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Abstract

We present in this paper a review of methods for segmentation of uncom-

pressed video sequences. Video segmentation is usually performed in the temporal

domain by shot change detection. In case of real-time segmentation, computational

complexity is one of the criteria which has to be taken into account when compar-

ing different methods. When dealing with uncompressed video sequences, this

criterion is even more significant. However previous published reviews did not in-

volve complexity criterion when comparing shot change detection methods. Only

recognition rate and ability to classify detected shot changes were considered. So

contrary to previous reviews we give here complexity of most of the described

methods. We review in this paper an extensive set of methods presented in the

literature and classify them in several parts, depending on the information used to

detect shot changes. The earliest methods were comparing successive frames by

relying on most simple elements, that is to say pixels. Comparison could be per-

formed on a global level, so methods based on histograms were also proposed.

Block-based methods have been considered to process data at an intermediate

level, between local (using pixels) and global (using histograms) levels. More

complex features can be involved, resulting in feature-based methods. Alterna-

tively some methods rely on motion as a criterion to detect shot changes. Finally

different kinds of information could be combined together in order to increase the

quality of shot change detection. So our review will detail segmentation methods
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based on the following information: pixel, histogram, block, feature, motion, or

other kind of information.

1 Introduction

Multimedia information is more and more used, mostly thanks to increasing compu-

tation resources. One of the main processings needed when dealing with multimedia

data is multimedia sequence indexing. The importance of this research field can be

shown by the number of recent communications and publications on the subject. In

order to index multimedia data, we may need a preprocessing the aim of which is to

temporally segment the videos, that is to say detect the shot changes present in the

video sequences.

The number of shot change detection methods is now important and several reviews

of these methods have been done [3, 42, 17, 7, 48, 57, 44, 14, 56, 22, 88, 31, 32, 59].

These reviews often present the different methods and their efficiency based on some

quality measures. So they are very useful when one wants to select and implement

a shot change detection method for a global video processing which could be done

off-line. When processing has to be done on-line, the selection of a particular method

should also consider computation time. This is especially true when dealing with un-

compressed video sequences which contain a huge quantity of data. If the method

has to be implemented on common hardware architecture, computation time is directly

linked with complexity of the method. So in this paper we are to review most of the

methods presented in the literature and to focus on their complexity.

In the first part of this paper, before we present a large number of methods, we are

to situate our contribution. We are giving some references to previous reviews on the

subject. It is also necessary to recall and describe the different forms a shot change can

take. We give a few details on quality evaluation and introduce the way we compute the

complexity of the methods. We also define the notations used in this paper. The next

parts will deal with a description of the encountered methods. Finally some conclusions

will be given about shot change detection methods.

1.1 Related works

Several reviews have already been published in the literature. Ahanger et al [3] discuss

requirements and global architectures for video indexing. Some video segmentation

methods are presented in this framework. Idris et al [42] are dealing with image and

video indexation. Image features and video processing algorithms useful for indexation

are described. Shot change detection is one of the video processing needed to charac-

terize a video sequence. Brunelli et al [17] also present video indexation, and describe

main algorithms including shot change detection. They are particularly involved in

a video indexing system. Aigrain et al [7] review techniques for video content anal-

ysis. Shot change detection is one of these techniques. Koprinska et al [48] review

algorithms for shot change detection and camera operation recognition. Lienhart [57]

presents the different kinds of shot changes and some dedicated detection methods.
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Jiang et al [44] propose a review based on three categories which are uncompressed

video-based, compressed video-based, and model-based algorithms.

Some reviews are comparing a few algorithms based on author’s implementation.

Boreczky et al [14] compare the performances of 5 algorithms using a common evalu-

ation methodology. Lienhart [56] compares the methods and characterizes their ability

to correctly determine the kind of shot changes that have been detected. Dailianas et al

[22] compare several segmentation methods and introduce a filtering algorithm in order

to limit the false detections. Some information is also given about complexity of the

evaluated methods. Yusoff et al [88] compare several methods and propose improved

versions using an adaptive threshold.

Finally some papers are reviewing only a specific kind of methods, as those from

Gargi et al [31, 32] which are respectively dedicated to colour histogram-based meth-

ods and MPEG and motion-based methods for temporal segmentation of video. Mandal

et al [59] focused on methods working in compressed domain.

Contrary to other approaches, we review and compare in this paper uncompressed

video segmentation methods following their computational complexity and not their

detection or error rates, which has been already done in papers presented in this section.

We base the classification of the presented methods on the basic elements used in the

segmentation process: pixels, histograms, blocks, features, motion, and combination

of several approaches.

1.2 Shot change description

A shot is defined as a continuous video acquisition (with the same camera). When the

video acquisition is done with another camera, there is a shot change. The simplest

way to perform a change between two shots is called a cut. In this case, the last frame

of the first video sequence is directly followed by the first frame of the second video

sequence. This kind of shot change is also called abrupt change. Because of their

simplicity, cuts are often the easiest shot changes to be detected.

More complex shot changes are now available for video editing, thanks to improve-

ment of the video production softwares. Instead of cutting and pasting the second video

next to the first one, it is possible to insert an effect, as a wipe, a fade, or a dissolve.

A wipe is obtained by progressively replacing the old image by the new one, using a

spatial basis. A dissolve is a transition where all the images inserted between the two

video sequences contain pixels whose values are computed as linear combination of

the final frame of the first video sequence and the initial frame of the second video

sequence. Fades are special cases of dissolve effects, where a monochrome frame re-

places the last frame of the first shot (fade in) or the first frame of the second shot (fade

out). There are also other kinds of effects (combining for example wipe and zoom), but

actually most of the shot change detection methods are concerned only by the effects

described previously in their indexing task.

1.3 Quality evaluation

The recognition rate is the most used quality criterion in order to compare shot change

detection methods. Some work has been done to define some standard quality measures
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and to discuss existing ones [31, 27, 37, 72]. Most of the time, quality is evaluated

thanks to computation of the quantity of correctly detected shot changes, missed shot

changes, and false detections. Indeed, to be fare, the evaluation should be achieved on

a universal benchmark. This is not the case.

A similar background for two consecutive shots results often in missing the shot

change. False detections appear when there is significant content change. Camera

motion, moving objects, illumination changes can be sources of false detections.

Our review does not focus on this aspect of quality evaluation of the methods. We

will insist here on complexity of the methods, because this work has not been done for

a complete set of methods yet.

In order to compare video segmentation methods, it is also possible to take into

account the number of thresholds or parameters which have to be set. Learning ca-

pabilities of these thresholds or parameters can also be used as comparison criteria.

Comparison of uncompressed video segmentation methods based on these criteria is

out of the scope of this paper.

1.4 Complexity computation

As mentioned previously, quality evaluation is not the only criterion to evaluate and

compare shot change detection methods if we are concerned with real-time (or near

real-time) processing using common hardware. In this case, one should also have to

consider complexity of the evaluated methods. A work on complexity of shot change

detection methods has been done by Dailianas et al in [22] but it was limited to few

methods.

In this paper, the complexity was computed considering a cost of one for any logical

or arithmetic operation (including absolute value). We do not consider other operations

as for example memory access time or branching operations (e.g. if . . . then). In order

to compute the complexity of the methods, we define N as the possible number of

levels for pixel value, which is equivalent to the number of bins for histogram-based

methods. We also introduced P as the number of pixels per frame. In case of block-

based methods, we use the notation B to represent the number of blocks defined in the

frame.

Complexity measurements given in this paper represent the number of operations

needed to process one frame. Temporal subsampling of the video sequences is not

taken into account. However, when values obtained for a given frame can be used to

process the next frame, complexity measurements are optimised and given considering

the use of previous results.

1.5 Notations

Video sequences are composed of successive frames or images. We define It the frame

of the video obtained at time t. So it is possible to define P (It, i, j) the intensity of the

pixel with coordinates i and j in the frame It. We assume that the size of the images is

X-by-Y pixels, so we have 1 ≤ i ≤ X and 1 ≤ j ≤ Y .

When methods are dealing with colour images, the notation P (It, Ck, i, j) will

be used. Ck represents the colour component numbered k. As an example, we can
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consider that C1, C2, and C3 are respectively representing the R, G, and B components

in the RGB colour space. So P (It, Ck, i, j, ) is representing the value of the colour

component Ck for the pixel with coordinates i and j in frame It.

Some methods are dealing with histograms. So we define H(It, v) the number

of pixels of the image It with an intensity equal to v, with v ∈ [0, V ] where V is

the maximum gray-level value. If we consider colour images, indexing methods can

use several histograms, one for each colour component. We then use the notation

H(It, Ck, v) to define the number of pixels with an intensity value of v for the colour

component Ck in the image It.

Another common approach for video segmentation is to use block-sampled images.

Let us note B the number of blocks b in each frame.

Finally, because a lot of methods are using some thresholds for shot change detec-

tion, we have also noted T some threshold fixed by the user. Several authors [11, 24]

propose a learning procedure in order to use an appropriate threshold value.

As can easily be imagined from this introduction part, the works dealing with video

sequence segmentation are quite numerous. We are reporting 94 entries in our bibliog-

raphy. Of course some others exist but we think covering the main ways used to solve

the problem. Even if the complexity of the methods is naturally increasing along time

we have not chosen a chronological thread to present the various methods. Rather we

have sorted them according to the basic elements they are relying on. We have orga-

nized them from the most simple, the pixel in the image to the most sophisticated ones,

those that are using a combination of methods. More precisely we have distinguished

6 large categories characterized by the respective use of:

• pixel characterization,

• histogram of the frames,

• partition of the image in blocks,

• features,

• motion during the sequence,

• and combination of approaches.

2 Pixel-based methods

Shot change detection can be performed by comparing successive frames. The simplest

way to compute the dissimilarity between two frames is to compare corresponding pix-

els from two successive images [61]. As we will see, some improvements of the initial

pixel comparison have been proposed. First we present the methods considering two

consecutive frames and then those that extend the study to a longer temporal interval.
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2.1 Pixel comparison bewteen two successive frames

One of the first method described in literature was from Nagasaka et al [61] in 1991.

Shot changes are detected using a simple global interframe difference measure, defined

as:

Detection if:





∣

∣

∣

∣

∣

∣

X
∑

i=1

Y
∑

j=1

P (It, i, j) −
X
∑

i=1

Y
∑

j=1

P (It−1, i, j)

∣

∣

∣

∣

∣

∣



 > T (1)

resulting in O(P) operations per frame (as the second term of the difference has been

already obtained after the processing of the previous frame It−1).

Nagasaka et al [61] also introduced a shot change detection method based on pixel

pair difference called template matching. For every two successive frames, differences

of intensities are computed on pixels having the same spatial position in the two frames.

