
 Open access  Journal Article  DOI:10.1145/4078.4079

A review of recent developments in solving ODEs — Source link 

Gopal Gupta, Ron Sacks-Davis, Peter E. Tescher

Institutions: Monash University, Clayton campus, Melbourne Institute of Technology

Published on: 01 Mar 1985 - ACM Computing Surveys (ACM)

Related papers:

 Numerical Initial Value Problems in Ordinary Differential Equations

 A User’s View of Solving Stiff Ordinary Differential Equations

 Solving 1ODEs with functions

 Qualitative behavior of stiff ODEs through a stochastic approach

 
Review Paper: Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic
equations

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-review-of-recent-developments-in-solving-odes-
ze9joqpcnx

https://typeset.io/
https://www.doi.org/10.1145/4078.4079
https://typeset.io/papers/a-review-of-recent-developments-in-solving-odes-ze9joqpcnx
https://typeset.io/authors/gopal-gupta-46kb5d8pt1
https://typeset.io/authors/ron-sacks-davis-2fq1grsljq
https://typeset.io/authors/peter-e-tescher-55hipgawfd
https://typeset.io/institutions/monash-university-clayton-campus-42ot77iy
https://typeset.io/institutions/melbourne-institute-of-technology-3rnj7r68
https://typeset.io/journals/acm-computing-surveys-32i2aemk
https://typeset.io/papers/numerical-initial-value-problems-in-ordinary-differential-2acp0wi62z
https://typeset.io/papers/a-user-s-view-of-solving-stiff-ordinary-differential-3we2kazi3e
https://typeset.io/papers/solving-1odes-with-functions-7iqwpyubik
https://typeset.io/papers/qualitative-behavior-of-stiff-odes-through-a-stochastic-3zsdi3eu6j
https://typeset.io/papers/review-paper-efficient-numerical-methods-for-the-solution-of-4jlzfyyerb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-review-of-recent-developments-in-solving-odes-ze9joqpcnx
https://twitter.com/intent/tweet?text=A%20review%20of%20recent%20developments%20in%20solving%20ODEs&url=https://typeset.io/papers/a-review-of-recent-developments-in-solving-odes-ze9joqpcnx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-review-of-recent-developments-in-solving-odes-ze9joqpcnx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-review-of-recent-developments-in-solving-odes-ze9joqpcnx
https://typeset.io/papers/a-review-of-recent-developments-in-solving-odes-ze9joqpcnx


A Review of Recent Developments in Solving ODES 

GOPAL K. GUPTA 

Department of Computer Science, Monnsh University, Clayton, 3168, Australia 

RON SACKS-DAVIS 

Department of Computing, Royal Melbourne Institute of Technology, Melbourne, 3001, Australia 

PETER E. TISCHER 

Department of Computer Science, Monash University, Clayton, 3168, Australia 

Mathematical models when simulating the behavior of physical, chemical, and 
biological systems often include one or more ordinary differential equations 
(ODES). To study the system behavior predicted by a model, these equations are 
usually solved numerically. 

Although many of the current methods for solving ODES were developed 
around the turn of the century, the past 15 years or so has been a period of 
intensive research. The emphasis of this survey is on the methods and techniques 
used in software for solving ODES. 

ODES can be classified as stiff or nonstiff, and may be stiff for some parts of 
an interval and nonstiff for others. We discuss stiff equations, why they are 
difficult to solve, and methods and software for solving both nonstiff and stiff 
equations. We conclude this review by looking at techniques for dealing with 
special problems that may arise in some ODES, for example, discontinuities. 

Although important theoretical developments have also taken place, we report 
only those developments which have directly affected the software and provide a 
review of this research. We present the basic concepts involved but assume that 
the reader has some background in numerical computing, such as a first course 
in numerical methods. 

Categories and Subject Descriptors: A.1 [General Literature]: Introductory 
and Survey; G.1.7 [Numerical Analysis]: Ordinary Differential Equations 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Mathematical software, performance evalu- 
ation 

INTRODUCTION 

When simulating the behavior of physical, chemical and biological systems, 
mathematical models often include one or more ordinary differential equations 
(ODES). To study the system behavior predicted by a model, the equations 

Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1985 ACM 0360-0300/85/0300-0005 $00.75 

Computing Surveys, Vol. 17, No. 1, March 1985 



6 . G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

CONTENTS 

INTRODUCTION 
1. BASICS 

1.1 Local and Global Error 
1.2 Stability 
1.3 Stiffness ~ 

2. WHAT THE CODES TRY TO DO 
3. EVALUATION OF ODE SOFTWARE 
4. METHODS FOR SOLVING NONSTIFF EQUATIONS 

4.1 Runge-Kutta Methods 
4.2 Linear Multi&p Methods 
4.3 Extrapolation Methods 
4.4 Other Methods 

5. SOLVING STIFF EQUATIONS 
5.1 Difficulties in Solving Stiff Equations 
5.2 Linear Multistep Methods 
5.3 One-Step Methods 
5.4 Extrapolation Methods 
5.5 Second-Derivative Methods 
5.6 Blended Linear Multistep Methods 
5.7 Composite and Cyclic Multistep Formulas 

6. SPECIAL PROBLEMS 
6.1 Implicit Equations 
6.2 Differential-Algebraic Equations 
6.3 Discontinuities 
6.4 High-Frequency Solution 

7. CONCLUSIONS 
ACKNOWLEDGMENTS 
REFERENCES 

representing the model must be solved. Almost always numerical techniques 
must be used to obtain approximate solutions to the ODES since analytical 
techniques available are not powerful enough to solve any ODES except the 
simplest. For example, in the well-known example of simulating the population 
growth of rabbits and foxes, one of the models leads to the following two 
equations: 

dr 
z = 2r - arf, r(O) = r0, 

df 
- = -f+ arf, 
dt 

f(O) = fo. 

The variables r and f represent populations of rabbits and foxes, respectively, 
and t is the time. (Y, rot and f. are given. The derivatives therefore define the :rate 
of population change. (Y is a scalar that determines how strong the interaction 
between rabbits and foxes is. If it is 0, the foxes die of starvation and their 
numbers decrease exponentially (foeet), while the number of rabbits grows 
exponentially (rOezt) with time. The model is not particularly complex, and no 
time delays have been included. The growth rates at any time t depend only on 
the number of foxes and rabbits at that time. 

It is clear in the above model that the population growth of rabbits and foxes 
depends on the initial numbers of rabbits and foxes and that the above equations 
have a family (infinite number) of solutions. Problems like this in which initial 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 7 

values are specified at a particular value of t (to) are called initial value problems 
(IVPs). There is another class of problems called boundary value problems (BVPs) 
in which conditions are given at both endpoints rather than just at the initial 
point to. In the above example of rabbits and foxes, for example, if the initial 
number of rabbits is given and we want to estimate the number of foxes needed 
to limit the rabbit population to a given number at a specified time in the future, 
then the problem becomes a boundary value problem. We do not discuss BVPs 
in this review. 

In the next section we present some basic-concepts that are required to describe 
numerical techniques for solving ODES. We then discuss what the ODE solvers 
try to do. In Section 3 we discuss how ODE software has been evaluated in the 
last decade, and the problems associated with testing and comparing codes. In 
Section 4 we briefly discuss recent developments in solving nonstiff differential 
equations, giving some details of the available codes. In Section 5 we discuss 
some of the codes available for solving stiff equations, and some recent develop- 
ments that have not yet been implemented in production codes. We conclude the 
review by looking at some special difficulties that may arise when solving ODES. 

We do not attempt to cover all the numerous methods suggested in the 
literature during the past decade. 

1. BASICS 

We write a set of ODES as 

Y’ = 2 = fb, Y), Ybo) = Yo (y a vector). (1.1) 

We shall consider the solution of sets of first-order differential equations only. 
Users interested in solving higher order ODES can reduce their problem to a set 
of first-order equations. This is a trivial task (see Dahlquist and BjGrck [1974, 
pp. 330-3311). Although higher order equations can sometimes be solved more 
efficiently directly, very little software is available for doing this. 

Most numerical methods for solving a set of ODES compute a sequence of 
approximate solutions yi z y(Xi), i = 1, 2, . . . , f, where xf is the final value of X. 
Since the method is computing an approximation at each step of the sequence, 
errors are compounded at every step. To discuss the error behavior of numerical 
methods, we first define local error and global error. 

1.1 Local and Global Error 

Let (1.1) be the differential equation being solved, and assume that we have 
computed solution values yl, yz, . . . , y,, at points xl, x2, . . . , xn, respectively. To 
compute Y~+~, the numerical method attempts to solve the following problem: 

Y’ = fb, Y), YM = Yn* 
The numerical method is therefore trying to approximate the curve on which 
(xn, yJ lies, not the curve on which (x0, yo) lies. Let the solution curve on which 
(x,, y,,) lies be u,(x) and the original solution curve be y(x). The local error in 
the computed solution Y,,+~ is now given by 

1 n+l = Un(&+l) - Yn+l. 

This is the error made by the numerical method in one step. On the other hand, 
the global error at any point is the total error in the computed solution at that 
point. It shows how far the computed solution is from the original solution curve. 

Computing Surveys, Vol. 17, No. 1, March 1985 



8 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

We define the global error at x,,+~ as 

&a+1 = Yk+d - Yn+l 

= Y(Xn+l) - &l(Xn+l) + hz+1. 

Thus the global error has two components: one due to local error at the present 
step and the other due to local errors at previous steps. The relationship between 
local errors and global error is a complex one, depending on the problem being 
solved and the method being used. 

1.1.1 The Euler Method 

Closely related to the concept of local error is the concept of local truncation (or 
discretization) error. To explain this concept, we introduce the following simple 
method, called the Euler method, for computing a numerical solution of equation 
(1.1): 

Y~+I = in + hfh, m). (1.2) 

The local truncation error is defined as the difference between the left- and right- 
hand sides of (1.2) when the true solution values are substituted for the computed 
values. Therefore the local truncation error for the Euler method is given by 

d n+l = Y(x,+I) - YW - hfbn, Y(L)). 

An expression for d,+l may now be obtained by replacing y(~~+~) in the above 
equation by the following Taylor series expansion: 

Y (x,+1) = ybn) + hy’hn) + ; y”(x,) + * * * . 

Since y’(x) = f(x, y(x)), we obtain the following expression for d,+l: 

d n+l = $ y”(x,) + * * * . 

Local error and local truncation error are both indicators of the accuracy of 
the formula. They are the same for some formulas and are asymptotically (as 
h + 0) equivalent. It should be pointed out that subtle differences exist in various 
local error definitions found in the literature; however, in this review we ignore 
differences between the two for all formulas. 

Euler’s method is referred to as a first-order method since the local error is 
O(h’). In general, a method is said to be pth order if the local error is O(hp+l). 
If the local error is O(hp+l), then the global error is in general O(hp) for a stable 
method. 

The Euler method is an explicit method since it defines yn+l explicitly. A simple 
implicit method called the backward Euler method is defined as follows: 

yn+l = yn + hfh+l, Y,+I). 

To compute the solution using an implicit method, it is necessary to solve a set 
of nonlinear algebraic equations at each step. For the backward Euler method, 
we need to solve 

yn+l - yn - hfh+l, yn+d = 0. 

One simple technique for solving the above equations is the following iterative 
scheme: 

y!2;” = yn + hfh+l, Y!,?I). 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 9 

These iterations are called the simple iterations. A starting approximation y$i 
is needed to begin the iterations. 

Since implicit methods involve the additional cost of solving the algebraic 
equations, an explicit method is often preferred. However, implicit methods are 
necessary for some types of problems and usually have better stability properties. 

1.2 Stability 

TO study stability of a formula, it is often useful to analyze its performance on 
the following test problem: 

Y’ = XY, Ybo) = Yo. (1.3) 

The analytical solution of the above equation is y(x) = y&(‘-Q) so that for real 
X, the solution grows exponentially if X > 0, but decays exponentially for X < 0. 
This simple test problem has traditionally been used for stability analysis, since 
we can easily obtain analytic expressions describing the solution produced by the 
numerical method. Studying the behavior of a numerical method in solving this 
problem is also useful in predicting its behavior in solving other problems, since 
we may approximate the equation y ’ = f (x, y) by 

Y’ = $ (Y - Yo) + g (x - x3) + fbo, Yo). 

Over a small interval (x0, x0 + h), we may approximate df/dy by X if we are 
dealing with only one equation. We may then write the above equation as 

Y’ = VY - Yo) + QO, Yo). (1.4) 

The term F(xo, yo) rarely affects stability. Thus the test problem (1.3) serves 
as a good model for studying the general case y’ = f (x, y) on a small interval 
[x0, x0 + h]. If we are dealing with a set of equations, df/dy is a matrix called the 
Jacobian off, and then we may write 

Y’ = J(Y - YO) + %o, YO). 

Here J is the Jacobian off. The above system of equations may be transformed 
to a set of equations like (1.4) using a principal axis transformation. The 
parameter X is then an eigenvalue of J, possibly complex. 

We now study the behavior of the solution computed by the Euler method for 
the test problem (1.3). We obtain the following difference equation after substi- 
tuting Xy, for f (x,, yn) in (1.2): 

~n+l = in + hb,. 

The ratio of the computed solutions at x,+~ and x,, is given by 

Yn+1 
- = 1 + hX. 
Yn 

We compare this with the ratio of the true solutions at x,+1 and xn, which is 

Y (L+*) ++I 

-=-F=e 

hi 

Yh) 

Suppose that X is real. Then 1 + hX is a reasonable approximation to ehh except 
if hX < -2. For large negative hX, ehX is much smaller than 1, while 1 + hX is (in 
magnitude) greater than 1. 

Computing Surveys, Vol. 17, No. 1, March 1985 



10 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

This means that the numerical solution is growing while the true solution is 
decaying, and therefore we say that the numerical solution produced by Euler’s 
method for hX < -2 is unstable. 

Another way of looking at stability is to look at the propagation of local errors. 
For example, for Euler’s method the following expression may be obtained: 

where g, = y (jc,) - yn. If af/dy = X, we say that the errors are growing if 
11 + hX 1 > 1. Relative to the solution, the errors grow if hX < -2 and, for such 
step sizes, the formula is called unstable. 

We now define some stability concepts. A formula is called stable if the 
computed solution for hh = 0 does not grow. A formula is called A-stable 
if it produces decaying solutions for all hX values with Re(hX) < 0. A formula is 
called A(a)-stable if it produces decaying solutions for all hh values such that 
arg(-X) < (Y, hX # 0. The backward Euler method is an example of an A-stable 
method. 

1.3 Stiffness 

We now briefly discuss stiffness and the difficulties involved in solving stiff 
equations. As discussed earlier, a set of ODES y’ = f(~c, y) may be approximated 
by’ = J(y - yo) + C over a small interval. If J is diagonalizable, these equations 
may be transformed into z ’ = D(z - zO) + C*, where D is a diagonal matrix with 
eigenvalues Xi of J (possibly complex) on its diagonal and z is related to y by a 
principal axis transformation. 

Now assume that some eigenvalues Xi are negative and quite large in magnitude 
in comparison with the others. This implies that some components of the solution 
will decay very quickly and, for all practical purposes, may become zero. For 
components that are insignificant, we are usually interested only in their size, 
and do not need to compute them accurately. 

Suppose that we use an explicit method like Euler’s method to solve such a 
problem, where, for example, J has an eigenvalue X = -106. In order that the 
solution component corresponding to this eigenvalue not grow, the step size h 
must be restricted so that h < 2 x 10m6. It is possible that accurate approximations 
to the other solution components might be obtained with step sizes much greater 
than 2 x 10M6. In this case, it is the stability requirements rather than the 
accuracy requirements that are limiting the step size. 

The same situation can occur for complex eigenvalues with negative real parts. 
The problem is that Euler’s method is not A-stable or even A( a)-stable for any 
(Y < a/2. The same is true for all explicit methods like Euler’s method: No such 
explicit method can be A(a)-stable. We are therefore forced to use implicit 
methods, like the backward Euler method, to solve stiff systems. These methods 
require more work per step than explicit methods, however, since a system of 
nonlinear algebraic equations must be solved at each step. 

