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Abstract: Efficient localisation plays a vital role in many modern applications of Unmanned Ground
Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs), which contributes to improved control,
safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new
opportunities to enhance the localisation of UAVs and UGVs. In this paper, we review radio frequency
(RF)-based approaches to localisation. We review the RF features that can be utilized for localisation
and investigate the current methods suitable for Unmanned Vehicles under two general categories:
range-based and fingerprinting. The existing state-of-the-art literature on RF-based localisation for
both UAVs and UGVs is examined, and the envisioned 5G NR for localisation enhancement, and the
future research direction are explored.
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1. Introduction

Ground and aerial robots are essential for automating diverse civilian and commercial
applications, such as search and rescue operations, connected and autonomous driving,
precision agriculture, and road traffic management, among others [1,2]. For example, in
the context of new communication technologies, drones may be effectively used as mobile
5G base stations for special events gathering crowds and solving network congestion. Nev-
ertheless, in many of these scenarios, an autonomous robot navigates in a highly dynamic
environment and requires precise self-location awareness to operate safely. Thus, localisa-
tion can be regarded as the core of autonomous navigation systems. Common localisation
systems heavily depend on a Global Navigation Satellite System (GNSS), such as the Global
Positioning System (GPS). While it provides sufficient accuracy in most situations, GPS-
denied areas might impede or discourage reliance on this technology. Due to the weakness
of the GPS signal in indoor environments or forests, cameras, Inertial Measurement Units
(IMU) and Light Detection and Ranging (LIDAR) are the principal alternatives to provide
valuable information for enabling robot autonomous navigation, which are backed by
mature theoretical studies and with many developed solutions. However, each of those
sensors presents characteristics that make them unsuitable for specific environments or
situations. Vision-based methods provide poor performance in low light, adverse meteo-
rological conditions, or in the presence of visual aliasing. IMU-based localisation suffers
from noisy measurements, and motion estimates drift rapidly. LIDAR provides the richest
and most precise measurements of the surrounding 3D environment. However, it requires
high power consumption when processing large-point cloud data. Moreover, in a wire-
less sensor network (WSN) with many nodes, GPS is not a reasonable solution regarding
cost, power consumption, and form factor requirements of small Internet of Things (IoT)
devices [3–6]. Therefore, multiple and diverse sensors must be integrated and fused to
make the system robust.

Sensors 2023, 23, 188. https://doi.org/10.3390/s23010188 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010188
https://doi.org/10.3390/s23010188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1732-0647
https://orcid.org/0000-0001-5018-0925
https://doi.org/10.3390/s23010188
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010188?type=check_update&version=2


Sensors 2023, 23, 188 2 of 30

As a complementary solution, a radio frequency (RF) signal can boost localisation
accuracy and robustness. Most RF metrics that have been used extensively include Time of
Arrival (TOA), Time Difference of Arrival (TDOA), Angle of Arrival (AOA), and Received
Signal Strength (RSS). Different technologies that can provide these measurements include
Wi-Fi, Bluetooth, Ultra-Wideband (UWB), Zigbee, Radio Frequency Identification Devices
(RFID), Long-Range Radio (LoRA), and cellular networks [7,8]. Cellular networks are
beneficial because we can take advantage of the existing infrastructure, which covers many
areas. 5G NR has great potential for enhanced localisation, not only providing accurate
measurements and tools based on which even centimetre-level accuracy can be expected,
but also enabling the implementation of demanding fusion-based algorithms to compensate
for the deficit of each sensor measurement through edge computing. The benefits of 5G
NR for localisation include (but are not limited to): wide area coverage, high angular and
time resolution measurement for localisation, increased probability of Line of Sight (LOS),
and a fast data rate. Concentrating on UAVs and UGVs, 5G can revolutionize localisation
by providing:

• Edge computing.
• Vehicle to Everything communication (V2X).
• Beamforming.
• Multi-array antenna.

Several existing surveys exist in the area of localisation covering the topic from
different points of view, but they often overlap with each other [7–17]. For instance,
Dwivedi et al. [15] explore the positioning in 5G networks from the communication point
of view. Yang et al. [9] review the positioning based on RF signal for UAVs, with em-
phasis on the technologies and challenges, and Maghdid et al. [8] focus on the IoT tech-
nologies and performance metrics. Chowdhury et al. [10] provide a comprehensive sur-
vey for localisation in WSN, which investigates the techniques and algorithms under
diverse categories. Kumari et al. [13] narrowed down the review to the localisation in 3D
space. Tabassum et al. [12] present a brief overview of the localisation approaches in WSN.
Khelifi et al. [11] review the localisation for IoT under various categories of approaches.
The reviews and the covered topics are compared in Table 1.

Table 1. Comparison between existing reviews.

Reference Brief Summary 1 2 3 4

[9] A survey on RF localisation for UAV with focus on
technologies and performance metrics 3 7 3 7

[8] A survey on IoT localisation, investigating technologies and
performance metrics 7 7 3 7

[10] A comprehensive survey on localisation on WSN 7 7 3 7

[15] A overview of the 5G-based localisation 7 7 7 3

[11] A survey on IoT localisation 7 7 3 7

[12] A survey on localisation techniques on WSN 7 7 3 7

[13] A survey on localisation in WSN in 3D space 7 7 3 7

[14] A survey on localisation on WSN algorithm and techniques 7 7 3 7

[16] A brief review on range-free localisation algorithms in WSN 7 7 3 7

[7] A comprehensive survey of the indoor localisation using
different technologies 7 7 3 7

[17] A brief review of technologies used for UAV positioning in
indoor environment 3 7 7 7

1: UAV localisation; 2: UGV localisation; 3: Methods and algorithms; 4: 5G localisation.
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Hence, this survey aims to address the issue that remained untouched by other
state-of-the-art reviews. As mentioned, the existing studies focus on specific aspects
of localisation, such as technologies, methods, IoT applications, communication perspective,
and classification of the approaches. However, this review covers the full extent of RF-based
localisation approaches, first by distinguishing the type of information that can be decoded
from the received signal in the form of features and then by categorizing the methodologies
based on the use, whether range based or fingerprinting (data-driven), of these RF features.
Additionally, we address the use of RF for UAVs and UGVs applications and discuss the
future potential of 5G. Therefore, the main contributions of this review paper are as follows:

• Investigating the algorithms for RF-based localisation that are highly likely to be used
for challenging UGV and UAV applications.

• Reviewing the existing works considered using RF specifically for UAVs and
UGVs positioning.

• Discussing the new potential that 5G NR will provide to cope with the current issues
in UAVs and UGVs localisation problem.

• Discussing the challenges for ground and aerial robots localisation and its integration
with 5G NR.

The survey paper is organized as follows: After introducing the main RF features
used for localisation, we briefly introduce localisation techniques and how they can be
used. Then we proceed to explore the up-to-date, state-of-the-art algorithms that have been
widely used in RF-based localisation. In the next section, we concentrate on the available
RF-based localisation applied to UAVs and UGVs. The 5G NR potentials and benefits
expected for the aerial and ground vehicles localisation are also explained. We also review
the current state-of-the-art localisation based on 5G NR. Finally, the challenges and future
direction are be explored.

2. RF Features

The received radio frequency signal involves features that encode information about
the transmitter’s and receiver’s relative position. Therefore, in this section, we describe the
features that are most relevant and widely used for localisation purposes.

2.1. Received Signal Strength

Received Signal Strength (RSS) is one of the features most frequently used in local-
isation due to its low hardware requirements and easy implementation compared to its
counterparts. RSS is the received power in the receiver over the bandwidth. The main
concept behind using RSS for localisation is that the power attenuation of the signal from
transmitter to receiver depends on the distance. Extraction of the exact relation, however,
in real environments seems infeasible due to the unknown channel model, and the majority
of existing literature relies on using simple models for mapping RSS to distance or range.
The most popular model is the log-distance one-slope propagation model:

Pd[dB] =P0[dB]− 10αlog10(d/d0) + Xσ[dB] + b[dB] , (1)

d =||X− S|| ,

where:

• P0: power at the reference distance d0 from the transmitter (usually 1m).
• Pd: received power at distance d from the transmitter.
• Xσ: shadowing effect( mostly considered as Gaussian).
• α: Path loss exponent (PLE), the rate at which power decrease over distance.
• b: bias error.