Then the cumulated sum of differences is compared to a fixed threshold in order to

determine if a shot change has been detected:

Detection if:





X
∑

i=1

Y
∑

j=1

|P (It, i, j) − P (It−1, i, j)|



 > T (2)

The number of operations per frame is equal to O(3P). A colour version (of higher

complexity O(9P)) has also been presented:

Detection if:





X
∑

i=1

Y
∑

j=1

3
∑

k=1

|P (It, Ck, i, j) − P (It−1, Ck, i, j)|



 > T (3)

A couple of years later, Zhang et al [91] were comparing the pixels of two succes-

sive frames on a boolean basis. The fact that pixels are different is noted:

D(It, It−1, i, j) =

{

1 if P (It, i, j) 6= P (It−1, i, j)
0 otherwise

(4)

for the gray-level case and requires one operation per couple of pixels. Definition is

quite similar for colour images. In order to allow some variations on pixel intensities,

a better (but more complex as it needs three operations instead of one) definition is

given:

D(It, It−1, i, j) =

{

1 if |P (It, i, j) − P (It−1, i, j)| > TD

0 otherwise
(5)

where TD is considered as the tolerance value. The amount of different pixels is com-

puted and is compared to a given threshold, which results in the detection or not of a

shot change:

Detection if:





X
∑

i=1

Y
∑

j=1

D(It, It−1, i, j)



 > T (6)

resulting in complexity of O(2P) or O(4P) according to the condition used to compare

pixels. In order to avoid false detections due to motion in the video sequence, they also
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propose to smooth the images with a filter of size 3 × 3 before computating the D

values. The filter limits the effects due to noise and camera motion.

Several other statistical measures have been proposed in the litterature [71]. The

normalized difference energy and the normalized sum of absolute differences can be

used for shot detection, as shown by the following equations:

Detection if:













X
∑

i=1

Y
∑

j=1

(P (It, i, j) − P (It−1, i, j))
2

(

X
∑

i=1

Y
∑

j=1

P (It, i, j)2

)(

X
∑

i=1

Y
∑

j=1

P (It−1, i, j)2

)













> T (7)

Detection if:











X
∑

i=1

Y
∑

j=1

|P (It, i, j) − P (It−1, i, j)|

X
∑

i=1

Y
∑

j=1

P (It, i, j) +
X
∑

i=1

Y
∑

j=1

P (It−1, i, j)











> T (8)

These measures are respectively characterized by a complexity equal to O(5P) and

O(4P). Indeed, in both methods, the second part of the denominator has been obtained

after processing the previous frame It−1 and so does not need to be computed once

again.

2.2 Pixel intensity time variation

The previous two frame study can be generalized by analysing variations of intensities

through time. Taniguchi et al [79] label pixels with respect to the evolution of their

intensities on several successive frames. The labels used are “constant”, “step(It)”,

“linear(It1 , It2)”, and “no label”. These labels represent respectively pixels with con-

stant values, pixels with a change in value at frame It, pixels with a progressive change

in value between frames It1 and It2 , and finally pixels with random values due to

motion. Two boolean conditions Θ1(It1 , It2 , i, j) and Θ2(It1 , It2 , i, j) (needing re-

spectively 4 and 6 operations per pixel) are introduced in order to define the constancy

of a set of pixel values P (It, i, j) with t1 ≤ t ≤ t2:

Θ1(It1 , It2 , i, j) =







true if

(

max
t1≤t≤t2

P (It, i, j) − min
t1≤t≤t2

P (It, i, j)

)

< T

false otherwise

(9)

Θ2(It1 , It2 , i, j) =















true if





max
t1≤t≤t2

(P (It, i, j) + (t − t1)θt1,t2)

− min
t1≤t≤t2

(P (It, i, j) + (t − t1)θt1,t2)



 < T

false otherwise

(10)

with θt1,t2 defined as:

θt1,t2 =
|P (It1 , i, j) − P (It2 , i, j)|

t2 − t1
(11)
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which requires 3 operations per pixel to be obtained since t2 − t1 is a constant value,

computed only once per couple of frames. These similarity conditions Θ1 and Θ2

are then used to determine the label L(It0 , Itf
, i, j) of each pixel of a video sequence

involving f + 1 frames, using the following scheme:

L(It0 , Itf
, i, j) =























































constant if Θ1(It0 , Itf
, i, j)

step(It) if





Θ1(It0 , It−1, i, j)
∧ Θ1(It, Itf

, i, j)
∧ ¬ Θ1(It−1, It, i, j)





linear(It1 , It2) if









Θ1(It0 , It1 , i, j)
∧ Θ1(It2 , Itf

, i, j)
∧ ¬ Θ1(It1 , It2 , i, j)
∧ Θ2(It1 , It2 , i, j)









no label otherwise

(12)

which can also be defined as:

Llabel(It0 , Itf
, i, j) =

{

1 if L(It0 , Itf
, i, j) is of kind “label”

0 otherwise
(13)

Quantities of pixels associated with each label are computed. Cuts (respectively dis-

solves) are detected thanks to the analysis of the ratio between quantity of pixels la-

belled “step” (respectively “linear”) and quantity of pixels labelled (i.e. with a label

different of “no label”). A cut is detected at frame It if:

Detection if:











X
∑

i=1

Y
∑

j=1

Lstep(It)(It0 , Itf
, i, j)

XY −
X
∑

i=1

Y
∑

j=1

Lno label(It0 , Itf
, i, j)











> T (14)

A dissolve is detected between frames It1 and It2 if:

Detection if:











X
∑

i=1

Y
∑

j=1

Llinear(It1
, It2

)(It0 , Itf
, i, j)

XY −
X
∑

i=1

Y
∑

j=1

Lno label(It0 , Itf
, i, j)











> T (15)

Considering a number of operations per pixel respectively equal to at least 4 for equa-

tion (9), 6 for equation (10), 3 for equation (11), and 2 for equation (14) or (15), the

overall complexity is then equal to O(15P).
Lawrence et al [49] use evolution of temporal derivative of the pixel intensities

as a criterion for shot change detection. First pixels with high spatial derivative are

discarded in order to avoid motion effect. A pixel P (It, i, j) is considered if and only

if the following condition holds:

max (|P (It, i, j) − P (It, i − 1, j)| , |P (It, i, j) − P (It, i, j − 1)|) < T (16)
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This condition requires 6 operations per pixel to be verified. A convolution process

involving remaining pixels and a gaussian mask is then performed to obtain temporal

derivative of P (It, i, j). Absolute values of these derivatives are summed up in order to

define the distance measure (needing two operations per pixel) which will be analysed

through time. Shot boundaries correspond to local maxima of this distance measure.

False detections due to noise or motion are limited if the neighbourhood of the lo-

cal maxima obtained previously are further analysed. Method complexity is equal to

O(8P) without considering the gaussian filtering.

3 Histogram-based methods

The previous section was dedicated to pixel-based methods. It is also possible to com-

pare two images based on global features instead of local features (pixels). Histogram

is a global image feature widely used in image processing. The main advantage of

histogram-based methods is their global aspect. So they are more robust to camera or

object motion. The main drawback appears when we compare two different images

having a similar histogram. It will often results in missing a shot change.

Different uses of the histogram can be distinguished. Some methods only compute

differences between histograms and then the quality of the result is linked to the kind

of histogram considered. A first extension is the use of weighted differences between

histograms. Another approach consists in the definition of an intersection operator

between histograms or the definition of different distances or similarity measures.

3.1 Histogram difference

Tonomura et al [80] proposed a method based on gray-level histograms. Images are

compared by computing a distance (of complexity O(3N )) between their histograms,

as shown in the following equation:

Detection if:

(

V
∑

v=0

|H(It, v) − H(It−1, v)|

)

> T (17)

Nagasaka et al [61] propose a similar method using only 64 bins for colour his-

tograms (2 bits for each colour component of the RGB space). Using the notation

H64(It, v), the detection is defined by:

Detection if:

(

63
∑

v=0

|H64(It, v) − H64(It−1, v)|

)

> T (18)

Gargi et al apply histogram difference to other colour spaces (HSV, YIQ, L*a*b*,

L*u*v*, and Munsell) in [31]. More precisely, only non-intensity components are used

(i.e. Hue and Saturation for HSV, I and Q for YIQ, a* and b* for L*a*b*, u* and v*

for L*u*v*, and hue and chroma for the Munsell space). Shot change detection is then

9



defined by:

Detection if:

(

2
∑

k=1

V
∑

v=0

|H(It, Ck, v) − H(It−1, Ck, v)|

)

> T (19)

As it uses two colour components instead of only one, complexity is twice higher (i.e.

equal to O(6N )).
Pye et al [69] compute three histogram differences, considering separately the three

colour components of the RGB space. The highest value is compared to a threshold for

a shot change detection of complexity O(9N ):

Detection if:

(

max
k∈{R,G,B}

V
∑

v=0

|H(It, Ck, v) − H(It−1, Ck, v)|

)

> T (20)

Ahmed et al [5] present several shot change detection algorithms using colour his-

tograms. The first algorithm compares two frames using histograms computed on the

Hue component CH . So the detection needs O(4N ) operations and can be represented

by:

Detection if:









V
∑

v=0
|H(It, CH , v) − H(It−∆, CH , v)|

V
∑

v=0
H(It−∆, CH , v)









> T (21)

where ∆ is the temporal skip between two frames.

The second algorithm by Ahmed et al is based on reduced RGB space histograms.

As in [61], histograms are composed of only 64 bins, using 2 bits for each colour

component. The detection is done through a computation similar to the previously

mentioned method:

Detection if:









63
∑

v=0
|H64(It, v) − H64(It−∆, v)|

63
∑

v=0
H64(It−∆, v)









> T (22)

resulting in a similar complexity.

O’Toole et al [66] detect shot changes using a cosine similarity measure computed

between two histograms. First three 64 bin histograms representing respectively the

Y, U, and V components are obtained from each frame. Next the three histograms are

concatenated into a single one in order to get only one 192 bin histogram per frame.

Then two successive frames are compared based on their histogram using a cosine

similarity measure to perform shot change detection:

Detection if:









1 −

V
∑

v=0
(HY UV (It, v)HY UV (It−1, v))

V
∑

v=0
HY UV (It, v)2

V
∑

v=0
HY UV (It−1, v)2









> T (23)

10



The method complexity is O(4N ). A similar work has been done by Cabedo et al in

[18].

Chiu et al [21] rely their video segmentation on a genetic algorithm using colour

histogram differences of complexity O(9N ). Possible shot boundaries are evaluated

with similarity adjacency functions. In order to limit the optimization cost of these

functions, a genetic algorithm is used instead of traditional methods. A video sequence

is encoded as a string of binary values, 1 and 0 representing respectively the presence or

not of a shot boundary in the current frame. The fitness function used in the algorithm

is defined as a similarity adjacency function based on colour histogram differences.