Stiffness is a difficult concept to define. To some extent, the definition of an 
equation’s stiffness depends on the method being used to solve it. For example, 
consider the restriction on the step size h < 2 X low6 introduced above in 
connection with Euler’s method. The factor 10e6 came from one of the eigenvalues 
of J (i.e., from the problem being solved), but the factor 2 is due to the method. 
Stiff equations can also be defined solely in terms of the eigenvalues of the 
Jacobian of the equations; they are characterized by the Jacobian having widely 
separated eigenvalues and having some eigenvalues with negative real parts of 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 11 

large modulus. For a detailed discussion of stiffness we refer the reader to 
Shampine [ 1982d], Lambert [1980], and Shampine and Gear [1979]. 

Equations that are not stiff are called nonstiff. Solutions to nonstiff equations 
are easier to obtain, and codes based on classical methods such as Adams formulas 
or Runge-Kutta formulas (RKFs) may be used. If these methods are used for 
solving stiff equations, they become very inefficient, since the step size is 
controlled by stability rather than accuracy requirements. For some problems, 
the classical methods may require several orders of magnitude more time than 
special methods designed for solving stiff equations. On the other hand, in those 
regions of problems in which accuracy is the dominant constraint on the step 
size, the classical methods are more efficient than stiff methods. 

Shampine and Gear [ 19791 discuss ways of determining whether equations are 
stiff. Very stable systems are likely to be stiff, for example, as are equations in 
which some variables change on time scales very different from others. However, 
it is not always possible to recognize a stiff system of equations since a system 
may be stiff in one interval and nonstiff in another. Shampine [1983] discusses 
measuring the stiffness of a given problem. 

The problems involved in solving stiff equations were probably first identified 
by Curtis and Hirschfelder [1952] although Dahlquist [1963] was instrumental 
in bringing the problem to the attention of the numerical computing community. 
The importance of stiff equations is discussed by Shampine and Gear [1979] and 
Bjurel et al. [1970], who present a comprehensive survey of application areas in 
which stiff equations arise. A more recent survey is presented by Aiken [1982]. 

2. WHAT THE CODES TRY TO DO 

Anyone interested in solving a (set of) differential. equations will usually want to 
compute the solution of (1.1) from an initial x value x0 to some final value xf. 
One may be interested in the solution only at the final point xf or want to 
compute the solution at several intermediate points. In some cases the concern 
may be to find the x value at which a component of y achieves a particular value. 
Interest may lie not only in obtaining a solution, but also in obtaining the solution 
to a specified accuracy. In addition to the complexities introduced by these 
considerations, the differential equations being solved may be stiff without one 
even being aware of it. 

Most software available for solving ODES may be divided in two classes- 
those for solving stiff equations and those for solving nonstiff equations. Some 
codes are capable of solving both stiff and nonstiff equations efficiently, but with 
few exceptions, the codes require the user to choose the option appropriate to his 
or her problem. The reason for having separate codes for stiff and nonstiff 
equations is that the two problem types require very different kinds of methods. 
However, there are good reasons for combining the two algorithms into one code; 
the user can then solve either type of problem and switch between methods, 
either manually or automatically. Codes that detect stiffness and automatically 
choose the appropriate method are called type insensitive. We discuss such codes 
in Section 5. 

Shampine and Watts [1984] discuss several software issues related to ODE 
solvers: First, it is important to recognize how the codes attempt to control the 
error in the computed solution. As noted previously, all ODE solvers compute 
the numerical solution using step-by-step methods. 

The code must control the error at each step so that it never exceeds a user- 
specified tolerance, and at the same time, for reasons of efficiency, the code must 
take as large a step size as possible. Most modern codes vary the size of the step 

Computing Surveys, Vol. 17, No. 1, March 1985 



12 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

whenever possible, and base the choice of the new step size on the estimate of 
the error made in the previous step. When that error estimate is far smaller than 
the specified tolerance, an increase in the step size is usually made. 

Most codes attempt to control only the local error made at each step and by 
controlling this error, expect to control the global error. Usually an ODE solver 
attempts to keep its estimate of the local error at each step, Z,, below KC, where 
c is the user-specified accuracy requirement and K is some safety factor, typically 
0.8. This is referred to as error per step control. However, a case can be made 
that a code taking larger step sizes should be able to allow larger errors at each 
step and still meet the user’s requirements. Therefore it has sometimes been 
suggested that the local error should be controlled such that 1, c K*ht. This is 
called local error per unit step control. Although error control per unit step seems 
desirable, it can lead to difficulties when the solution is changing rapidly and a 
low-order formula is being used. 

It is also possible to control the global error and attempt to meet the user 
requirement more closely. However, global error control costs more, since 
the differential equations must be integrated several times. A less costly approach 
is to estimate the global error in the computed solution, rather than to control 
it. Techniques of global error estimation are discussed by Stetter [1974, 1978, 
1979a], Shampine and Watts [1976], Zadunaisky [1976], Dew and West [1979], 
Dahlquist [ 19811, and Shampine [ 1982e]. 

Although controlling and estimating error in computed solutions is the most 
important issue in designing ODE codes, there are many other important consid- 
erations in making the codes robust as well as easy to use. For example, most 
codes now compute a starting step size to relieve the user from having to make 
this choice [Watts 19831. Many codes warn the user if he or she asks for too 
much accuracy or too much output, or if the integration is taking too long. 

Another particularly important issue for stiff ODE software is how to solve 
the set of nonlinear algebraic equations that must be solved at each step when 
using an implicit method. A code usually provides several options, so that the 
structure of the Jacobian can be exploited whenever possible. We discuss this in 
more detail in Section 5. 

If ODE solvers are to be used as black boxes, it is desirable that all ODE 
solvers have a very similar appearance to the user. A standard user interface will 
also make it easier for the user to change over to new software when better 
software becomes available. Hull and Enright [1974] made an early attempt to 
define a standard user interface for ODE solvers, and other attempts have been 
made since to design a standard user interface acceptable to ODE software 
designers as well as the user community. Although a standard interface has not 
evolved, these attempts have led to similar interfaces for most ODE solvers. 
ODEPACK interface is discussed by Hindmarsh [ 19831, while the user interface 
of the DEPAC collection of ODE solvers at the Sandia Laboratories is discussed 
by Shampine and Watts [1980]. Gladwell [1979] discusses the initial value 
programs in the Numerical Algorithms Group (NAG) library. 

3. EVALUATION OF ODE SOFTWARE 

As we shall see in the next two sections, there have been many methods proposed 
for solving ODES. Although a small subset of the proposed methods has been 
implemented in software that is robust, efficient, and portable enough to be made 
available to the general mathematical software community, there is enough 
software for solving ODES to make it almost impossible to select the “best” code 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 13 

without extensive testing. It is therefore essential to systematically evaluate and 
compare software so that only the best codes are made available to the user 
community. 

This can be a difficult task. Each code usually consists of a set of formulas and 
techniques to make the code efficient, reliable, and user friendly, and it is difficult 
to find an appropriate measure of efficiency for ODE solvers. To the user, a code 
is more efficient if it solves his or her problem in less CPU time. However, this 
criterion is both machine and problem dependent, and therefore not adequate 
for the evaluation of a code that will be used by many users. A code will be used 
to solve small and simple problems as well as large and complex ones. How do 
we measure its efficiency? 

The best-known work in evaluating nonstiff ODE software is that of Hull et 
al. [ 19721. Enright and Hull [1976a], Krogh [1973], and Shampine et al. [1975] 
have also tested nonstiff ODE solvers. Stiff ODE solvers have been tested by 
Ehle [1972], Enright et al. [1975], Enright and Hull [1976b], and Gladwell et al. 
[ 19791 and for a special class of problems by Gaffney [ 19841. The evaluation of 
codes has relied very heavily on using a battery of test problems. 

Two packages, DETEST, described by Hall et al. [ 19731, and STIFF DETEST, 
described by Bedet et al. [ 19751, have been produced at the University of Toronto 
and have had a great influence on the development of ODE software. Each 
original testing package has a collection of 25 test problems divided into five 
classes. Another class of problems was later added to each package, making a set 
of 30 test problems in each. To test an ODE solver, the appropriate package uses 
the code to solve the set of test problems at various accuracy requirements. 
Statistics are collected on CPU time, overhead time, number of function evalu- 
ations, number of steps, and, for stiff equations, the number of Jacobian evalu- 
ations and the number of LU decompositions. In addition, the packages monitor 
how well the code being tested controls the local and the global errors. A summary 
of statistics is produced for the code being tested. 

This approach, of course, has its weaknesses. For example, the test problems 
have to be small systems so that testing is not too expensive. The relative 
efficiency of ODE solvers is not important for small problems, since a relatively 
less efficient ODE solver will still produce a solution at an acceptable cost. While 
the relative efficiency of ODE solvers is of great importance for large systems, 
extrapolating the results of solving small systems to large systems is not always 
possible. Also, the presentation and interpretation of results obtained from 
battery testing can be difficult, since one code may do better on one set of 
problems and another may solve some other set more efficiently. In addition, if 
a code fails to solve one or more problems in the set, comparison of codes becomes 
very difficult. Recently Enright [1982] has discussed some of the problems in 
testing stiff ODE solvers, and Shampine [1981a] has critically looked at the 30 
test problems used in STIFF DETEST and made suggestions to improve them. 

In earlier testing, it was assumed that the set of formulas being used was the 
most important consideration in determining the performance of a code. This 
was the approach used by Hull et al. [1972], who numerically tested codes for 
nonstiff equations after modifying them so that each code attempted to do the 
same task. However, numerical testing by Shampine et al. [1975] has shown that 
the performance of a code can be seriously affected by other implementation 
considerations as well. As we have noted, testing and comparing codes is a 
complex problem, since codes differ not only in the task that they are performing 
but also in robustness, flexibility, ease of use, etc., and using test batteries to 
compare codes appears to be adequate only if the codes are similar. 

Computing Surveys, Vol. 17, No. 1, March 1985 



14 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

4. METHODS FOR SOLVING NONSTIFF EQUATIONS 

Most widely used codes for solving nonstiff ODES are based on the Runge-Kutta, 
Adams, or extrapolation methods. We briefly discuss these three classes of 
methods and the codes based on them. 

4.1 Runge-Kutta Methods 

The most widely used one-step methods are the Runge-Kutta formulas (RKFs). 
The RKF computes Y,,+~, the numerical approximation at x,, + h, using .the 
formula 

Yn+l = Yn + h i b/(&z + Cik Yi), 
i=l 

where the internal approximations Yr , YZ, . . . , Y, are given by 

Yi = yn + h i aijf(x, + cjh, yi), i = 1, 2, . . . , r. 
j=l 

Such a formula is called an r-stage RKF. For each internal approximation Yi at 
least one function evaluation is required. Therefore an r-stage RKF requires at 
least r function evaluations per step. 

The coefficients of a RKF are usually represented in the following tabular 
form: 

Cl all al2 -. - al, 

C2 a21 a22 . . . a2r 

. . 

L 

. . 

. . 

G arl an . . . arr 

bl bz . . . b, 

The RKF is explicit if aij = 0 for j L i and otherwise implicit. Explicit RKFs have 
been extensively used for solving nonstiff equations because they are easy to 
program. Because RKFs are one-step methods, there is no need for a special 
starting procedure or for the generation of past values when the step size is 
changed. Since the formulas are explicit, there are none of the complications 
involved in solving implicit equations at each step. The main drawback with 
explicit RKFs is that they require at least k function evaluations per step for a 
formula of order k. This is in contrast to Adams methods (discussed in the next 
section), which usually need no more than two function evaluations per step 
irrespective of the order. Thus explicit RKFs are not expected to be competitive 
with Adams methods when function evaluations are relatively expensive. 

Most recent codes use a pair of RKFs for error estimation as suggested by 
Fehlberg [ 19691. Two numerical solutions are computed by using two formulas 
of different orders. The error in the solution computed by the lower order formula 
is estimated by the difference in the two numerical solutions. This approach to 
error estimation is known as using an RK-Fehlberg pair. The higher order 
formula is constructed so that all the internal approximations that are required 
for the first formula are also used by the second formula. The higher order 
formula generally requires at least one additional internal approximation and 
therefore at least one more function evaluation. Several sets of RK-Fehlberg 
pairs have been derived by Verner [1978]. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 15 

Since we assume that the higher order solution computed for error estimation 
is more accurate than the lower order solution, we can argue that the higher 
order solution is the one that should be used as the approximation at the current 
step. The process of correcting the numerical solution by adding an estimate of 
the error in that solution is known as local extrapolation. Accepting the higher 
order solution is local extrapolation, and this device is frequently employed when 
using RK-Fehlberg pairs. In addition to obtaining a more accurate solution, it 
turns out that the stability properties improve slightly for explicit RKFs as the 
order increases. 

For a code to be efficient over a wide range of accuracy requirements, it is 
important that it be able to vary the order of the formulas being used. Such 
variable-order codes must estimate the error that would have resulted in using 
formulas of different orders. Most codes that implement RKFs are fixed-order 
codes. It is possible to design variable order RF-Fehlberg codes since embedded 
RKFs have been derived by Bettis [1978] and Verner [1979]. Bettis derives a set 
of embedded formulas from order 1 to 6, while Verner derives five sets of 
embedded formulas, which include two sets of formulas up to order 5, one set up 
to order 6, another up to order 7, and the last one has embedded formulas up to 
order 8. 

The difficulty with using such embedded formulas is that a greater number of 
function evaluations are required, as is illustrated by the last set in Verner 
[1979]. It is a set of formulas up to order 8, and the formula pair with orders 7 
and 8 requires 13 function evaluations. This is the number of function evaluations 
used by other RK-Fehlberg pairs of the same order. However, the embedded 
6, 7 pair requires 12 function evaluations, the 5, 6 pair requires 12 evaluations, 
and the 4, 5 pair requires 9. RK-Fehlberg pairs for these orders requiring only 
10, 8, and 6 evaluations, respectively, have been derived by Verner [1978]. Thus 
the embedded formula pairs for a given order require a greater number of stages 
in order that the code can consider a possible increase in order. A variable-order 
RK-Fehlberg code using a formula pair with orders 7 and 8 has been designed 
by Shampine et al. [ 19801. The formula pair with orders 7 and 8 has two embedded 
formula pairs with orders 3 and 4: One of these embedded formulas requires 4 
function evaluations and the other requires 13. 

Enright and Hull [1976a] tested a number of fixed-order codes based on RK- 
Fehlberg pairs and concluded that these methods were best when derivative 
evaluations were relatively inexpensive. Shampine et al. [1975] considered only 
two RKF codes, both of which used the same RK-Fehlberg pair. The code RKF4, 
by Hull and Enright [1974], accepted the fourth-order solution, while the code 
RKF45, by Shampine and Watts [1977, 19791, in effect performed local extrap- 
olation by accepting the fifth-order solution. Numerical testing showed that the 
code which performed local extrapolation was more efficient. 

Gupta [1980] has shown that high-order RK-Fehlberg pairs are quite efficient 
in many application environments. He concludes that if the cost of a function 
evaluation is less than the equivalent of 5 square root or exponential evaluations 
per equation, then a suitable RK-Fehlberg code is likely to be more efficient 
than an Adams code. It is not until the cost of function evaluations is more than 
the equivalent of about 50 square root or exponential evaluations per equation 
that Adams codes are clearly more efficient. The costs for many problems lie 
between these extremes, and for these problems the relative efficiency of a RK- 
Fehlberg code to an Adams code is difficult to predict. In addition to the cost of 
each equation, the number of equations being solved, the accuracy requirements, 
the compiler, and the machine being used will also affect performance, and 
considerations such as the required frequency of output must also be considered 
before deciding which code will be more efficient. 

