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Abstract 

Rapid prototyping (RP) is a common name for several techniques, which read in data 

from computer-aided design (CAD) drawings and manufacture automatically three-

dimensional objects layer-by-layer according to the virtual design. The utilization of RP 

in tissue engineering enables the production of three-dimensional scaffolds with complex 

geometries and very fine structures. Adding micro- and nanometer details into the 

scaffolds improves the mechanical properties of the scaffold and ensures better cell 

adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized 

according to the data acquired from the medical scans to match the each patient’s 

individual needs. In addition RP enables the control of the scaffold porosity making it 

possible to fabricate applications with desired structural integrity. Unfortunately, every 

RP process has its own unique disadvantages in building tissue engineering scaffolds. 

Hence, the future research should be focused into the development of RP machines 

designed specifically for fabrication of tissue engineering scaffolds, although RP methods 

already can serve as a link between tissue and engineering.   
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Key messages 

• As an alternative to conventional scaffold fabrication methods, a group of techniques 

called rapid prototyping (RP) techniques have been introduced within the tissue 

engineering field. 

• RP technologies are based on an additive process in which complex scaffold features 

are constructed automatically in a layer-by-layer manner according to computer-aided 

design (CAD) data obtained from patient’s medical scans.  

• Advantages of using RP processes in constructing scaffolds include customization of 

the products to meet the individual needs, ability to create complex geometries and 

high accuracy features, and possibility to control pore size and distribution of pores 

within the scaffold.  

Abbreviations 

CAD  computer-aided design 

CCD  charge-coupled device 

CT  computerized tomography 

FDM  fused deposition modeling 

HA  hydroxyapatite 

MRI  magnetic resonance imaging 

Nd:YAG neodymium-doped yttrium aluminum garnet 

NIR  near-infrared 

PCL  polycaprolactone 



 3

PLA  polylactide 

PP  polypropylene 

RP  rapid prototyping 

SLA  stereolithography 

SLS  selective laser sintering 

TCP  tricalcium phosphate 

TMJ  temporo-mandibular joint 

TPA  two-photon absorption 

TPP  two-photon polymerization 

UV  ultraviolet 
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Introduction 

Tissue engineering is an interesting emerging area of science. It can be defined as the 

science and engineering of functional tissues and organs for the repair of diseased body 

parts. Autologous tissue-engineered devices are formed by combining patient derived 

cells with a degradable material and implanting the combination in the body. The 

material is termed a scaffold or matrix. It is porous or gelatinous in nature ensuring the 

incorporation of cells within the substrate and not solely on the surface. (1) Tissue 

engineering has attracted a lot of attention in the past decade due to its potential 

capability to produce biological substitutes that restore, maintain or improve tissue 

function. The main focus of tissue engineering has turned away from mere cell culturing 

towards developing three dimensional structures that support the proliferation, migration 

and differentiation of cells obtained from cell cultures. (2) The goal of tissue engineering 

is to circumvent the limitations of conventional clinical treatments for damaged tissue or 

organs based on the use of organ transplants or biomaterial implants. The most essential 

limitations of these treatments involve shortage of donor organs, chronic rejection and 

cell morbidity. (3, 4)  

 The dominant method of tissue engineering appears to involve growing the 

relevant cells in vitro into a scaffold that attempts to mimic the function of the natural 

extracellular matrix. Without any three dimensional supporting structures the cells will 

form a random two-dimensional mainly monolayer of cells. Thus the primary function of 

a scaffold is to serve as an adhesion substrate for the cells. In addition the scaffold 

provides temporary mechanical support and guidance to the growing tissue. (4) There 

exists several requirements that a successful scaffold must meet: (i) the scaffold should 
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have interconnecting pores that enable supply of nutrients and metabolites as well as cell 

ingrowth, (ii) the pore size should be in range of 5-10 times of the cell diameter, e.g. 100-

300 μm, (iii) the surface chemistry of the scaffold should favor cellular attachment, 

differentiation and proliferation, (iv) the scaffold should be made of a material with 

appropriate rate of degradation in order to allow the surrounding tissue eventually replace 

the scaffold, (v) the scaffold should be easily fabricated into various shapes and sizes. (2, 

3, 4) 

 According to these requirements scaffolds have been produced in various ways, 

both by using conventional scaffold fabrication techniques and more advanced methods. 