Finally crossover and mutation processes are derived from classical genetic algorithms

in order to be adapted to video segmentation task.

Zhang et al [91] propose a method called twin comparison. Successive frames are

compared using a histogram difference metric of complexity O(3N ). The difference

values obtained are compared with two thresholds. Cuts are detected when difference is

higher than a high threshold TH . Possible starts of gradual transition are detected when

difference is higher than a low threshold TL. In this case, an accumulated difference is

computed until the current difference is below TL. Finally the accumulated difference

is compared to the high threshold TH for shot change detection. The two thresholds can

be automatically set using standard deviation and mean of the interframe differences in

the whole video sequence.

Li et al [54] use also a two step method, detecting successively the location of the

end of the transition and its start. Frames are compared using the colour ratio histogram

metric [47]. First two frames It1 and It2 (with t2 = t1 + ∆) are compared using this

metric. While the difference is below a given threshold T , t2 is set to t2 + 1. When the

difference is above T , the transition end has been obtained. In order to determine the

transition start, t1 is set to t2 − 1. The difference between frames It1 and It2 is then

computed and compared to the threshold T . While the difference is below T , t1 is set

to t1 − 1. When the difference is above T , the transition start has also been obtained.

Several other statistical measures have been reviewed in [71]. The quadratic his-

togram difference can be computed between histograms from two successive frames,

whereas the Kolmogorov-Smirnov statistic is computed between cumulative histograms

from two successive frames. These two measures are detailled below, using the nota-

tion HC(It, v) to represent the cumulative histogram up to bin v for the frame It.

Detection if:

(

V
∑

v=0

(H(It, v) − H(It−1, v))
2

(H(It, v) + H(It−1, v))
2

)

> T (24)

Detection if:

(

max
v∈[0,V ]

(|HC(It, v) − HC(It−1, v|)

)

> T (25)

The two methods are characterized by a complexity respectively equal to O(6N ) and

O(3N ).

3.2 Weighted difference

In colour images, some colour components may have a bigger influence than others.

So it is possible to detect shot changes by weighting the histograms of each colour
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component depending on their importance [22]:

Detection if:

(

3
∑

k=1

V
∑

v=0

L(It, Ck)

Lmean(It)
|H(It, Ck, v) − H(It−1, Ck, v)|

)

> T (26)

where L(It, Ck) and Lmean(It) are respectively the luminance for the kth colour com-

ponent of the frame It and the average luminance of the frame It considering all the

colour components. The method complexity is equal to O(3P + 9N ).
Zhao et al [92] use a learning procedure to determine the best weight values for

weighted histogram difference computation. They first compute the original histogram

difference with complexity O(3N ) defined by equation (17). Then a learning step

formulated as a minmax optimization problem is performed in order to select the best

weights to use in weighted histogram differences. The detection process relies finally

on the following equation which requires 12 operations per histogram bin:

Detection if:

(

3
∑

k=1

V
∑

v=0

w(k, v) |H(It, Ck, v) − H(It−1, Ck, v)|

)

> T (27)

where w(k, v) represents the best weight selected after the learning step. The overall

complexity is then O(15N ).
Gargi et al presented in [31] a method based on the difference of average colours of

a histogram, which can be as well considered as a histogram weighted difference. The

shot change detection can then be represented by:

Detection if:





3
∑

k=1

(

V
∑

v=0

H(It, Ck, v)v −
V
∑

v=0

H(It−1, Ck, v)v

)2


 > T (28)

and requires O(6N ) operations.

Another method by Gargi et al using colour histograms has also been decribed in

[31]. More precisely, it uses a reference colour table as a frame difference measure.

Reference colour table can be seen as a coarse quantization of RGB colour space into

27 different colour triples which are used as bins for a 3-D colour histogram Href. The

shot change detection needs 5 operations per bin and can be represented by:

Detection if:

(

V
∑

v=0

w(v, t)

√

(Href(It, v) − Href(It−1, v))
2

)

> T (29)

where the weight w(v, t) is defined as:

w(v, t) =

{

Href(It−1, v) if (Href(It, v) > 0) ∧ (Href(It−1, v) > 0)
1 otherwise

(30)

and requires 3 operations per bin. The overall complexity is then equal to O(8N ).
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3.3 Histogram intersection

Similarity between two images can also be evaluated thanks to histogram intersec-

tion. Histogram intersection is computed using different operators, for example a min

function. In this case the computational cost is O(2N ). Similarity ratio belonging

to interval [0, 1] is then compared to a given threshold. This comparison allows the

detection of shot changes:

Detection if:

(

1 −
1

XY

V
∑

v=0

min (H(It, v), H(It−1, v))

)

> T (31)

where XY represents the number of pixels in frames processed.

Another version of the histogram intersection-based shot change detection method

is defined in [31] using the following equation:

Detection if:

(

1 −
1

XY

V
∑

v=0

min (H(It, v), H(It−1, v))

max (H(It, v), H(It−1, v))

)

> T (32)

with a complexity equal to O(4N ).
Haering et al [36] apply histogram intersection defined in equation (31) to HSV

(Hue, Saturation, Value) colour space, using 16 bins for Hue component and 4 bins

each for Saturation and Value components.

An extension of [36] has been proposed by Javed et al in [43]. Hue is represented

using only 8 bins. Instead of thresholding the histogram intersection of two successive

frames, they compute the difference between two successive histogram intersection

values and compare this derivative to a threshold.

3.4 Use of χ
2 Test

Nagasaka et al have also proposed in [61] a 64 bin histogram comparison based on χ2

test. The shot change detection is then defined by:

Detection if:

(

63
∑

v=0

(H64(It, v) − H64(It−1, v))
2

H64(It, v)

)

> T (33)

with the assumption H64(It, v) 6= 0. If this assumption does not hold, we use the

following equation instead:

Detection if:

(

63
∑

v=0

(H64(It, v) − H64(It−1, v))
2

H64(It−1, v)

)

> T (34)

with the assumptions H64(It−1, v) 6= 0 and H64(It, v) = 0. This method is considered

as more efficient than simple histogram comparison-based methods. Its complexity is

equal to O(5N ).

13



A modification has been proposed by Dailianas et al in [22] where the detection is

represented by:

Detection if:

(

V
∑

v=0

(H(It, v) − H(It−1, v))
2

max(H(It, v), H(It−1, v))

)

> T (35)

with a similar complexity.

Gunsel et al [35] perform a K-means clustering algorithm to determine the loca-

tion of shot boundaries. Sucessive frames are compared using χ2 test or histogram

difference on YUV histograms, resulting in a complexity equal to O(15N ). Every

interframe difference value is classified into shot change or non-shot change.

3.5 Similarity measures between normalized histograms

Several measures computed on normalized histograms have been reviewed by Ren et

al in [71] and by Kim and Park in [46]. Using the notation HN (It, v) to represent the

probability of intensity v in the frame It, cross entropy, divergence, Kullback Liebler

distance, and Bhattacharya distance are respectively defined as:

Detection if:

(

V
∑

v=0

(

HN (It, v) log
HN (It, v)

HN (It−1, v)

)

)

> T (36)

Detection if:









V
∑

v=0

(

HN (It, v) log HN (It,v)
HN (It−1,v)

)

+
V
∑

v=0

(

HN (It−1, v) log HN (It−1,v)
HN (It,v)

)









> T (37)

Detection if:









V
∑

v=0

(

HN (It, v) log HN (It,v)
HN (It−1,v)

)

+
V
∑

v=0

(

(1 − HN (It, v)) log 1−HN (It,v)
1−HN (It−1,v)

)









> T (38)

Detection if:

(

− log

(

V
∑

v=0

√

HN (It, v)HN (It−1, v)

))

> T (39)

with complexities respectively equal to O(4N ), O(8N ), O(11N ), and O(3N ).
All these methods are based on a uniform process all over the image. The hetero-

geneity present within a frame led to use block-based methods.

4 Block-based methods

Block sampling of the video frames can be performed in order to increase the quality

of shot change detection but also to decrease the computation time. Once block rep-

resentation has been obtained from original images, it is possible to perform some al-

gorithms derived from pixel or histogram-based methods presented previously. Use of
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blocks allows a processing which is intermediate, between local level like pixel-based

methods and global level as histogram-based methods. Main advantage of block-based

methods is their relative insensitivity to noise and camera or object motion. We have

distinguished between several approaches all working on blocks.

4.1 Block similarity

Kasturi et al [45] perform a similarity test on block-sampled images. Like in pixel-

based methods, pairs of blocks (with same spatial coordinates) from two successive

frames are compared. The similarity is based on block features like mean and variance,

which can be computed on a complete frame considering a complexity of O(P + B)
and O(2P + 3B). The likelihood rate L (of complexity O(9B)) is defined for a block

b as:

L(It, It−1, b) =

(

σ2
t,b+σ2

t−1,b

2 +
(

µt,b−µt−1,b

2

)2
)2

σ2
t,bσ

2
t−1,b

(40)

where µt,b and σ2
t,b are respectively the mean and the variance of block b pixel values

in image It. Then thresholded values LD of L are defined by the equation:

LD(It, It−1, b) =

{

1 if L(It, It−1, b) > TD

0 in other cases
(41)

where TD is considered as a tolerance value. A detection is obtained when:

Detection if:

B
∑

b=1

cbLD(It, It−1, b) > T (42)

where cb is used to give more or less importance to block b. Most of the time cb is set

to 1 for all the blocks. Overall complexity is estimated to O(3P + 15B) considering

required operations for estimation of the block mean, variance, likelihood rate, and

thresholding, and the final cost of the detection. This likelihood ratio can also be used

directly on full-frames, as proposed in [71].