Computing Surveys, Vol. 17, No. 1, March 1985 



16 . G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

Currently, two of the most widely used RK-Fehlberg codes are RKF45 of 
Shampine and Watts [1977] and DVERK of Hull et al. [1976]. DVERK is based 
on a pair of formulas of orders 5 and 6 derived by Verner [1978] and is available 
in the International Mathematical and Statistical Libraries (IMSL). RKF45 is 
available in the book by Forsythe et al. [1977]. 

4.2 Linear Multistep Methods 

A k-step linear multistep formula (LMF) computes the solution, Y~+~, at the 
current point from values yn+l-i and f(X,+l-i, yn+l-i), i = 1, 2, . . . , k, calculated 
at k previous points. The general form of a LMF is 

i. aan+l-i = h i. Pif(Xn+l-i, Yn+l-i)* 

Although many sets of LMFs have been derived, most LMF codes are based 
on the Adams formulas. Some of these codes are listed in Table 1. In this section 
we briefly discuss the theoretical basis of the Adams formulas before describing 
some of the strategies used by Adams codes. 

The Adams formulas are derived as follows. Suppose that we have past 
approximations yn+l-j to the true solution y(Xn+l-j), j = 1,2, . . . and that we have 
approximations fn+l-j = ftXn+l-j, Yn+l-j) to th e d erivatives at these points. It is 
required to advance a step from X, to x,+~ with step size h,+l = x,+~ - x,. Using 
the identity 

Y(X) = Yh) + S xk y(t)) dt, 

the kth-order Adams-Bashforth formulas may be regarded as approximating 
f( t, y(t)) over the interval [x,, x,+J by a polynomial &k,?(t) of degree k - 1, 
which interpolates the previously computed values fn+l-j, J = 1, 2, . . . , k. Thus 
the kth-order Adams-Bashforth formula is 

S 
X,+1 

Ypn+1 = yn + Qk,n(t) dt. 
+” 

(4.1) 

Similarly, if we define Pk,n(t) as the polynomial of degree k - 1 that interpolates fn+l-j, j = 09 19 * * * 9 k - 1, we derive the kth-order Adams-Moulton formula 

S 
x”+l 

Yrl+1 = Yn + Pk,n(t) dt. (4.2) 
X” 

The Adams-Moulton formulas are implicit, and consequently a set of nonlinear 
equations must be solved for Y,,+~. Rather than writing Y,,+~ in terms of y,, as in 
(4.2), we may express yn+l in terms of y P,+1 as follows. Subtracting (4.1) from 
(4.2) gives 

S 
X.+1 

Yn+l = Ypn+1 + (Pk,n(t) - &k,n(t)) dt. 

X” 

The polynomials Pk,n(t) and Qkrn(t) are of degree k - 1 and are equal at t,he 
k - 1 points X,+1-j, j = 1, 2, . . . , k - 1. Let f$+l = &+(&,+I). Then we may write 

Yn+n+l = Y:+I + &n+lhn+ltfn+l - fi+d, (4.3) 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES 

Table 1. Codes Based on Adams Formulas 

Code Reference 

DVDQ 
DIFSUB 
GEAR 
VOAS 
EPISODE 
STEP 
LSODE 

Krogh [ 19691 
Gear [1971b, 1971c] 
Hindmarsh [ 19741 
Sedgwick [ 19731 
Byrne and Hindmarsh [1975] 
Shampine and Gordon 119751 
Hindmarsh [ 19801 

where 

1 
s 

X,+1 
&,?I+1 = - 

(t - x,). * *(t - h-k+l) 

ha+1 x,, (x,+1 - -%z)* ’ ’ bn+l - &a-k+l) c&m 

The nonlinear equation (4.3) is solved at each step of an Adams code. When 
solving nonstiff equations, functional (or “simple”) iteration is used to solve 
equation (4.3). Thus we form the approximations 

h+l) = 
Yn+l yf+l + gk,n+hn+l(f (&+I, yiz:)l) - fi+d, 

where y?‘i = y$+i. 

m = 0, 1, . . . , 

The codes DIFSUB, GEAR, and LSODE iterate to convergence (i.e., until the 
difference between two successive approximations is sufficiently small) and allow 
a maximum of three iterations before a step is rejected. We may therefore refer 
to these codes as Adams-Moulton codes. However, the codes VOAS and STEP 
iterate only once and are referred to as PECE codes since each step consists of 
the four stages: Compute the Predicted value yPn+i; Evaluate f (x,+1, Y”,+~); 
compute the Corrected value Y,,+~ = y?il ; Evaluate f (x,+1, ycJl). After computing 
Y,,+~ the code will form an estimate of the local error. This estimate may be 
obtained by comparing the results of formulas of different orders. Let yZ+i be the 
solution obtained from the Adams-Moulton formula of order k + 1; thus 

S 
x,+1 

YZ+1 = yn + Pk+l,n(t) & 

X” 

(4.4) 

and we may use 

en+1 = yZ+l - Yn+l 

as an estimate of the local error. e,+l may be computed as a difference between 
predicted and computed values as follows. From (4.4) and (4.1) 

x,+1 
YZ+1 = Ypn+1 + s (Pk+l,n(t) - Qk,n(t)) dt. 

X” 

Thus 
+ 

Yn+l = YK+l + gk+l.n+lhn+l(fn+l - f!i+l). (4.5) 

From (4.3) and (4.5) we have 

e n+l = (gk+l,n+l - gk,n+lbn+l(fn+l - f;+l). 

The codes DVDQ and STEP actually accept the higher order value, YZ+~, as 
the approximation to y(~,+~). Thus these PECE codes predict using an Adams- 

Computing Surveys, Vol. 17, No. 1, March 1985 



18 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

Bashforth formula of order k and correct using an Adams-Moulton formula of 
order k + 1. Alternatively, they can be viewed as correcting the approximation 
JJ,,+~ of order k by adding in the estimated error to form 

yn+l + en+1 = yZ+l; 

this is again local extrapolation. 
After computing the estimate of the local error, the codes will choose an 

appropriate step size and order for the next step. All modern Adams codes are 
variable order. Since at the start of the integration, values from only one point 
are available, variable order codes usually start by using a one-step formula and 
then let the order-changing technique take care of the order being used. 

Codes vary the step size to take as large a step as possible consistent with the 
requirement that the local errors be less than a user-supplied tolerance. Two 
techniques are commonly used to implement variable-step size Adams methods. 
One technique assumes that the points x,+1-i, i = 1, 2, . . . , k - 1 in (4.1) and 
(4.2) are equally spaced. We can then express the Adams formulas in the 
conventional form 

Yn+l = Yn + h jio Pjfn+l-j, (4.6) 

where the coefficients fij, j = 0, 1, . . . , k are constant, In this approach, called a 
fixed-coefficient implementation, interpolation is used to generate approxima- 
tions to the solution at evenly spaced points when a step size change is required. 
The other technique, called a variable-coefficient implementation, does not 
require past values to be equally spaced. In this case we may still express the 
Adams formulas in the form (4.6), but the coefficients @j now depend on the step 
sizes used in the past steps. 

The amount of work that each implementation requires at each step differs. 
For a variable-coefficient, k-step Adams formula, the coefficients pj must be 
recalculated if the step size has changed during the past k steps. On the other 
hand, for fixed-coefficient formulas, the coefficients can be precomputed, but 
interpolation must be performed when the step size is changed. 

Gear and Tu [ 19741 show that codes based on fixed-coefficient implementations 
must restrict the frequency with which the step size or the order is changed in 
order to remain stable. Both theoretical and empirical results for the techniques 
indicate that the variable-coefficient implementations have better stability prop- 
erties [Brayton et al. 1972; Gear and Tu 1974; Piotrowski 19691. No such 
restriction is required for a variable-coefficient implementation [Gear and Tu 
1974; Piotrowski 19691, and variable-coefficient codes can change the step size 
more frequently. 

Another feature that distinguishes the codes of Table 1 is the way they 
represent the polynomials Qk,n and Pk,,, of (4.1) and (4.2). Rather than represent- 
ing these polynomials in ordinate form by storing the past values fn+l-j, j = 1, 2, 
. . . , k - 1, two popular representations are based on the use of either a vector of 
divided differences or a Nordsieck vector. 

If the divided differences [fn; fnml; . . . ; fn+l-j], j = 1, 2, . . . , k are used, then it 
is easy to update the representation of QkJt) from one step to the next, even 
after a change of step size or order. Furthermore, the divided differences are 
useful for estimating the local errors at different orders. This is the approach 
taken in VOAS. 

The codes DVDQ and STEP use a divided difference representation but store 
the scaled quantities h,+l(h,+l + h,) . . . (h,+l + h, + a . . + hn+z-j) [fn; f,,-1; . . . ; 

Computing Surveys, Vol. 1’7, No. 1, March 1985 



A Review of Recent Developments in Solving ODES 

Table 2. Prow-ties of Adams Codes 

l 19 

Code 

Local ex- 
trapola- 

Type tion Step size strategy Representation 

DVDQ, STEP PECE Yes Variable coefficient Scaled divided difference 
DIFSUB, GEAR, and LSODE AM No Fixed coefficient Nordsieck 
EPISODE AM No Variable coefficient Nordsieck 
VOAS PECE No Variable coefficient Divided difference 

fn-j+l] rather than the unscaled values. Since large values of the derivatives 
usually correspond to small step sizes, the scaled divided differences are less 
likely to vary in magnitude as much as the unscaled quantities. 

Another popular representation of Qk,“(t) was first proposed by Nordsieck 
[1962] and was popularized by Gear [1971a] and is based on storing the scaled 
derivatives hjQ&,(t)/j!, j = 1,2, . . . ,12, in what is often called a Nordsieck history 
vector. This is used in all the other Adams codes in Table 1. Jackson and 
Sedgwick [1977] show that the ordinate, divided difference, and Nordsieck 
representations are all related by coordinate transformations. 

If it is required to output the solution at user-specified points, then interpola- 
tion of the computed solution values is required. If the solution yout is required at 
x = xout, where x, I xout I r,+i, then yout may be calculated from the formula 

s 

%ut 
Yout = Yn + %At) &. 

+n 

Since a representation of F&,(t) has already been computed by the code, yO”$ can 
be computed very cheaply. Thus Adams codes are well suited to applications that 
require the output at a large number of points. Stetter [1979b] discusses various 
strategies for interpolating computed values in Adams codes. 

A summary of the different properties of the Adams codes appears in Table 2. 
The codes GEAR and LSODE are substantially modified versions of the code 
DIFSUB, developed by Gear [1971b, 1971c]. LSODE [Hindmarsh 19831, the 
more recent code, is a part of ODEPACK, a collection of codes developed at 
Lawrence Livermore Laboratories. Variations of these codes are widely available, 
appearing in both the IMSL and NAG libraries. These codes also contain options 
for solving stiff problems, which we discuss in Section 5.1.2. Excellent documen- 
tation for the code STEP appears in the book by Shampine and Gordon [1975], 
which describes all the strategies used by STEP and provides a listing of the 
code. The code also forms part of the DEPAC package developed at Sandia 
Laboratories. 

4.3 Extrapolation Methods 

The methods in this section are based on the Richardson extrapolation process. 
The technique is applicable if the computed solution y(t, h) can be expressed as 

y(t, h) = y(t) + i 7i(t)hi + O(hm+l)e 
i=l 

If such a series exists, we may approximate it by some function R,(t, h) with 
m + 1 unknowns determined by the following requirement: 

&z(t, hj) = Y(t, hi), j = 0, 1, . . . , m. 

Computing Surveys, Vol. 17, No. 1, March 1985 



20 ’ G. K. Gupta, R. Sacks-Davis, and l? E. Tischer 

y(t) can now be approximated by R,(t, 0), which is an approximation of order 
m. R,( t, h) may be a polynomial or a rational function. 

Gragg [1965] and Bulirsch and Stoer [1966] used this idea for solving nonstiff 
equations. The method that they suggested involves using a modified midpoint 
rule that has been shown to have an asymptotic expansion having only the even 
powers of h. A modification of the original code of Bulirsch and Stoer is presented 
by Fox [1971]. This code has been tested by Hull et al. [1972], Enright and Hull 
[1976a], and Shampine et al. [ 19751. The extrapolation code DIFSYl, developed 
by Hussels [ 19731, improves the performance of the original code of Bulirsch and 
Stoer with respect to the starting step size. Deuflhard [1983] has modified 
DIFSYl to produce a code DIFEXl, which is slightly more efficient; DIFEXl 
uses polynomial extrapolation, which is more efficient than rational extrapola- 
tion. 

Extrapolation methods must calculate a series of approximate solutions 
y(t, hj), ho > h > . - . > h, > 0. For the extrapolation process to be stable, the 
step sizes hj must decrease rapidly, and more work needs to be done in computing 
y( t, hj+l) than y (t, hi). Unlike linear multistep formulas, to achieve higher orders, 
the amount of work per step for extrapolation methods must increase substan- 
tially. To justify this large amount of work per step, higher order extrapolation 
methods require that large step sizes be used. The testing of Shampine et al. 
[1975] shows that the efficiency of extrapolation codes is impaired by factors 
that constrain the step size, such as stiffness or mild stiffness, lack of smoothness 
in the true solution (e.g., by the presence of discontinuities in the derivatives of 
the true solution), or by the need to output the solution at a number of closely 
spaced, user-specified points. For problems in which high accuracy is required 
and the solution is smooth, extrapolation codes can use very high-order formulas 
and can be very efficient when function evaluations are relatively inexpensive. 

4.4 Other Methods 

We have only discussed the more commonly used methods so far. Several other 
schemes for solving ODES have been suggested, and we briefly discuss two 
developments that seem particularly promising. 

4.4.1 Taylor Series Methods 

The first of these techniques is based on using the Taylor series expansion to 
compute approximate solutions to a given ODE. Since we have 

Y(G+I) = Y(-G) + hy’k) + ; y”hz) + - s.3 

the first two terms of the series are known at any initial point. If some more 
terms of the series could be computed at x,, a high-order approximation to y(:~,+i) 
may be computed. This is a classical technique, and J. C. P. Miller reportedly 
used it in 1946 by devising recurrence schemes for computing the terms of a 
Taylor series. More recently, Barton et al. [1971] designed an algorithm to 
automatically generate a set of recurrence relations for computing higher deriv- 
atives of y at xn, given the formal statement of the differential equation. Several 
refinements of this scheme have been suggested. For example, Barton [1980] has 
presented a scheme for solving stiff equations, and Corliss and Chang [1982] 
describe a Taylor series package ATSMCC, which, unlike earlier Taylor series 
packages, is a portable package written in FORTRAN. Corliss and Chang report 
that their package is efficient, especially at stringent accuracy requirements. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 21 

Since the Taylor series method deals with high-order ODES directly, it is likely 
to be more efficient in solving them than the conventional methods, which 
require that the higher order equation be converted to a set of first-order 
equations. 

4.4.2 Multirate Methods 

The second technique that we discuss here relates to a special class of problems. 
In some application areas, for example, simulation of certain electrical circuits 
and some real-time simulations, the set of ODES to be solved has components of 
the solution that vary at very different rates. If a conventional ODE solver is 
used to solve such problems, the step size is chosen to track the fastest component 
and the slow-changing components are computed too accurately. These problems 
differ from stiff equations in that here the fast components need to be computed 
accurately, while in stiff equations the fast-changing components have usually 
decayed and need not be computed accurately. It may be economical to partition 
systems with components varying at different rates and integrate each subsystem 
using a different step size although this introduces additional difficulties. Such 
methods are called multirate methods. For further details about these methods, 
their advantages and difficulties, we refer the reader to the relevant papers 
[Andrus 1979; Gear 1974, 1980; Orailoglu 1979; Wells 19821. 

5. SOLVING STIFF EQUATIONS 

Before discussing some of the methods and software for solving stiff ODES, we 
discuss the main difficulties in solving such equations. 

5.1 Difficulties in Solving Stiff Equations 

As noted earlier, there are two main difficulties in using classical techniques to 
solve a set of stiff equations: 

(a) The stability properties of the classical formulas (e.g., Adams methods or 
explicit Runge-Kutta methods) are not adequate for the solution of stiff 
systems. 