Conventional methods for scaffold fabrication include techniques such as solvent casting 

and particulate leaching, gas foaming, fiber meshes and fiber bonding, phase separation, 

melt molding, emulsion freeze drying, solution casting and freeze drying. Unfortunately 

there are several limitations involving these processing methods. Conventional methods 

are incapable of precisely controlling pore size, pore geometry, pore interconnectivity, 

spatial distribution of pores and construction of internal channels within the scaffold. (3, 

4) For example scaffolds fabricated by the combination of photopolymerization and salt 

leaching often contain inhomogeneities of pore distribution (Figure 1). The pore size 

distribution can be visualized by microCT scanner, which reveals a quite irregular 

distribution of pores in the scaffold (Figure 2).  In addition many of these techniques 

exploit organic solvents, like chloroform or methylene chloride, as a part of the process to 

dissolve synthetic polymers. The presence of organic solvent residues is a significant 

problem of conventional fabrication methods due to toxins and carcinogens that cells are 

exposed if residual solvent exists. (3) 
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Figure 1. MicroCT analysis of salt leached, photopolymerized scaffold fabricated with 

Kerr dental lamp. The material was methacrylate end capped poly(D,L-lactide) and 

camphorquinone has been used as photoinitiator.  

 

Figure 2. Pore size distribution of the photopolymerized scaffold visualized by microCT.  
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Advanced scaffold fabrication methods 

As an alternative to conventional scaffold fabrication methods, a group of techniques 

called rapid prototyping (RP) techniques has recently been introduced within the tissue 

engineering field. RP technologies is a common name for a number of advanced 

manufacturing techniques that are based on an additive process in which complex 

structures are constructed in a layer-by-layer manner according to a computer program. 

(5) The phrase rapid prototyping was used for the first time in the early 1980s. Since then 

a large variety of applications has seen the daylight. Everything from automotive engine 

parts to small telecommunication industry components have been fabricated by these new 

means. However, it took until the 1990s before rapid prototyping techniques were 

adapted into the medical and biomedical fields. (6) 

 All the RP techniques are based on the use of computer-aided design (CAD) 

information that is converted to a .STL type file format. This format is derived from the 

name stereolithography, the oldest of the RP technologies. The file format has been 

accepted as the golden standard of the industry. Basically, CAD data is converted into a 

series of cross-sectional layers. These computer generated two-dimensional layers are 

then created as a solid model by a variety of processes. Starting from the bottom and 

proceeding upwards, each layer is glued or otherwise bonded to the previous layer, thus 

producing a solid model of the object presented on the computer screen. (6) 

 In addition, data obtained from computerized tomography (CT) or magnetic 

resonance imaging (MRI) medical scans can be used to create customized CAD models. 

The desired implant area of the patient is scanned by CT or MRI and the data is imported 

into CAD software. The software enables a surgeon to design an implant according to 
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individual needs. After the information is transferred to a RP system, a biocompatible and 

biodegradable scaffold is fabricated. (2) 

 Over the past two decades more than 20 RP systems have been developed and 

commercialized. Basically, these layering methods fall into three basic types: liquid-

based, solid-based and powder-based RP systems. The selection of material choices 

ranges from paper to various polymers, ceramics and metals. (5, 6) 

Rapid prototyping of bone and cartilage 

The first applications of RP techniques in medical field were primarily implants used in 

craniomaxillofacial surgery. Although a method for producing patient skull models and 

prosthesis has been described, the applications were limited to surgical planning rather 

than manufacture of actual cranioplasts. These models allowed a surgeon to plan the 

entire operation beforehand, and to predict the appearance of the outcome for the first 

time. (6) Proper tissue engineering applications were pioneered by Griffith and co-

workers at Massachusetts Institute of Technology (MIT). In 1996 Griffith and Halloran 

reported the fabrication of ceramic parts by stereolithography (SLA). Ultraviolet (UV)  

-photocurable monomer was loaded with suspensions of alumina, silicon nitride and 

silica particles. The monomer was cured by UV laser beam that was guided according to 

the CAD cross-sectional data (Figure 3). A green body was formed as a result of bonding 

of the ceramic particles. The polymer binder was removed by pyrolysis and the ceramic 

parts sintered. The same technique was used by Levy et al. to fabricate hydroxyapatite 

(HA) scaffolds for orbital floor implants. All the ceramic scaffolds are limited to bone 

tissue engineering. (3) 
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Figure 3. Schematic representation of the stereolithography (SLA) system. An UV laser 

is used to solidify the model’s cross-section while leaving the remaining areas in liquid 

form. The movable table then drops by a sufficient amount to cover the solid polymer 

with another layer of liquid resin.  