A more complex form of propagation model has been used, such as two-slope, third-
order, and higher up to the sixth-order model [18,19]. Lee et al. [20] propose finding the best
model for each transmitter–receiver pair using the Genetic algorithm to search between
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multi-state path loss models with k states. It should be noted the transmission power is
assumed to be fixed. When power control is applied at the transmitter, which might be the
case in 5G, range inference based on distance is impossible. Transmission power and PLE
are usually obtained by conducting a pre-test, collecting data from the environment, and
matching the suitable values based on the model. Algorithms that deal with unknown PLE
and transmission power thus offer the advantage of removing the need for an intensive
pre-test phase.

Another contributing factor for less accurate RSS-based localisation—in addition to
channel modelling error—is that RSS is not stable and fixed over time and under changing
environments. In [21], three main factors that play an important part in unstable RSS
readings are discussed, and the effects of antenna orientation, foreground obstacles, and
beacon density are explored.

2.2. Time of Arrival

The Time-Of-Arrival (TOA) technique measures the time it takes for an RF signal
to travel from transmitter to receiver, multiplying by the signal’s speed in the medium,
which is usually the propagation speed of light. Thus, the range can be inferred. As the
obstruction does not significantly impact the speed of the wave, TOA delivers higher
accuracy compared to RSS provided that tight clock synchronisation among receiver and
transmitters is carried out, and there is a Line-of-Sight (LOS) path. The existence of LOS
and clock synchronisation, however, are the two challenges in TOA estimation. When no
LOS path exists, the multi-path components are received while each travels further than
the distance between the receiver and transmitter. Stringent clock synchronisation also calls
for complex hardware.

2.3. Time Difference of Arrival

Time Difference Of Arrival (TDOA) is another time-based measurement which illus-
trates the difference between the time signal travelling from two transmitters to the same
receiver. In the conventional approach, cross-correlation is used to extract this value, com-
puting the delay that maximizes the cross-correlation function. One advantage of TDOA
compared to TOA is that synchronisation is only required among the transmitters. TDOA
suffers from the same issues as TOA, i.e., imperfection hardware and LOS blockage.

2.4. Angle of Arrival

The Angle-Of-Arrival (AOA) method for localisation has not been incorporated as
much as its counterparts. The use of directional antennas, multi-element arrays for MIMO,
and mmWave, especially for 5G cellular networks, has attracted more attention. Similar to
TOA, AOA also suffers from LOS blockage. Other multi-path components from NLOS can
lead to erroneous and misleading information about the direction of arrival. Thus, AOA is
usually fused with other data for localisation purposes.

2.5. Channel System Information

Compared to the mentioned RF features, Channel System Information (CSI) provide
much richer information, such that all the other values can be extracted by analysing it.
CSI provides information about the communication channel, e.g., fading, scattering, and
power decay, and how the propagating signal is impacted at a specific carrier frequency at
each path. The CSI amplitude and phase are dependent on the poses of the transmitter,
receiver, and the surrounding environment with objects therein. Compared to RSS, TOA,
TDOA, and RSS, which provide one value per measurement, CSI consists of a matrix, with
each entry representing the Channel Frequency Response (CFR). Thus, there are much
more data to deal with and analyse. Moreover, it is raw information that is not particularly
intuitive compared to the other measurement. Hence, machine learning algorithms and
fingerprinting are suitable candidates for CSI applications.
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3. Overview of RF-Based Localisation Techniques

Loosely speaking, localisation based on radio signals can be divided into range-based
and fingerprinting methods.

• Range-based techniques: Localisation is achieved by inferring the distance or angle
of the target from a node based on the measurements. Time Of Arrival (TOA), Time
Difference Of Arrival (TDOA), and Received Signal Strength (RSS) provide ranges,
while Angle Of Arrival (AOA) provides bearings measurements. In a sensor frame-
work, two or several of these methods can be combined, which might result in a better
outcome. In the next stage, the extracted ranges or bearings are used to estimate the
location, taking advantage of various mathematical tools such as Maximum Likeli-
hood (ML), the Least Squares (LS) approach, the Bayesian model, or different types
of filters such as the Kalman filter (KF), extended Kalman (EKF), Unscented Kalman
filter (UKF), and Particle filter (PF). In the next section, we will explain the methods
used for range-based localisation.

• Range-free or Fingerprinting: Instead of calculating the distance or direction, the
environmental survey is performed to obtain fingerprints or features recorded on a
database, such as the location-RSS pair’s value, and then in online mode, for every
new measurement, the localisation is performed by finding the best match in the data
set. More generally, this method consists of mapping and matching. Compared to the
range-based approach, fingerprinting techniques are more accurate and demanding to
implement, requiring a pretest to create an extensive database. In addition, fingerprint-
ing methods differ in generating and updating the data set and the matching process.
Nevertheless, fingerprinting is widely used for CSI and RSS-based localisation.

4. Range-Based Algorithms

Having extracted ranges or bearing from the RF signal, intuitive mathematical or
geometrical approaches are then leveraged to infer the receiver’s position. The most
important methods include Multi-Lateration/Triangulation, Min-Max, Multidimensional
scaling (MDS), Least Squares (LS), Maximum Likelihood (ML), the Bayesian inference
method, and Bayesian Filters. Table 2 provides a comparison of range-based methods.

Table 2. Comparison between range-based methods.

Range-Based Methods Scenario Advantages Disadvantages

Multi-lateration Triangulation fast and rough
estimation scenarios simple calculation

limited accuracy,
sensitive to

measurement error

Min-Max fast and rough
estimation scenarios

low complexity,
easy implementation limited accuracy

Multidimensional Scaling (MDS) cooperative localisation reduce the complexity
difficult to include the

knowledge about unequal
measurement error

Least Square (LS) high accuracy

easier implementation and
less demanding than ML

and Bayesian,
gives estimation uncertainty

computationally demanding,
less optimal compared to ML

and Bayesian

Maximum Likelihood (ML)
high accuracy,

inaccurate prior information
(outperform Bayesian)

gives estimation uncertainty computationally demanding

Bayesian Inference higher accuracy,
sparse observations gives estimation uncertainty

computationally demanding
(more demanding than LS

and ML)



Sensors 2023, 23, 188 6 of 30

Table 2. Cont.

Range-Based Methods Scenario Advantages Disadvantages

Extended Kalman Filter (EKF)

real-time dynamic
state estimation

Easy implementation for
real-time

simpler multi-sensor fusion,
suitable for mobile targets,

easy implementation,
gives estimation uncertainty

not useful for
non-Gaussian noise,

less optimal compared to
UKF and PF

Unscented Kalman filter (UKF)

real-time dynamic
state estimation,

better accuracy compared
to EKF

simpler multi-sensor fusion,
suitable for mobile target,

gives estimation uncertainty

not useful for
non-gaussian noise

Particle Filter (PF) high accuracy dynamic
state estimation

handling non-gaussian noise,
gives estimation uncertainty

computationally demanding,
difficult implementation

4.1. Multi-Lateration/Triangulation

Based on the ranges, angles, or range differences, a set of equations can be constructed
which usually result in an over-determined set of non-linear equations. For N number
of BS position at Si = [Six, Siy ]

T and the target at location X = [XxXy]T , we can write

di = ||X− Si||+ σ, i = 1, 2, . . . , N , (2)

δdi = ||X− Si − S1||+ σ, i = 2, ..., N , (3)

ai = arctan(
Xy − Siy

Xx − Six
) + σ, 1, . . . , N , (4)

where σ is the measurement error, while di, δdi, and ai are the range, range-difference,
and angle measurements. Geometrically speaking, in the simplest scenario, having the
range from target to three Base stations (BS) in 2D, the intersection of three circles with
the centre of the BS and radius of the measured range will be the solution (see Figure 1).
In 3D, the intersection of four Spheres is the response. For TDOA, the hyperbolas can be
constructed, with the focus being the two BS (see Figure 2). In the AOA framework, the
angles measured with the help of the geometric properties of the triangle could determine
the target location (see Figure 3). In an ideal case, these methods intersect in one single point.
However, this never happens in the real world, which gives rise to several scenarios [22].

BS1

BS2 BS3

d1

d2

d3

Figure 1. Trilateration: localisation based on the range from 3 anchors (TOA, RSS).
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BS1

BS2

BS3

TD
OA12

= TO
A2

− TO
A1

T
D
O
A

1
3
=
T
O
A

3 −
T
O
A

1

Figure 2. Localisation based on TDOA, the intersection of the hyperbolas.

BS1

BS2 BS3

θ1

θ2

θ3

Figure 3. Triangulation: localisation based on AOA from 3 BS.

