample points at each iteration focused on these
regions. In exploitation, unlike exploration, the new samples are added only based on the
information provided by the high-fidelity model. The LOLA-Voronoi sampling method [56]
falls into this subcategory. This method works based on the local gradient approximation
to find the non-linearity of the problem under study, and it picks more sample points near
the non-linear region to increase the chance to find the local optimum.

3.3. Popular Models for PM Construction

PMs, as discussed in Section 2, can fall into different categories. This section discusses
the most prominent underlying models that can be used in the construction of TPMs
or SPMs.

3.3.1. Polynomial Regression (PR)

PR is the most straightforward technique to construct a PM. It fits a non-linear rela-
tionship at any order between the inputs (xi) and the output (y). PR is also known for the
response surface method. It is usually applicable for lower-dimensional problems and is
not suitable for high-dimensional and highly non-linear systems. PR can be given by the
general form of Equation (1).

ŷ(x1, x1, . . . , xm) +
m
∑

s1=1
βs1

(xs1) +
m
∑

s1=1

m
∑

s2=s1

βs1s2
(xs1xs2) + . . .

+
m
∑

s1=1

m
∑

s2=s1

. . .
m
∑

sp=sp−1

βs1s2 ...sp(xs1xs2 . . .)
(1)
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where ŷ is the approximated output, m is the number of dimensions or parameters, β is the
polynomial coefficient, and p is the polynomial order. To construct a high-order polynomial,
a large number of training points are needed. Furthermore, high-order PR models cause
instability and sometimes yield a false optimum [75].

3.3.2. Kriging (KG)

KG or Gaussian process regression is a technique to interpolate the output based on
the Gaussian process by considering the prior covariances [76]. In 1989, Sacks et al. [77]
used the KG to construct a PM for the first time in engineering. There is always a residual
error ε between a PM response (ŷ) and the high-fidelity model response (y).

y(x) = ŷ(x) + ε (2)

The basic assumption behind most PMs is that this residual error between the re-
sponses of models is independent. However, in KG models, this error is dependent on
another term [78]. KG involves using a polynomial function f(x) and a random function
(i.e., stochastic process) Z(x).

y(x) = f(x) + Z(x) (3)

The polynomial term determines the global trend of the data, and the stochastic term
accounts for the deviation of the output from the polynomial term. The stochastic term
Z(x) is assumed to have zero mean and variance of σ2. In many problems, the polynomial
term f(x) can be replaced by a constant without losing performance, and this is known as
Ordinary KG [79].

A KG proxy model is suitable for low-order non-linear and large-scale problems,
and it can work for a wide range of sample sizes and designs. However, applying it to a
large-scale problem might be time-consuming [80]. It also does not work accurately for
problems containing discontinued parameters and a dimensionality higher than 20 [81].

3.3.3. Multivariate Adaptive Regression Splines (MARS)

MARS, introduced by Friedman [82], is a regression algorithm that implements linear
regression modeling for the sub-intervals of each design parameter. The location at which
the sub-intervals connect to each other is known as a knot. MARS is an extension of
linear regression models, and it uses a set of coefficients and basis functions to make a
relationship between inputs and the output. The process of constructing MARS happens in
forward/backward iterations for different sub-intervals. First, it creates a basis function
(i.e., spline) for each sub-interval with its corresponding linear regression and coefficients.
In the forward procedure, it looks for the optimum locations to place the knots.

ŷ(x, β) =
M

∑
m=1

βmBm(x) (4)

where βm is a vector of regression coefficients, M is the number of basis functions, and Bm
is the basis function which can be described as

Bm(x) =
km

∏
i=1

bi,m

(
xv(i,m) − ti,m

)q

+
(5)

where km is the number of design parameters in the mth basis function, bi,m = ±1, v(i,m)
is for labeling the design parameters, xv(i,m) is the ith parameter in the total of k parame-
ters, ti,m is the knot location of the corresponding parameter, q is the order of the spline,
and + subscript is for the positive part of the function (it is zero for negative values of
the function).
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(
xv(i,m) − ti,m

)q

+
=


(

xv(i,m) − ti,m

)q
if

(
xv(i,m) − ti,m

)
> 0

0 if
(

xv(i,m) − ti,m

)
≤ 0

(6)

In the forward step, the algorithm creates functions and looks for the locations of
the knots to improve the performance, which might cause overfitting. In the backward
step, MARS prunes the non-influential design parameters based on the generalized cross-
validation techniques [83].

MARS is suitable to deal with large and high-dimensional datasets. It is capable
of performing feature selection through the backward step; however, choosing the knot
locations is challenging, and it sometimes faces overfitting [84].