Another well-known measure involving variance is the Yakimovsky likelihood ratio

which can be applied also on blocks or frames directly [71]. For each block this ratio

is computed as:

L′(It, It−1, b) =

(

σ2
{t,t−1},b

)2

σ2
t−1,bσ

2
t,b

(43)

where σ2
t,b and σ2

t−1,b represent the variances of the pixel intensity values in the frames

It and It−1 considering a block b. The notation σ2
{t,t−1},b is used to denote the variance

of the pooled data from both frames for a block b. Knowing σ2
t,b and σ2

t−1,b, computa-

tion of σ2
{t,t−1},b needs 4 operations per block. When µt,b is not available, computation

of σt,b is characterized by a cost of O(3P+4B). The overall complexity O(3P+13B)
is obtained by adding the cost of equation (43) (i.e. 3 operations per block).
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Freund statistic can also be used to detect shot changes. Distance measure is then

defined by:

L′′(It, It−1, b) =
µt,b − µt−1,b
√

σ2
t,b

+σ2
t−1,b

XY

(44)

resulting in a complexity of O(3P + 11B) obtained by replacing cost of equation (40)

by cost of Freund statistic, i.e. O(5B).
Lee et al [52] perform shot change detection using block differences computed

in the HSV colour space. First RGB images are converted to HSV in order to avoid

camera flashes. Then the mean values of Hue and Saturation components are computed

for each block (with a cost of O(P + B) for each colour component). Two successive

blocks are compared using these mean values:

DH(It1 , It2 , b) = |µ(It1 , b, CH) − µ(It2 , b, CH)| (45)

DS(It1 , It2 , b) = |µ(It1 , b, CS) − µ(It2 , b, CS)| (46)

where µ(It, b, Ck) is the mean of a bloc b in the frame It considering the colour compo-

nent Ck. DH and DS represent respectively differences for Hue and Saturation colour

component. These two distances need 2 operations per block each and are used to

determine if each block has changed:

D(It1 , It2 , b) =

{

1 if (DH(It1 , It2 , b) > TH) ∨ (DS(It1 , It2 , b) > TS)
0 otherwise

(47)

which requires 3 operations per block. Finally the ratio between the number of changed

blocks and the total number of blocks is compared to another threshold in order to

detect shot changes:

Detection if:
1

B

B
∑

b=1

D(It, It−∆, b) > T (48)

where ∆ represents the temporal skip used in the shot change detection process. The

overall complexity of this method is O(2P + 10B).

4.2 Histogram comparison

Swanberg et al present in [78] a method detecting shot changes thanks to the compari-

son of colour histograms computed on the blocks of the images noted H(It, b, Ck, v).
The detection process is then defined as:

Detection if:

(

3
∑

k=1

B
∑

b=1

V
∑

v=0

(H(It, b, Ck, v) − H(It−1, b, Ck, v))
2

H(It, b, Ck, v) + H(It−1, b, Ck, v)

)

> T (49)

and has a computational cost of O(15NB + 3B).
Nagasaka et al [61] extend their histogram comparison to images divided in 4x4

blocks. Every pair of blocks from two successive frames is compared using the χ2 test

16



on 64 bin histograms:

χ(It, b) =

(

63
∑

v=0

(H64(It, b, v) − H64(It−1, b, v))
2

H64(It, b, v)

)

(50)

which requires for each bloc 4 operations per histogram bin. The values obtained are

then sorted in an ascending way and the 8 lowest are kept. The sum of these values is

computed and compared to a threshold to detect shot changes:

Detection if:

(

8
∑

b=1

χs(It, b)

)

> T (51)

where the χs values represent ascending sorted values of χ (i.e. for b ∈ [1, 16] we have

χs(It, 1) ≤ χs(It, b) ≤ χs(It, 16)). Considering equations (50) and (51), the overall

complexity of the method is O(4NB + 0.5B).
Ueda et al [82] proposed to use the rate of correlation change instead of the magni-

tude of correlation change proposed in [61]. Each value χ(It, b) obtained from a pair

of blocks is compared to a threshold. The detection depends on the number of signifi-

cant values χ(It, b) instead of the sum of the highest χ(It, b), resulting in a complexity

equal to O(4NB + 2B).
Ahmed et al [5] propose also a block-based version of their method using the 6 most

significant RGB bits as described in equation (22). They compare histograms computed

on blocks instead of global histograms. The sum of the histogram differences obtained

for each block is computed and compared to a predefined threshold in order to detect

shot changes, as shown in:

Detection if:









B
∑

b=1

63
∑

v=0
|H64(It, b, v) − H64(It−∆, b, v)|

63
∑

v=0
H64(It−∆, b, v)









> T (52)

where ∆ represents the temporal skip between two successive frames to be analysed.

The computation cost is also equal to O(4NB + 2B).
Ahmed et al proposed in [4] an improved version of their algorithm described previ-

ously. Instead of comparing two frames considering a fixed temporal skip, the method

is based on an adaptive temporal skip. First, two images It1 and It2 are compared

according to equation (52). Then if the difference is greater than a threshold, t2 is re-

placed by t1+t2
2 and the frames are again compared. If the difference is still greater

than the threshold, t1 is also set to t1+t2
2 (considering the current values of t1 and t2)

and frames are compared. This process is repeated until t1 + 1 = t2 which represents

a shot change between frames t1 and t2.

Lee et al introduce in [50] a selective HSV histogram comparison algorithm. First,

pixels are classified with respect to their colour level. If a pixel is characterized by

high values for V and S, it is classified into a discrete colour using H component.

Otherwise the classification is based on the intensity (or gray-level) value. For a given
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pixel P (It, b, i, j), two complementary states are defined:

Shue(It, b, i, j) =







1 if

(

(P (It, b, CS , i, j) > TS)
∧ (P (It, b, CV , i, j) > TV )

)

0 otherwise

(53)

Sgray(It, b, i, j) = 1 − Shue(It, b, i, j) (54)

Computation of these states requires 4 operations per pixel. For each block two se-

lective histograms Hhue(It, b) and Hgray(It, b) are then computed in a classical way

considering the two states previously defined. The notation Hhue(It, b, v) (respectively

Hgray(It, b, v)) represents the number of pixels in block b of frame It with state Shue

(resp. Sgray) equal to 1 and with hue (resp. insensity or gray-level) value equal to v.

These histograms are used for shot change detection:

Detection if:









B
∑

b=1









V
∑

v=0
|Hhue(It, b, v) − Hhue(It−1, b, v)|

+
V
∑

v=0
|Hgray(It, b, v) − Hgray(It−1, b, v)|

















> T

(55)

resulting in a complexity equal to O(6NB + 2B + 4P).
Bertini et al [13] compare in the HSI colour space histograms of successive frames

divided in 9 blocks. In order to improve robustness to change in lighting conditions,

the Intensity component is not used. The detection can then be represented by the

following equations:

DHS(It, It+1, b) =
∑

k∈{H,S}

V
∑

v=0

(H(It, b, Ck, v) − H(It+1, b, Ck, v)) (56)

D′
HS(It) =

B
∑

b=1

DHS(It, It+1, b) −
B
∑

b=1

DHS(It−1, It, b) (57)

Detection if:

(

((D′
HS(It) > 0) ∧ (D′

HS(It+1) < 0))
∨ ((D′

HS(It) < 0) ∧ (D′
HS(It+1) > 0))

)

(58)

The two distances DHS(It, It+1, b) and D′
HS(It) require respectively 2 operations per

bin per block per colour and one operation per block. The overall complexity is then

O(4NB + B). In order to improve the detection, a minimum temporal distance is

defined between two successive cuts.

Chahir et al [19] based their method on histogram intersection computed on frames

divided in 24 blocks. The colour space used in their method is L*u*v*. For each block,

color histogram intersection is computed between two successive frames requiring 12

operations per bin. A comparison with a threshold allows to determine whether the

block has been changed or not. The number of changed blocks is then compared to

another threshold in order to detect a shot change, resulting in an overall complexity

equal to O(12NB + 2B).
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4.3 Combination of histogram differences and likelihood rate

This method proposed by Dugad in [25] is based on two successive steps to detect cuts

and other transitions. Shot changes are detected using successively histogram differ-

ence and likelihood ratio. In this method three thresholds have to be set. Histogram

difference step (whose complexity is O(3N )) is defined as in equation (17) and is com-

pared with two thresholds. The difference is first compared to a high threshold in order

to avoid false alarms. If it is lower than this threshold, it is then compared to a low

threshold. If it is higher than this low threshold, the final decision is taken by com-

puting likelihood ratio values. In this case, the two frames to be compared are divided

in 64 blocks and the 16 central blocks are kept. For each block, the likelihood ratio is

computed between the block P (It, b) and the blocks P (It−1, b
′) where b′ belongs to

the neighbourhood of b, and the minimum of the likelihood value is kept. Then a mean

of the 16 minimum likelihood ratios is computed and is compared with the third thresh-

old, which may result in a shot change detection. The respective costs for computation

of the mean and variance of each block and estimation of the likelihood ratio in a 3× 3
neighbourhood are O(3P +4B) and O(72B). Computation of the minimum values for

each block and the mean value on all block requires respectively 7 and 1 operations per

block. As we are using only a quarter of the blocs, we divide the number of operations

per block by 4. The overall complexity is then O(3P + 3N + 21B).

4.4 Use of neighbourhood colour ratio

Adjeroh et al [2] compare two successive frames using neighbourhood colour ratios. A

local averaging step (with a cost of O(5P + B)) is first performed in order to obtain

one value P ′(It, b) per block:

P ′(It, b) =

X−1
∏

i=2

Y −1
∏

j=2

1

4P (It, b, i, j)

(

P (It, b, i − 1, j) + P (It, b, i + 1, j)
+P (It, b, i, j − 1) + P (It, b, i, j + 1)

)

(59)

Pairs of blocks from two different frames are then compared using this measure:

D′(It, It−∆, b) = 1 − min

(

P ′(It, b)

P ′(It−∆, b)
,
P ′(It−∆, b)

P ′(It, b)

)

(60)

which requires 4 operations per block and where ∆ represents the temporal skip. Shot

changes are finally detected if the number of significant D′ values for all selected

blocks is higher than a fixed threshold, or if the average value of D′ is higher than an-

other threshold. These two conditions need respectively 2 and 1 operations per block

to be verified. The overall complexity of this method is then O(5NB + 8B).

4.5 Evolution of block dissimilarity

Shot changes can also be detected by analysing the evolution of block dissimilarity.

Demarty et al [23] compute locally a distance criterion (of cost O(9P)) in RGB colour

space between blocks of two successive images. Result obtained consists in distance
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values between the two images for every block. Then the sum of these values is com-

puted (which requires 3 operations per block) and an evolution curve of this sum is

built. This evolution curve is filtered using a top-hat morphological operation and is

finally compared with a threshold in order to detect shot changes. The complexity is

equal to O(9P + 3B).
Lefèvre et al [53] proposed a method using HSV colour space on block-sampled

images in order to avoid false detection due to illumination effects. A value is obtained

for each block from Hue and Saturation components with a cost in O(2P + 5B). Then

a block-based difference (requiring 3 operations per block) is computed between two

frames based on the block values. This difference is tracked through time, as well

as its derivative. Analysis of this derivative allows cut detection, whereas the initial

(non-derivated) difference values are used to initialize a cumulative sum computation

of the derived values. This allows detection of gradual transitions. This method is

characterized by a computational cost of O(2P + 8B).