The set of equations can then be solved either in approximated closed-form or iter-
atively. Closed-form formulation leads to an easy, low-complexity solution. For exam-
ple, in [23], a closed-form algebraic solution for target localisation for both trilateration
(three reference points) and multi-lateration (more than three reference points) is solved.
The uncertainty of each information piece is considered by adding a variance matrix to the
equations. However, it assumes the known covariance matrix error, which is not realistic.
In an extended version of this method [24], after applying the standard multi-lateration
procedure, if the solution lies within the reference node positions, it is considered the final
solution. Otherwise, the algorithm keeps searching for the solution inside the zones that
are determined within the reference nodes based on the strength of the RSS level (the
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zone closer to the base station from which the strongest RSS level is read has the highest
probability of containing the solution). In the search process for a solution inside a zone,
virtual positions are defined inside zones, and then the final target location is selected based
on the distance between the first estimation and the virtual positions.

4.2. Min–Max

Min-Max is a simple, intuitive, and geometrical-based technique when an easy imple-
mentation is desired [25–27]. According to ranges, squares are formed that circumscribe the
circles around each BS with radius di as the distance between the BS and target. Then, the
vertices of a rectangle known as the area of interest are found, as shown in Figure 4.
In the simplest version, the centroid of this rectangle is selected as the estimated position.
Among Min–Max variants, Extended Min–Max [28] uses the weighted centroid instead
of the geometric centroid. Furthermore, Yang et al. [26] introduce a new strategy with a
partition area.

Area of interest

d1

d2
d3

Figure 4. Min–Max algorithm.

4.3. Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) is a computationally efficient approach, especially
for a cooperative framework consisting of a group of nodes for localisation for which,
due to high dimensional search space, finding the optimised value is demanding. MDS
is a visualisation technique by which the pairwise range could be mapped to the lower
dimensional Cartesian space that can be graphically displayed. The MDS method offers an
analytical closed-form solution which makes it advantageous in terms of computational
burden, efficiency, and ease of implementation [29,30].
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4.4. Least Squares (LS)

Least squares (LS) is a well-known method used to estimate an unknown. It can be
formulated by finding a solution that minimises the square of the error, such that:

arg min
X

N

∑
i=1

(
RSSi −

(
Pi

0 − 10αlog10(||X− Si||)
))2

, (5)

arg min
X

N

∑
i=1

(TOAic− ||X− Si||)2 , (6)

arg min
X

N

∑
i=2

(TDOAic− ||X− Si||+ ||X− S1||)2 , (7)

arg min
X

N

∑
i=1

(
AOAi − arctan(

Xy − Syi

Xx − Sxi
)

)2

, (8)

where c is the speed of the light, RSSi, TOAi, TDOAi, and AOAi are the measurements
with respect to the ith BS. For the cooperative case where there are M targets to be localised,
it can be written as:

arg min
X

N

∑
j=1

M

∑
i=1

(
RSSij −

(
P0i − 10αlog10(||Xj − Si||)

))2 , (9)

arg min
X

N

∑
j=1

M

∑
i=1

(
TOAijc− ||Xj − Si||

)2 , (10)

arg min
X

N

∑
j=1

M

∑
i=1

(
TDOAijc− ||Xj − Si||+ ||Xj − S1||

)2 , (11)

arg min
X

N

∑
j=1

M

∑
i=1

(
AOAij − arctan(

Xyi − Syi

Xxi − Sxi
)

)2

. (12)

A straightforward solution to cope with the highly non-linearity is linearisation, such
as Taylor expansion [31]. However, the recursive LS method offers more fidelity and
accuracy in the cost of complexity and computation burden [31]. The Weighted Least
Squares (WLS) method is more efficient, which puts different weights on the measurement.
In one intuitive method, weights are selected based on the distance. The optimal method is
to exploit the covariance of the measurement noise for WLS. When such information is not
at hand for noise, there are some efforts to estimate it [32].

In addition to position, other unknown parameters can also be jointly estimated, such
as unknown PLE [33] and transmission power (for RSS-based localisation) [34]. Unfortu-
nately, [34] also considers the unknown weight matrix and Non-line-of-sight (NLOS) impact
by adding a random variable to the propagation model, which adds to the complexity
of the problem. To deal with this issue, the semi-definite relaxation (SDR) technique is used
as an approximation, transforming the problem into convex semi-definite programming.

In a more efficient framework, the relative error is employed instead of the estimation
error, which is called Least Squares Relative Error (LSRE) [35,36]. The relative error is the
ratio of the absolute error to the measured value. In LS, all observations are treated equally,
implying the same precision for all data, which is critical in reality.
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4.5. Maximum Likelihood (ML)

Maximum Likelihood is one of the most used approaches to localisation, resulting
in a non-convex, non-linear optimisation problem. The object of ML is to maximise the
likelihood function:

arg max
X

p(X|z) . (13)

The LS minimisation of the observation errors normalised by measurement variances
gives the ML solution.

arg min
X

N

∑
j=1

M

∑
i=1

(
RSSij −

(
P0i − 10αlog10(||Xj − Si||)

)
σij

)2

, (14)

arg min
X

N

∑
j=1

M

∑
i=1

(
TOAijc− ||Xj − Si||

σij

)2

, (15)

arg min
X

N

∑
j=1

M

∑
i=1

(
TDOAijc− ||Xj − Si||+ ||Xj − S1||

σij

)2

, (16)

arg min
X

N

∑
j=1

M

∑
i=1

AOAij − arctan(
Xyi−Syi
Xxi−Sxi

)

σij

2

. (17)

Solving it is not trivial and imposes a high computational cost. Subsequently, variant
relaxations criteria are used to deal with the complexity, such as semi-definite programming
(SDP) relaxation and second-order cone programming (SOCP) relaxation to approximate
the complex problem, or numerical approaches such as Newton–Raphson are employed.
In a joint-ML scheme, location along with channel parameters are estimated [37,38]. Ref. [38]
also explores the combination of multi-lateration with ML to compromise between perfor-
mance and complexity where multi-lateration is exploited for location estimation, and ML
is utilised for channel parameters estimation. The paper then compares it with the joint
ML method. The effect of the fault and various noises are taken into account in [39,40].
Ref. [39] addresses byzantine fault and NLOS effect. Byzantine fault is considered by
including non-Gaussian interference noise corrupting the transmission data, and the NLOS
effect is modelled by adding a bias term to the propagation model. First-order Taylor
series expansion is utilised to simplify the model so that some transformation turns it into
a generalised trust-region sub-problem (GTRS). Additive and multiplicative noises are
handled in [40] using ML, taking advantage of iterative expectation-maximisation.

4.6. Bayesian Inference Method

The Bayesian approach gives a distribution, instead of an estimated value, as an
outcome which is more informative than LS. Compared to ML, where parameters are
considered fixed, in the Bayesian method, they are treated as a random variable with
known prior distribution [41]. Based on Bayes’s theorem, the position and the parameters
act as random variables where the prior information and observations are leveraged to
infer and update the posterior distribution of unknown random variables. For example,
in [42], PLE and position are treated as mutually independent random variables from
which the posterior distributions are derived. To do so, a message passing algorithm, called
belief propagation [43], is used on the factor graph, which allows for efficient computation
of marginal distributions and dealing with the problem’s intractability. The cooperative
localisation scenario is also dealt with using the Bayesian method in [42]. In this paper, in
addition to PLE, transmission power is estimated.
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4.7. Bayesian Filters

When estimating the dynamic states, which is the case in robotic applications, filters
can work effectively. They work by alternating between two steps, i.e., prediction and
update. For example, the classic Kalman filter is the optimal estimator for a linear system in
the presence of Gaussian noise. They can also be employed readily to fuse the observations
of various sensors. In robotics, the movement dynamic is considered as constant velocity
or constant acceleration, which usually performs acceptably in practice.

While the process model is linear, the observation model becomes non-linear. In this
case, sub-optimal non-linear filters are exploited. These include the Extended Kalman
filter [44], Particle Filter [45], and Unscented Kalman Filter [46]. The Extended Kalman
filter is the first-order Taylor series expansion of the non-linearity widely used in diverse
applications with an acceptable outcome. However, such a first-order approximation might
introduce errors in the posterior distribution estimation [47]. The unscented Kalman filter
(UKF) and particle filter (PF) can outperform EKF by removing the linearisation step and
carrying out deterministic sampling. Based on unscented transform (UT), UKF transforms
states to weighted sigma points based on which prediction and update are executed. PF
performs sequential importance sampling, drawing the particles and their corresponding
weights from the probability density. We will review works based on Bayesian filters in
Section 7.