3.3.4. Artificial Neural Networks (ANN)

ANN works based on the biological neural system in the brain, which consists of many
chemically connected neurons [85]. Neurons are placed in three main layers: input, hidden,
and output layers. Neurons receive signals from neurons in the previous layer and transmit
them to the next layer. Each neuron is accompanied by a weighting factor that should be
adjusted. Adjusting the weights usually happens via an optimization algorithm, most often
via the backpropagation technique [81]. The receiving signal for a neuron in the hidden
layer multiplies into the adjusted weights and sum. Then, an activation function is applied
to the summation to generate the output for that neuron. Some commonly used activation
functions are linear, sigmoid, rectified linear unit (ReLU), and hyperbolic tangent [86].
There are some controlling parameters that should be optimized to have an accurate ANN
model, such as the number of hidden layers, the number of neurons in each layer, and
the activation function. ANN can approximate the problems with unknown nature, but
sometimes finding the optimal controlling parameters is challenging. Additionally, using
the ANN is computationally expensive, and it requires high memory. Recurrent neural
networks (RNN) and convolutional neural networks (CNN) are two well-known and robust
types of ANN. RNN works similarly to backpropagation ANN, with the difference that
RNN has a memory to store information, and is suitable for a sequence of data and time-
series data [87], whereas CNN adaptively learns spatial patterns within the parameters,
and is designed to process data in grid formats such as images [88].

3.3.5. Radial Basis Function (RBF)

RBF is a network that includes an input layer of nodes, a hidden layer with a radial ba-
sis function (kernel), and an output layer of linear weights [89]. This network approximates
the problem in a feed-forward process through Equation (7).

ŷ
(
xp
)
=

N

∑
i=1

wiφi
(
xi, xp

)
(7)

where xp is the vector of inputs, xi is the ith center of the total N radial functions, φi(xi, xp)
is the ith kernel to calculate the distance between xi and xp, and wi is the corresponding
weight factor for the radial function. The radial function can be selected in different
forms such as linear, cubic, thin plate spline, Gaussian, multi-quadratic, and inverse multi-
quadratic. Several methods exist to define the centers of the radial functions, such as the
orthogonal least-squares method [90].

RBF, like ANN, is easy to implement; however, RBF is suitable for training noisy
datasets because of its non-linear characteristics. RBF is not recommended for problems
with a high number of parameters that would be very expensive to compute.
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3.3.6. Support Vector Regression (SVR)

SVR was first developed by Vapnik [91] to find a function to relate the inputs and
the output. It can approximate the problem based on the weighted sum of basis functions
added to a constant term as

ŷ(x) = µ+
n

∑
i=1

wiφi(xi, x) (8)

where µ is a constant bias term, φ is the basis function, and wi is the corresponding weight
factor for the basis function. For the basis function, either linear or non-linear functions can
be considered. The main idea behind the SVM is to look for the best fit line (hyperplane)
and the boundary lines to obtain the maximum number of data points. The formula used
to approximate the output in SVR is similar to RBF; however, the methods they use to
obtain the unknowns are different. In RBF, the unknowns are determined by minimizing
the error between the actual and predicted outputs, but in SVR, µ and w are obtained
through solving an optimization problem for the threshold between the hyperplane and
the boundary lines [92].

SVR has the advantage of accurate and fast prediction, and it is robust to outliers. Fur-
thermore, SVR is suitable for high-dimensional problems with non-linear data. However,
training SVM and selecting the appropriate parameters is challenging [93].

3.3.7. Genetic Programming (GP)

GP was initially proposed by Koza [94], which is an extension of the genetic algorithm
(GA), and it is used mostly for symbolic regression. Both techniques are based on evolu-
tionary Darwinian theory. They start with a population of random solutions (known as
parents), and the solutions evolve through generations by dropping the not-fitted solutions.
In GA, these candidates are in the form of coded strings (also known as chromosomes),
while they are in the form of mathematical expressions in GP [95]. GP uses a tree structure
to represent the mathematical expressions. The two main components of these trees are the
function set (nodes) and terminal set (leaves) [94]. The function set can be chosen through
mathematical operators, functions, or conditional statements, and the terminal set includes
constants and problem parameters. In GP, the evolution mainly happens in two different
processes, mutation and crossover. Mutation involves substituting a random new segment
with a segment in the parent, and crossover happens by exchanging segments between
two parents and forming two new solutions (offspring). The algorithm also reproduces
random solutions to compensate for the dropped solutions in the previous generation. All
the solutions again check for the fitness in the new generation, and this process continues
until an acceptable fitness value is achieved or the algorithm reaches its generation limit.