(b) While many implicit formulas do have adequate stability properties, they 
must solve a set of nonlinear equations at each step. An inexpensive method 
for solving nonlinear equations, such as simple iteration, can be used when 
an implicit formula is used to solve nonstiff ODES but cannot be used when 
the equations are stiff. 

Most research in stiff equations can be seen as attempts to overcome these two 
difficulties, and we discuss them in some detail. 

51.1 Stability 

We have already considered an A-stable formula (the backward Euler method in 
Section 1.3). Ideally, one would like to use a set of A-stable formulas to solve 
stiff equations, since such formulas are expected to perform in a numerically 
stable manner whenever the eigenvalues of the Jacobian of the ODES lie in the 
left half-plane. 

However, it is known that no LMF of order greater than 2 can be A-stable 
[Dahlquist 19631. It has also been proved that the maximum order of an A-stable 
method can not exceed 2q if the number of stages or derivatives used in the 
formula is q [Wanner et al. 19781. One could use A(ar)-stable formulas, but an 

Computing Surveys, Vol. 17, No. 1, March 1985 



22 l G. K. Gupta, R. SackeDavis, and P. E. Tischer 

A(a)-stable method can be expected to perform in a stable manner only if the 
eigenvalues Xi of the Jacobian are such that Im(Xi)/Re(-hi) I tan a. When this 
is violated, the stability is conditional on the step size h being used. 

Because of these constraints, the search for new methods for solving stiff 
equations has been along the following lines: 

(a) Finding LMFs of orders greater than 2 that are as close to being A-stable as 
possible. It is known that high-order, A(a)-stable formulas with (Y close to 
90 degrees exist [Kong 19771. 

(b) Finding formulas that are not LMFs and therefore may be A-stable for orders 
greater than 2. We shall see that this approach usually introduces new 
difficulties. 

Some of the developments along these lines are presented in Sections 5.2-5.7. 

57.2 Algebraic Equations 

We illustrate the difficulties that arise in solving nonlinear algebraic equations 
by considering the algebraic equations associated with LMFs. The equations for 
LMFs are straightfoward, and similar issues arise for implicit RKFs and other 
implicit methods. We follow the notation of Shampine [1979, 1980b]. 

At each step of an LMF we need to solve the following set of nonlinear algebraic 
equations: 

Yn+l - mfh+l, Yn+l) = 4, (5.1) 

where C$ is a constant that groups the contribution from terms at past points. 
The classical technique of solving the algebraic equations is simple iteration, 
defined as follows: 

In order for these simple iterations to converge, we must have ]I h/3, ~3f/~3yII < 1. 
Since for stiff equations I] df/13y ]I is usually large, the step size must be severely 
constrained to obtain convergence. To overcome this difficulty, codes for solving 
stiff equations usually resort to much more expensive schemes based on the 
Newton-Raphson method. 

The Newton scheme for solving the nonlinear algebraic equations (5.1) may 
be written as 

(I- hPoJ)(y!S’) - Y!$) = -Y!$ + hPofbn+l, Y!%> + 4. (5.2) 

The matrix (I - hPoJ) is usually called the Newton iteration matrix or, more 
simply, the iteration matrix. Every iteration of the scheme (5.2) involves the 
following costs: 

(a) Evaluation of the Jacobian and the formation of the Newton iteration matrix. 
(b) Factorization of the iteration matrix into LU form. 
(c) Fpward and back substitution to compute the correction to be applied to 

YZ. 

Each of these three items is expensive if N is large. The evaluation of J requires, 
in general, the evaluation of a matrix with N2 elements. The Jacobian must often 
be approximated by numerical differencing since supplying an explicit Jacobian 
is a tedious and error-prone task. This requires Nor N + 1 function evaluations. 
Forming the LU factors of the iteration matrix requires O(N3/3) operations, 
while the foward and back substitutions are O(N2) operations. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 23 

Fortunately, the costs incurred at each iteration can be substantially reduced. 
Since the Jacobian usually varies slowly, one approximation to the iteration 
matrix may be used for several steps. The resulting iterations are then called the 
modified Newton (or inexact Newton) iterations. Some of the widely used codes 
evaluate the Newton iteration matrix only once in every 6-8 steps, although the 
Jacobian (and possibly the step size and the coefficient &) may have changed. 
Klopfenstein [1971] and Krogh and Stewart [1984] discuss the effect of having 
an inaccurate Jacobian on the rate of convergence of the iterations. 

In practice, very large systems almost always have sparse structure in the 
coupling of the ODES, and the ability to exploit this structure is crucial to the 
success of any given type of stiff method. As an example of savings that may be 
obtained, a technique suggested by Curtis et al. [1974] may achieve substantial 
reductions in the cost of approximating the Jacobian by numerical differencing. 
This technique takes advantage of the known structure of the Jacobian. For 
example, banded Jacobians of half-bandwidth m can be formed by differencing 
using only 2m + 1 extra function evaluations regardless of the size of the system 
of equations. Coleman et al. [ 19841 have also developed software for numerically 
estimating sparse Jacobian matrices. 

Substantial effort has gone into finding techniques to reduce the cost of linear 
algebra when large systems of equations are being solved. Most of this effort has 
been along the following lines: 

(a) Exploiting the structure of the Jacobian so that the linear equations may be 
solved more economically. 

(b) Reducing the cost of updating the LU factors of the iteration matrix when J 
has not changed much but h& has. 

(c) Solving the algebraic equations using an iterative method rather than a direct 
method. 

(d) Automatically switching between simple iterations and Newton iterations so 
that the Newton iterations are used only when necessary. 

(e) Partitioning the set of equations into stiff and nonstiff subsystems and then 
using simple iterations for the nonstiff subsystem. 

(f) Using formulas that do not require solution of nonlinear algebraic equations. 

We discuss these developments in the above order. 

(a) One of the major sources of large stiff ODES is the method of lines 
technique for the numerical solution of partial differential equations (PDEs). 
Several packages for solving PDEs using the method of lines were developed in 
the early 1970s. Some of these packages were based on codes for solving stiff 
equations with modifications to make them more efficient for banded and sparse 
Jacobians [Carver 1976; Carver and Baudouin 1976; Chang et al. 1974; Hindmarsh 
1981; Seager and Balsdon 1982; Sherman and Hindmarsh 1980; Sincovec and 
Madsen 19751. Another early attempt to use sparse software for solving stiff 
equations related to a simulation package, the CSMP package [Gourlay and 
Watson 19741. 

Hindmarsh describes stiff equation software that provides facilities for solving 
banded as well as sparse linear equations [Hindmarsh 19831. Carver and Mac- 
Ewen [1981] studied the use of sparse matrix techniques in solving large stiff 
differential systems that arose from using the method of lines to solve PDEs. 
They show that some problems can be more efficiently solved if the Jacobian is 
approximated by a sparse matrix. 

(b) For LMFs the iteration matrix is of the form I - h&J. If we choose to 
retain the scaled iteration matrix J - (l/h&)1, then if either h or PO changes, 

Computing Surveys, Vol. 17, No. 1, March 1985 



24 . G. K. Gupta, R. Sacks-Davis, and P. E. T&her 

the new scaled iteration matrix differs from the current scaled iteration matrix 
by only a constant diagonal matrix. If the scaled iteration matrix is kept in its 
LU decomposed form, then the most efficient and stable way to obtain the LU 
decomposition of the new scaled iteration matrix is by forming the new scaled 
iteration matrix and subsequently its LU factors. Unfortunately, in this situation 
we cannot exploit the fact that the two matrices differ only by a constant diagonal 
matrix. Enright [1978] has proposed that the scaled iteration matrix be decom- 
posed into LHL-’ where L is a lower triangular matrix and H is a Hessenberg 
matrix. Then if 

J - cll = LHL-‘, 

we have 

J - czl= L(H + (cl - s)l)L-l. 

If the step size or the leading coefficient changes, we can very efficiently update 
the LHL-1 factorized form of the scaled iteration matrix. For a system of N 
differential equations the LHL-’ factorization costs O(5N3/6) operations as 
compared to the LU factorization cost of O(N3/3) operations. Solving a linear 
system with the iteration matrix in LHL-l form costs 0(2N2) operations com- 
pared to O(N2) operations when the matrix is in LU form. On the other hand, 
updating the LHL-1 factorization can be done in O(N) operations, while in the 
LU form the cost of a new factorization is O(N3) operations. In order to be able 
to solve linear systems more efficiently with the iteration matrix in the LHL-’ 
form, Enright suggests that the Hessenberg matrix itself be decomposed into LU 
factors Ll and Hl, where Ll is bidiagonal. This reduces the cost of solving the 
linear system to 0(3N2/2) operations while increasing the cost of updating the 
factorization to 0( N2) operations. 

The LHL-’ factorization can achieve considerable savings if the problem has 
a constant or slowly changing Jacobian and the number of equations is medium 
to large. It is not clear how this technique will perform when the Jacobian is not 
varying slowly. Also most large systems of equations are either banded or sparse, 
and the LHL-’ factorization is not able to exploit these special structural 
properties. 

(c) Nonlinear algebraic equations associated with the implicit method do not 
need to be solved very accurately. Thus, when the number of equations is large, 
the use of iterative methods for solving the equations may be more economical 
than Gaussian elimination. Since a good predicted value of the solution is almost 
always available, very few iterations will probably be needed. Hindmarsh [ 19761 
has designed software that uses a block successive overrelaxation iterative tech- 
nique for problems where the Jacobian has a block structure. This technique 
uses Gaussian elimination on each block. The iterative techniques investigated 
recently are all based on Krylov subspace methods of which the conjugate gradient 
is a well-known example. Gear and Saad [1983] and Chan and Jackson [1983] 
present such techniques. These methods only require computation of the product 
Jv for any given vector v, and the Jacobian J need not be stored. Chan and 
Jackson [ 19841 discuss iterative techniques and concentrate on methods that use 
an explicit Jacobian and use preconditioning that involves solving an equivalent 
system A*r* = b* (which is easier to solve) instead of the system Ax = b obtained 
in Newton iterations. Brown and Hindmarsh [1984] discuss an implementation 
of the incomplete orthogonalization method (IOM) of Gear and Saad [1983], 
which requires no matrix storage. Results of tests on equations of sizes up to 
16,000 are presented. Preliminary results suggest that iterative techniques are 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 25 

viable and may be much more efficient for large systems, both in terms of cost 
and storage. 

(d) Another way to reduce the cost of linear algebra is to use simple iteration 
whenever possible rather than Newton iteration. Most stiff problems have 
transient regions where small step sizes, corresponding to the dominant eigen- 
values of the problem, are needed to achieve the desired accuracy. In these regions 
the step size is so restricted by accuracy requirements that the problem is 
effectively nonstiff, and simple iteration may be used. Therefore the stiff codes 
could be made more efficient if they could automatically change to simple 
iteration whenever possible. Progress has recently been made in designing type- 
insensitive codes, which attempt to recognize whether the problem is locally stiff 
or nonstiff and automatically choose a suitable formula and iterative method. 
The first efforts by Shampine resulted in techniques for Adams and Runge- 
Kutta codes to decide whether stiffness was the reason they were performing 
inefficiently [Shampine 1977, 1980a]. More recently, Shampine has designed 
codes based on implicit A-stable and A(a)-stable formulas that can automatically 
recognize stiffness [Shampine 1981b, 1982a]. Shampine presents results of an 
experimental code where the convergence rate of the iterative method is moni- 
tored. At each step the code tries to select an iterative method that will converge 
quickly enough. Petzold has also developed an algorithm that detects both 
stiffness and the absence of stiffness and automatically selects between stiff 
(backward differentiation formula (BDF)) and nonstiff (Adams) methods [Pet- 
zold 1983a]. The algorithm is available in two variants of LSODE, namely 
LSODA and LSODAR [Hindmarsh 19831. 

(e) Often not all components of the stiff system being solved need the Newton 
iteration for convergence. Enright and Kamel[1979] suggest one scheme in which 
the nonstiff and stiff components can be partitioned in two separate subsystems. 
The nonstiff components can then be solved using simple iterations. Watkins 
and Hansonsmith [1983] suggest a more precise partitioning, provided that the 
number of stiff components is known and small. Bjorck [1983] suggests another 
partitioning technique that uses a modified QR method to factorize the Jacobian. 

(f) Although it seems that methods for solving stiff equations must be implicit, 
there is a class of formulas called linearly implicit that are not implicit in the 
usual sense [Lambert and Sigurdsson 19721. These formulas may involve less 
linear algebra than the usual implicit methods. When implicit methods use an 
approximation to the Jacobian as an aid to solving the algebraic equations at 
each step, linearly implicit formulas incorporate an approximation to the Jaco- 
bian into the actual formula and require the solution of at least one set of linear 
equations at each step. 

As an example, the following formula is a linearly implicit first-order formula: 

Y~+I = in + hfhz, YJ + hJOIn+1- ~“1, 

where J is an approximation to the Jacobian. 
The main drawback with linearly implicit formulas is that the nature of the 

approximation to the Jacobian can affect the stability properties of the method. 
In the above example, the order of the formula is not affected by the accuracy of 
J but the stability properties are. If J is the exact Jacobian, then the method is 
A-stable, but if we replace J by the zero matrix, then the formula reduces to the 
forward Euler method, which is not even A(O)-stable. 

5.2 Linear Multistep Methods 

For one-step methods, stability properties can be determined using an approach 
similar to that used in connection with Euler’s method in Section 1. For the 

Computing Surveys, Vol. 1’7, No. 1, March 1985 



26 . G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

linear problem y’ = Xy, we can determine the behavior of the ratio of computed 
solutions at successive points. For LMFs, on the other hand, the behavior of the 
problem y’ = Xy, is expressed by the following difference equation: 

k k 

Associated with this difference equation is a characteristic polynomial 

The LMF will produce decaying solutions for a particular hX, if all roots of 
this polynomial are less than one in magnitude. A description of some of the 
techniques used to determine the stability regions of a LMF (the region of 
the hX plane for which decaying solutions are produced) can be found in Lambert 
[ 19731. 

The most commonly used multistep methods for stiff equations are the ‘back- 
ward differentiation formulas (BDFs), discussed by Henrici [1962, Section 5.1- 
5.41. Indeed, the BDFs were being used for solving stiff equations by Curtis and 
Hirschfelder in 1952. Gear [1971b] implemented the BDFs in a variable-order, 
variable-step size code DIFSUB, which was probably the first such code for 
solving stiff equations. DIFSUB has proved to be one of the most efficient codes 
for solving stiff equations and its variants are still in widespread use. 

The derivation of the BDFs is discussed by Henrici [1962]. The formulas are 
based on a polynomial Pn+l(x) interpolating through ~,,-k+~, . . . , y,, and Y”+~. To 
obtain Y”+~ we require that P,,+l(x) satisfy the differential equation 

Y’ = f (x, Y) 

at x = x,+~. That is, the additional constraint 

P~+lbn+l) = f h+1, Yn+l) 

defines the BDFs together with the interpolation conditions and the requirement 
that Pn+l(x) has degree at most k. The first- and second-order BDFs are 
A-stable, and BDFs of orders up to 6 are A(a)-stable with the following (Y: 

Order 3 4 5 6 

Stability angle (Y 86.0 73.4 51.8 17.9 

Because of the small stability angle of the sixth-order BDF, some of the codes 
only use orders up to 5. An important property of the BDFs is that the 
characteristic polynomials of the formulas have zero roots at infinity (i.e., 
hX = 00). 