5. Fingerprinting

As an alternative to the range-based approach, fingerprint methods are based on
the collected data to infer the position instead of relying on the model. This method can
better handle the error caused by the modelling errors and noises. Fingerprinting is mostly
used for RSS and CSI-based localisation, but it has also been exploited for other RF-based
measurement [48–52] and for a hybrid scheme [53–55].

This method usually results in more accurate estimation and comes at the cost of the
laborious step of data collection. Generally speaking, fingerprinting consists of an offline
mode and an online mode. In the offline step, a dataset consists of recorded measurements
or RF features, and the ground truth position at references points (RP) (see Figure 5), which
are called fingerprints, is generated. Based on this, in the online phase, estimation is made
through matching (see Figure 6).

Figure 5. Reference points in 3D.
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Figure 6. Fingerprinting block diagram.

5.1. Offline Step

One of the main challenges in the fingerprinting approach is collecting and maintaining
a proper fingerprint database. The most straightforward approach to generating the radio
map or dataset is to measure and record the fingerprints over all areas. However, due to
the ample space, it is not practical to obtain detailed measurements and conduct costly
site surveys. Moreover, the fingerprint map becomes outdated due to the radio signal
features and dynamic environment. This problem is discussed in [56], where the effect
of an incomplete dataset is explored by applying several interpolations and extrapolations
to recover the missing data. The work of [57] explores deterministic adaptive path loss
model interpolation for radio map generation, focusing on improving the speed of the
process and decreasing the time of radio map construction. Each AP’s RSS path loss model
is extracted using available reference points, LS, and interpolation. Gaussian regression is
another probabilistic method used for this purpose. The authors of [58] exploit Gaussian
Process Regression (GPR) to predict the RSS spatial distribution based on the available
dataset. To achieve this, instead of using a basic zero mean function and a single squared
exponential as kernel function for GPR, compound GPR kernel functions are used. In [59],
more information regarding radio map generation techniques can be found. Experiments
in the real world also make this comparison.

It is worth mentioning that most fingerprinting localisation exploits the collected raw
data or their scaled value. However, this is not efficient in the presence of heterogeneity.
The heterogeneity of device pairs, i.e., transmitter and receiver, can affect the RF-based
localisation, as each device uses different hardware parameters, such as antenna gain
for transmitters. The different signatures might be recorded in the same situation for
each transmitter-receiver combination. To remedy this issue, other variants of perceived



Sensors 2023, 23, 188 13 of 30

measurements are used. For example, differences in signal strengths are used in [60] to
address both device heterogeneity and temporal variation of RSS. Another differential
RSS-based localisation is handled in [61]. Finally, the authors of [62] present hyperbolic
location fingerprinting in which fingerprints are recorded as RSS log ratios between pairs
of base stations instead of absolute RSS.

5.2. Online Phase

Machine-learning algorithms are mainly used for matching and estimation, including
K Nearest Neighbor (KNN), Weighted K Nearest Neighbor (WKNN), Artificial Neural
Network (ANN), Convolutional Neural Network (CNN), Support Vector Machine (SVM),
and Random Forest.

5.2.1. Classical Machine Learning

K-Nearest Neighbor (KNN) is the first simple candidate to select K points in the dataset
based on similarity. Considering the computation complexity, the achieved performance for
this algorithm is acceptable. In a WKNN, different weights are assigned to measurements
based on criteria such as the distance to the AP. For example, in [63], WKNN is employed
where, based on the inverse of RSS distance, weights are assigned to the APs. This criterion,
however, is not consistent with position distance due to the nature of path loss, which
decays logarithmically based on distance (the reader is referred to [64] for more details). To
address this issue, [64] introduces a new weighting process and a new distance measure
based on the RSS similarity and spatial position.

One disadvantage of traditional KNN is that it is implemented with a fixed number
of K. A Weighted Adaptive KNN Algorithm is adopted in [65] to settle this problem. It
can choose a variable number of RPs according to both the improved RSS similarity and
position proximity. Density-based spatial clustering of applications with noise (DBSCAN)
method and Affinity Propagation Clustering (APC) does not require the number of clusters
to be pre-determined and is suitable for handling large databases. The authors in [66] show
that clustering could reduce noise’s impact in large datasets. Hence, the DBSCAN method
is proposed for localisation, where the fingerprints are divided around a centre point based
on the density. Li et al. [67] apply APC offline until the algorithm converges to a final
clustering after several iterations and message passing among the points (attraction and
attribution messages).

Random Forest is a classifier and regression method based on multiple decision trees
that enjoy fast training and prediction, which works well with high dimensional data. Thus,
it is a suitable candidate for handling large data-set [52,68]. SVM is another classifier engine
that can resolve the regression problem. For localisation, examples of multi-class SVM can
be seen in [69,70]. To make the fingerprints more separable, [69] exploits a fuzzy kernel
that maps the data to the higher dimension space.

5.2.2. Deep Learning

The capability of Neural Networks (NN) to extract the complex input–output relation-
ship is advantageous for fingerprinting. More notably, NN can be used to directly map the
fingerprints to the Cartesian coordinates like [71], which incorporates ANN, taking RSS
as input and outputting the estimated position in 2D. Deep learning techniques are more
powerful than traditional ML techniques. The main advantage of deep learning is that it
is capable of handling a great deal of complex multi-dimensional data that are corrupted
by noise [72]. Deep learning can also make better use of the parallelism of GPU architec-
ture, which is equivalent to a lower run-time. There are, however, some challenges and
disadvantages of deep learning models. First, they require the availability of rich, varied
data representative of the problem to learn meaningful relationships between the input
and output. Nevertheless, we lack tools to interpret models and understand for which part
of the input space this relationship has been correctly learned and where there is a need for
more data. This issue is also related to over-fitting, which appears when the network cannot
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generalize to unobserved data and makes improper predictions based on the training data.
Lastly, finding suitable training hyper-parameters is a time-consuming practice.

One of the promising deep learning-based methods is CNN, which has been widely
deployed and successfully used for image classification. CNNs in online mode can perform
very fast, though they require a meticulous and time-consuming training phase, which
still requires further investigation for fingerprinting localisation. In [73], a six-layer CNN
classifier is used to learn and predict under the 74 classes. In [74], Stacked Auto-encoder
(SAE) is incorporated to reduce the data dimension before feeding them into the CNN
classifier for multi-floor multi-building localisation. In a 5G Internet of Things (IoT) test-
bed, [75] combine two CNN for localisation. The first one acts as a regressor that estimates
the position in 2D, whose output will provide the input for the second neural network
performing as a classifier to estimate the 3D location. A Siamese network consisting of two
sub-network (convolutional neural network with shared weights) with offline fine-tuning
is proposed in [68] to counter temporal changes of RSS, device heterogeneity, and low
RSS samples in a lightweight algorithm. In the training phase, an embedding function is
learned that uniquely translates the distance and RSS pairs to an embedding. The training is
executed so that each sub-network can take an RSS vector as input and estimate the relative
distance of the locations corresponding to the RSS pairs. In the online step, the location is
calculated as the weighting average of the RPs, based on the probabilities assigned for the
embeddings of online RSS using Random Forest.

It is to be noted that these methods can also be combined in a multi-stage process for
localisation. For example, practically, the first simple rough estimation is performed to find
the sub-area candidate for the target position. Then, a more accurate estimate is delivered by
searching only through the selected sub-area. The work of [76] clusters all data on the database
based on signal levels involving RSS and directional antenna gain into the database. First,
finding the initial rough estimation, the solution is refined with up-sampling until it meets the
desired accuracy. The same two-step procedure is performed in [49] for UAV positioning in
3D based on TOA. After coarse localisation, neural network fitting is executed to refine the
estimation. Finally, in [54], rough localisation is performed based on TDOA, and the subarea
is searched using a deep neural network (DNN) based on RSS.

6. Other Taxonomies

Aside from the techniques based on which the works fall under two broad main cate-
gories, there are other points of view that RF-based localisation can take into account.

6.1. Distributed vs. Centralised

Two approaches can be distinguished based on how the calculation and process are
performed. In a centralised fashion, all data are sent to a central node and station where the
computation is carried out. While this requires a less complex algorithm than the distributed
approach, it requires a powerful processor. In a distributed way, the process and calculations
are distributed among all nodes and subsystems, with each node contributing to the final
result. This method demands that more adept and complex algorithms be developed. As
the number of nodes in WSN grows, distributed processes become more fascinating.