One of the drawbacks of using GP is that it needs to be run multiple times because
of the stochastic nature of the algorithm. The fixed value of the algorithm parameters
(such as crossover and mutation probability) constructs different models at each run.
Too-simple models may result in poor predictions, and too-complex models may cause
overfitting [96]. On the other hand, GP can generate a high number of potential solutions
without considering the underlying assumptions of the problems.

3.3.8. Random Forest (RF)

RF is an ensemble learning technique initially developed by Breiman [97]. RF is an
ensemble of multiple unpruned decision trees. It implements the bootstrap sampling
(bagging) technique, which uses a random selection of the dataset as the training set and
uses the rest of the dataset as the testing set for each tree in the ensemble. The random
selection in RF helps the diversity in the ensemble of trees and improves the predictions,
and prevents overfitting [98]. RF gives the final result as an average of the results from
individual trees, also known as aggregation.
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In the process of growing individual trees, a small subset of size m out of M parameters
for each node (m < M) will randomly be picked to train the trees. The size of m is kept
constant during the forest growing, but the parameters are changed for each node. This
process helps the model to use all the potential parameters for the prediction and prevents
the model from relying on any specific parameters. Consequently, the best split at each node
is chosen among m parameters rather than all the parameters of M. Hence, RF involves
using the feature selection technique. It analyses all the parameters without deleting them
and selects the influential ones [99]. As a result, RF is a suitable algorithm for large datasets
with a high number of parameters, and it produces very accurate results even when a
part of the data is missed. However, it lacks prediction ability beyond the training data
range [100].

3.3.9. Extreme Gradient Boosting (XGboost)

XGboost is a supervised learning method proposed by Chen and Guestrin in 2016 [101],
which is based on the gradient boosting machine (GBM) technique introduced by Fried-
man [102]. In the GBM technique, the algorithm sequentially adds the input parameters
to an ensemble of decision trees to help to improve the prediction. Unlike the RF, which
is an ensemble of deep independent decision trees, GBM is an ensemble of shallow trees.
GBM builds only one decision tree at a time, and it sequentially improves the ensemble’s
performance as it goes forward to the next tree [103]. RF involves averaging the results
from all the independent decision trees, while GBM calculates the loss function for each
tree. XGboost differs from GBM in the way it minimizes the loss function. XGboost uses
the second-order gradient of the loss function, which helps to more easily minimize the
function. Additionally, the parallel computing ability and the implementation of some gen-
eralization terms to prevent overfitting are other benefits to using the XGboost compared
to the GBM [104]. Some of the main disadvantages of XGboost are the high training time
for large datasets and the inability to predict beyond the training data range.

3.3.10. Polynomial Chaos Expansion (PCE)

PCE was introduced first by Wiener [105] to project the output on an orthogonal
stochastic polynomial basis function in the random inputs. The general form of the PCE
can be defined as Equation (9) [106]:

ŷ(X) = ∑
α∈NM

βαΨα(X) (9)

where α is the index with M dimensions, βα are the deterministic polynomial chaos
coefficients, Ψα = {Ψ1, Ψ2, . . . , ΨM} is a set of multivariate orthogonal polynomial basis,
and X is the vector of input parameters with M dimension. The multivariate orthogonal
polynomial basis can be written as the product of univariate polynomials φαk

of degree αk:

Ψα(X) =
M

∏
k=1

φαk
(X) (10)

where φαk
is the univariate orthogonal polynomial in the kth parameter of degree αk. There

are different univariate polynomial families such as Hermite (based on Gaussian distribution),
Laguerre (based on gamma distribution), and Jacobi (based on beta distribution) [107].

The main benefit of using PCE is that as the order of expansion increases, it guarantees
the convergence of ŷ to y, preventing the drawback of overfitting in many other techniques.
Additionally, PCE is almost applicable to all input distribution types [108]. However, PCE
sometimes slowly converges, and if the order of expansion increases in high-dimensional
problems, it requires a large number of high-fidelity model runs. A summary of the
aforementioned modeling techniques with their pros and cons is presented in Table 1.
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Table 1. Advantages and disadvantages of different modeling techniques.

Modeling Technique Advantages Disadvantages

PR • Suitable for lower-dimensional problems.

• Not suitable for high-dimensional and highly
non-linear systems.

• A large number of training points is needed to
construct a high-order polynomial [75].

• High-order PR models cause instability and
sometimes yield a false optimum [75].

KG
• Suitable for low-order non-linear and large-scale problems.
• Works for a wide range of sample sizes and designs.

• Applying it to a large-scale problem might be
time-consuming [80].

• Not accurate for problems containing
discontinued parameters and dimensionality
higher than 20 [81].

MARS
• Suitable to deal with large and high-dimensional datasets.
• Capable of performing feature selection through the

backward step.

• Choosing the knot locations is challenging, and
it sometimes faces overfitting [84].