4.6 Temporal and spatial subsampling

Xiong et al [85] propose to subsample the video sequence in both space and time. An

abrupt change is detected beween two frames It and It+∆ if:

Detection if:

(

∑

b∈B′

Dµ(It, It+∆, b)

)

> T (61)

where B′ represents a set of a priori selected blocks and Dµ(It1 , It2 , b) is defined as:

Dµ(It1 , It2 , b) =

{

1 if |µt1,b − µt2,b| > Tµ

0 in other cases
(62)

The two equations need respectively 1 and 3 operations per block. As the block mean

computation is linked with a cost of O(P+B), the overall complexity is equal to O(P+
5B). Gradual transitions are detected using an edge-based frame-to-frame difference

measure. If a shot change is detected, a binary search is performed reducing ∆ to

determine the exact shot boundaries. The method proposed is called “Net Comparison”

and has also been tested in HSV colour space.

5 Feature-based methods

All the methods we have already presented were using features, but they can be quali-

fied of trivial features. Here we are considering more sophisticated ones. We consider:

• the moments computed on the image,

• the contour lines extracted from the image,

• some feature points extracted using Hough Transform,

• the planar points,
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• colour transition,

• modelling of the video transition effects,

• the use of some decision process as bayesian methods,

• features computed from classical statistical approaches,

• and the use of Hidden Markov Models.

5.1 Moment invariants

Arman et al [12] use moment invariants combined with histogram intersection to detect

shot changes. Moment invariants have properties such as invariance to scale change,

rotation, and translation. The moments of a frame It are defined as:

mp,q =

X
∑

i=1

Y
∑

j=1

ipjqP (It, i, j) (63)

In [22], shot changes are detected thanks to the computation of the usual Euclidean dis-

tance between two frames using a vector composed of the first three moment invariants,

defined as:

−→
Φ =





m2,0 + m0,2

(m2,0 − m0,2)
2

+ 4m2
1,1

(m3,0 − 3m1,2)
2

+ (3m2,1 − m0,3)
2



 (64)

Considering equation (63), all moments used in equation (64) require 3 operations per

pixel, excepting m1,2 and m2,1 which need 4 operations per pixel. The detection can

be finally defined as:

Detection if:

(

∥

∥

∥

−−−→
Φ(It) −

−−−−−→
Φ(It−1)

∥

∥

∥

2
)

> T (65)

resulting in an overall complexity of O(23P).

5.2 Edges

Zabih et al in [90] use edge extraction to detect shot changes. Global motion com-

pensation is performed on successive frames. Next, edges are extracted using Canny

algorithm and dilated. Normalized proportions of entering edges and exiting edges are

then computed (with a cost of O(3P) each) using the following equations:

P (Cout, It) = 1 −

X
∑

i=1

Y
∑

j=1

E(It−1, i + αt−1,t, j + βt−1,t)Ed(It, i, j)

X
∑

i=1

Y
∑

j=1

E(It−1, i, j)

(66)

21



P (Cin, It) = 1 −

X
∑

i=1

Y
∑

j=1

Ed(It−1, i + αt−1,t, j + βt−1,t)E(It, i, j)

X
∑

i=1

Y
∑

j=1

E(It−1, i + αt−1,t, j + βt−1,t)

(67)

where E and Ed are respectively the contour image and its dilated version, and (αt−1,t, βt−1,t)
represents the global motion translation vector between the two successive images It

and It−1. Then a dissimilarity measure ECF (It) called edge change fraction is com-

puted by:

ECF (It) = max(P (Cout, It), P (Cin, It)) (68)

Finally this value is compared to a threshold to detect shot changes:

Detection if: ECF (It) > T (69)

resulting in a complexity at least equal to O(26P) when considering edge detection

requires 20 operations per pixel.

Smeaton et al proposed an evolution of the previous method in [77] where the

detection is based on the evolution of the edge change fraction on several frames instead

of the analysis of this dissimilarity measure on only one frame. Detection can then be

defined by:

Detection if: (ECF (It) − ECF (It−1)) > T (70)

Lienhart [56] also uses edge information to perform dissolve detection. First edges

extracted with the Canny edge detector are confronted with two thresholds to determine

weak and strong edges:

Ew(It, i, j) =

{

E(It, i, j) if Tw ≤ E(It, i, j) ≤ Ts

0 in other cases
(71)

Es(It, i, j) =

{

E(It, i, j) if Ts ≤ E(It, i, j)
0 in other cases

(72)

where Tw and Ts are respectively the lowest and highest thresholds for detecting weak

and strong edges. Ew and Es represent the weak and strong edge images and need

respectively 2 and 1 operations per pixel to be computed. Then the edge-based contrast

EC is obtained for a frame It according to the equation:

EC(It) = 1 +

X
∑

i=1

Y
∑

j=1

Es(It, i, j) −
X
∑

i=1

Y
∑

j=1

Ew(It, i, j) − 1

X
∑

i=1

Y
∑

j=1

Es(It, i, j) +
X
∑

i=1

Y
∑

j=1

Ew(It, i, j) + 1

(73)

with a cost of O(2P). Finally dissolves are detected when the current value of EC is a

local minimum. The overall complexity O(25P) is obtained by adding edge detection

cost.

Yu et al [87] use edge information to detect gradual transitions. Cuts are first de-

tected using a histogram difference measure (of cost O(3P)) computed between two
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successive subsampled frames. Then a second pass is necessary for detecting gradual

transitions. For every frame It between two successive cuts at time t1 and t2, the num-

ber QE(It) of edge points present in the image is computed (considering 21 operations

per pixel) and temporally smoothed. Then for every local minima QE(It′) which is

below a predefined threshold, a search of the two closest local maxima QE(It′
1
) and

QE(It′
2
) is performed with t′1 < t′ < t′2. A fade out effect is detected between t′1 and

t′ if:

Detection if:





1

t′ − t′1

t′
∑

t=t′
1

|QE(It) − QE(It−1)|



 ∈
[

T fade out
low , T fade out

high

]

(74)

Similarly, a fade in effect is detected between t′ and t′2 if:

Detection if:





1

t′2 − t′

t′2
∑

t=t′

|QE(It) − QE(It−1)|



 ∈
[

T fade in
low , T fade in

high

]

(75)

For dissolve effect detection, a new measure called double chromatic difference is com-

puted for every frame belonging to the interval [t′1, t
′
2]:

DCD(It) =

X
∑

i=1

Y
∑

j=1

∣

∣

∣

∣

1

2
P (It′

1
, i, j) +

1

2
P (It′

2
, i, j) − P (It, i, j)

∣

∣

∣

∣

(76)

which requires 6 operations per pixel. If the frame number tmin corresponding to the

global minimum value DCD(Itmin
) is close enough to t′ ( |t′ − tmin| < ǫ with ǫ defined

as a small number), a dissolve effect is assumed to be found between frames It′
1

and

It′
2
. The overall complexity of this method is equal to O(3N + 27P).
Heng and Ngan [41] also propose a method based on edge information. They intro-

duce the notion of edge object, considering the pixels close to the edge. Occurences of

every edge object are matched on two successive frames. Shot changes are detected us-

ing ratio between the amount of edge objects persistent over time and the total amount

of edge objects.

Nam and Tewfik [62] propose a coarse-to-fine shot change detection method based

on wavelet transforms. Image sequences are first temporally subsampled. Frames pro-

cessed are also spatially reduced using a spatial 2-D wavelet transform. Intensity evo-

lution of pixels belonging to coarse frames is analysed using a temporal 1-D wavelet

transform. Sharp edges define possible shot change locations. Video frames around

these locations are further processed at full-rate. Temporal 1-D wavelet transform is

applied again on the full-rate video sequence. Edge detection is also performed on

every coarse frame and the number of edge points is computed on a block-based ba-

sis. Difference between two successive frames is computed using the number of edge

points for each block. True shot boundaries are located on sharp edges in the 1-D

wavelet transform and high values of interframe difference considering block-based

amount of edge points. An extension to wipe transitions detection has been proposed

in [63].
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5.3 Feature points

Ardebilian et al [11] detect shot changes by comparing between feature points extracted

from two successive images. They use Hough transform to extract feature points. Suc-

cess or not of the feature points matching between two successive frames results di-

rectly in cut detection.

5.4 Planar points

Silva et al [76] perform shot change detection using spatio-temporal representation of

an image sequence. A video sequence V is represented in IR4 as an hypersurface:

V = {i, j, t, P (It, i, j)} (77)

The amount of planar points in every frame is considered as the measure for detecting

cuts. We recall that planar points are points contained in a flat neighbourhood of the

hypersurface. For a given frame It, planar points are determined using the characteris-

tic polynomial coefficients of the Hessian matrix of P (It, i, j). Then the percentage of

planar points is computed. A cut is detected (in a four frame interval) when this value is

greater than three times the temporal variance of the percentage of planar points. The

overall complexity O(51P) is obtained by adding the cost associated with the Hes-

sian matrix (O(27P)), the three characteristic polynomial coefficients (O(18P)), the

classification of a point as planar (O(5P)), and the final decision (O(P)).

5.5 Colour transitions

Sanchez et al [74] compare between two successive frames using colour histograms

computed on specific regions. These regions are defined from the most significant

colour transitions of the image, considered as high values of its multispectral gradient

and computed with Sobel approximation. Colour histograms are compared between

regions of two successive frames to determine the coherence of the region through

time. Shot changes are finally detected if the amount of changed regions is above a

given threshold.

5.6 Transition modelling

Some shot changes are created from production effects. These transitions can be mod-

elled explicitly with mathematical tools in order to be detected. Several methods using

these assumptions are presented below.

Hampapur et al [37] model several kinds of fades and wipes with mathematical

functions. Knowing the two last shots and their respective durations, it is possible

to estimate the duration of the current shot. Detection of shot changes can rely on a

constancy measure (of cost O(P)) defined for frame It as:

C(It) =

X
∑

i=1

Y
∑

j=1

Sbinary(It, i, j)

σt(1 +
∣

∣Xc(It) −
X
2

∣

∣+
∣

∣Yc(It) −
Y
2

∣

∣)
(78)
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where σt represents the standard deviation of pixel intensities in frame It computed

with a cost of O(3P). The binary state Sbinary(It, i, j) of a pixel is defined as:

Sbinary(It, i, j) =

{

1 if P (It, i, j) 6= 0
0 otherwise

(79)

requiring 1 operation per pixel and the components of the centroid of image It are

noted Xc(It) and Yc(It). They are computed as:

Xc(It) =

X
∑

i=1

Y
∑

j=1

iP (It, i, j)

X
∑

i=1

Y
∑

j=1

P (It, i, j)

(80)

Yc(It) =

X
∑

i=1

Y
∑

j=1

jP (It, i, j)

X
∑

i=1

Y
∑

j=1

P (It, i, j)

(81)

and need together 5 operations per pixel. The overall complexity is then O(10P).
Adami et al [1] perform dissolve detection applying a model of dissolve effects on

frame histograms. For every frame, two specific histograms are computed:

H̄(It) = H 1
2
(It) ∗ H 1

2
(It) (82)

H∆(It) = H 1
2
(It−∆) ∗ H 1

2
(It+∆) (83)

where H 1
2
(It) represents the histogram of the frame It scaled by half, ∆ is a fixed

parameter, and the operator ∗ figures a convolution. Both operations are characterized

by a cost of O(N 2). It is then possible to compute a dissimilarity measure using these

histograms:

R(It) =
χ2(H(It), H̄(It))

χ2(H(It), H∆(It))
− 1 (84)

where the χ2 operator (of complexity O(5N )) is computed between two histograms.