 

 The development of biomimetic bone substitutes is a growing field of research. 

Although significant work has already been done in this field, scientists have not yet 

introduced an ideal bone graft that could fully mimic the human bone. Ideally, bone 

grafts should be porous, be able to promote new bone formation, and they should possess 

proper mechanical and physical properties. A great variety of materials have been used 

for replacement and repair of damaged bone tissue. These materials include metals, 

ceramics, polymers (natural and synthetic) and their combinations. Bioceramics are 

preferred materials as bone grafts due to their low density, chemical inertness, high wear 
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resistance, excellent tissue adherence and similarity with natural bone. Polymeric and 

ceramic materials can be resorbable in biological environment. (7, 8) 

 Although various synthetic materials for bone replacement are available today, 

these materials are produced in simple geometries like blocks, pins, or splines. It has been 

suggested that minimum pore size of 100 μm is required for mineralized tissue ingrowth. 

Thus, the need for new scaffold manufacturing techniques with ability to control the pore 

size has emerged. (9)  A more complex polymeric scaffold fabricated by 

stereolithography is presented in the Figure 4. The scaffold design is an assembly of 

prisms with horizontal struts of 80 μm and vertical struts of 800 μm. It was designed by 

UPC Barcelona, Institute of Bioengineering of Catalonia and built of trimethylpropane 

tetraacrylate on the Envisiontec’s Perfactory® SLA machine.  The microCT scan reveals 

that the scaffold has a very regular pore size distribution in the range of 315-659 μm. 

 

Figure 4. Example of a scaffold fabricated using stereolithography (SLA). (a) Computer-

aided design (CAD) image of the structure. (b) Completed SLA fabricated scaffold with 

very regular pore size distribution. (c) Microcomputerized (micro-CT) tomography image 

of the scaffold.  

 



 11

Furthermore, the outer shape of the scaffold can be designed to fit the patient’s 

defect. Especially 3D printing (Figure 5), developed at the MIT, has been utilized to 

fabricate custom-tailored scaffolds. The main advantage of this technique is its ability to 

produce an implant directly from 3D data in one step without using an additional mould. 

The matrices generated by 3D printing are seeded with patient-derived cells and 

eventually implanted into the body. Besides ceramics, scaffolds from polymers can be 

fabricated with 3D printing process. (10) 

 

Figure 5. Scheme of 3D printing process. A stream of adhesive droplets is expelled 

through an inkjet printhead, selectively bonding a thin layer of powder particles to form a 

solid shape.  
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 On the other hand, selective laser sintering (SLS) (Figure 6)  may be 

advantageous for creating bone tissue engineering constructs for sites such as the 

temporo-mandibular joint (TMJ). It provides a cost-effective, efficient method to 

construct scaffolds to match the complex anatomical geometry of craniofacial or 

periodontal structures. Virtually any powdered biomaterial that will fuse but not 

decompose under a laser beam can be used to fabricate scaffold by SLS. Additionally, 

SLS does not require the use of any organic solvent. For example Williams et al. have 

applied SLS to fabricate scaffolds from polycaprolactone (PCL). PCL is a biodegradable 

polymer with potential applications for bone and cartilage repair. Compared to other 

polymers such as polylactides (PLA), it is more stable in ambient conditions, less-

expensive and readily available in large quantities. The SLS fabrication technique has 

been successfully used to construct prototypes of minipig’s mandibular condyle 

scaffolds. These scaffolds replicated the desired anatomy well and they could be 

manufactured within three hours. (11) 
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Figure 6. Scheme of selective laser sintering (SLS) technique. The laser selectively fuses 

powdered material by scanning cross-sections generated from a 3D digital description of 

the part on the surface of a powder bed. After each cross-section is scanned, the powder 

bed is lowered by one layer thickness, a new layer of material is applied on top, and the 

process is repeated until the part is completed.  