In spite of their relatively poor absolute stability properties, many widely used 
codes for solving stiff equations are based on BDFs. As noted in Section 4.2, 
GEAR and LSODE are improved versions of DIFSUB produced by Hindmarsh 
,[1974, 19801. All three codes can handle either stiff or nonstiff equations effi- 
ciently. The user, by setting parameters in the calling sequence, can select either 
the BDFs or the Adams-Moulton formulas as well as an appropriate corrector 
iteration method. GEAR and LSODE allow several types of corrector iteration 
methods. Several versions of GEAR and LSODE exist which have been specifi- 
cally written to solve implicit differential equations or large systems of differential 
equations where the Jacobian is either banded or sparse. Various versions of 
LSODE form part of the ODEPACK collection [Hindmarsh 19831. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 27 

The codes DIFSUB, GEAR, and LSODE use the Nordsieck representation 
and implement the BDFs as fixed-coefficient formulas. As discussed in Section 
4.2, when fixed-coefficient formulas are used, frequent step size changes can 
cause instability. Therefore, when using a formula of order q, the above codes 
keep the step size and order constant for q + 1 steps after the step size is changed. 

A variable-coefficient implementation of the BDFs is discussed by Brayton et 
al. [1972], who report that the variable-coefficient implementation was found to 
be much more stable than the fixed-coefficient implementation. However, the 
variable-coefficient implementation could also become unstable for some se- 
quences of step size changes. Byrne and Hindmarsh [1975] discuss another 
implementation using the Nordsieck representation of variable-coefficient BDFs 
in the code EPISODE. Extensive testing of EPISODE [Byrne et al. 19771 has 
shown that it may sometimes solve problems that could not be solved by the 
fixed-coefficient implementation. Curtis [ 19801 discusses the reasons for this and 
cites the performance of his code FACSIMILE, which uses a fixed-coefficient 
implementation of BDFs and does not fail on these problems. He argues that the 
failure of the fixed-coefficient codes on these problems may actually be due to 
the heuristics used in the codes and not necessarily to the fixed-coefficient 
implementation. 

The advantages of a variable-coefficient implementation are better stability 
and therefore the possibility of step size changes at each step. Those advantages 
do not overcome the two main problems of such codes: 

(a) Additional computing is required at the current step to compute the variable 
coefficients unless the last q steps have been taken with the same order and 
step size. 

(b) More important, if the formula’s coefficients are changing at each step, then 
the Newton iteration matrix W,+l = I - h,+&,J also varies. This means 
that either the iteration matrix must be updated more frequently or the 
iterations may converge more slowly. 

Jackson and Sacks-Davis [1980] have proposed a new scheme of changing step 
size. They suggest a technique in which the leading coefficient of the formula is 
unaffected by a change in the step size, and therefore the Newton iteration 
matrix changes as in a fixed-coefficient implementation. On the other hand, the 
other coefficients of the formula do depend on past step sizes, and the stability 
of implementations based on this technique of changing step size approaches 
that of a variable-coefficient implementation. 

Testing of stiff ODE solvers by Enright et al. [1975] and Enright and Hull 
[1976b] has shown that the BDF codes are the most efficient codes available, 
except for problems which have Jacobians having eigenvalues with large imagi- 
nary parts. The BDF codes become very inefficient for such problems, and a lot 
of research has been directed toward finding formulas that will perform better 
than BDF codes for such problems. 

One approach to finding new multistep formulas has been to consider k-step 
LMF, which have all roots zero at infinity but have order less than k, and thus 
have extra parameters that can be used to improve the A( a)-stability angle. This 
approach has been adopted by Klopfenstein [1971] and more recently Varah 
[1978] and Skelboe and Christiansen [1981]. For example, Skelboe and Chris- 
tiansen derive a sixth-order, eight-step formula which has all roots zero at infinity 
and is A (55.9”)-stable. For a given order, better A(a)-stability angles are obtained, 
but always with the added overhead costs of larger local truncation error coeffi- 
cients. 

Computing Surveys, Vol. 17, No. 1, March 1985 



28 l G. K. Gupta, R. Sacks-Davis, and P. E. T&her 

The second approach has been to consider kth order, k-step LMFs that do not 
have all roots zero at infinity. Nordsieck [1962] suggested that all LMFs are 
ultimately equivalent to finding a polynomial of some given degree approximating 
the solution of the differential equation. Wallace and Gupta [1973] develop a 
polynomial formulation of multistep methods. They show that a polynomial 
approximation to the solution is updated at each step by the addition of a multiple 
of a constant polynomial. This constant polynomial, which they call a modifier 
polynomial, uniquely determines the LMF. Wallace and Gupta [1973], Gupta 
[1976], and Gupta and Wallace [1975] have derived a number of families of 
LMFs. These families consist of kth order, k-step formulas, and can co:ntain 
A(a)-stable formulas with order as high as 12. They also derive A(a)-stable 
formulas of order less than or equal to six that exhibit larger stability angles 
than the BDFs of the same order. 

Gupta [1982] has implemented (in a code called DSTIFF) a family of formulas 
that use a modifier polynomial based on a least-squares approximation of previ- 
ously computed values. The code implements formulas that are A(cu)-stable, 
(Y > 62.78” and are stable up to tenth order. The local truncation error coefficients 
of the formulas increase in magnitude with increasing order, and the modulus of 
the largest root at infinity also increases with increasing order. For the formulas 
of sixth order and higher, the magnitude of the largest root at infinity is greater 
than or equal to 0.79. Gupta [1982] has recently compared the performance of 
DSTIFF with that of LSODE. His results indicate that DSTIFF is comparable 
in efficiency to LSODE. For stiff problems in which the eigenvalues of the 
Jacobian are close to the imaginary axis, DSTIFF is much more efficient. Over 
a range of problems LSODE generally takes fewer function evaluations and 
DSTIFF makes fewer Jacobian evaluations. DSTIFF also keeps the local error 
in the computed solution below the user-specified tolerance much more success- 
fully than does LSODE. In spite of the use of high-order formulas in DSTIFF, 
LSODE is more efficient at stringent tolerances. This seems partly to result from 
the large roots at infinity of the high-order formulas used in DSTIFF. 

5.3 One-Step Methods 

A considerable amount of research in recent years has been directed to the 
problem of solving stiff systems by using implicit one-step methods. Recently 
Cash [1982a] has presented a survey of implicit Runge-Kutta methods. In this 
section we look at some of the more promising developments in using im:plicit 
one-step methods for stiff systems. 

Butcher [1964a] investigated r-stage implicit Runge-Kutta formulas (RKFs) 
and showed that such formulas can be of order 2r. Ehle [1968] proved that an 
r-stage implicit RKF of order 2r is A-stable. The fact that implicit RKFs could 
be of high order and still be A-stable has attracted a great deal of interest, and 
several sets of A-stable implicit RKFs have been proposed by Butcher [1964b], 
Ehle [ 19681, and Chipman [ 19711. The main problem with all these formulas is 
that the solution of the resulting nonlinear equations is prohibitively expensive. 

Consider the following r-stage implicit RKF: 

~n+l = Yn + h i bif(xn + cih, Yi), 
i=l 

where the internal approximations Yi are given by 

x = Yn + h IZ ad(x, + cjh, Yj), i = 1, 2, . . . , r. 
j=l 

(5.3) 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 29 

In order to advance a step, it is necessary to solve the nonlinear equations (5.3). 
If there are N differential equations in the system (l.l), then for an r-stage RKF, 
the nonlinear system (5.3) consists of i’Vr equations. The solution of (5.3) can be 
achieved using a modified Newton scheme. 

At the kth iteration of the modified Newton scheme we compute the approxi- 
mation Yjk) to Yi, i = 1, 2, . . . , r. Let the residual 2:“’ associated with Yjk-l) be 
defined by 

,jk’ = -Yikel’ + JJ~ + h 2 agf(x, + cjh, Yjk-‘)). 
j=l 

Then in the kth iteration we obtain Yik’ by 

y(k) = ytk-1’ + Wjk) I L , 

where wik), i = 1,2, . . . , r are the solution of the following set of linear equations: 

- halzJ . . . - 

- huplJ I - haznJ ... - 
(5.4) 

Here I is the N X N unit matrix and J is an approximation to the Jacobian 
matrices J(x, + cjh, Y, @--l) Thus in the system (5.4) we solve for the r vectors . 
Wfk), i = 1, 2, . . . , r simultaneously. Each vector w!“’ has N components. 

Even for small systems of differential equations, implicit RKFs implemented 
in this manner may not be competitive with LMFs. Several attempts have been 
made to reduce the linear algebra costs associated with implicit RKFs. The 
earliest successful approach was by Bickart and Picel [1973]. (Although their 
approach was applied to composite multistep formulas, it is equally applicable to 
implicit RKFs.) The clearest description of a variation on the theme is that of 
Butcher [ 19761, who suggested the following scheme. 

Define the r x r matrix A = (aij) and let the Jordan canonical form of A-l be 

‘J”-lA-‘T = 

where pi is zero if Xi Z Xi+19 i = 1, 2, . . . , r - 1, zero or an arbitrary nonzero 
number if Xi = Xi+l. Let D be the r x r diagonal matrix with diagonal entries 
Xl, x2, . * * , L. 

Define the r x r transformation matrices P = (pii) and Q = (qij) by 

P = DT-l A-‘, 

Q = T-l, 

Computing Surveys, Vol. 17, No. 1, March 1985 



30 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

and consider the following transformations: 

i = 1, 2, . . . , r, 

dik’ = c pijzik’, 
j=l 

i = 1,2 , *--, r. 

Butcher [1976] and Bickart [1977] show that when expressed in terms of the 
transformed variables 6:“’ and i,‘“‘, the system (5.4) reduces to 

I - hXlJ 0 . . . 0 zi3P’ i$k’ 
- hcllJ I -h&J .-- 

I- i 

0 cp’ i&k’ 
. = . . (5.5) 

. 
. 

0 0 i Ll I:1 . . . I - h&J 6:“’ $4 

When using Butcher’s technique, we form the LU factors of each of the distinct 
diagonal blocks. To solve the linear system (5.4) at each iteration, we transform 
zf”’ to obtain 2,‘“’ solve the linear system (5.5), and transform Cjk’ to obtain w!“‘. 
In solving (5.4) directly we have to solve an Nr x Nr linear system: By using 
Butcher’s technique we can solve (5.5) by solving r, N x N linear systems 
sequentially. Note, when A has complex eigenvalues, we may be forced to use 
complex arithmetic in order to implement Butcher’s technique. 

For large differential systems, the cost involved in forming and factoring the 
iteration matrix is the dominant linear algebra cost, since this is an O(N3) 
operation for a system of N equations. For implicit LMFs, this cost is O(N3/3). 
When using Butcher’s technique, the cost of forming and factoring the iteration 
matrices is minimized when the matrix A has only one r-fold eigenvalue, in which 
case only one iteration matrix need be stored. This iteration matrix is of order 
N, and its LU factorization requires O(N3/3) operations. 

Implicit RKFs that are r-stage and whose coefficient matrix (ati) has only a 
single r-fold eigenvalue are known as singly-implicit RKFs and have been pro- 
posed by Burrage [1978] for the solution of stiff equations. The formulas have a 
maximum attainable order of r + 1 for an r-stage method. Burrage [ 19781 derived 
singly-implicit RKFs of orders up to 15. The formulas are A(a)-stable with 
a > 83”. 

At each iteration, a singly-implicit RKF requires two transformations, z”j”’ 
from zf”’ and wjk’ from tij”‘. For an r-stage formula this costs O(2Nr’) operations. 
Forming the residuals 2,‘“’ will require r function evaluations per iteration. For 
an implicit LMF, solving the linear system at each iteration will require O(N2) 
operations with one function evaluation necessary per iteration. For large differ- 
ential systems a singly-implicit RKF will require roughly r times as much work 
per step as an implicit LMF, since it will require roughly r times as much linear 
algebra per iteration and r times as many function evaluations as an implicit 
LMF. However, the dominant cost is the cost of the LU decomposition of the 
iteration matrix that is normally used for a number of steps, and this cost is the 
same for LMFs and singly-implicit RKFs. 

For small to medium-to-large differential systems, the cost of transforming the 
quantities zCk) and zZtk’ becomes comparable to the cost of solving the linear 
system (5.5). If, for example, there are 20 equations in the differential system 
and we are using a six-stage, singly-implicit formula, then at each iteration we 
are doing about half as many operations in transforming variables as in actually 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES . 31 

solving the linear system (5.5). For N = 20, r = 6, transforming variables costs 
2Nr2 = 1440, solving linear systems costs rN2 = 2400, while the N3/3 cost of an 
LU factorization is N3/3 = 2667. 

Burrage et al. [1980] implemented a family of singly-implicit RKFs in a code 
called STRIDE, using a transformation discussed by Butcher [1979]. Error 
estimation in the code is handled by embedding an r-stage, rth-order formula 
within an (r + 1)-stage, (r + l)st-order formula. Numerical testing by Gaffney 
[1984] indicates that STRIDE is expensive with respect to function evaluations, 
and is only likely to be competitive with BDF-based codes on problems in which 
the Jacobian of the system has eigenvalues close to the imaginary axis. Gaffney 
[1982] has also considered the cost of transforming variables in STRIDE, and 
found that when a stiff system of six equations was solved, approximately 48 
percent of the total CPU time was spent in transforming variables versus 34 
percent in solving linear equations. 

Ndrsett [1974] also proposed the use of a class of RKFs with reduced linear 
algebra costs, called semi-implicit RKFs. For semi-implicit RKFs the coefficient 
matrix A is lower triangular. Thus for these formulas the internal approximations 
Yi can be computed in the order i = 1, 2, . . . , r by solving r systems of N 
nonlinear equations sequentially. The maximum attainable order of an r-stage, 
semi-implicit RKF is r + 1, although for r even and less than 10, the maximum 
attainable order is r. Semi-implicit RKFs may have high order and may be 
A-stable. For example, sixth-order, six-stage A-stable formulas are known 
[Cooper and Sayfy 19791. 

Semi-implicit RKFs in which all the nonzero diagonal elements of the coeffi- 
cient matrix A are equal to some number X are termed diagonally implicit RK 
(DIRK) [Alexander 19771. Only one iteration matrix is necessary for DIRK 
formulas if a Newton iteration scheme is used to solve the nonlinear equations 
for the Yi. DIRK formulas are actually a subset of singly-implicit RKFs and may 
be implemented using Butcher’s scheme. However, most codes that implement 
DIRK formulas solve the sets of nonlinear equations sequentially. DIRK formulas 
require less computational effort per step than singly-implicit RKFs implemented 
using Butcher’s technique, but singly-implicit RKFs may achieve higher order 
for a given number of stages than DIRK formulas. 

Monoimplicit RKFs [Cash 1975, 1982b], (called implicit endpoint quudruture 
rules by Van Bokhoven [1980]), are a generalization of implicit RKFs. If we 
consider r-stage formulas of the type 

yn+l - yn = h i bif(xn + cjh Yj), 
j=l 

Yj = ajYn+l + (1 - 6j)Yn + h E aijf<xn + cih, Yi), 
i=l 

where bj, Sj, cj, and oij, i = 1, 2, . . . , r and j = 1, 2, . . . , r are constants, then if 
Sj. = 0 for all j, the formula is an implicit RKF. If, however, we have oij = 0, j 5 i, 
then the resulting formula is a monoimplicit RKF that is only implicit in a single 
unknown, Y~+~. The nonlinear system to be solved at each step is of size N, N 
being the number of equations in the differential system, but the Newton iteration 
matrix is now a polynomial of degree r in J, an approximation to the Jacobian. 

Singhal [1980] considered singly-implicit, monoimplicit RKFs, formulas in 
which the Newton iteration matrix factorizes exactly as the power of a single 
matrix, but found that such formulas were not in general competitive with LMFs. 
Cash [1982b] therefore considers an approach used by Skeel and Kong [1977], 

Computing Surveys, Vol. 17, No. 1, March 1985 



32 . G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

and derives low-order formulas for which the coefficient matrix of the Newton 
scheme nearly factorizes as a power of a single matrix. Cash also presents some 
numerical results which suggest that such formulas may be competitive with 
LMFs at low error tolerances. 

For problems in which the explicit Jacobian is easy to obtain and is not much 
more expensive than the evaluation of the function f, the following modified 
Rosenbrock formulas (also called generalized RKFs and ROW methods) may be 
suitable: 

Yn+l = Yn+h i m&i, 
i=l 

i-l i-l 

Eki = f(x,+Aih,y,+ 2 ai,jkj)+Bihf,(x,,y,)+ C Ci,jkj, i=l,2,. . . ,r, 
j=l j=l 

E = I--hYf,k,yn). 