ANN
• It can approximate problems with unknown nature.
• Easy implementation.

• Finding the optimal controlling parameters
is challenging.

• It is computationally expensive, and it requires
high memory.

RBF
• Suitable for noisy datasets.
• Easy implementation.

• Very expensive computation for problems with
a high number of parameters.

SVR

• It is accurate with fast prediction.
• It is robust to outliers.
• Suitable for high-dimensional problems with

non-linear data.

• Training and selecting the appropriate
parameters is challenging [93].

GP
• Can generate a high number of potential solutions

without considering the underlying assumptions of
the problems.

• Needs to be run multiple times because of the
stochastic nature of the algorithm.

• Too-simple models may result in poor
predictions. Too-complex models may cause
overfitting [96].

RF
• Suitable for large datasets with a high number of parameters.
• It produces very accurate results even when a part of the

data is missed.

• Lacks prediction ability beyond the training
data range [100].

XGBoost
• Able to perform parallel computing.
• Implementation of some generalization terms to

prevent overfitting.

• High training time for large datasets.
• Unable to predict beyond the training data range.

PCE

• Almost applicable to all input distribution types.
• As the order of expansion increases, it guarantees the

convergence of prediction, and prevents overfitting.

• It slowly converges.
• If the order of expansion increases in

high-dimensional problems, it requires a large
number of high-fidelity model runs.

3.4. Optimization

Once the PM with the chosen underlying model is built and evaluated for its accuracy
and fitness, the model is ready for further use, such as in predictions and optimization. In
the optimization process, to find the best selection of the design parameters, an objective
function based on the purpose of the problem should be defined.

Optimizers are divided into deterministic (gradient-based) and stochastic (meta-
heuristic) approaches. Deterministic methods implement the gradient of the objective
function, and they are suitable for objective functions with a smooth surface. The biggest
drawback of deterministic approaches is that their performance depends on the initial guess
of the design parameters, and they may become trapped in a local optimum, preventing
them from finding the global optimum. Deterministic methods can be categorized into
ensemble-based, simultaneous perturbation, and adjoint methods [109].

Stochastic approaches solve the problem by borrowing rules from nature. Popular
methods in this category are GA, particle swarm optimization (PSO), simulating annealing,
ant colony optimization (ACO), and differential evolution (DE), which are the standard
methods to find the global optimum.
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GA is an evolutionary algorithm proposed by Holland [110], and it uses Darwin’s
rule and creates solutions by implementing processes such as mutation and crossover,
which was previously discussed in Section 3.3.7. GA is a strong method to find the
global optimum that works for both continuous and discrete optimization problems. GA
can be parallelized and is applicable to multi-objective functions in global optimization
problems [101]; however, it is computationally expensive and time-consuming [111].

PSO, like GA, is a population-based method, and it uses the collective behavior
of animal groups such as birds and fish. PSO was first introduced by Kennedy and
Eberhart [112]. The algorithm generates random solutions in which each solution is known
as a particle, and the group of particles forms a swarm. Each particle in the swarm moves
in the searching space of the design parameters. The position and velocity of the particles
continue to update at each step based on the individual and global best solutions at the
previous step until the particles find the global optimum. PSO has less computational
burden but is more reliable in finding the global optimum compared to GA. Furthermore,
the PSO approach is less effective for problems of more than three input parameters [111].

Simulating annealing is a probabilistic method that is inspired by the annealing
process in metals [113]. Simulating annealing allows finding the global optimum in a
large search space with the ability to jump out of any local optimum it finds [114]. In
the simulating annealing algorithm, the controlling parameter is called temperature. The
algorithm starts with a positive temperature, and this temperature decreases gradually to a
zero value. At each step, a random solution close to the previous solution is generated, and
it tries to move the temperature-dependent probability toward zero. In other words, while
the algorithm searches the working space, the probability of accepting worse solutions
gradually decreases. Simulating annealing is suitable for problems that contain many local
optimums, and it also works on problems with discrete search space [115].

ACO is also a population-based algorithm and works based on the behavior of real
ants when they are searching for food [116]. Real ants find the shortest path between a food
source and the colony by communicating with each other and following substances named
pheromones. If they sense a pheromone in their vicinity, they reinforce their movement
toward that path. Similarly, in optimization problems, artificial ants iteratively search the
domain space of parameters for the best solution in different generations. When an ant
finds a solution, it marks the path to that solution as a transition rule and deposits an
amount of pheromone on that route. The fitness of that path or the solution is determined
based on the amount of pheromone left on that path. In the next generations, the ants are
guided by the pheromone concentration left by the previous generations toward better
solutions. ACO shows similar advantages and disadvantages to PSO, and it is not suitable
for problems with more than three dimensions [111].