Maxima values of R(It) indicate dissolve locations:

Detection if: R(It) > R(It′) ∀t′in the neighbourhood of t (85)

The overall complexity is then O(2N 2 + 10N ).
Aigrain et al [6] detect shot changes using the assumption of the absence of impor-

tant motion in the different shots. Their method is based on a motion differential model

and uses a density function estimation as the difference between two images. First, two

successive images are reduced spatially and normalized using histogram equalization.

Then the histogram of pixel-pair difference is computed and is simplified to two values,

which are respectively the amount of differences belonging to the interval [128, 255]
computed on normalized images and the amount of differences belonging to the inter-

val [1, 40] computed on non-normalized images. Both values require 4 operations per
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pixel in order to be computed. Cut and gradual transition detections are respectively

based on local maxima of the first and second value described previously. The method

complexity is equal to O(8P).
Lienhart [56] relies on fade modelling from [37] to perform fade detection. The

proposed algorithm uses the standard deviation of pixel intensities as an estimation

of the scaling function introduced in fade effects. First, all monochrome frames are

located as they are fade start or end candidates. These frames are characterized by a

standard deviation σ(It) close to zero. Fades are then detected by searching in both

temporal directions for a linear increase in the standard deviation.

Alattar [10] bases also the shot change detection on variance of pixel intensities.

Fades are detected using a two steps scheme. First local minimum values of the second

order difference of the pixel intensity spatial variance time series are obtained. Then

a test is performed to determine wether the first order difference of the pixel intensity

mean is relatively constant in the neighbourhood of the local variance minimum or not.

In the positive case, a fade is assumed to be found. A similar method [9] has been

proposed for dissolve.

Truong et al [81] combine approaches from [56] and [10]. First, all monochrome

frames are detected. Then only monochrome frames which are next to a local minimum

of the intensity variance second order difference are kept. Finally a test is performed

on the first order difference of the mean intensity. If this value is constant through

time and other conditions are satisfied, a fade has been detected. The other conditions

correspond to comparison between thresholds and the absolute value of the first order

difference and the intensity variance of the first or last frame. Dissolve detection is

performed using the evolution of the variance first order difference through time. This

difference value should be monotonically increasing from a negative value up to a

positive value. So zero crossings are used to locate dissolve frames.

Fernando et al [30] use also mean and variance of the luminance signal to determine

fade and dissolve transitions locations. For every frame, the mean and the variance

of the luminance is computed. The ratio between second temporal derivative of the

variance to the first temporal derivative of the mean is then compared between two

successive frames. Shot changes are located when this ratio is constant through time.

All the approaches based on effect modelling using variance and mean of succes-

sive frames are characterized by a cost of O(3P).

5.7 Bayesian approaches

Vasconcelos et al propose in [83] a segmentation method using a Bayesian model of

the editing process. For each frame a local activity measure is computed based on a

tangent distance. In order to detect shot changes, this measure is compared (following

a Bayesian framework) to an adaptive threshold, depending on the a priori duration of

a shot and on the time elapsed between the previous shot change and the current frame

It.

Hanjalic et al [40] use also a statistical framework for the shot change detection,

which is modelled as a probability minimization problem of the average detection er-

ror. Detection criteria are linked with visual content discontinuity (based on motion

compensation) and knowledge about shot length distribution.
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Han et al [39] base their detection on gray-level or colour histogram differences

computed between successive frames using equation (17) or equation (19). A filter-

ing step combining an average clipping operation and a subsequent local convolution

is used to improve the shot change detection. The evolution curve of the filtered his-

togram difference value is analysed and decision for the detection of a shot change is

taken following a Bayesian framework. Detections of a cut or a gradual effect are re-

spectively linked with the presence in the evolution curve of a rectangular or triangular

shape.

5.8 Statistical approaches

Yilmaz et al [86] use Principal Coordinate System to perform shot change detection on

RGB frames. First, image rows are concatenated in order to obtain only one row vector

per colour component for each frame. We use the notations V (It, CR), V (It, CG) and

V (It, CB) for the row vectors associated with the Red, Green and Blue components.

Then the 3x3 covariance matrix M(It) of the RGB colour space is computed following:

M(It) =





V (It, CR)
V (It, CG)
V (It, CB)





(

V (It, CR)T V (It, CG)T V (It, CB)T
)

(86)

which requires 18 operations per pixel. Next the vector representing the principal axis

is selected and noted Vλmax
(It). We recall this vector is the eigenvector associated

with the maximum eigenvalue λmax of the covariance matrix. Finally two successive

frames are compared with respect to the angle between their respective principal axes

following the equation:

Detection if:

(

1 −
Vλmax

(It)
T Vλmax

(It−1)

‖Vλmax
(It)‖‖Vλmax

(It−1)‖

)

> T (87)

so the actual complexity is equal to O(18P).
Han et al [38] use also a principal component analysis to perform shot change

detection. First frames are subsampled and represented as column vectors. Then suc-

cessive frames are grouped in a temporal window. The mean vector µ and the empirical

covariance matrix M of this window are computed. Then the unique set of orthonor-

mal eigenvectors of M and their associated eigenvalues are obtained. Each frame in

the window is then projected onto the K eigenvectors corresponding to the K largest

eigenvalues. Finally shot changes are detected using the temporal variations of angle

and length of the K first principal components.

Li et al [55] based their algorithm on the computation of joint probability images

between frames. They use a spatio-temporal representation of the successive joint prob-

ability images obtained in order to detect shot changes. First a joint probability image is

computed (with a cost of O(2P)) between two frames, which consists in the frequency

of the co-occurences of intensity or chrominance values. Two similar images It1 and

It2 will be characterized by a joint probability image J(It1 , It2) composed of non-zero

values on the diagonal. A distance measure is then defined between two frames using
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the joint probability image:

DJ(It1 , It2) = 1 −

∑

(i,j)∈J ′

J(It1 , It2 , i, j)

∑

(i,j)∈J

J(It1 , It2 , i, j)
(88)

where J and J ′ represent respectively the set of all pixels (i, j) in the joint proba-

bility image and the set of all pixels near the diagonal line with a given tolerance δ

(i.e. J ′ = {(i, j) : |i − j| < δ}). As J and J ′ contain about N2 and N values, the

computation of DJ has a cost of O(N 2 + N ). If the value DJ obtained is higher

than a fixed threshold, several algorithms are used in order to confirm the presence of

a shot change. Dissolve effects are detected using histogram intersection performed on

spatio-temporal representations of joint probability images. This method is character-

ized by a complexity equal to O(2P + N 2 + N ).
Gong and Liu [34] perform shot change detection using the Singular Value De-

composition. Every frame is divided in 3 × 3 blocks on which a 3-D colour histogram

composed of 125 bins is computed. A vector of 1125 components is then obtained for

every frame. The video sequence is represented by a matrix which is processed by a

singular value decomposition algorithm. The K largest singular values are kept and are

used to compute a similarity measure between two frames. Detection of a shot change

is done by comparing the similarity computed between the two frames It1 and It2 with

a low and a high threshold. If the similarity measure is below the low threshold, no

shot change has been detected. On the contrary, if the measure is higher than the high

threshold, a shot change is assumed to be found. In the last case (i.e. the similar-

ity measure is between the two thresholds), a refinement step is performed involving

frames between It1 and It2 .

5.9 Hidden Markov models

Eickeler et al [26] use Hidden Markov Models to perform video indexing. Some of the

classes represent shot boundary frames. Several features are defined to describe each

frame, but only some of them characterize shot boundary frames:

d1(It) = min









X
P

i=1

Y
P

j=1

|P (It,i,j)−P (It−1,i,j)|

XY
,

X
P

i=1

Y
P

j=1

|P (It+1,i,j)−P (It−2,i,j)|

XY









(89)

d2(It) =

V
∑

v=0









|H(It, v) − H(It−1, v)|

−median





|H(It−1, v) − H(It−2, v)|,
|H(It, v) − H(It−1, v)|,
|H(It+1, v) − H(It, v)|













(90)

d3(It) =

X
∑

i=1

Y
∑

j=1

P (It, i, j) − P (It−1, i, j)

P (It, i, j) − 0.5P (It−1, i, j) + P (It+1, i, j)
(91)
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where d1(It), d2(It), and d3(It) represent respectively the intensity of motion, the me-

dian filtered intensity of difference histograms, and the ratio between the difference

pixel and the difference from interpolated pixel. These three measures need respec-

tively 6 operations per pixel, 6 operation per histogram bin, and 5 operations per pixel,

resulting in an overall complexity equal to O(11P + 6N ). After a learning step using

the Baum-Welch algorithm, segmentation is performed using the Viterbi algorithm.

A similar approach using Hidden Markov Models has been proposed by Boreczky

in [15]. The model is based on image, audio, and motion features. Classification of

a frame into a shot boundary class is done using only the image feature of the frame.

This feature is defined as a luminance 64 bin histogram difference similar to the one

described in equation (17).

6 Motion-based methods

As the nature of motion is usually continuous in a video sequence, it can also be used as

a criterion to detect shot changes. Based on this fact, several approaches using motion

information were proposed in the litterature. We review here methods based on global

(or camera) motion, motion vectors, optical flow, and correlation in the frequency do-

main.

6.1 Global motion

Cherfaoui and Bertin [20] detect shot changes in two steps. First the global motion

parameters are estimated using an affine transformation model. The estimated motion

is then used to classify a shot as fixed, pan, or zoom. If the motion is not coherent

through time, a shot change is assumed to be found.

Bouthemy et al [16] based their detection on a dominant multiresolution motion

estimation. This estimation uses a global 2-D parametric model composed of 6 param-

eters. Once the dominant motion has been estimated, a coefficient ωi,j is also available

for every pixel (i, j). It represents the coherence of the pixel with the dominant motion

estimated. Using a predefined threshold, it is possible to define the set of dominant

motion-coherent pixels in each frame. The evolution of the set size through time is

analysed in order to detect shot changes.