6.2. Cooperative vs. Non-Cooperative

Cooperatively, nodes communicate, share, and use the information to/from their
neighbouring node. The advantage of the cooperation between nodes has been discussed
in terms of Cramer-Rao Lower Bound (CRLB) [77]. On the other hand, non-cooperative
methods are more energy efficient and less complex.

6.3. Anchor-Based vs. Anchor-Free

In an anchor-based scheme, we have information about the location of some nodes or
BS called anchors obtained either via GPS or by manually deploying them. This information
and measurement are used as input for the localisation algorithm. In the anchor-free
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method, however, there is no information about the positions of the nodes. While anchor-
based are more accurate, anchor-free approaches are advantageous because they are more
scalable and can remove the process of anchor deployment [78,79].

6.4. Static vs. Mobile

The majority of localisation algorithms based on RF focused on the static target. The ex-
tension of these results to mobile targets, which is mostly the case in robotic applications, is
non-trivial. One critical issue in mobile target localisation is real-time feasibility. In the next
section, we will review the localisation of mobile robots.

6.5. Technologies

Depending on the available infrastructure, desired accuracy, cost, and the environment,
different technologies, such as Wi-Fi, Bluetooth, Ultra-Wideband (UWB), Zigbee, Radio
Frequency Identification Device (RFID), cellular network, and Long-Range (LoRA) radio,
can be exploited. For example, UWB transmits signals across wide bandwidth in a short
range, delivering centimetre accuracy, and is suitable for indoor localisation. On the other
hand, Wi-Fi benefits from exploiting existing Wi-Fi infrastructure for localisation. However,
lower accuracy will be expected. More details can be found in [7].

6.6. 2D vs. 3D

A large part of the studies of localisation so far have been addressed in 2D space.
Theoretically, it is claimed that most of them can be extended to the 3D case, but in
practice, localisation in the vertical axis comes with a much higher error than the x–y axis.
Therefore, 3D localisation is worth further research, which will be highly important for
drone applications. This issue is discussed more deeply in [13,38].

6.7. Performance Parameters

Evaluating the performance of the localisation algorithm is not straightforward. Many
criteria need to be considered for comparison: accuracy, precision, complexity, scalability,
security, reliability, cost, and stability [8].

7. RF-Based Localisation for Aerial and Ground Robots

Most of the RF-based localisation is applied to sensor network systems. What makes
these attempts non-applicable to mobile vehicles in a straightforward way are the new
challenges that the localisation of UAVs and UGVs will provide.

• UGVs, and especially UAVs, are highly manoeuvrable, with high speed. The existing
state of the art for WSN localisation focuses on fixed targets and cannot address the
rapid changes in the target location and the real-time implementation.

• The mobility of vehicles calls for a combination of other sensors, such as IMU and
Images. The combination of the sensor data, especially images and RF, has not been
studied in localisation.

• The majority of current works in WSN often consider just 2D cases, while vertical
estimation is of great importance in UAV localisation.

• The accuracy and robustness in demand in UAVs and UGVs localisation applications
are more critical. Usually, very accurate estimation is necessary, while in WSN, rather
rough estimation suffices. This, for instance, rules out relying merely on RSS, which is
the case for most of the existing state-of-the-art RF localisation.

• Use of limited technologies is the other drawback. For robot applications, UWB is
used most. It is limited to indoors and is suitable for short range. New Technologies,
especially 5G NR, have rarely been considered so far. In 5G, RSS would not be the
most relevant feature, so there would be a shift to the use of this technology’s new
potentials and capabilities.

Bayesian filters are among the most used methods for mobile robots localisation,
Unscented Kalman Filter [80,81], Particle Filter [45,82,83], Extended Kalman Filter [84–87]
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and different variants of it, such as Square Root Cubature Kalman Filter (SRCKF) [88] and
Diffusion Extended Kalman Filter (DEKF) [89].

Localisation of a UGV moving with constant speed is developed in [85] using TDOA,
incorporating an EKF with an adaptive fading factor to update the prediction covariance to
account for the divergence issue of EKF. In a specific scenario [84], localisation is performed
for a group of five UAVs, one inside the room and the other four outdoors, based on the
information gathered from GNSS, IMU, camera, UWB, and Wi-Fi measurement by all the
drones. UWB provides range measurements, and WiFi feeds RSS for indoor UAVs. EKF
is used to fuse the measurements and jointly update and estimate all UAVs states and
covariance considering the six-DOF (degree-of-freedom) model. An event-driven sampling
and transmission mechanism used to counteract the effect of RSS volatility is proposed
in [88], where the anchors respond to the mobile robot if some conditions on the received
signal are met. The work of [86] combines two EKFs to work simultaneously for location
estimation based on TDOA. First, the model is augmented by a weighting filter used in
one EKF framework to estimate the state. Then, this estimation is used by the other EKF
to update the weights. In a decentralised strategy, [89], diffusion Kalman filter and EKF
(DEKF) are integrated to estimate a target based on AOA where a group of UAVs based on
AOA share their state estimation, as well as Jacobian information.

In [45], PF is incorporated to estimate the position of a robot in 2D space based on
RSS. Generating the radio map by collecting training fingerprints, Kernel Density Estima-
tion is included to build the probabilistic observation likelihood for sample importance
weights selection. The average of RSS at each point and the variance are recorded in the
database. To enhance the accuracy, an adaptive local search is employed to detect and
remove unreasonable estimates by limiting the search area. Furthermore, a mechanism is
applied to select just the subset of access points with lower variances to reduce the compu-
tational burden. The algorithm is tested for four cases with around 1 meter mean accuracy.
The author in [90] fuses odometer data and Wi-Fi RSS to track mobile robots using PF.
Executing experiment in 2D, decimeter accuracy is delivered. A new particle-filter-based
algorithm is introduced in [83] to improve the estimation with fewer particles. To this
goal, the traditional sequential prediction and update steps are carried out in one stage
through the maximum likelihood estimator. Experimental results with WiFi RSS indoors
show improvement, reaching about 0.5 m2 means squared error.

For target localisation, a fingerprinting method is explored in [82]. The radio map is
continuously updated while collecting RSS and performing the target localisation simulta-
neously. The database, the anchor positions, and propagation model parameters are stored
and updated. Instead of using the log-distance model, a new model based on collected data
is fitted. The model consists of three terms: path loss, measurement noise, and multi-path
effect. Four simple functions are proposed and tested for the path loss model to select
the best one: linear, nonlinear, and two log-distance models with different parameters.
The result indicates that the log-distance model is not as accurate as the first two. The best
model is of the form c1dλ1d + c2eλ2d. Based on the model extracted, the fingerprints are
modelled as the probability density function. In the sequel, a particle filter is employed for
target tracking in online mode.

Two complex ML algorithms are reported in [91,92], where simulations are performed
for evaluation. The work [91] uses RSS from multiple BS along with trajectory information
(velocity) of the drone to localize an UAV with unknown transmission power. A Joint ML
is formulated and solved based on the trajectory information and multiple BS. Fixing the
positions in the ML function, first, transmission powers are estimated, which are assumed
to be constant. The result is then used to optimise the ML functions based on positions,
employing an exhaustive grid search. Two low-complexity alternative algorithms are also
suggested, where the former ML problem is broken into several parts, which are solved
separately. Then, the final result is calculated as the weighted combination of the separate
estimations. Notably, constant velocity is assumed at each time step. A different scenario is
considered in [92], where multi-UAVs are supposed to localize a fixed passive RF emitter
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based on the RSS. A group of UAVs is flying and tracking a predefined trajectory, with
one at the centre. To optimise the aggregate likelihood function in a distributed manner,
second-order Taylor expansion is exploited to introduce a surrogate function, based on
which the Min–Max algorithm is applied. In a two-step procedure that is iterated over,
a local update is performed on each UAV based on the centre UAV estimation. In the
fusion step executed on the centre UAV, all UAVs share their local estimation with the
centre UAV for fusion to generate a new estimation and distribute it among all other UAVs.
To reduce the communication overload, an alternative approach is proposed requiring one
round of communication, i.e., edge UAVs transmit their information to the centre UAV.
In the centre UAV, all estimations are linearly fused with weights approximated based
on the Fisher information matrix. On simulations, the authors show that this algorithm
improves the result in terms of the root of mean square error (RMSE) in cost of complexity.
Another MLE-based method is suggested in [93] based on UWB time-of-flight, in which
non-convexity is handled by linearisation. Moreover, the geometry configuration of the
anchors and how it impacts the localisation is investigated in terms of CRLB, while both
simulations and experiments are conducted.