DE, as a population-based algorithm, was first proposed by Price et al. [117] for global
optimization over continuous search space. Despite its name, this method does not require
any calculations for the gradient, and the problem does not need to be differentiable.
DE is a robust technique that converges to the solution, requiring only a few controlling
parameters. The algorithm starts searching the design space by creating a population of
random solutions and forms new solutions by combining the existing ones. DE, like GA,
involves using mutation, crossover, and selection, which help the solutions evolve at each
generation. However, DE deals differently with mutation and crossover. DE performs the
mutation by creating a mutant vector of three randomly selected vectors and performs
the crossover by creating a trial vector of the mutant vector and target vector [118]. Then,
the fitness of the trial and target vectors is evaluated, and the best is kept for the next
generation [119]. In DE, the selection of the parent solution is not based on fitness. In
contrast, every solution is selected as a target vector (one of the parents); therefore, all the
vectors have the chance to be one of the parents. DE only needs to adjust three parameters,
and it has lower computational complexity compared to GA. Additionally, the algorithm
stops the solution from being trapped in local optimums [120]. Nevertheless, adjusting the
controlling parameters is sometimes challenging [121].
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4. Application of Proxy Models in the Oil and Gas Industry

This section discusses the application of different proxy types in the oil and gas
industry, especially in reservoir modeling. Based on the literature, data-fit models are
prevalent, and the application of MFMs and ROMs is limited. This review tries to cover
the comprehensive implementation of all types of proxy models in different areas of the
subsurface environment. Various applications of proxy modeling such as SA, uncertainty
quantification, risk analysis, history matching, field development planning, and reservoir
characterization are presented in this section. Furthermore, implemented cases for other
models are briefly discussed in this section.

4.1. Multi-Fidelity Models (MFM)

MFMs try to reduce the physics of the problem. Streamline modeling, upscaling,
and capacitance-resistance modeling (CRM) are the most popular techniques of MFMs
in reservoir modeling. Streamline models decouple the governing flow equations in
a reservoir along one-dimensional streamlines, and as a result, they boost the speed of
calculation [122]. Streamline modeling has been applied in a variety of subsurface problems,
such as production optimization, mainly through waterflooding [123,124], uncertainty
quantification [125], history matching [126–129], and well placement optimization [130].
Streamline models are often applied to a fine-scale reservoir model [131], and they need to
run the high-fidelity model at different time steps. Consequently, the speedup capability of
streamline models is limited [132]. In upscaling, as another way to simplify the physics,
the equivalent petrophysical properties at a coarser scale are calculated [133]. Upscaling
has been implemented for a wide range of objectives in reservoir modeling [134–137].

The idea of duplicating the subsurface behavior using a circuit of capacitors and
resistors was first presented by Bruce in 1943 [138]. He used this concept to mimic the
behavior of a strong water drive reservoir. This was achieved by comparing the governing
equations of electrical circuits and porous media; the potential difference is the motive
for the electrons to flow in electrical circuits while the pressure difference is the main
reason for the fluid flow in porous media. Both systems have the characteristic of storing
energy. In subsurface porous media, compressibility causes the fluid to accumulate, but
the electrons are stored in capacitors. CRM was first presented by Yousef et al. [139]. The
proposed model was capable of mimicking the porous media behavior between injectors
and producers to identify the transmissibility trends and flow barriers. CRM estimates the
values for parameters by relating the input and output signals. It considers the pressure
changes caused by injectors and the aquifer as the inputs, production rates as the outputs,
and the properties of rock and fluid (such as compressibility and saturation) as the related
parameters. The CRMs can provide an insight into the interwell connectivity, drainage
volume, and reservoir heterogeneity, for example, by channeling along the layers [140]. Fur-
thermore, they can be applied for history matching and production forecasting, requiring
only production/injection rates and BHPs [141,142].

In general, any technique that tries to solve the problem by simplifying the underlying
physics is an example of an MFM. For example, in work carried out by Wilson and Durlof-
sky [143], in which a dual-porosity, dual-permeability reservoir model was simplified into
a single-porosity, single-permeability model, the model can be considered as a reduced
physics or a MFM proxy approach.