Zugaj et al [93] extend the previous method to wipe detection. Here only pixels

which are non-coherent with the estimated dominant motion are considered. For each

frame, two histograms are computed based on the number of non-coherent pixels along

horizontal and vertical axes. For every couple of frames, absolute differences between

corresponding histograms are computed and result in two other histograms. The corre-

lation between two successive absolute difference histograms is then measured along

the two axes. If one of the two correlation values exceeds a predefined threshold, an

horizontal or vertical wipe is detected.

Mann et al [60] proposed a method where global motion estimation is performed

using a 8 parameter model. They define “video orbits” as collection of pictures starting

from one picture and applying all possible projective coordinate transformations to that

picture using the 8 motion parameters. Two frames belonging to the same scene will lie
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in the same orbit or nearly so. So shot changes are detected when the distance between

the orbits of successive frames is higher than a threshold.

Complexity of global or dominant motion computation is usually estimated at O(20P)
when considering only 2-D translations.

6.2 Motion vectors

Akutsu et al [8] use a motion smoothness measure to detect shot changes. The index-

ing method uses subsampled video sequences and processes only one frame every k

frames. Then the selected frame is divided into 8x8 blocks and each block is matched

to a block in the next chosen frame. Motion vector is estimated thanks to the closest

matched neighbouring block, which is also used to compute the value of the corre-

lation coefficient. An interframe similarity measure can be defined as the average of

these correlations. Another measure called motion smoothness is defined as the ratio

between the number of blocks which have significantly moved and the displacement

of these blocks. Shot changes are finally detected in presence of local extrema in the

correlation and motion smoothness ratio values.

Shahraray [75] proposed a similar method. Subsampled video sequences are used

and every frame is divided in 12 blocks. A research is performed to match each block

from one frame to the most similar block (in a spatial neighbourhood) in the next frame.

Motion vector and correlation value are computed in a way similar to the Akutsu et al

method. Main difference with the previous method is the use of a nonlinear digital

order statistic filter. Correlation values are sorted into ascending order and the first

values and their respective motion vectors are used for the computation of an average

value which is considered as a similarity measure. As in [8], a local temporal extremum

in the similarity measure means shot change detection. A motion-controlled temporal

filter is used to avoid false detection due to motion.

Liu et al [58] based their method on motion compensated images obtained from

motion vector information. First motion vectors of frame It−1 are used to create a mo-

tion compensated version I ′t of the frame It. The next step is luminance normalization.

The motion compensated frame I ′t is normalized in order to get the same energy as

the original frame It. Normalized image is noted I ′′t . The original frame It is then

compared to the two modified frames I ′t and I ′′t using a modified version of the χ2 test

applied on their histograms. The result χ(It, I
′
t) is compared to an adaptive threshold

in order to detect cuts. Fade detection is based on the comparison between χ(It, I
′
t)

and χ(It, I
′′
t ) which are the two histogram differences computed previously.

When motion vectors are obtained using a fast block-matching technique (as the

three step search method or the 2-D log search method) and considering a search size

of 16 × 16 pixels, the complexity is estimated at O(75P).

6.3 Optical Flow

Fatemi et al [28] use optical flow as information to detect shot changes. First the video

sequence is divided into overlapping subsequences, defined as 3 consecutive frames

and a fourth predicted frame. Every frame is then divided into B blocks, which are

predicted from the first frame to the second one, and from the second frame to the third
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one. Finally a set of 3 matching blocks from the first three frames is used for block

prediction into the last frame. If the block prediction does not correctly estimate the

content of the last frame, a shot change is assumed to be found.

Optical flow computation is usually characterized in the litterature by a cost of

O(105P).

6.4 Frequency domain correlation

Porter et al [68] propose a technique inspired by motion-based algorithms. Correlation

between two successive frames is computed and used as a shot change detection mea-

sure. In order to compute the interframe correlation, a block-based approach working

in the frequency domain is taken. Frames are divided into blocks of 32 × 32 pixels.

Every block in a frame It−1 is matched with a neighbouring block in frame It by

first computing the normalized correlation between blocks and then seek and located

the correlation coefficient with the largest magnitude. The normalized correlation is

computed in the frequency domain instead of the spatial domain to limit computation

time. The average correlation is then obtained for a couple of frames. Shot changes are

detected in presence of local minima of this value.

Complexity of motion estimation obtained by computing the correlation in the fre-

quency domain is assumed to be similar to complexity of fast block-matching algo-

rithms, i.e. O(75P).

7 Combination of several methods

Even if most of shot change detection methods working in the uncompressed domain

can be categorized under pixel-, histogram-, block-, feature-, and motion-based meth-

ods, some cannot. In this section we will present some methods which do not enter in

the previously defined categories.

Two systems have been proposed by Quénot et al in [70]. The first one is dedicated

to cut detection and based on colour histogram comparison by χ2 test [61] followed

by a simplified version of the contour analysis algorithm [90] where the motion com-

pensation step is replaced by a dilation of the contour points. The two steps require

respectively 5 operations per histogram bin and 26 operations per pixel, so the overall

cost is equal to O(26P + 5N ). In the second method, motion compensation is per-

formed using optical flow. A direct analysis of the resulting images is done in order to

detect cuts, whereas first and second temporal derivatives of the images are compared

for progressive transition detection.

Gauch et al [33] detect shot changes thanks to the combination of three image

features: the average brightness of each video frame, the change in pixel values and

the change in colour distribution from two different frames. Shot changes are detected

if at least one of the two following conditions holds:

X
∑

i=1

Y
∑

j=1

P (It, i, j) < T1 (92)
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









(

X
∑

i=1

Y
∑

j=1

|P (It, i, j) − P (It−∆, i, j)| > T2

)

∧

(

255
∑

v=0
|H256(It, v) − H256(It−∆, v)| > T3

)











(93)

where ∆ represents the temporal skip and H256 the histograms quantified to 256 uni-

formly distributed colours. The two conditions are respectively characterized by a

cost of O(P) and O(3P + 3N ), resulting in an overall complexity of O(4P + 3N ).
Thresholds T1, T2, and T3 are initialized manually at the beginning of the video using

a priori knowledge and updated dynamically during the video analysis using statistical

information.

Yusoff et al [89] perform shot change detection by combining 5 algorithms. The

methods used are the average intensity measurement [37], the euclidean distance [84],

the histogram comparison [91], the likelihood ratio [45], and the motion estimation

method characterized respectively by a cost of O(3P), O(2B), O(3P +9N ), O(3P +
15B), and O(75P). The overall complexity is then O(85P + 9N + 17B). The last al-

gorithm uses prediction error computed as the sum of absolute differences between the

original frame and the reconstructed frame built using motion information. Final deci-

sion is obtained using a majority vote (there should be at least 3 algorithms detecting a

shot change to validate this hypothesis).

Sabata et al [73] perform fusion of multiple cues to parse video. The features

used are from different origins. One is linked to colour distribution, another is a set

of responses to several texture filters, some tracking information is also involved, and

finally edges in spatio-temporal volumes are computed. Colour feature is analysed

through the use of weighted histogram, defined for a temporal window [t1, t2] with

t1 < t2 as:

H(It1 , It2 , v) =
1

V

t2
∑

t=t1

w(t)H(It, v) (94)

with the weight w(t) computed using the one dimensional Gaussian function G(t)
multiplied by a normalization factor. Colour feature for the frame It is then defined as:

Dcolour(It) =
V
∑

v=0

(H(It−∆, It, v) − H(It, It+∆, v))2

H(It−∆, It, v) + H(It, It+∆, v)
(95)

Texture feature is analysed in a similar way using a set of 12 Gabor filters instead of

colour histogram. The 12 Gabor filters are computed using 4 values for θ and 3 for

λ, which represent respectively the orientation and the wavelength of the filter. The

next feature is linked to results of feature tracking, where a score is assigned to the

tracking in every frame. It is computed by weighting the contribution of each feature

from the last frame to the current frame using the weight 1 − e−
δi
k where the constant

k determines the sensitivity to the history of the track and δi represents the number of

frames in the past through which the ith feature was tracked. The distance measure

between two sets of frames [It−∆, It] and [It, It+∆] is then computed using difference

between their average track scores and their missed tracks ratios. The last feature used

is linked to spatio-temporal volumes. These volumes are built thanks to the projection
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of the video data along the (x, t) and the (y, t) planes, as in [67]. For a given sequence,

edges perpendicular to the t axis may indicate shot changes. So an average value of

the fraction of pixels covered by the horizontal edges for every set of frames to be

analysed is computed and is used as a probability measure of the existence of a shot

change. Once all the features are obtained, the final decision is taken according to the

result of a fusion process performed using a Bayesian network.

Naphade et al [64] detect shot changes using a K-means clustering algorithm using

two metrics per frame couple. The two metrics are respectively based on histogram

difference and pixel intensity difference defined in sections 2.1 and 3.1. Then all

couples of successive frames are classified, based on these two metrics and using a

K-means clustering algorithm with two clusters. The cluster characterized by higher

values represents frames containing shot changes. A final step is necessary to elimi-

nate false positive. Frames with a local maximum value for the histogram difference

metric are selected as shot change boundaries. The complexity has been evaluated to

O(4P + 9N ).
Oh et al [65] propose a three step method based on a Gaussian pyramid representa-

tion of the background area of images. Background area is defined as a concatenation

of three regions located respectively on the left, on the top, and on the right of the

image. The first step, called pixel matching, is based on the computation of the pixel

difference ratio, defined as:











X
∑

i=1

Y
∑

j=1

D(It, It−1, i, j)

XY











≥ 0.10 (96)

where D(It, It−1, i, j) is defined in equation (4). If this condition is satisfied, there

may be a shot change. So in a next step a matching is performed between signs of two

successive frames. A sign is defined as the pixel on the top of the gaussian pyramid.

The matching can be represented by:

(

1

256
max

k∈{R,G,B}

(

signBA(It, Ck)

− signBA(It−1, Ck)

))

≥ 0.10 (97)

where signBA(It, Ck) denotes the background area sign value of the Ck colour com-

ponent for the frame It. If this second condition is satisfied, the detection process

continues with a final step called background tracking. This is done by comparing sig-

natures of two successive frames. Signatures are 1-D arrays extracted from background

areas using Gaussian pyramid. The comparison is done by shifting the two arrays in

opposite directions. In each matching step, only the overlapping pixels in the matching

window are compared to determine the maximum continuous match, which is the max-

imum amount of consecutive pixels matched in the two frames. This measure is finally

compared to a certain threshold in order to determine the presence of a shot change.