Simultaneous Localisation and Mapping (SLAM) using multiple robots are explored
in [94] leveraging Wi-Fi fingerprinting and odometry in 2D. A graph is constructed with
nodes as robots pose and constraints including odometry, individual RSS fingerprints, and
similarity of RSS fingerprints between robots. For the trajectory optimisation using graph-
based SLAM, the distance of fingerprints and the variance is derived from the database
using a simple model.

Instead of a conventional deterministic propagation model, [95] uses a probabilistic
likelihood function with the aid of symmetric trapezoidal distribution over discrete lo-
calisation grids. Tethering (in which a mobile node localizes, tracks, and follows another
mobile node) is performed by integrating RSS and odometry information. The 2D area is
divided into grids, with discrete probability. Having received a new RSS value, a Bayesian
update is used to update the probability of the grids and achieve full posterior probability
distribution over all grids, based on which the current location is extracted. In a very
recent paper, [96], the performance of AOA for UAV localisation in a cellular network is
investigated, and accuracy of fewer than 45 meters is reported.

Stojkoska et al. [97] incorporate Multi-dimensional Scaling (MDS) and Weighted
Centroid Localisation (WCL). Al-Jazzar and Jaradat [98] introduce a geometrical approach.
Based on six AOA of sensor doublets, the UAV position is found through mathematical
techniques as the intersection of six. The LS method is employed in [99] for UAV localisation
in 3D fusion of AOA and TDOA. Nguyen et al. [100] explore relative localisation, estimating
the location of the UAV with respect to a target. Relative localisation is useful for formation
control [101] and autonomous docking. This paper fuses UWB range measurements
with vision-based data. Employing recursive LS, decimeter accuracy is acquired in a 2D
experimental setup. The mentioned methods are compared in Table 3.

The existing state-of-the-art literature on robot localisation is limited to very specific
scenarios, technology (UWB), RF features, and sensor data. In more detail, two main
limitations have to be addressed:

• Limited to specific technologies and sensor data: Most papers use RSS due to its easy-
to-use hardware. In that case, acceptable accuracy is achieved by using UWB, which
is limited for indoor use with short range. TOA-based localisation is also achieved
mostly by taking advantage of UWB. Moreover, many possibilities are missing in the
literature, such as the integration of images, and LIDAR with RFs.

• Limited Accuracy: accuracy is one of the main concerns in UAVs and UGVs localisa-
tion. Only relying on simple algorithms and sensor data, like RSS, might not be an
appropriate solution, especially with the upcoming technologies, 5G and beyond. As
we discuss later in our paper, CSI information would provide a huge amount of useful
data. However, the real-time implementation and its fusion with conventional sensor
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data is the real concern that is not addressed. Edge computing and off-loading as the
most promising solutions are rarely investigated.

There is a huge gap worth filling in this area: use of RF in SLAM, integrating variant
of sensor data with RF, use of CSI in robot applications, and developing a deep learning
approach, especially using the fingerprinting method.

Table 3. Comparisons between existing works on RF-based localisation for UGVs and UAVs.

Refs Year Range-Based/
Fingerprinting

Distributed/
Centralised

Cooperative/
Non-Cooperative

Anchor-Based/
Anchor-Free

2D/3D Experiment Technique Technology

[45] 2014 fingerprinting centralised non-cooperative anchor-free 2D Yes PF WLAN/RSS

[80] 2010 range-based centralised non-cooperative anchor-based 2D Yes UKF -/RSS

[81] 2020 range-based centralised non-cooperative anchor-based 3D Yes UKF UWB/TOA

[82] 2019 fingerprinting centralised non-cooperative anchor-based 2D Yes PF ZigBee/RSS

[83] 2021 fingerprinting centralised non-cooperative anchor-free 2D Yes PF-ML WiFi/RSS

[84] 2018 range-based centralised cooperative anchor-based 3D No EKF WiFi-UWB/
RSS-TOA

[85] 2008 range-based centralised non-cooperative anchor-based 2D No EKF -/TDOA

[86] 2009 range-based centralised non-cooperative anchor-based 2D No EKF -/TDOA

[87] 2018 range-based centralised non-cooperative anchor-based 3D Yes LS UWB/TOA

[88] 2016 range-based centralised non-cooperative anchor-based 2D Yes SRCKF -/RSS

[89] 2016 range-based distributed cooperative anchor-based 2D No DEKF -/AOA

[90] 2020 fingerprinting centralised non-cooperative anchor-free 2D Yes PF -/RSS

[91] 2021 range-based centralised non-cooperative anchor-based 3D No ML -/RSS

[92] 2022 range-based distributed cooperative anchor-based 3D No ML -/RSS

[93] 2021 range-based centralised non-cooperative anchor-based 3D Yes EKF UWB/TW-TOF
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Table 3. Cont.

Refs Year Range-Based/
Fingerprinting

Distributed/
Centralised

Cooperative/
Non-Cooperative

Anchor-Based/
Anchor-Free

2D/3D Experiment Technique Technology

[94] 2021 fingerprinting centralised cooperative anchor-free 2D Yes ML WiFi/RSS

[95] 2010 range-based centralised non-cooperative anchor-based 2D Yes Bayesian -/RSS

[96] 2021 range-based centralised non-cooperative anchor-based 2D Yes LS Cellular/AOA

[97] 2017 range-based centralised non-cooperative anchor-based 3D No MDS-WCL WiFi/RSS

[98] 2020 range-based centralised non-cooperative anchor-based 3D No Lateration -/AOA

[99] 2020 range-based centralised non-cooperative anchor-based 3D No LS -/TDOA-AOA

[100] 2019 range-based centralised non-cooperative anchor-based 2D Yes RLS UWB/TOA

8. 5G Potentials and Promises for Robot Applications

Rolling out the 5G New Radio (NR) technology provides great potential to boost
the localisation of robots and UAVs in terms of accuracy, robustness, cost, and coverage.
The promising features of 5G NR for robot applications are shown in Figure 7 and include
the following:

5G NR

High frequency
High bandwidth

V2X/Sidelink

MIMO
Technology

Low Latency High data rate

Wide area
coverage

Figure 7. 5G NR enabler for improved robot localisation.

• Wide area coverage.
• MIMO technology.
• High carrier frequency.
• High bandwidth.
• Vehicle-to-Everything (V2X).
• Low latency.
• High throughput.
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8.1. Wide Area Coverage and Inexpensive Localisation Systems

Compared to other technologies such as Wi-Fi, UWB, etc., 5G will be available almost
anywhere, indoors or outdoors, since the cellular infrastructure is widely deployed in cities.
Using Vehicle-to-Everything (V2X) also makes it feasible to take advantage of 5G in areas
without full coverage. For example, in a collaborative scheme, parts of the device(s) or
vehicle(s) can play the role of anchor or Pseudo BS for others. 5G is also considered to be an
inexpensive solution because there is no specific equipment to set up as long as operating
under the coverage of BS. Accordingly, taking advantage of the available infrastructure
of 5G, in some cases, might remove the need for costly and energy-consuming GPS devices.

In addition, 5G confers robustness to the localisation system. Robustness is an essential
feature in highly mobile scenarios, in the case where safety is of great concern. For example,
consider a vehicle or a group operating in a wide area where some part of it might be GPS
denied. In such a situation, relying only on GPS information may lead to failure.

8.2. RF Measurements with More Resolution

The 3GPP 5G New Radio (NR) is envisioned to pave the way towards achieving
higher accuracy and robustness of localisation in GPS-denied environments such as indoor
settings, and towards improving localisation outdoors combined with GPS. 5G NR provides
improved measurements for localisation, such as time-based, angular-based, and energy-
based measurements. The measurements include TOA, TDOA, AOA/AOD, and multi-cell
round-trip time. For robot localisation, 5G in the downlink defines a new reference signal
called a positioning reference signal (PRS), based on which these measurements can be
extracted. (Readers are referred to [15] for further information).