4.2. Reduced-Order Models (ROM)

The popular methods in the class of ROM that are used for reservoir modeling approx-
imations are POD, TPWL, and DEIM. As discussed in Section 2, ROM methods project the
exact model into a lower-dimensional subspace. The subspace basis in POD is achieved by
accomplishing a singular value decomposition of a matrix containing the solution states
obtained from previous runs [144]. POD has been implemented in different areas such
as reservoir modeling [145,146], finding the optimal control parameters in water flood-
ing [147,148], and history matching [149]. Nevertheless, POD methods need to solve the
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full Jacobean of the matrix for projecting the non-linear terms in every iteration. Since the
reservoir environment is highly non-linear, the speedup potential of POD to approximate
the reservoir simulation is not significant. For instance, Cardoso et al. [146] achieved
speedups of at most a factor of 10 for ROMs based on POD in reservoir simulation. To solve
this drawback, retain the non-linear feature of parameters and further increase the speedup
potential, a combination of the TPWL or DEIM method and POD has been the focus of
attention in the literature. The combination of TPWL and POD was implanted in various
cases such as waterflooding optimization [150,151], history matching [152,153], thermal
recovery process [154], reservoir simulation [150], and compositional simulation [155]. In
work carried out by Cardoso and Durlofsky [150], a POD in combination with TPWL could
increase the speedup for the same reservoir discussed earlier from a factor of 10 to 450.
Additionally, the application of DEIM and POD is applied in some studies to create proxies
for reservoir simulation [156,157], fluid flow in porous media [158,159], and water flooding
optimization [160].

Other methods to treat the non-linearity can be pointed out, such as Gauss–Newton
with approximated tensors [161], truncated balanced realization [160], localized discrete em-
pirical interpolation method [162], trajectory piecewise quadratic [163], and sparse proper
orthogonal decomposition—Galerkin [164]. A comprehensive study of these methods in
reservoir modeling can be found in work carried out by Suwartadi [165] and He [166].

4.3. Traditional Proxy Models (TPM)

In the literature, a wide variety of techniques can be considered as TPMs. This
type of proxy can approximate different areas in the subsurface or surface environment
such as production optimization [100,167], uncertainty quantification [168,169], history
matching [170,171], field development planning [172], risk analysis [173,174], gas lift opti-
mization [109,175], gas storage management [176], screening purposes in fractured reser-
voirs [177], hydraulic fracturing [178], assessing the petrophysical and geomechanical
properties of shale reservoirs [179], waterflooding optimization [180–183], well placement
optimization [184–186], wellhead data interpretation [187], and well control optimiza-
tion [188]. Additionally, TPMs have a wide range of applications in various EOR recovery
techniques such as steam-assisted gravity drainage (SAGD) [189], CO2-gas-assisted gravity
drainage (GAGD) [190], water alternating gas (WAG) [191,192], and chemical flooding [193].

4.4. Smart Proxy Models (SPM)

SPMs are implemented in various areas such as waterflood monitoring [20,194], gas
injection monitoring [21], and WAG monitoring [18] using the grid-based SPM, history
matching [19,22], and production optimization in a WAG process [18] using the well-based
SPM. A brief summary of the PMs (including the TPMs and SPMs) used in the literature
can be found in Table 2.

Table 2. Examples of PM applications in reservoir modeling.

Ref. Subject Sampling
Technique Underlying Model Optimizer Class

Kovscek and Wang [125] Uncertainty quantification in a
carbon dioxide storage case - Streamlines - MFM

Tanaka et al. [123] Production optimization in
waterflooding - Streamlines GA MFM

Wang and Kovscek [126] History matching in a
heterogeneous reservoir - Streamlines - MFM

Tang et al. [195]

Investigating the effects of the
permeability heterogeneity
and well completion in
near-wellbore region

- Streamlines - MFM

Kam et al. [128] Three-phase history matching - Streamlines GA MFM
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Table 2. Cont.

Ref. Subject Sampling
Technique Underlying Model Optimizer Class

Taware et al. [130] Well placement optimization in a
mature carbonate field - Streamlines - MFM

Allam et al. [134] History matching - Upscaling - MFM

Yang et al. [136]
Multiphase uncertainty
quantification and
history matching

- Upscaling - MFM

Holanda et al. [141] Reservoir characterization and
history matching - CRM - MFM

Artun [142] Characterizing interwell
reservoir connectivity - CRM - MFM

Cardoso and Durlofsky [150] Production optimization
in waterflooding - TPWL/POD Gradient-based ROM

Xiao et al. [152] History matching Smolyak
sparse [196] TPWL/POD Gradient-based ROM

Rousset et al. [154] Production prediction of
SAGD operation - TPWL/POD - ROM

He and Durlofsky [155] Compositional simulation of
the reservoir - TPWL/POD - ROM

Gildin et al. [156] Simulation of flow in
heterogeneous porous media - DEIM/POD - ROM

Li et al. [158] Compressible gas flow in
porous media - DEIM/POD - ROM

Alghareeb and Williams [160] Production optimization in
waterflooding - DEIM/POD - ROM

Al-Mudhafar [100] Production optimization in
cyclic CO2 flooding - PR, MARS, RF - TPM

Golzari et al. [167]