Ferman et al [29] extend the K-means based-method proposed in [35]. The un-

supervised clustering process uses, for each couple of frames, two features which are

filtered histogram difference (derivated from equation (17)) and filtered pair-wise pixel

33



comparison (derivated from equations (5) and (6)). For a given distance measure D(It),
the filtering is done in two steps:

D′(It) = max

(

D(It) − mean
t′∈[t−∆1,t+∆1]

D(It′)

)

(98)

D′′(It) = max

(

D′(It) − median
t′∈[t−∆2,t+∆2]

D′(It′)

)

(99)

where ∆1 and ∆2 are temporal window lengths which have to be set. This method has

a complexity similar to [64], i.e. O(4P + 9N ).
Lee et al [51] also use a K-means clustering algorithm to perform shot change

detection. Every couple of frames is represented by a vector of two components which

are linked to pixel-based and histogram-based distance measures. The measures used

are normalized versions of those described in equations (2) and (17). A vector is then

composed of two features:













1
255XY

X
∑

i=1

Y
∑

j=1

|P (It, i, j) − P (It−1, i, j)|

1
2XY

V
∑

v=0
|H(It, v) − H(It−1, v)|













(100)

which need respectively 3 operations per pixel and 3 operations per histogram bin.

The complexity is then equal to O(3P + 3N ). Every couple of frames (It−1, It) is

classified using a 2-class K-means clustering algorithm applied on pairs of frames from

(It0 , It0+1) to (Itf−1, Itf
) where It0 and Itf

represent respectively the first and final

frames of the video sequence. The two classes represent the set of couples of frames

where a cut is present and its complement.

8 Complexity results

We reviewed in previous sections a great number of methods for segmentation of un-

compressed video sequences. In order to compare the different methods, we have to

select a criterion. Quality evaluation, as detailled in section 1.3, depends directly on the

selection of optimal parameters for each method. So we decide to compare reviewed

methods based on a complexity point of view rather than a quality one. As we are

focusing on real time video parsing, this criterion is also of highest importance.

In this section, we will present complexity of reviewed methods. More precisely,

theoretical and experimental results will be given.

8.1 Theoretical complexity

We present in tables 1 to 6 results of complexity computation for the different cate-

gories of video segmentation methods presented in this paper. Complexity computa-

tion results are given for most of the methods reviewed here. However complexity was
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not computed for some methods providing insufficient available information, as for ex-

ample video segmentation methods dealing with wavelet transform, Hough transform,

or motion compensation.

Methods with complexity annoted by ∗ are characterized by higher complexity be-

cause of the explicit use of colour. Other methods were considered in a gray-level

framework. Indeed, colour-based methods dealing with a subsampled colour space

(for example 64 bin colour histogram-based methods) are considered as gray-level for

complexity computation. For several methods, the complexity computed does not in-

clude some specific processing. So the actual complexities of the concerned methods

are in fact higher than values given here. We use the notation + in this case.

We also have to notice that complexity of methods dealing with histograms (mainly

those in table 2) does not include the cost of histogram computation. It is then necessary

to add a cost of O(P) to every method using histograms.

Block-based methods (table 3) may not be characterized by a lower complexity.

It is mainly due to extraction of block features which need a processing of all pixels

in the image. Some of these methods (like [53]) can be used to segment compressed

video sequences using for example the DC term as a block average value. In this case,

the real complexity is much lower than using uncompressed frames. The same remark

applies to several motion-based methods which detect shot changes using motion vec-

tors. These vectors can be directly available in compressed video sequences whereas

they have to be computed in uncompressed video sequences.

The theoretical estimations given here have been verified by actual experiments.

8.2 Experimental complexity

We estimated theoretically the complexity of most of the reviewed methods. In order

to verify these estimations, an important part of reviewed methods were implemented.

Experimental results are also given in tables 1 to 6.

As the computation time depends on the programming language and the computing

architecture used, results are given in a relative form rather an absolute one. Simple in-

terframe difference [61] being the fastest method, it is used as a reference computation

time.

Tests have been performed using gray-level or RGB colour video sequences. Im-

ages are composed of 192 × 144 pixels. The implementation of the reviewed methods

has been performed using Matlab programming environment. As we compare methods

on a relative basis, the absolute computation time is not critical. So we use Matlab

rather than C or C++ in order to limit implementation time.

Due to the Matlab implementation, some apparently strange results have to be ex-

plained. All methods performing a colour space conversion (chrominance histogram

difference, hue histogram difference, cosine similarity measure, block difference in the

HSV colour space, selective HSV histogram comparison, and HSV block dissimilar-

ity) are characterized by higher computation time as this kind of operation is quite

slow using Matlab. Block-based methods were implemented using Matlab blkproc

and colfilt functions to avoid loops, which perform really quite slow in Matlab.

As colfilt performs faster than blkproc (ratios observed experimentally are be-

tween 135 % and 175 %), it was used as often as possible. However, even if we use
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adequate Matlab functions, computation time of block-based methods stays high. Fi-

nally, motion-based methods are characterized by very variable computation times,

depending on the use or not of Matlab optimized functions. As motion vectors are ob-

tained using the block-matching technique which requires several nested loops, meth-

ods [8, 75, 58] using motion vectors show actual computation time worse than theoret-

ical complexity.

9 Conclusion

We presented in this paper a great number of methods for segmentation of uncom-

pressed video sequences. We focused on the complexity of these methods, contrary

to other previously published reviews. This criterion is particulary important for two

main reasons. First, uncompressed video contains a huge quantity of data, which is not

the case of compressed video. So video parsing method dealing with uncompressed

video will be characterized by their computational intensive aspect. Secondly, when

dealing with real-time video segmentation, we have to use methods known for their

low computational cost in order to process video at frame rate.

Results of this study show that the best method for real-time segmentation of un-

compressed video sequences should be selected considering efficiency and computa-

tional cost. Simple methods like interframe difference is one of the fastest method but it

is characterized by a poor quality. On the opposite, feature- or motion-based methods

or methods combining several algorithms are more robust and lead to better quality,

but they are also known to be greedy in computational resources. Another important

criterion to choose a method is the way of computing threshold values and the number

of thresholds. Future work will deal with the study of this criterion.
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Table 1: Complexity and relative computation time of pixel-based methods

Method and reference(s) Complexity Time

Simple interframe difference [61] O(P) 1.00
Template matching [61] O(3P) 2.11
Colour template matching [61] O(9P)∗ 5.29
Boolean difference [91] O(2P) 1.80
Improved boolean difference [91] O(4P) 2.60
Normalized difference energy [71] O(5P) 3.00
Normalized sum of absolute differences [71] O(5P) 2.58
Pixel labelling [79] O(15P)
Evolution of temporal derivative of pixel intensities [49] O(8P)+
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Table 2: Complexity and relative computation time of histogram-based methods

Method and reference(s) Complexity Time

Histogram creation O(P)
Color histogram creation O(3P)
Histogram difference [80, 61] O(3N ) 4.29
Chrominance histogram difference [31] O(6N )∗ 55.62
Highest histogram difference [69] O(9N )∗ 16.47
Hue histogram difference [5] O(4N ) 111.56
Normalized histogram difference [5] O(4N ) 12.18
Cosine similarity measure [66, 18] O(4N ) 45.84
Genetic algorithm [21] (colour histogram only) O(9N )∗+
Twin comparison [91] O(3N )
Squared histogram difference [71] O(6N ) 11.18
Kolmogorov-Smirnov statistic [71] O(3N ) 4.29
Ponderation relative to colour importance [22] O(3P + 9N )∗ 19.58
Ponderation after learning step [92] O(15N )∗+
Average colour [31] O(6N )∗ 21.56
Reference colour table [31] O(8N ) 12.29
Histogram intersection [31, 36, 43] O(2N ) 4.29
Normalized histogram intersection [31] O(4N ) 12.18
Original χ2 test [61] O(5N ) 12.29
χ2 test normalized by max [22] O(5N ) 12.27
χ2 test on colour histograms [35] O(15N )∗

Cross entropy [71, 46] O(4N ) 12.29
Divergence [71, 46] O(8N ) 12.27
Kullback Liebler distance [71, 46] O(11N ) 12.29
Bhattacharya distance [71] O(3N ) 12.27
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Table 3: Complexity and relative computation time of block-based methods

Method and reference(s) Complexity Time

Similarity ratio [45] O(3P + 15B) 85.29
Yakimovsky likelihood ratio [71] O(3P + 13B) 88.67
Freund statistic O(3P + 11B) 79.20
Block differences in the HSV colour space [52] O(2P + 10B)∗ 179.05
Colour histogram comparison [78] O(15NB) + 3B)∗ 206.42
Selective RGB histogram comparison [61] O(4NB + 0, 5B)+ 208.42
Rate of correlation change [82] O(4NB + 2B)
Block-based normalized histogram difference [5] O(4NB + 2B) 233.38
Selective HSV histogram comparison [50] O(6NB + 2B + 4P)∗ 300.00
Block-based HSI histogram comparison [13] O(4NB + B)∗

L*u*v* histogram intersection [19] O(12NB + 2B)∗

Histogram difference and likelihood ratio [25] O(3P + 3N + 21B)
Neighbourhood colour ratio [2] O(5P + 8B) 45.93
RGB block dissimilarity [23] O(9P + 3B)∗

HSV block dissimilarity [53] O(2P + 8B)∗ 114.25
Temporal and spatial subsampling [85] O(P + 5B) 36.45
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Table 4: Complexity and relative computation time of feature-based methods

Method and reference(s) Complexity Time

Moment invariants [12] O(23P)
Edge change ratio [90, 77] O(26P)+ 240.67
Edge-based contrast [56] O(25P)
Histogram difference, edge points count, double chromatic dif-

ference [87]

O(27P + 3N )

Planar points [76] O(51P)
Transition modelling using centroids [37] O(10P) 11.89
Transition modelling using histograms [1] O(2N 2 + 10N )
Histogram of pixel-pair differences [6] O(8P+

Transition modelling using mean and variance [56, 10, 9, 81, 30] O(3P)
Principal coordinate system [86] O(18P)∗ 35.95
Joint probability images [55] O(2P + N 2 + N )
Hidden Markov Model with 3 features [26] O(13P + 11N )
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Table 5: Complexity and relative computation time of motion-based methods

Method and reference(s) Complexity Time

Global motion [20, 16, 93, 60] O(20P)+ 80.80
Motion vectors [8, 75, 58] O(75P)+ 2312.73
Optical flow [28] O(105P)+
Frequency domain correlation [68] O(75P)+ 105.65
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Table 6: Complexity and relative computation time of other methods

Method and reference(s) Complexity Time

χ2 test and edge analysis [70] O(26P + 5N ) 243.07
Average brightness, pixel value change and colour distri-

bution change [33]

O(4P + 3N ) 16.47

Combination of 5 algorithms [89] O(85P + 9N + 17B)+
K-means using colour histogram and pixel intensity dif-

ferences [64, 29]

O(4P + 9N )∗

K-means using gray-level histogram and pixel intensity

differences [51]

O(3P + 3N )
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