Owing to the high carrier frequency, high bandwidth, and MIMO technology, accurate
measurements will be delivered. 5G NR operates at high-frequency bands: Frequency
Range 1 (FR1) (450 MHz to 6 GHz) and Frequency Range 2 (FR2) ( frequency bands from
24.25 GHz to 52.6 GHz). Relying on the Cramer-Rao Lower Bound (CRLB), the lower
bound for variance of TOA is obtained by [102]:

var(TOA) ≥ 1
8π2BTsF2

c SNR
,

with B being the bandwidth, Fc is the central frequency, Ts is the duration of the signal, and
SNR is signal to noise ratio. This inequality indicates that higher frequency and bandwidth
contribute to higher TOA estimation accuracy.

The probability of LOS increases due to the strong path loss in higher frequencies
(mmWave). This feature and the large transmission bandwidth make distinguishing
between LOS and NLOS measurements in the multipath effect feasible by applying proper
analysis over the received signals, resulting in highly precise time-based and angular-
based localisation.

The Massive MIMO technology is one of the most noticeable enhancements and
relevant features for localisation offered by 5G NR. It allows the implementation of ultra-
massive antenna arrays consisting of hundreds or thousands of antennas in a single base
station, leading to finer angular resolution (azimuth and elevation of the beam) of even less
than one degree, which can contribute to accurate localisation.

8.3. Vehicle-to-Everything Standard

The Third-Generation Partnership Project (3GPP) deploys the Vehicle-to-Everything (V2X)
based on Dedicated Short-Range Communications, which includes Vehicle to Vehicle (V2V),
Vehicle to Network (V2N), or Vehicle to Infrastructure (V2I). The cellular V2X standard based
on the 5G air interface is a fascinating feature for cooperative robotic missions, specifically
through introducing the sidelink (SL), which permits vehicles to directly exchange information
without other parts of the network being involved. This will play a vital role in cooperative
tasks and localisation, whether the operation is within the coverage area or without BS cov-
erage. Furthermore, the V2X feature not only allows communication of the vehicles with
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each other, but also with the infrastructure and even the internet. This increased connectivity
improves the efficiency of the cooperative systems, enhances localisation accuracy, and makes
some previously infeasible missions possible. For example, in an environment with adverse
NLOS effects from the BS, which results in erroneous measurements, one or some parts of the
vehicles can play the role of BSs or act as a pseudo BS.

8.4. Low Latency

Ultra-reliable low-latency communication (URLL) offered in 5G new radio allows for
future applications which on-demand for aggressive latency for a quick reaction. The exist-
ing 4G cellular network is not appropriate for this purpose.

Low latency means a slight delay between sending and receiving information indis-
pensable for autonomous driving and flying. For example, 1 ms minimum latency (average
of 10 ms) is expected to be provided by 5G, which is a substantial breakthrough compared
to the 200 ms latency typical of 4G. The central station that might perform the localisation,
planning, or control must receive and send back data and command fast enough to the
vehicles operating at high speed. The time for transmitting and receiving data is vital for
autonomous control, where the car moves rapidly. For example, for a drone to be controlled,
both localisation and control commands need to be processed and sent back to the UAV
with an acceptable slight delay, resulting in a fast reaction of the UAV.

8.5. High Throughput

Significantly, for the uplink transmission, a high data rate is needed when offloading
computations. Many algorithms try to balance computation power and accuracy, mostly
because onboard computers are usually not equipped with a powerful processing unit. This
concern would be prevented with offloading, which allows for implementation of complex
algorithms with high accuracy in real time on a powerful server using edge computing.
In addition to low latency, a high data rate is crucial for the real-time transfer of extensive
sensor data, such as high-resolution images or LIDAR data. In [103], the role of edge
computing and the impact of data rate in the uplink for vision-based drone navigation
in the 5G network is explored. Three scenarios are tested and compared: no offloading,
partial, and complete offloading. This shows how offloading can be advantageous in the
network capable of providing a fast uplink rate.

8.6. Localisation Based on 5G

As the 5G roll-out is in the early stages, few works have investigated 5G localisation,
especially for robotics applications and in a sensor fusion framework. Besides, most are
solely based on simulation results, neglecting many practical aspects. For example, the im-
pact of synchronisation error in time-based positioning or simplification of channel models
is considered. In the following, we review the current state-of-the-art 5G-based localisation.

In 5G NR, pilot signals are included for positioning purposes, including Position-
ing Reference Signal (PRS) in the down-link and Sounded Reference Signal (SRS) in the
up-link [15]. In addition to network centre frequency and bandwidth, PRS and SRS con-
figuration also play roles in localisation accuracy. In [104], for different combinations
of centre frequency, sub-carrier spacing and PRS comb-size, localisation accuracy for sim-
ple scenarios is compared in terms of Root Mean Square Error (RMSE) using simulation.
The authors of [105] simulate the roadside 5G network implementation for assisted driving,
showing accuracy below 20–25 cm for 50–100 MHz bandwidth. Localisation is performed
based on TOA extracted as the first correlation peak between PRS and the received signal.
The channel is modelled based on path loss and the TDL channel model. The impact of the
geometrical placement of roadside 5G base stations on the localisation based on EKF, and
how the distance from BS affects EKF linearisation error is investigated in [106]. In this
paper, EKF for location estimation is also presented, in which the covariance matrix is
tuned dynamically, and improvement is shown through simulation. There are several
attempts at localisation in the 5G network based on CIR and CFR. The work of [107] ad-
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dresses localisation in the up-link side based on 5G SRS information, in which, based on
the received signal, the channel frequency response (CFR) is estimated. TOA and Direction
of Arrival (DOA) are then evaluated using the well-known 2D multiple signal classifica-
tion (MUSIC) algorithms. Localisation is finally performed, and an indoor experimental
setup achieves accuracy of less than 1 m. The authors of [108] generated a fingerprint
dataset of AOA and its corresponding amplitude based on the CSI matrix in a 5G network.
Deep Neural network (DNN) was trained and used as a regressor for online estimation.
Quasi Deterministic Radio channel Generator (QuaDRiGa) [109] was exploited for channel
modelling. Approximately 1-meter accuracy for NLOS and 0.1 m for LOS was reported.
Based on the SRS symbol, in an up-link, CFR is estimated for each base station in [110],
and subsequently, TOA and AOA are jointly estimated for localisation. Accuracy below
1 m is acquired. Localisation under the fingerprinting framework is explored in [111]
based on CSI, where the transfer learning concept is leveraged to reduce the real-world
training effort. QuaDRiGa is leveraged to obtain synthetic CSI to pre-train the CNN model.
In [112], angle-based fingerprint localisation is conducted. The fingerprints include the
angles (zenith and azimuth) along with their corresponding power for all observed paths.
To validate the results, simulation is performed by recreating 3D outdoor environments,
including building geometry. AOA-based position estimation in a 5G network was experi-
mentally reported in [113], where EKF was used at edge cloud for localisation. The research
of [114,115] is related to receiver localisation harnessing AOA under 5G MIMO System and
beam-formed RSS, respectively.

While TOA, TDOA, AOA, and RSS of the LOS path could be directly related to the
relative positions of the transmitter and receiver, there is no explicit connection between
the NLOS path and close distance. Thus, the localisation performance will be degraded
noticeably, only relying on those measurements. In literature, NLOS error mitigation
techniques and ray tracing-based approaches are carried out to compensate for the NLOS
(see [116] and the references therein). Under the 5G network, this issue is addressed in [117].
The effect of NLOS in an unknown environment is dealt with in a fusion framework.
Localisation and navigation are accomplished by fusing TDOA and Pedestrian Dead
Reckoning (PDR). TDOA from LOS base stations is combined with TDOA from virtual Base
stations placed in an unknown area whose locations are determined based on the NLOS
base stations. Simulation and experiments are performed. The work of [118] goes beyond
just localisation by mapping the radio environment simultaneously, taking advantage
of NLOS-rich information about transmitter and receiver positions and environmental
obstacles. This paper proposes joint position and orientation estimation for a mobile target
and the position estimation of reflectors and scatters relying on NLOS paths. Leveraging
AOA, AOD, and TOA for each NLOS path, the receiver’s location is determined only based
on the received signal from one base station in 2D if there are at least three NLOS paths. It is
shown in [119], in the NLOS situation, cooperation among vehicles improves situational
awareness and localisation performance, as several cars operate in the same environment
where they might share one or more scatters. This results in a correlated multipath structure
that can contribute to the improved localisation.

9. Future Research Directions and Challenges

Most of the research on the use of 5G for localisation approaches the problem from
the pure communication point of view, while its use in various robotic applications is still
in its infancy. In this section, we shed light on future opportunities, research gaps, and
challenges that will be provided by 5G for UAV and UGV applications.