Production optimization in
three different cases to
increase recovery and net
present value (NPV)

Adaptive LHS ANN GA TPM

Amiri Kolajoobi et al. [168]
Uncertainty quantification and
determination of cumulative
oil production

LHS ANN - TPM

Peng and Gupta [169] Uncertainty quantification in a
fluvial reservoir Factorial PR - TPM

Zubarev [170] History matching and
production optimization LHS PR, KG, ANN GA TPM

Guo et al. [171] History matching in a
channelized reservoir

Random
selection SVR Distributed

Gauss–Newton [197] TPM

Avansi [172] Field development planning BBD PR - TPM

Ligero et al. [173]
Risk assessment in economic and
technical parameters on an
offshore field

Factorial PR - TPM

Risso et al. [174] Assessment of risk curves for
uncertainties in the reservoir BBD, CCD PR - TPM

Ghassemzadeh and
Charkhi [175]

Gas lift optimization to maximize
recovery and NPV - ANN GA TPM

Ebrahimi and
E. Khamehchi [109]

Gas lift optimization in
NGL process LHS SVR PSO, GA TPM

Zangl et al. [176] Gas storage management and
optimization for pressure Factorial ANN GA TPM

Artun et al. [177]
Screening and optimization of
cyclic pressure pulsing in
naturally fractured reservoirs

- ANN GA TPM
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Table 2. Cont.

Ref. Subject Sampling
Technique Underlying Model Optimizer Class

Gu et al. [180] Waterflooding optimization in
terms of watercut - XGboost DE TPM

Chen et al. [181] Waterflooding optimization in
terms of recovery and NPV LHS KG DE TPM

Ogbeiwi et al. [182]
Optimization of water injection
rate and oil production rate
in waterflooding

BBD PR GA TPM

Bruyelle and Guérillot [183] Waterflooding optimization in
terms of well parameters BBD ANN

Covariance matrix
adaptation evolution

strategy [198]
TPM

Bruyelle and Guérillot [184] Well placement optimization to
maximize recovery and NPV BBD ANN

Covariance matrix
adaptation evolution

strategy
TPM

Hassani et al. [185] Optimization of the horizontal
well placement Optimal, LHS PR, RBF GA TPM

Nwachukwu et al. [186]
Injector well placement
optimization to maximize
recovery and NPV

Random
selection XGboost - TPM

Aydin et al. [187]
Monitoring of a geothermal
reservoir temperature and
pressure from wellhead data

- ANN - TPM

Wang et al. [188] Well control optimization to
maximize recovery and NPV LHS SVR Non-dominated sorting

GA-II [199] TPM

Simonov et al. [200] Production optimization in a
miscible flooding case LHS RF MC TPM

Redouane et al. [201] Well placement optimization to
maximize recovery

LHS, Sobol,
Halton ANFIS [202] GA TPM

Fedutenko et al. [189] Production prediction of
SAGD operation LHS PR, KG, RBF - TPM

Al-Mudhafar and Rao [190] Recovery evaluation in
CO2-GAGD operation LHS PR, MARS, GBM - TPM

Jaber et al. [191] Recovery evaluation in miscible
CO2-WAG flooding BBD PR - TPM

Agada et al. [192]

Recovery and net gas utilization
factor optimization of a
CO2-WAG operation in a
fractured reservoir

BBD PCE GA TPM

Elsheikh et al. [203] Watercut determination in
waterflooding cases

Nested
sampling,
MCMC

PCE - TPM

Yu et al. [204] History matching and
production forecasting

Hammersley
[205] GP - TPM

Kalla and White [206] Optimization of a gas well with
water conning OAS PR - TPM

Ibiam et al. [193]
Sensitivity analysis and
polymer flooding
optimization

LHS PR PSO TPM

Kim and Durlofsky [207]
History matching and
well-by-well oil and water flow
rate prediction in waterflooding

Random
selection RNN PSO TPM

Kim and Durlofsky [208] Predicting NPV with
time-varying BHP

Uniform
distribution RNN PSO TPM

Kim et al. [209] Multi-well placement
optimization

Uniform
distribution CNN PSO TPM
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Table 2. Cont.