ROW methods are a generalization, due to Wolfbrandt [1977], of a class of 
formulas proposed by Rosenbrock [ 19631. All these formulas are linearly implicit. 
A more computationally efficient formulation of ROW methods was found by 
Kaps and Wanner [1981]. An r-stage ROW method has a maximum order of 
F + 1 and requires the evaluation of the Jacobian and an LU decomposition at 
each step. It is, of course, possible to use an approximation to the Jacobian, but 
since J appears in the formulas itself, the use of an approximate Jacobian may 
affect the order of the method. 

Kaps and Rentrop [1979] have implemented two three-stage, fourth-order 
ROW methods. One of the codes is based on a formula that is A(89.3”)-stable, 
while the other is based on an A-stable formula. Because the formulas are low 
order, Kaps and Rentrop are able to approximate the Jacobian by numerical 
differencing at each step. The results of using the two codes to solve the 25 test 
problems in Enright et al. [1975] are presented and compared with the perform- 
ance of a BDF code. Kaps and Rentrop conclude that their codes were reliable 
and efficient in solving problems for which the number of equations is small and 
for which low accuracy was required. 

Shampine [1982c] discusses various aspects of designing a code based on 
Rosenbrock formulas. He presents details of a code, DEGRK, based on a pair of 
A-stable formulas of orders 3 and 4. Shampine’s code does not require the 
differential system in autonomous form, as the codes of Kaps and Rentrop [ 19791 
do, but the user must explicitly supply not only the Jacobian but also the 
derivatives #/&x. Results of numerical testing are presented to show that for the 
restricted class of small problems, DEGRK is efficient. The code is type insen- 
sitive and uses a RK-Fehlberg pair to solve the equations whenever the equations 
are locally nonstiff. 

Since an LU decomposition is required at each step, Rosenbrock methods are 
not likely to be suitable for medium-to-large systems. Steihaug and Wolfbrandt 
[1979] have considered a subset of ROW methods in which the Jacobian matrix 
in a ROW method can be replaced by a general matrix A without affecting the 
order properties of the formula. Such formulas are called W methods. As the 
matrix A is no longer assumed to be the exact Jacobian, W methods must satisfy 
a large number of order requirements. Currently, only low-order examples are 
known. 

Day and Murthy [ 19821 derive a second-order, A-stable W method that requires 
two function evaluations and the solution of five linear systems per step, and a 
third-order, A-stable formula that requires three function evaluations and seven 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES 9 33 

linear systems per step. Both formulas have an embedded lower order formula 
that can be used as an error estimator. Day and Murthy also derive a third-order, 
A-stable formula with a lower order embedded error estimator that requires two 
function evaluations and six linear systems per step. This formula is like a ROW 
method in that it requires the exact evaluation of the Jacobian at some point, 
but is also like a W method in that it can use this Jacobian approximation in 
subsequent steps. 

Since the stability properties of the formulas depend on how the matrix A 
approximates the Jacobian, any implementation of these W methods will have 
to monitor the outdatedness of the Jacobian approximation. This may prove an 
obstacle to an efficient implementation. For instance, the nonlinear stability of 
linearly implicit one-step methods such as ROW and W methods over a large 
class of nonlinear problems was investigated by Hairer et al. [ 19821. They showed 
that even if the methods were A-stable, extra conditions for the parameters were 
needed for the methods to produce contractive numerical solutions for sufficiently 
small h. This restriction on step size did not, however, depend on the stiffness of 
the differential equation, but on the second derivatives of the true solution of the 
differential equation. 

5.4 Extrapolation Methods 

Dahlquist [1963] discussed the use of extrapolation in solving stiff equations, 
indicating that extrapolation could be applied using the trapezoidal rule: 

Yn+l = Yn + ; (f( %l+l,Yn+l) + fbn,Yn)). 

Although the trapezoidal rule is A-stable, if these extrapolated values are used 
in subsequent computation, the resultant method is no longer A-stable. 

Lindberg [1971, 1972, 19731 has studied various questions connected with 
extrapolation using the trapezoidal rule and the following implicit midpoint rule: 

Y~+I = yn + hf x,+s, 

Both these methods have global error expansions in even powers of h only and 
thus seem well suited for repeated extrapolation. However, numerical oscillations 
are obtained when solving stiff equations using extrapolation, and the amplitude 
of these oscillations may sometimes be large. Lindberg suggested the use of 
smoothing and extrapolation together to get rid of these oscillations. He devel- 
oped a code IMPEX2; details are given in Lindberg [ 19731. The numerical testing 
of Enright et al. [1975] and Enright and Hull [1977b] indicates that. a version of 
IMPEXB was efficient at large tolerances but had difficulty solving problems 
which have strong nonlinear coupling. 

Liniger and Odeh [1972] discuss methods based on averaging of multistep 
methods, a technique similar to extrapolation. While in extrapolation you solve 
an ODE using one formula and various step sizes, in averaging solutions are 
obtained using several low-order multistep formulas. These solutions are then 
combined to obtain higher order solutions. For certain sets of formulas, the 
averages are A-stable. Algorithms of up to order 6 that are A-stable are presented 
by Liniger [ 19761. 

Bader and Deuflhard [ 19831 have developed an extrapolation method based on 
a linearly implicit analog of the explicit midpoint rule. For the method to achieve 
order 2m, m subintegrations must be performed. Each subintegration starts with 

Computing Surveys, Vol. 17, No. 1, March 1985 



34 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

a step taken using a linearly implicit analog of the backward Euler formula, and 
then m steps are taken using the linearly implicit midpoint rule. Each subinte- 
gration requires an LU factorization of the iteration matrix. To achieve fourth 
order requires two subintegrations, two LU decompositions, five function evalu- 
ations, and the solution of eight linear systems involving the iteration matrix. 
Achieving sixth order requires three subintegrations, three LU decompositions, 
ten function evaluations, and the solution of 15 linear systems. 

Bader and Deuflhard [1983] compared the performance of their extrapolation 
code METANl with the BDF-based code GEAR on 25 problems at three 
tolerances. They found that both codes took approximately the same amount of 
time to solve most problems, but that GEAR took fewer function evaluations 
and required far fewer LU decompositions. (At the tolerance of 10e6 METANl 
required more than twice as many LU decompositions as GEAR.) Thus, the fact 
that extrapolation codes require a number of LU decompositions per step means 
that such codes are not well suited to large problems unless they can take 
advantage of the structure of the Jacobian of the problem. Deuflhard et al. [1980] 
have also incorporated sparse matrix techniques into METANl to produce a 
code METASl, which is used in a package for the simulation of large differential 
systems arising in chemical kinetics. 

Shampine [1982b] has modified METANl to produce a type-insensitive code. 
If the code diagnoses the problem to be locally nonstiff, a trivial Jacobian 
approximation of J = 0 is used. The code therefore avoids always having to solve 
a number of linear systems at each step. 

5.5 Second-Derivative Methods 

Since no LMF of order greater than two can be A-stable, considerable interest 
has been shown in classes of formulas that do not suffer from this limitation. 
Enright [1972] derived a family of k-step second-derivative multistep formulas 
(SDFs). The formulas in this family are A-stable for order less than 5 and 
A(cu)-stable for order 5-9 inclusive. These formulas are also more accurate than 
the BDFs of corresponding orders. However, in order to apply these formulas, an 
approximation to the second derivative must be computed at each step. If the 
differential system is written in the autonomous form 

Y’(X) = f (Y(X)), 

then we have the relation y”(x) = J(y(x))y’(x). All current codes based on 
Enright’s formulas compute the second-derivative terms in this manner. They 
require that the equations be in autonomous form and that the user supply a 
routine for evaluating the Jacobian and a routine for evaluating the function f. 

Enright’s formulas are k-step LMF of the form 
b 

Yn+l = Yn + h 2 pjyL+l-j + h2yoyz+1. 
j=O 

(5.6) 

Like the Adams formulas, these formulas have the property that all extraneous 
roots at the origin are zero, and like the BDFs, all roots at infinity are zero. 
Enright chose the parameters pi, j = 0, 1, . . . , k and yo to achieve maximum 
order. Thus the formulas (5.6) that are k step are of order k + 2. The formulas 
up to order 4 are A-stable. 

In order to solve stiff systems using Enright’s formulas, the resulting systems 
of nonlinear equations have a Newton iteration matrix of the form 

W n+l = I - h&J - h2yoJ2, (5.7) 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 35 

where J is some approximation to the Jacobian at the current point. In order to 
form W,,+l a matrix multiplication is required. Thus forming the Newton itera- 
tion matrix in its LU factored form requires O(4N3/3) operations compared to 
O(N3/3) for LMF. 

Implementations of Enright’s formulas perform a lot more linear algebra per 
step than implementations of the BDFs. In addition to the matrix multiplications 
discussed above, Enright’s formulas entail other costs that do not appear in codes 
based on the BDFs, such as the matrix-vector multiplications required to form 
the second-derivative terms. On the other hand, since Enright’s formulas are of 
up to order 9 and have much smaller truncation error coefficients than the BDFs, 
they tend to require far fewer steps than codes based on the BDFs. Also, because 
of their better stability properties, SDF codes do not experience the difficulties 
that BDF codes have in solving stiff problems that contain eigenvalues with large 
imaginary parts. Test results indicate that for small-to-medium problems, SDF 
codes are competitive with BDF codes. However, for large problems the cost of 
forming W,+, as in (5.7) makes them relatively much more expensive. Also the 
requirement that the user supply an exact Jacobian makes SDF codes less suitable 
as general purpose codes. 

In his thesis, Enright [1972] presented a code SDBASIC for solving stiff 
systems. This code is a variable-step, variable-order implementation. It uses a 
one-step, two half-step error estimate and restricts step size changes to halving 
and doubling. Since then more efficient implementations, which use a predictor- 
corrector approach and estimate the error as a difference between predicted and 
corrected values, have been developed. These include the codes SECDER and 
SDSTEP [Addison 1979; Sacks-Davis 19801. 

Variations of Enright’s original formulas have been proposed. Since matrix 
squaring when forming W,+l involves 0 ( N3) operations, and may reduce sparsity 
and increase bandwidth, Enright [1974] considered ways of avoiding matrix 
squaring. He proposed a class of K-step SDFs of the form (5.6) that are of order 
k + 1 and for which /3: + 470 = 0. For these formulas, the iteration matrix W,+l 
of (5.7) can be expressed in the form 

W n+1 = 

Thus the need to form a matrix multiplication is avoided. However, the solution 
of a system of equations Wn+~x = b will now require two forward and backward 
substitutions rather than one. The resulting set of SDFs have poorer 
A( a)-stability properties than Enright’s original formulas. 

In another approach, Sacks-Davis and Shampine [1981] show that SDFs can 
be used to solve both stiff and nonstiff problems in a type-insensitive code. Since 
Enright’s formulas have small truncation error coefficients, they are suitable for 
solving nonstiff problems as well as stiff systems. The availability of the exact 
Jacobian leads to a natural test for stiffness based on the norm of h,+lJ. 

5.6 Blended Linear Multistep Methods 

Lambert and Sigurdsson [1972] present multistep formulas whose coefficients 
depend on both the step size and the Jacobian of the equations being solved. The 
accuracy of the Jacobian does not affect the order of the method. Skeel and Kong 
[1977] have proposed a subclass of these formulas as suitable for a general- 
purpose ODE solver. One of the aims of Skeel and Kong was to design a code 
that is efficient for stiff as well as nonstiff problems. 

Computing Surveys, Vol. 17, No. 1, March 1985 



36 . G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

Skeel and Kong’s approach is to take a linear multistep formula involving 
higher derivatives and convert it into a variable matrix coefficient LMF, in such 
a way that the order of accuracy and the stability properties are unaffected. For 
example, for linear problems, the (Iz + 2)-order SDF of Enright I19721 may be 
expressed as a blend of the (k + 2)-order Adams-Moulton formula and the 
(k + 1)-order BDF, 

(Enrightk+2) + (AMFk+2j + yzhJ(BDFk+‘), 

where J is the Jacobian and 7: is a constant. For example, Enright’s third-order 
formula is 

Yn+l - Yn - ;hf,,+l - &hf,, + &h2y;+1 = 0, 

the third-order Adams-Moulton formula is 

yn+l - yn - &hfn+l - ihfn + &hfn-1 = 0, 

while the second-order BDF is 

$.Yn+l - 2yn + &,-I - hfn+l = 0, 

and the blended formula that has the same absolute stability properties as 
Enright’s third-order formula is 

Yn+l - Yn - &hf,+l - ?ihfn + iihfn-1 - &J(&z+l - 2yn + &ml - hfn+l) = 0. 

It is easy to verify that Enright’s formula and this blended formula are identical 
for the linear problem y’ = Jy + C. By adjusting the coefficient 7: it is possible 
to improve the absolute stability region without sacrificing accuracy. In this case 
the corresponding SDF is lz + 1 step, (lz + 2) order. As remarked earlier, the 
SDFs of Enright [1972] have Newton iteration matrices that are quadratic 
polynomials in the Jacobian, and cannot be reduced to a product of real linear 
factors. Skeel and Kong have implemented their formulas in a code called 
BLENDED DIFSUB, and avoid this difficulty by choosing to use an approximate 
Newton iteration matrix, which can be expressed as a perfect square in a real 
linear factor. It is not clear what effect this approximation has on the rate of 
convergence of the iterations. 

Compared to the LMFs, the blended formulas require an extra matrix-vector 
multiplication per iteration, and, when stiff equations are being solved, the exact 
Newton iteration matrix is quadratic in the Jacobian. However, the family of 
formulas presented by Skeel and Kong [1977] are A-stable up to order 4 and 
A(cY)-stable up to order 12. Skeel and Kong compared the performances of the 
BDF code DIFSUB and a modified form of DIFSUB that implements blended 
LMFs, and found that the blended code was better than the BDF code in solving 
nonstiff equations and much better in solving stiff oscillatory problems. For 
other problems, it seems the performance of blended code is similar to that of 
DIFSUB. However, as we have noted, the blended LMFs do incur some extra 
computational expense at each iteration. 

5.7 Composite and Cyclic Multistep Formulas 

One way of overcoming the limitations of LMFs with respect to the achievable 
order of A -stable formulas is to use a number of LMFs together to simultaneously 
compute the solution at a number of points. Such a scheme is known as a 
composite LMF. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 37 

Rosser [1967] and Shampine and Watts [1969] propose the following type of 
formulas, which compute a block of r new values of y at each stage by using r 
LMFs of the following type: 

i acyn+j = eiyn + h4fn + jil hjfn+j, i = 1, 2, . . . , r. 
j=l 

(5.8) 

The r LMFs are used together to find Y~+~, Y~+~, , . . , yn+r simultaneously. The 
main advantages of such methods are the possibility of high-order, A-stable 
methods. In the composite scheme (5.8), the computation of a new block of values 
requires past values from only one point, and therefore changes in the step size 
can be made easily after each block has been computed. Schemes like (5.8) are 
also referred to as block-implicit one-step methods and have been discussed by 
Watts and Shampine [ 19711, Bickart and Picel [ 19731, and Williams and DeHoog 
[1974]. Sloate and Bickart [1973] present a fourth-order A-stable method using 
two three-step LMFs, and they also present details of an implementation. Their 
formulas require values at two past points. 

In common with implicit Runge-Kutta schemes, these schemes generally have 
one main drawback. If a composite LMF calculates r new values at r points, it 
generally requires the solution of a system of rN nonlinear equations, N being 
the number of equations in the differential system. The methods proposed for 
reducing the linear algebra costs associated with implicit RKFs can also be 
applied to composite LMFs. In fact, the technique of Bickart [1977] was originally 
applied to composite multistep formulas. 