9.1. Fingerprinting and Deep Learning Applied to CSI

Compared to range-based methods, fingerprinting has more potential to deliver higher
localisation precision. On the one hand, range-based methods are limited by the accuracy
of the model they apply to extract ranges or angles. On the other hand, fingerprinting may
utilise the signal information to its full extent. Mainly, CSI data contain latent knowledge
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that can be captured by the complex AI approaches linked to fingerprinting. Hence,
appropriate deep-learning models may be the key to exploiting the CSI large matrix
structure effectively to hallucinate necessary abstract features for localisation. For example,
deep neural networks may be able to decode these high-dimensional matrices to localise
the obstacles around the receiver from the NLOS path.

Furthermore, if multi-array antennae are deployed at the receiver and transmitter,
CSIs contain even richer information, since different versions of the same signal would be
available as separate fingerprints. Therefore, effectively profiting from CSI information
may prevent the need for several BSs for localisation. It is shown in [118] that just one BS
might suffice. Lastly, in this method, the main disadvantage of the traditional RF-based
method, i.e., NLOS situations, is circumvented, under which these approaches become
erroneous and unreliable.

There are challenges in fingerprinting that are worth much more attention. The avail-
ability of data and the collection of enough data is not trivial. The collected dataset is not
entirely reliable, as the environment constantly evolves. Transfer learning as one possible
solution is suggested to exploit synthetic data or already available datasets. In this area,
there still seems to be much room to investigate the integration of deep learning with
CSI fingerprints.

9.2. Fusion of RF with Other Sensor Data

The mobility and the issue of receiving diverse information with different frequencies
is a challenge that is missing in the literature. Localisation algorithms are expected to be
implemented in real-time, with each measurement coming in its own time. In fingerprinting,
most existing works rely on fixed target localisation and datasets consisting of RF features.
However, in either the online or offline step, other sensor data such as IMU and images
can be used effectively with radio-based data sets. They can either narrow down the
searching area in the online phase or directly fuse with fingerprints in the offline step. From
a theoretical point of view, there is still room for localisation improvement in accuracy
and robustness in a data fusion scheme. For instance, to the authors’ knowledge, there
is no study on fusing promising measurements provided by 5G with images, LIDAR, etc.
Several combinations of the sensor data and their performance under different situations
and parameters need to be researched.

9.3. Combination of Multiple Estimators

Combining multiple estimators for range-based localisation or fingerprinting could
compensate for each method’s disadvantages, improve accuracy, and introduce resilience to
failure cases. This technique is well established in the general machine-learning task and is
known as ensemble learning [120]. The ensemble method combines different estimators and
often yields much more accurate results than individual methods into four main paradigms
Bayesian averaging, error-correcting output coding, Bagging, and boosting [121].

9.4. Cooperative Localisation

With V2X technology, many heterogeneous multi-robot applications comprising UGVs
and UAVs can be envisioned. This enables more efficient use of robots in diverse scenarios
such as coverage, formation, task distribution, etc. For example, in a search and rescue
operation, a group of heterogeneous robots may collaborate, while some act as an anchor
in the absence of a signal for some or all team members. On the other hand, sharing
information by robots operating in the same area would endow robustness and accuracy
to the localisation system, as each robot can benefit from the knowledge and estimation
of its neighbour(s).

9.5. Orientation Estimation

Deployment of a multi-array antenna system paves the way for orientation estimation.
However, attitude estimation would be challenging, especially in a 3D space while the UAV



Sensors 2023, 23, 188 24 of 30

is flying. Therefore, integrating RF signals with other data to improve attitude estimation
in 3D seems to be an attractive research topic which has been left untouched.

9.6. Experimental Setup and Realistic Simulation

Real experiments and setups for the use of 5G with robots are lacking in the state-
of-the-art. This is critical, as the actual setup’s outcome does not necessarily match the
predictions and expectations. Two examples are the offloading and handover in the 5G
network. In the uplink, which is crucial for offloading, the data rate in 5G NR is supposed
to be significantly improved, but [122] recorded the maximum of 67 Mbit/s in the uplink
for a flying drone, showing no improvement compared to 4G. The impact of handover is
also worth further research, especially for high-mobility scenarios. Ref. [122] shows that
the handover rate between LTE and 5G is too high, which is unacceptable.

9.7. Off-Loading

With offloading, more computational power will be available. This calls for new com-
plex strategies and algorithms capable of running and working in parallel. For example,
the onboard computer and edge server might work collaboratively and separately. While
onboard computers process some part of the data to execute a rough localisation, heavy
algorithms are to be implemented on the edge server separately when there is no commu-
nication between the two processors. Both algorithms then need to be merged to output
the refined localisation result. At the same time, new strategies might be developed with
the processing power on edge devices to focus more on accuracy and robustness instead
of the computational burden. Most state-of-the-art localisation tries to balance accuracy,
complexity, and computational power.

9.8. Simultaneous Localisation and Mapping

A critical task in robotics is Simultaneous Localisation and Mapping (SLAM). As the
robot moves in an unfamiliar environment, it needs to construct a map and localize itself
on the map while navigating. The use of multiple robots instead of a single one, while
each shares its maps with the others, is a fascinating topic that adds efficiency to the SLAM.
Multi-robot SLAM (MRSLAM) is implemented in two ways. One involves using a central
station to which all robots disseminate the collected data to carry out all the processing,
construct the global map, and transmit this data back to each robot. In a decentralised
system, each robot performs locally, and whenever they visit, other robots share their
local map, based on which they update their map. Accordingly, one big challenge in
centralised and distributed MRSLAM is the constraint on the communication bandwidth,
limited computation power, and memory. 5G NR will circumvent these limitations by
facilitating edge computing [123,124], providing accurate RF-based measurements, and
enabling relative localisation for each vehicle in the team via sidelink and V2V technologies.

9.9. Vertical Localisation Accuracy

As discussed earlier, the localisation accuracy in the z-direction is always less than
in x-y. Notably, the multi-path effect and the small offset of anchors in the z-direction
yield poor vertical accuracy, relying on conventional methods [125]. MIMO technology
and wide-band mmWave system of 5G provide promising solutions to improve the 3D
positioning, such as taking full advantage of CFR in all frequencies or analysing antenna
radiation pattern [126].

9.10. Safety

Safety is a major concern in robotics-related tasks. In general, there are two types
of communication that apply to UAVs: Control and Non-Payload Communication (CNPC)
and Payload Communication (PC). CNPC refers to control commands, way-points and
navigation, usually in the order of several Kbps. Instead, the PC includes data transmission
to the edge server, ground or aerial centre for processing. This information ranges from
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small-sized data, e.g., IMU, GPS, and RSS, to large-size high-resolution aerial images or
LIDAR scans. While communication link reliability might not be vital for PC, avoiding
communication interruptions is critical to CNPC. This leads to the concern of interruption
of the CNPC link when there is no LOS path. Remarkably, using mmWave and beam-
forming features of 5G call for additional care because they come with the disadvantage
of very high propagation pass loss [127]. Therefore, the design of trajectory and path-
planning algorithms that guarantee LOS communication would be an interesting research
topic. Another concern for CNPC links is cyber-physical attacks that might corrupt data
transmission or cause incorrect action of the UAVs or UGVs [39].

10. Conclusions

In this survey, we addressed RF-based localisation mostly from a robotic point of view.
First, we explored the methods that exist for RF-based localisation extensively under two
classes: Rage-based and Fingerprinting. Then, we investigated and compared current state-
of-the-art RF-based localisation applied to the robotic areas. Subsequently, we discussed the
challenges and solutions that 5G will provide. Finally, the future research direction was given.

5G NR will introduce features that could be harnessed to revolutionize localisation
and robots’ applicability, such as low latency, high throughput, and high-resolution angular
and time-based measurements. However, 5G-based localisation research is still in its
infancy. Thus, many possibilities to exploit this novel communication technology in the
robotic localisation context have been left unexplored. Nonetheless, the current solutions
adopted for general RF receivers can be applied to 5G without modification. Until now,
cameras, IMU, LIDAR, and GPS represented the predominant choice for building a SLAM
system. However, the unique characteristics introduced by the 5G NR can establish RF-
based localisation among the most common robotic tools for safe autonomous navigation.
Leveraging such unexploited features and surpassing the main technological obstacles
will be the focus of future research to ensure seamless integration of 5G into the current
localisation system.
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