Ref. Subject Sampling
Technique Underlying Model Optimizer Class

Haghshenas et al. [20]
Evaluating the effect of injection
rates on oil saturation using the
grid-based SPM

LHS ANN - SPM

Alenezi and
Mohaghegh [194]

Evaluating the effect of
injection rates on oil
saturation and pressure using
the grid-based SPM

Random
selection ANN - SPM

Amini and Mohaghegh [21]
Gas injection monitoring in
porous media using the
grid-based SPM

- ANN Gradient descent SPM

Gholami et al. [18]
WAG monitoring and production
optimization using the grid-based
and well-based SPMs

LHS ANN - SPM

He et al. [19] History matching using
well-based SPM LHS ANN DE SPM

Shahkarami et al. [22] History matching using
well-based SPM LHS ANN - SPM

Ng et al. [23] Production optimization in a
fractured reservoir - ANN PSO SPM

Abbreviations: ANFIS: adaptive neuro fuzzy inference system; ANN: artificial neural networks; BBD: Box–
Behnken design; CCD: central composite design; CNN: convolutional neural networks; CRM: capacitance-
resistance modeling; DE: differential evolution; DEIM: discrete empirical interpolation method; GA: genetic
algorithm; GBM: gradient boosting machine; GP: genetic programming; KG: kriging; LHS: Latin hypercube
sampling; MARS: multivariate adaptive regression splines; MC: Monte Carlo; MCMC: Markov chain Monte
Carlo; MFM: multi-fidelity model; NPV: net present value; OAC: orthogonal array sampling; PCE: polynomial
chaos expansion; POD: proper orthogonal decompositions; PR: polynomial regression; PSO: particle swarm
optimization; RBF: radial basis functions; RF: random forest; RNN: recurrent neural networks; ROM: reduced-
order model; SPM: smart proxy model; SVR: support vector regression; TPM: traditional smart model; TPWL:
trajectory-piecewise linear; XGBoost: extreme gradient boosting.

5. Conclusions

The most significant advantage of constructing a proxy model is the reduction in
computational load and the time required for tasks such as uncertainty quantification,
history matching, or production forecasting and optimization. According to the literature,
different classes of proxy models exist, and there is no agreement on the proxy model
categorization. Existing categories do not provide a comprehensive overview of all proxy
model types with their applications in the oil and gas industry. Furthermore, a guideline to
discuss the required steps to construct proxy models is needed.

In this review, different classes of proxy models are discussed, and a new classification
based on the development strategy proposed. The proxy models in this classification fall
into four groups: multi-fidelity, reduced-order, traditional proxy, and smart proxy models.
The methodology for developing the multi-fidelity models is based on simplifying physics,
and reduced-order models are based on the projection into a lower-dimensional. The
procedure to develop traditional and smart proxy models is mostly similar, with some
additional steps required for smart proxy models. Smart proxy models implement the
feature engineering technique, which can help the model to find new hidden patterns
within the parameters. As a result, smart proxy models generate more accurate results
compared to traditional proxy models. Different steps for proxy modeling construction are
comprehensively discussed in this review. For the first step, the objective of constructing a
proxy model should be defined. Based on the objective, the related parameters are chosen,
and sampling is performed. The sampling can be either stationary or sequential. Then, a
new model is constructed between the considered inputs and outputs. This underlying
model may be trained based on statistics, machine learning algorithms, simplifying physics,
or dimensional reduction. For optimization purposes, this work describes some of the
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popular stochastic optimizers as a tool to couple with the proxy models. Finally, the
application of various proxy models in oil and gas and reservoir modeling for each category
is presented in this paper.

This review paper provides a comprehensive guideline to develop proxy models.
This guideline provides a better, structured, and more efficient approach to help model,
optimize, and forecast more complex problems in future studies. Additionally, this paper
provides the reader with a better understanding of the different proxy model categories,
and it provides various applications for the proxy models in the oil and gas industry.
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Abbreviations
ACO ant colony optimization
ANFIS adaptive neuro fuzzy inference system
ANN artificial neural networks
BBD box–Behnken design
BHP bottom hole pressure
CCD central composite design
CNN convolutional neural networks
CRM capacitance-resistance modeling
DE differential evolution
DEIM discrete empirical interpolation method
GA genetic algorithm
GAGD gas-assisted gravity drainage
GBM gradient boosting machine
GP genetic programming
GSA global sensitivity analysis
KG kriging
LHS Latin hypercube sampling
LSA local sensitivity analysis
MARS multivariate adaptive regression splines
MC Monte Carlo
MCMC Markov chain Monte Carlo
MFM multi-fidelity model
NPV net present value
OAS orthogonal array sampling
PBD Plackett–Burman design
PCE polynomial chaos expansion
PM proxy model
POD proper orthogonal decompositions
PR polynomial regression
PSO particle swarm optimization
ReLU rectified linear unit
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RBF radial basis functions
RF random forest
RNN recurrent neural networks
ROM reduced-order model
RSM response surface model
SA sensitivity analysis
SAGD steam-assisted gravity drainage
SBO surrogate-model-based optimization
SPM smart proxy model
SVM support vector machine
SVR support vector regression
TPM traditional proxy model
TPWL trajectory-piecewise linear
WAG water alternating gas
XGboost extreme gradient boosting
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