 

    A group of engineers and doctors from the National University of Singapore 

and National University Hospital has developed PCL scaffold that can be used as a bone 

patch to repair holes in the skull. The team has utilized the fused deposition modeling 

(FDM) rapid prototyping process in creating these 3D scaffolds. (12) The FDM process 

(Figure 7) forms objects by operating the extrusion head in the X- and Y -axes while the 

platform lowers in the Z-axis for each new layer to form. The head extrudes the semi-

liquid state thermoplastic polymer in ultra thin layers precisely into place. The extruded 
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material solidifies and adheres to the preceding layer. Encouraged by the success in 

clinical trials, the research group set up a spin-off company called Osteopore 

International to market the new bone patch named BurrPlug™. (13)  

 

Figure 7. Scheme of the fused deposition modeling (FDM) system. FDM uses a moving 

nozzle to extrude a fiber of polymeric material from which the physical model is built 

layer-by-layer.  

 

 Although several polymers have been investigated for bone tissue engineering, no 

single polymer can satisfy all the requirements of a bone substitute. On the other hand, 

composite materials may offer a future solution to the problems involving individual 

materials. In fact, natural bone matrix is an organic/inorganic composite of collagen and 

apatites. (8) Polymer-ceramic composite materials incorporate the desirable properties of 

each of the constituent materials, such as high wear resistance of ceramics and toughness 
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of polymers. One example of such is a particulate-reinforced polymer-ceramic composite 

that was developed by mixing polypropylene (PP) and tricalcium phosphate (TCP). 

Controlled porosity scaffolds with different complex internal architectures were 

fabricated via FDM process. According to the in vitro test results these experimental 

scaffolds were non-toxic and possessed excellent cell growth characteristics. (7) Problem, 

however, may be that the scaffold is not biodegradable in the body. 

The poor natural healing process of cartilage injuries has accelerated the 

development of innovative approaches to repair injured cartilage. Recently, tissue 

engineering has offered reasonable potential to solve the problems related to attempts to 

repair cartilage with tissue transplants. So far only a few research groups have produced 

scaffolds for articular cartilage tissue engineering applications using rapid prototyping 

techniques. There is a strong possibility that since hard tissue replacement has proven 

successful by FDM-based scaffolds, also cartilage repair could be possible by FDM 

technique. (14) 

Soft tissue scaffolds by the means of RP 

Much more versatile system than FDM has been available since 1999. This 3D 

Bioplotter® is capable of extruding hotmelts, solutions, pastes, dispersions polymers, 

monomers or reactive oligomers. Probably the most attractive feature of the 3D 

Bioplotter® is the ability to produce hydrogel scaffolds. (3, 15) Hydrogels are polymers, 

which can absorb water even 10 times specimen’s original weight without disintegrating, 

but only swelling. Hydrogels, like gelatin, agar, fibrin or collagen, can be used as simple 

scaffold structures, like sheets, fibers, wovens or non-wovens. They are advantageous 

due to the flexibility, their structural similarity to the extracellular matrix and 
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permeability to oxygen and metabolites. Hydrogels have proven to be excellent 

candidates for substituting soft tissues. The requirements of soft tissue implants differ 

from hard tissue replacements. Soft tissue has a very high content of water, so from the 

chemical point of view it is a hydrogel. Natural hydrogels even degrade in human body, 

when the entire polymer backbone is exposed to water-soluble enzymes. However, the 

mechanical stability of hydrogels does not allow the use in stress-loaded implants. (2, 15) 

 The processing conditions of stereolithography and selective laser sintering 

prevent the usage of hydrogels. Furthermore, hydrogel scaffolds have not been fabricated 

via 3D printing or fused deposition modeling. These standard rapid prototyping 

techniques do not meet the requirements of soft tissue scaffolds, so the appearance of the 

new 3D dispensing method was long-awaited. (2) The key feature of this 3D Bioplotter® 

(Figure 8) developed at the Freiburg Materials Research Center is the dispensing of a 

viscous plotting material into a liquid medium with a matching density. As a result of the 

gravity force compensation, complex architectures can be fabricated without any 

temporary support structures. (16)  
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Figure 8. Sketch of the 3D Bioplotter® system. The material is plotted through nozzle into 

a liquid medium with matching density. The material solidifies when it comes in contact 

with the medium. The liquid medium compensates for gravity and hence no support 

structure is needed. 