We saw in Section 5.3 that a semi-implicit RKF can be implemented in such 
a way that r sets of IV implicit equations need to be solved sequentially in each 
step. Semi-implicit RKFs have composite LMF analogs in the cyclic composite 
LMFs, also known as cyclic LMFs. These methods use r LMFs in a set order to 
calculate the solution sequentially at r points. In this way, r systems of N 
nonlinear equations are solved successively to generate the solution at r points. 
If all the formulas in the cyclic formula have the same Newton iteration matrix, 
the cost per cycle is the same as that of using a single LMF for computing the 
solution at all r points. 

Donelson and Hansen [ 19711 derived stable cyclic LMFs from k-step LMFs of 
order 212 - 1 for k = 2,3, and 4. In so doing they showed that a cyclic LMF could 
be stable even though its constituent LMFs were not. Furthermore, their methods 
were shown to be globally convergent to order 2k. Thus they also demonstrated 
that a cyclic method could have higher order than the order of its constituent 
formulas. Albrecht [1978] has given general conditions for determining the order 
of a wide class of methods, and shows how his results apply to composite LMFs 
and in particular to cyclic methods. Mihelcic [1977] derives A(a)-stable cyclic 
LMFs that have order greater than their step number. 

Tendler et al. [1978] derive A(a)-stable cyclic LMFs that are kth order, k step 
for k = 3, 4, . . . , 7 and display better A(a)-stability properties, order for order, 
than the BDFs. The third- and fourth-order cyclic formulas use three LMFs 
cyclically, while the higher order cyclic formulas use four. By incorporating the 
first- and second-order BDFs, Tendler et al. [ 19781 have implemented their cyclic 
formulas in a code called STINT. STINT is efficient for stiff problems where 
the Jacobian of the system of equations has some eigenvalues with negative 
real part and close to the imaginary axis, but otherwise it is less efficient than a 
BDF-based code such as GEAR or LSODE. 

Tischer and Sacks-Davis [1983] focus their attention on two-stage cyclic LMFs 
(i.e., cyclic LMFs that only use two LMFs cyclically), and show that a two-stage 

Computing Surveys, Vol. 17, No. 1, March 1985 



38 9 G. K. Gupta, R. Sacks-Davk, and P. E. Tischer 

cyclic LMF has the same stability properties as a SDF. By constructing two- 
stage cyclic LMFs to have the same stability properties as a family of SDFs, 
a family of cyclic LMFs is derived that is A-stable up to order 4 and 
A(a)-stable up to order 8. These formulas have better A(cr)-stability properties, 
order for order, than the formulas used in STINT and have certain other 
advantages. In particular, these formulas use fewer stages, and all the stages in 
the cycle have the same leading coefficient and therefore the same Newton 
iteration matrix. These formulas also have better A (&)-stability properties, order 
for order, than the BDFs, but the local truncation error coefficients of the stages 
of the cyclic formulas are larger than the local truncation error coefficient of the 
BDF of the corresponding order. Tischer and Gupta [1983] discuss several more 
sets of cyclic LMFs, and present results of a performance evaluation showing 
that some sets of cyclic LMFs are quite efficient for solving stiff equations. 

We have considered a number of alternatives to implicit LMFs for solving stiff 
equations, but only cyclic LMFs can be implemented in a way that requires the 
same amount of linear algebra per step as implicit LMFs. Since there are cyclic 
LMFs that have better A (a)-stability properties, order by order, than the BDFs, 
it seems that the use of cyclic LMFs for solving stiff systems of equations may 
lead to codes that are more efficient than BDF codes. 

6. SPECIAL PROBLEMS 

In practice, differential equations often have additional features that ODE solvers 
should be able to deal with. As discussed by Gear [ 1981,1982] and Thomson and 
Tuttle [1982], one or more of the following features occur frequently in problems 
being solved by practitioners. 

6.1 implicit Equations 

Suppose that the differential equations to be solved are of the form 

F(x, Y, Y’) = 0. 

If dF/ay is nonsingular, the equations are called implicit ODES and the methods 
we have discussed so far do not directly apply to them. They can arise, for 
example, when the method of lines based on collocation is applied to the solution 
of PDEs. 

Many implicit ODES can be written in the form 

Ab, Y)Y’ = gb, Y), 

where A(x, y) is a N x N matrix. An obvious approach to solving such implicit 
equations would be to invert the matrix A and convert the equations to the 
conventional form (l.l), but this is neither necessary nor desirable. Hindmarsh 
[1981,1983] discusses LSODI, a version of LSODE, for solving implicit equations 
directly. 

6.2 Differential-Algebraic Equations 

If the set of equations to be solved consists of both algebraic and differential 
equations, the equations are called differential-algebraic equations (DAEs). The 
equations may be written as 

Fh, Y, 2, Y’) = 0, Ybo) = yo, 

Fzb, Y, 4 = 0, 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 39 

where Fl is a set of N equations and FZ of M equations (N z M). The implicit 
equations are obviously a subset of the differential-algebraic equations. 

An early approach to solving these equations was suggested by Gear [1971d]. 
Gear suggested using ODE methods for solving the above equations. For example, 
by using the backward Euler method, y’ may be approximated by a backward 
difference of y and then the following nonlinear equations need to be solved at 
each step: 

Fl 
(Yn+l 

xn+l, Y~+I, zn+l, 
(x,+1 

Ezh+1, Yn+l, zn+d = 0. 

Such techniques seem to work quite well for many DAEs, but only recently it 
has been discovered that such methods may not always converge, especially if 
the step size is not fixed [Petzold 1982; Gear and Petzold 19841. A code for 
solving DAEs is described by Petzold [1983b]. 

6.3 Discontinuities 

One or more derivatives of the solution of a set of differential equations sometimes 
have discontinuities because of the nature of the model. For example, the model 
may involve some valves that close or open at some critical value of a variable. 

If an ODE solver is not designed to locate a discontinuity, the code is likely to 
become very inefficient near a discontinuity. A discontinuity may appear without 
warning. However, the user often knows when a discontinuity will occur, in 
which case, a code should have facilities to enable the user to describe the 
discontinuity in the form of a function that becomes zero at the discontinuity. 
Root-finding techniques can then be used to locate the discontinuity, and appro- 
priate action may then be taken. This may include a special technique for passing 
the discontinuity and restarting techniques if the code is based on multistep 
methods. A version of LSODE, called LSODAR, has facilities for root finding to 
help locate a discontinuity [Hindmarsh 19831. 

If, however, it is desired that a code should be able to detect a discontinuity 
that appears without warning, then the code must make additional tests at each 
step at which the error test fails. Further details about dealing with discontinuities 
are given by Carver [ 19771, Ellison [ 19801, and Gear and QIsterby [1984]. 

6.4 High-Frequency Solution 

Differential equations which have highly oscillatory solutions that do not damp 
out cannot be efficiently solved using the methods discussed so far. The presence 
of high-frequency solutions in ODES is sometimes erroneously referred to as 
stiffness. This causes unnecessary confusion because obtaining solutions to the 
two different problem types requires quite different approaches. 

Several types of methods have been suggested for solving oscillatory problems, 
depending on the computational objectives. One class of methods attempts to 
accurately compute future oscillations. Such methods are needed for applications 
like computing satellite orbits. Another class of methods attempts to predict the 
long-term behavior of the solution to an oscillatory problem without following 
the oscillations closely. One such approach involves calculating a curve that is 
the envelope of the solution. An approximate differential equation is derived 
which defines a quasi-envelope that is smooth. The approximate differential 
equation is then solved using step sizes very much larger than the period of the 
oscillations [Gallivan 1983; Gear and Gallivan 1982; Petzold 1978; Scheid 19831. 

Computing Surveys, Vol. 17, No. 1, March 1985 



40 l G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

7. CONCLUSIONS 

Although solving ODES is an old topic and some of the software for solving 
ODES uses formulas developed around the turn of the century, significant 
advances have been made during the last 15 years or so. These advances have 
been most noticeable in the area of solving stiff equations, but significant 
advances have also been made in the production of more robust, user-friendly, 
and efficient software for solving nonstiff equations. 

The Adams formulas and RK-Fehlberg formulas are the basis for most software 
for solving nonstiff equations. Although the BDFs continue to be the basis of 
most widely used codes in solving stiff equations, a number of promising alter- 
natives based on other LMFs, singly-implicit RKFs, blended LMFs, and cyclic 
LMFs have been investigated. These new methods have better stability properties 
and higher orders than the BDFs with no apparent increase in overhead costs. 
These methods, however, have not yet been implemented in quality production 
codes. 

Modern codes for solving ODES automatically vary the step size and order, 
estimate the local error, and provide facilities to compute the solution at inter- 
mediate points via interpolation. In addition, stiff codes provide options for the 
efficient solution of linear equations, such as facilities for handling sparse or 
banded matrices. However, recent techniques, such as those based on the iterative 
solution of linear equations, are not yet generally available in ODE solvers. Other 
advances have been made in the automatic detection of stiffness, the development 
of type-insensitive codes, the estimation of global errors, and the solution of 
special problems such as systems of differential-algebraic equations. Again, many 
of these advances have not been reflected in standard ODE software. 

ACKNOWLEDGMENTS 

The authors are particularly grateful to Dr. L. F. Shampine and Professor G. G. Dahlquist for their 

encouraging comments on an early version of this paper. The authors would also like to acknowledge 

the helpful contributions of Professor R. D. Skeel, Professor K. R. Jackson, and the three referees. 

REFERENCES 

ADDISON, C. A. 1979. Implementing a stiff method based upon the second derivative formulas. 
Tech. Rep. 130, Dept. of Computer Science, Univ. of Toronto, Ont., Canada. 

AIKEN, R. C. 1982. Stiff review 1974-1982: 1. Applications. In Proceedings of the International 
Conference on Stiff Computation (Park City, Utah, Apr.). To be published in Stiff Computation, 
R. C. Aiken, Ed. Oxford Univ. Press, London and New York, 1985. 

ALBRECHT, P. 1978. On the order of composite multistep methods for ordinary differential equations. 
Numer. Math. 29,381-396. 

ALEXANDER, R. 1977. Diagonally implicit Runge-Kutta methods for stiff O.D.E.‘s. SZNUM 14, 
1006-1021. 

ANDRUS, J. F. 1979. Numerical solution of solution of ordinary differential equations separated into 
subsystems. SIAM J. Numer. Anal. 16,605-611. 

BADER, G., AND DEUFLHARD, P. 1983. A semi-implicit mid-point rule for stiff differential systems 
of ordinary differential equations. Numer. Math. 41, 373-398. 

BARTON, D. 1980. On Taylor series and stiff equations. ACM Trans. Math. Softw. 6,3 (Sept.), 280- 
294. 

BARTON, D., WILLERS, I. M., AND ZAHAR, R. V. M. 1971. Taylor series methods for ordinary 
differential equations-An evaluation. In Mathematical Software, J. R. Rice, Ed. Academic Press, 
New York, pp. 369-390. 

BEDET, R. A., ENRIGHT, W. H., AND HULL, T. E. 1975. STIFF DETEST: A program for comparing 
numerical methods for stiff ordinary differential equations. Tech. Rep. 81, Dept. of Computer 
Science, Univ. of Toronto, Ont., Canada. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 41 

BETTIS, D. G. 1978. Efficient embedded Runge-Kutta methods. In Numerical Treatment of Differ- 
ential Equations, Lecture Notes in Mathematics, vol. 631. Springer-Verlag, Berlin and New York, 
pp. 9-18. 

BICKART, T. A. 1977. An efficient solution process for implicit Runge-Kutta methods. SINUM 14, 
1022-1027. 

BICKART, T. A., AND PICEL, Z. 1973. High order stiffly stable composite multistep methods for 
numerical integration of stiff differential equations. BIT 13, 272-286. 

BJORCK, A. 1983. A block QR algorithm for partitioning stiff differential equations. BIT 23, 329- 
345. 

BJUREL, G., DAHLQUIST, G. G., LINDBERG, B., LINDE, S., AND ODEN, L. 1970. Survey of stiff 
ordinary differential equations. Rep. NA 70.11, Dept. of Information Processing, Royal Institute 
of Technology, Stockholm, Sweden. 

BRAYTON, R. K., GUSTAVSON, F. G., AND HATCHEL, G. D. 1972. A new efficient algorithm for 
solving differential-algebraic systems using implicit backward differentiation formulas. Proc. 
IEEE 60,98-108. 

BROWN, P. N., AND HINDMARSH, A. C. 1984. Matrix free methods for stiff ODES. Rep. UCRL- 
90770, Lawrence Livermore National Laboratory, Lawrence, Calif., May 1984. 

BULIRSCH, R., AND STOER, J. 1966. Numerical treatment of ordinary differential equations by 
extrapolation methods. Numer. Math. 8, 1-13. 

BURRACE, K. 1978. A special family of Runge-Kutta methods for solving stiff differential equations. 
BIT 28,22-41. 

BURRAGE, K., BUTCHER, J. C., AND CHIPMAN, F. 1980. An implementation of singly-implicit 
Runge-Kutta methods. BIT 20,326-340. 

BUTCHER, J. C. 1964a. Implicit Runge-Kutta processes. Math. Comput. 1850-64. 

BUTCHER, J. C. 1964b. Integration processes based on Radau quadrature formulas. Math. Comput. 
18233-243. 

BUTCHER, J. C. 1976. On the implementation of implicit Runge-Kutta methods. BIT 16, 237-240. 

BUTCHER, J. C. 1979. A transformed implicit Runge-Kutta method. J. ACM 26,4 (Oct.), 731-738. 
BYRNE, G. D., AND HINDMARSH, A. C. 1975. A polyalgorithm for the numerical solution of ordinary 

differential equations. ACM Trans. Math. Softw. 1, 1 (Mar.), 71-96. 
BYRNE, G. D., HINDMARSH, A. C., JACKSON, K. R., AND BROWN, H. G. 1977. A comparison of two 

ODE codes: GEAR and EPISODE. Comput. Chem. Eng. 1,133-147. 

CARVER, M. B. 1976. The choice of algorithms in automated method of lines solution of partial 
differential equations. In Numerical Method for Differential Systems, L. Lapidus and W. E. 
Schiesser, Eda. Academic Press, Orlando, Fla., pp. 243-265. 

CARVER, M. B. 1977. Efficient handling of discontinuities and time delays in ordinary differential 
equation systems. In Proceedings of the International Conference SIMULATION 77 (Montreaux, 
Switzerland), pp. 153-158. 

CARVER, M. B. 1978. Efficient implementation over discontinuities in ordinary differential equation 
simulations. Math. Comput. Simulat. 20,190-196. 

CARVER, M. B., AND BAUDOUIN, A. P. 1976. Solution of reactor kinetics problems using sparse 
matrix techniques in an ODE integrator for stiff equations. Atomic Energy of Canada Limited, 
Rep. AECL-5177, Jan. 1976. 

CARVER, M. B., AND MACEWEN, S. R. 1981. On the use of sparse matrix approximation to the 
Jacobian in integrating large sets of ordinary differential equations. SIAM J. Sci. Stat. Comput. 
2, 51-64. 

CASH, J. R. 1975. A class of implicit Runge-Kutta methods for the numerical integration of stiff 
ordinary differential equations. J. ACM 22, 4 (Oct.), 504-511. 

CASH, J. R. 1982a. A survey of Runge-Kutta methods for the numerical integration of stiff 
differential systems. In Proceedings of the International Conference on Stiff Computation (Park 
City, Utah, Apr.). To be published in Stiff Computation, R. C. Aiken, Ed. Oxford Univ. Press, 
New York and London, 1985. 

CASH, J. R. 1982b. Mono-implicit Runge-Kutta formulae for the numerical solution of stiff 
differential systems. IMA J. Numer. Anal. 2, 289-301. 

CHAN, T. F., AND JACKSON, K. R. 1983. Nonlinearly preconditioned Krylov subspace methods for 
discrete Newton algorithms. SIAM J. Sci. Stat. Comput. 5, 533-542. 

CHAN, T. F., AND JACKSON, K. R. 1984. The use of iterative linear-equation solvers in codes for 
large systems of stiff IVPs for ODES. Tech. Rep. TR 170/84, Dept. of Computer Science, Univ. 
of Toronto, Ont., Canada. 