 

 Developed specifically for the biofunctional processing 3D Bioplotter® makes it 

possible for the first time to integrate aqueous biosystems, e.g. living cells, into scaffold 

fabrication process. Most industrial rapid prototyping machines fail to process biological, 

temperature-sensitive materials. The office format of the 3D Bioplotter® device enables 

easy production of scaffolds in a sterile laminar flow hood. Maybe in the future surgeons 

are able to order individualized implants via Internet from manufacturers or alternatively 

fabricate their own implants in hospitals. (17) 
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 The most eccentric approach to address the shortage of donor organs is method 

called organ printing, which has been developed by Boland et al. Organ printing exploits 

the principles of rapid prototyping technology (i.e. layer by layer deposition of cells, cell 

aggregates or matrix). Computer assisted deposition or printing of cells or matrices is 

done one layer at a time on the surface of stimuli-sensitive gels. Printing is continued 

until the particular 3D form is achieved. (18, 19) To print, one needs ink, paper and 

printer. The bioink used by Boland’s group consists of spherical cellular aggregates and 

the biopaper is a biocompatible gel. (20) After the desired structure is printed with one of 

the possible printer designs, such as jet-based cell printer, cell dispenser or bioplotter, the 

gel is eliminated by slightly changing the temperature. (19) 

Many attempts to design solid synthetic scaffolds suffer from the inability to 

precisely place cells into the printed scaffold. Typically cells cannot be put in exact 

places by traditional bioreactor-based cell-seeding technologies but cell distribution 

becomes random. Even other techniques, such as rolling and embedding the scaffold 

material, are not suitable for constructing complex multicellular organs.  Growing cells 

on biocompatible gels can be very slow process and it also has limitations as far as the 

shape of the tissue to be engineered is concerned. Thus it is an intriguing idea to employ 

self-assembling cell aggregates as building blocks of tissue constructs. These aggregates 

consist of thousands of cells that are capable of fusing into organ structures due to their 

liquid properties. Using aggregates instead of single cells reduces printing time 

drastically thus enhancing the cell survival. Also the harsh mechanical conditions when 

cells are delivered through the printer’s nozzle are less damaging for aggregates than for 

individual cells. (18, 20, 21) 
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The potential applications for organ printing are three-dimensional tissue 

constructs that can be used for drug screening and identification of genes and their 

functions. But it is not hard to predict that avascular tissues and organs, such as ear and 

skin, will be printed in the near future. Printing of more complex vascularized organs can 

be achieved only after it becomes possible to print entire branched vascular trees to 

nourish the printed organs. Thus, in the early stage it is important to focus on fabricating 

three-dimensional tubes that may serve as blood vessels. (21) 

The most recent innovation in the field of tissue engineering is the utilization of 

so called two-photon polymerization process (TPP). It is a very powerful and quite 

simple technique to produce complex, three-dimensional structures from a liquid, 

photosensitive material. Two-photon polymerization is based on the simultaneous 

absorption of two photons, which induce chemical reactions between starter molecules 

and monomers within a transparent matrix. The absorption of two photons requires 

extremely high peak intensities thus an ultra short pulse laser is needed to provide the 

high intensity. (22, 23) Previously the most common application of two-photon 

absorption (TPA) has been two-photon confocal microscopy where the fluorescence of a 

dye molecule is observed after being excited by the means of TPA. Single-photon 

absorption used in standard photo- and stereolithographic techniques is inherently two-

dimensional, since the UV light is absorbed by the resin within the first few micrometers. 

Because the photosensitive resins are transparent in the near-infrared (NIR) region, NIR 

laser pulses can be focused into the volume of the resin. As the laser focus is moved 

three-dimensionally through the volume of the resin, the polymerization process is 

initiated along the path allowing the fabrication of any 3D microstructure. (24) 
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Up to now the laser systems used in TPP have mostly been Ti:Sapphire 

femtosecond lasers, but studies have demonstrated the feasibility of cheaper Nd:YAG 

microlasers. (22) The light source is combined with computer-controlled positioning 

systems – e.g. piezo-electric stage or optical scanning systems – and a high-numerical-

aperture immersion-oil objective is used to focus the femtosecond pulses into the 

photosensitive material or resin (Figure 7). The charge-coupled device (CCD) camera 

enables real-time monitoring of the polymerization process. (26) 

 

Figure 9. The principle of two-photon polymerization process. Overlap of photons from 

the ultra short laser pulse leads to chemical reactions between monomers and starter 

molecules within transparent matrix. 

 

The rate of TPA is non-linearly or quadratically dependent on incident intensity; 

therefore it is possible to achieve lateral resolutions better than 100 nm in the 
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polymerized structures. Since implants, tissue engineering scaffolds and other medical 

devices, require features in the micrometer regime, TPP process may offer a fast and 

simple way to achieve the desired resolution. Mass-produced implants and scaffolds have 

to be produced in several shapes and sizes, nonetheless their design does not usually take 

the individual patient anatomy into account. With the help of CT or other imaging 

methods TPP could produce scaffolds and implants with appropriate design, structure, 

and material properties for a particular patient. In addition two-photon polymerization 

apparatus can be set-up in a conventional clinical environment (e.g. an operating room), 

that does not need to have clean room facilities. (25) 

Potential advantages and challenges of rapid prototyping processes 

Typical advantages of rapid prototyping processes are an increased speed, customization 

and efficiency. RP technologies have relatively few process steps and a little manual 

interaction; therefore three-dimensional parts can be manufactured in hours and days 

instead of weeks and months. The direct nature of RP allows the economic production of 

customized tissue engineering scaffolds. The products can be tailored to match the 

patient’s needs and still sustain economic viability as compared to traditional techniques 

which must manufacture great numbers of devices to obtain economic viability. The 

conventional scaffold fabrication methods commonly limit the ability to form complex 

geometries and internal features. RP methods reduce the design constraints and enable 

the fabrication of desired delicate features both inside and outside the scaffold. (27) 

 RP methods also make possible to vary the composition of two or more materials 

across the surface, interface, or bulk of the scaffold during the manufacturing. This 

allows positional variations in physical properties and characteristics. Several RP 
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techniques operate without the use of toxic organic solvents. This is a significant benefit, 

since incomplete removal of solvents may lead in harmful residues that affect adherence 

of cells, activity of incorporated biological agents or surrounding tissues. Rapid 

manufacturing allows the control of scaffold porosity leading to the applications that may 

have areas of greater or lesser structural integrity and areas of encouraged blood flow due 

to increased porosity. (27) 

 Although RP technologies have gained a lot of interest in the field of tissue 

engineering, there are some challenges that need to be addressed before these methods 

truly can supplant conventional fabrication methods. Each RP technique requires a 

specific form of input material such as filament, powder or solution. The selected 

scaffold material must therefore be compatible with the RP process and it must be 

efficiently produced in the form required. Despite of numerous research studies on the 

optimal pore size of scaffolds, there are still contradictions about optimal pore size for 

particular types of cells. That of course complicates the manufacturing of ideal scaffolds, 

although with regard to rapid manufacturing it would be possible to make structures with 

desired pore size. The surface roughness of scaffolds is very important factor influencing 

the cell-matrix interactions. Powder-based techniques produce rough surfaces that may 

enhance cell adhesion. Some RP systems such as FDM and 3D Bioplotter® generate 

smooth surfaces that cannot ensure optimal cell adhesion. Therefore these smooth 

surfaces require further surface modification or coating. (4, 28) 

 Feasibility of scaffold fabrication by RP processes also depends on the resolution 

of the machines. Resolution in this context refers to the smallest pores and thinnest 

material structures that are obtainable with the equipment.  The resolution is a 
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consequence of several machine-specific parameters, the overall working principle of the 

machine, geometry-specific parameters and material properties. The smallest feature size 

is mediated by the laser spot size or the nozzle diameter. Even the powder size affects the 

features produced by powder-based RP methods. Laser curing processes have much 

better resolution than droplet based systems. Some limitations to RP processes are caused 

by materials trapped in small internal holes. These trapped liquid or loose powder 

materials may be difficult or even impossible to remove afterwards and in some cases 

these residues may even be harmful to cells and tissues. Experimental results show that, 

the smoother the surface generated, the easier the removal of trapped materials. (28) 

Many of the current RP processes rely on high temperatures during and after 

manufacture. These elevated temperatures may be harmful to several biomaterials and are 

not suitable for cell processing. Also little attention has been paid to the sterility of the 

manufacturing process, products and their ability to withstand sterilization processes 

which are crucial steps in transferring technologies to commercial production. (27) 

Future directions 

As reviewed, each RP process has its own unique advantages and disadvantages in 

producing tissue engineering scaffolds.  Most likely in the future research will further 

embrace the development of RP machines designed specifically for this application. 

Nevertheless, RP techniques already offer an efficient way to control the design, 

fabrication and modeling of the scaffold being constructed. Especially three-dimensional 

printing, selective laser sintering, and fused deposition modeling have intensively been 

studied for use in scaffold-based tissue engineering. However, there are still many 
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hurdles for these technologies to overcome to gain status as everyday manufacturing 

methods instead of traditional techniques.  

 The biggest obstacles for RP technologies are the restrictions set by material 

selection and aspects considering the design of the scaffold’s inner architecture. Thus, 

any future development in the RP field should be based on these biomaterial 

requirements and it should concentrate on the design of new materials and optimal 

scaffold design. In order to achieve scaffolds that are optimal for regeneration of specific 

tissues the scientists must first attain answer to some critical questions concerning issues 

like what is the perfect scaffold material, or does increased permeability of the material 

really enhance tissue regeneration.  

 Current RP methods can manufacture features at scales larger than 100 µm, but 

sooner or later in the future it will be possible to achieve features in micro- and 

nanometer scale. Currently micrometer size details can be gained mainly through post 

processing steps. The advantages of adding very fine details into scaffolds include 

improvement of mechanical properties through toughening mechanism and better cell 

adhesion and guidance of the cell growth along the surface. The ultimate scaffold will 

probably be constructed of computationally optimized 3D architecture with added 

biofunctional factors, where the material and functionalizing factors will be fabricated 

simultaneously. Hydrogel materials and different extrusion methods are suitable for 

fabricating functionally active scaffolds, but unfortunately these structures do not always 

possess high enough mechanical strength to be utilized in reconstruction of hard tissue 

and most soft tissues. Nevertheless, future efforts will hopefully result in designer tissue 
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replacements created from patient derived data and fabricated of multiple materials, cells, 

genes and proteins optimized specifically for tissue regeneration.  

 So far, only a few research groups have demonstrated the exploitation of RP 

technologies in clinical applications. Within the bone tissue engineering field at least 

selective laser sintering has proven its usefulness to fabricate polycaprolactone scaffolds. 

These scaffolds were seeded with primary human gingival fibroblasts (HGF) and 

implanted subcutaneously in mice to evaluate biological properties and to demonstrate 

tissue in-growth. In order to provide a proof of concept SLS was also utilized to 

manufacture anatomically shaped minipig’s mandibular condyle scaffold that can be 

attached to the mandibular ramus via designed collar. Also 3D printing has been used to 

create negative molds into which a polylactide solution can be poured and thermally 

phase separated to create nano-fibrous scaffolds. These 3D fibrous matrices were seeded 

with mouse preosteoblasts and cultures for 12 days in order to examine the cellular 

response to the scaffold surface. (29, 30, 31, 32) 

 The research has not yet proceeded into actual clinical studies, only some cell 

culture and animal experiments have been conducted, for example with minipigs, rabbits 

and mice. Osteogenesis has been studied by implanting scaffolds intramuscularly into 

animals and by adding growth factors to induce bone formation in the muscle. The results 

of all these studies show that microporosity and very fine surface features improve bone 

growth into scaffolds by increasing surface area for protein adsorption, increasing ionic 

solubility in the microenvironment, and providing attachment points for osteoblasts. (29, 

30, 31, 32) 
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 The RP approaches have not yet led to the construction of harmonically organized 

complex tissues. This is probably due to the difficulty of embedding the various cell 

types within the intricate designs. However, organ printing may be an answer to the 

problem, since it can print simultaneously cells and biomaterials, which allows precise 

placements of cells and proteins within 3D hydrogel structures. A number of structures 

have already been printed with the setup, including tubes, branched tubes, hollow cones, 

and capillaries. Cell types used include Chinese hamster ovary cells, endothelial cells, 

smooth muscle cells, osteoblasts, and stem cells. Preliminary data suggests that many 

layers of cells and hydrogels can be printed into 3D structures using a fast gelling 

hydrogel system and that cells remain viable in constructs as thick as 1 cm due to the 

programmed porosity. Thus organ printing has the potential to revolutionize the field of 

cardiothoracic surgery by offering contractile pseudo-tissues, such as myocardium or 

vascular conduits. However, considerable improvements in the biomaterials used as 

bioinks and papers must be done before any clinical applications can be obtained. (33, 

34) 
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