Computing Surveys, Vol. 17, No. 1, March 1985 



42 l G. K. Gupta, R. Sacks-Davis, and l? E. Tischer 

CHANG, J. S., HINDMARSH, A. C., AND MADSEN, N. K. 1974. Simulation of chemical kinetics 
transport in the stratosphere. In Stiff Differential Systems, R. Willoughby, Ed. Plenum, New 
York, pp. 51-65. 

CHIPMAN, F. H. 1971. A-stable Runge-Kutta processes. BIT 11,3&I-388. 

COLEMAN, T. F., GRABOW, B. S., AND MoRB, J. J. 1984. Software for estimating sparse Jacobian 
matrices. ACM Trans. Math. Softw. IO, 3 (Sept.), 329-345. 

COOPER, J. F., AND SAYFY, A. 1979. Semi-explicit, A-stable Runge-Kutta methods. Moth. Comput. 
33,541-556. 

CORLISS, G., AND CHANG, Y. F. 1982. Solving ordinary differential equations using Taylor series. 
ACM Trans. Math. So@. 8, 2 (June), 114-144. 

CURTIS, A. R. 1980. The FACSIMILE numerical integrator for stiff ordinary differential problems. 
In Computational Techniques for Ordinary Differential Equations, I. Gladwell and D. K. Sayers, 
Eds. Academic Press, Orlando, Fla. 

CURTIS, A. R., POWELL, M. J. D., AND REID, J. K. 1974. On the estimation of sparse Jacobian 
matrices. J. ZMA 13, 117-119. 

CURTIS, C. E., AND HIRSCHFELDER, J. 0. 1952. Integration of stiff equations. Proc. Nut. Acud. Sci. 
U.S. 38,235-243. 

DAHLQUIST, G. G. 1963. A special stability property for linear multistep methods. BIT 3, 27-43. 

DAHLQUIST, G. G. 1981. On the control of the global error in stiff initial value problems. In 
Numerical Analysis, Dundee 1981, Springer Lecture Notes in Mathematics, vol. 912, Springer- 
Verlag, Berlin and New York, pp. 38-49. 

DAHLQUIST, G. G., AND BJORCK, A. 1974. Numerical Methods. Prentice-Hall, Englewood Cliffs, 
N.J. 

DAY, J. D., AND MURTHY, D. N. 1982. Two classes of internally S-stable generalized Runge-Kutta 
processes which remain consistent with an inaccurate Jacobian. Math. Comput. 39,491-509. 

DEUFLHARD, P. 1983. Order and stepsize control in extrapolation methods. Numer. Math. 41,399- 
422. 

DEUFLHARD, P., BADER, G., AND NOWAK, U. 1980. LARKIN-A software package for the numerical 
integration of LARge systems arising in chemical reaction KINetics. SFB 123, Tech. Rep. 100, 
University of Heidelberg, Heidelberg, West Germany. 

DEW, P. M., AND WEST, M. R. 1979. Estimating and controlling the global error in Gear’s method. 
BIT 19, 135-137. 

DONELSON, J., III, AND HANSEN, E. 1971. Cyclic composite multistep predictor-corrector methods. 
SZNUM 8,137-147. 

EHLE, B. L. 1968. High order A-stable methods for the numerical solution of systems of differential 
equations. BIT 8, 276-278. 

EHLE, B. L. 1972. A comparison of numerical methods for solving certain stiff ordinary differential 
equations. Rep. 70, Dept. of Mathematics, Univ. of Victoria, B.C., Canada. 

ELLISON, D. 1980. Efficient automatic integration of ordinary differential equations with disconti- 
nuities. Math. Comput. Simulut. 23, 12-20. 

ENRIGHT, W. H. 1972. Studies in the numerical solution of stiff ordinary differential equations. 
Tech. Rep. 46, Dept. of Computer Science, University of Toronto, Ont., Canada. 

ENRIGHT, W. H. 1974. Optimal second derivative methods for stiff systems. In Stiff Differential 
Systems, R. Willoughby, Ed. Plenum, New York, pp. 95-109. 

ENRIGHT, W. H. 1978. Improving the efficiency of matrix operations in the numerical solution of 
stiff ordinary differential equations. ACM Trans. Math. Softw. 4, 2 (June), 127-136. 

ENRIGHT, W. H. 1982. Pitfalls in the comparison of numerical methods for stiff ordinary differential 
equations. In Proceedings of the International Conference on Stiff Computation (Park City, Utah, 
Apr.). To be published in Stiff Computation, R. C. Aiken, Ed. Oxford Univ. Press, New York and 
London, 1985. 

ENRIGHT, W. H., AND HULL, T. E. 1976a. Test results on initial value methods for non-stiff 
ordinary differential equations. SINUM 13, 944-961. 

ENRIGHT, W. H., AND HULL, T. E. 197613. Comparing numerical methods for the solution of stiff 
systems of ODES arising in chemistry. In Numerical Methods for Differentiul System-s, L. Lapidus 
and W. E. Schiesser, Eds. Academic Press, Orlando, Fla., pp. 45-66. 

ENRIGHT, W. H., AND KAMEL, M. S. 1979. Partitioning of stiff systems and exploiting the resulting 
structure. ACM Trans. Math. Softw. 5,4 (Dec.), 374-385. 

ENRIGHT, W. H., HULL, T. E., AND LINDBERG, B. 1975. Comparing numerical methods for stiff 
systems of ODES. BIT l&10-48. 

Computing Surveys, Vol. 1’7, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 43 

FEHLBERG, E. 1969. Klassische Runge-Kutta-Formeln fiinfter und siebenter Ordnung mit Schrit- 
tweiten-Kontrolle. Computing 4, 93-106. 

FORSYTHE, G. E., MALCOLM, M. A., AND MOLER, C. B. 1977. Computer Methods for Mathematical 
Computation. Prentice-Hall, Englewood Cliffs, N.J. 

FOX, P. A. 1971. Integration of first order systems of differential equations. In Mathematical 
Software, J. Rice, Ed. Academic Press, Orlando, Fla., chap. 9, pp. 477-507. 

GAFFNEY, P. W. 1982. A survey of FORTRAN subroutines suitable for solving stiff oscillatory 
differential eauations. Tech. Memo. ORNL/CSD/TM-134. Oak Ridge National Laboratorv. Oak 
Ridge, Tenn. - 

“I 

GAFFNEY, P. W. 1984. A performance evaluation of some FORTRAN subroutines for the solution 
of stiff oscillatory ordinary differential equations. ACM Trans. Math. Softw. 10, 1 (Mar.), 58-72. 

GALLIVAN, K. A. 1983. An algorithm for the detection and integration of highly oscillatory ordinary 
differential equations using a generalized unified modified divided difference representation. 
Tech. Rep. UIUCDCS-R-83-1121, Dept. of Computer Science, Univ. of Illinois, Urbana-Cham- 
paign, June. 

GEAR, C. W. 1971a. The automatic integration of ordinary differential equations. Commun. ACM 
14, 3 (Mar.), 176-190. 

GEAR, C. W. 1971b. Algorithm 407-DIFSUB for solution of ordinary differential equations. 
Commun. ACM 14,3 (Mar.), 185-190. 

GEAR, C. W. 1971c. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice- 
Hall, Englewood Cliffs, N.J. 

GEAR, C. W. 1971d. Simultaneous numerical solution of differential/algebraic equations. IEEE 
Trans. Circuit Theory CT-l& 89-95. 

GEAR, C. W. 1974. Multirate methods for ordinary differential equations. Tech. Rep. UIUCDCS- 
74-880, Dept. of Computer Science, Univ. of Illinois, Urbana-Champaign, Sept. 

GEAR, C. W. 1980. Automatic multirate methods for ordinary differential equations. Tech. Rep. 
UIUCDCS-R-80-1000, Dept. of Computer Science, Univ. of Illinois, Urbana-Champaign, Jan. 

GEAR, C. W. 1981. Numerical solution of ordinary differential equations: Is there anything left to 
do? SIAM Reu. 23,10-24. 

GEAR, C. W. 1982. Stiff software: What do we have and what do we need? In Proceedings of the 
International Conference on Stiff Computation (Park City, Utah, Apr.). To be published in Stiff 
Computation, R. C. Aiken, Ed. Oxford Univ. Press, London and New York, 1985. 

GEAR, C. W., AND GALLIVAN, K. A. 1982. Automatic methods for highly oscillatory ordinary 
differential equations. In Proceedings of the Biennial Dundee Conference on Numerical Analysis, 
Dundee, Lecture Notes in Mathematics, vol. 912. Springer-Verlag, Berlin, and New York, pp. 
115-124. 

GEAR, C. W., AND ~STERBY, 0. 1984. Solving ordinary differential equations with discontinuities. 
ACM Trans. Math. Softw. 10, 1 (Mar.), 23-44. 

GEAR, C. W., AND PETZOLD, L. R. 1984. ODE methods for the solution of differential/algebraic 
systems. SIAM J. Numer. Anal. 21, 716-728. 

GEAR, C. W., AND SAAD, Y. 1983. Iterative solution of linear equations in ODE codes. SIAM J. Sci. 
Stat. Comput. 4, 583-601. 

GEAR, C. W., AND TIJ, K. W. 1974. The effect of variable mesh size on the stability of multistep 
methods. SZNUM 11,1025-1043. 

GLADWELL, I. 1979. Initial value routines in the NAG Library. ACM Trans. Math. Softw. 5, 4 
(Dec.), 386-400. 

GLADWELL, I., CRAIGIE, J. A. I., AND CROWTHER, C. R. 1979. Testing initial-value problem 
subroutines as black boxes. Numerical Analysis Rep. 34, Dept. of Mathematics, Univ. of 
Manchester, U.K. 

GOURLAY, A. R., AND WATSON, D. D. 1974. An implementation of Gear’s algorithm for CSMP III. 
In Stiff Differential Systems, R. Willoughby, Ed. Plenum, New York, pp. 123-134. 

GRAGG, W. B. 1965. On extrapolation algorithms for ordinary initial value problems. SZNUM 2, 
384-403. 

GUPTA, G. K. 1976. Some new high-order multistep formulae for solving stiff equations. Math. 
Comput. 30,417-432. 

GUPTA, G. K. 1980. A note about overhead costs in ODE solvers. ACM Trans. Math. Softw. 6, 3 
(Sept.), 319-326. 

GUPTA, G. K. 1982. Description and evaluation of a stiff ODE code DSTIFF. Paper presented at 
the International Conference on Stiff Computation (Park City, Utah). To appear in SIAM J. 
Sci. Stat. Comput. 

Computing Surveys, Vol. 17, No. 1, March 1985 



GUPTA, G. K., AND WALLACE, C. S. 1975. Some new multistep methods for solving ordinary 
differential equations. Math. Cornput. 29,489~500. 

HAIRER, E., BADER, G., AND LUBICH, C. 1982. On the stability of semi-implicit methods for ordinary 
differential equations. BIT 22, 211-232. 

HALL, G., ENRIGHT, W. H., HULL, T. E., AND SEDGWICK, A. E. 1973. DETEST: A program for 
comparing numerical methods for ordinary differential equations. Tech. Rep. 60, Dept. of 
Computer Science, Univ. of Toronto, Ont., Canada. 

HENRICI, P. 1962. Discrete Variable Methods for Ordinary Differential Equations. Wiley, New York. 

HINDMARSH, A. C. 1974. GEAR: Ordinary differential equation system solver. Rep. UICD-36601, 
Rev. 3, Univ. of California, Lawrence Livermore Laboratories, Lawrence, Calif. 

HINDMARSH, A. C. 1976. Preliminary documentation of GEARBI: Solution of ODE systems with 
block-iterative treatment of the Jacobian. Rep. UICD-30149, Lawrence Livermore National 
Laboratories, Lawrence, Calif., Dec. 

HINDMARSH, A. C. 1980. LSODE and LSODI, two new initial value ordinary differential equation 
solvers. ACM SIGNUM Newsl. 15, 10-11. 

HINDMARSH, A. C. 1981. ODE solvers for use with the method of lines. In Advances in Computer 
Methods for Partial Differential Equations--IV, R. Vichnevetsky and R. S. Stepleman, ‘Eds. 
IMACS, New Brunswick, N.J., pp. 312-316. 

HINDMARSH, A. C. 1983. ODEPACK, A systematized collection of ODE solvers. In Scientific 
Computing, R. S. Stepleman et al., Eds., North-Holland Publ., Amsterdam, pp. 55-64. 

HULL, T. E., AND ENRIGHT, W. H. 1974. A structure for programs that solve ordinary differential 
equations. Tech. Rep. 66, Dept. of Computer Science, Univ. of Toronto, Ont., Canada. 

HULL, T. E., ENRIGHT, W. H., FELLEN, B. M., AND SEDGWICK, A. E. 1972. Comparing numerical 
methods for ordinary differential equations. SZNUM 9, 603-637. 

HULL, T. E., ENRIGHT, W. H., AND JACKSON, K. R. 1976. User’s guide for DVERK-A subroutine 
for solving non-stiff ODE’s. Tech. Rep. 100, Dept. of Computer Science, Univ. of Toronto, Chit., 
Canada. 

HUSSELS, H. G. 1973. Schrittenweitensteurung bei der Integration gewohnlicher Differentialglei- 
chungen mit Extrapolationsverfahren. Master’s thesis, Univ. of Cologne, Cologne, West Ger- 
many. 

JACKSON, K. R., AND SACKS-DAVIS, R. 1980. An alternative implementation of variable step-size 
multistep formulas for stiff ODES. ACM Trans. Math. Softw. 6,3 (Sept.), 295-318. 

JACKSON, L. W., AND SEDGWICK, A. E. 1977. Vandermonde matrices, coordinate transformations 
and Adams’ methods. Tech. Rep. TR77-5, Dept. of Computing Science, Univ. of Alberta, Alberta, 
Canada. 

KAPS, P., AND RENTROP, P. 1979. Generalized Runge-Kutta methods of order four with stepsize 
control for stiff ordinary differential equations. Numer. Math. 33, 55-68 

KAPS, P., AND WANNER, G. 1981. A study of Rosenbrock type methods of high order. Numer. Math. 
38,279-298. 

KLOPFENSTEIN, R. W. 1971. Numerical differentiation formulas for stiff systems of ordinary 
differential equations. RCA Rev. 32, 447-462. 

KONG, A. K. 1977. A search for better linear multistep methods for stiff problems. Tech. Rep. 
UIUCDCS-R-77-899, Dept. of Computer Science, Univ. of Illinois, Urbana-Champaign, Dec. 

KROGH, F. T. 1969. A variable step, variable order multistep method for the numerical solution of 
ODE’s. In Information Processing 68, A. J. H. Morrel, Ed. North-Holland Publ., Amsterdam, pp. 
194-199. 

KROGH, F. T. 1973. On testing a subroutine for the numerical integration of ordinary differential 
equations. J. ACM 20, 4 (Oct.), 545-562. 

KROGH, F. T., AND STEWART, K. 1984. Asymptotic (h + a) absolute stability for BDFs applied to 
stiff differential equations. ACM Trans. Math. Softw. 10, 1 (Mar.), 45-57. 

LAMBERT, J. D. 1973. Computational Methods in Ordinary Differential Equations. Wiley, New York. 
LAMBERT, J. D. 1980. Stiffness. In Computational Techniques for Ordinary Differential Equations, 

I. Gladwell and D. K. Sayers, Eds. Academic Press, Orlando, Fla. 

LAMBERT, J. D., AND SIGURDSSON, S. T. 1972. Multistep methods with variable matrix coefficients. 
SZNUM 9,715-733. 

LINDBERG, B. 1971. On smoothing and extrapolation for the trapezoidal rule. BIT 11, 29-52. 

LINDBERG, B. 1972. Error estimate and stepsize strategy for the implicit midpoint rule with 
smoothing and extrapolation. Rep. NA 72.59, Dept. of Information Processing, Royal Institute 
of Technology, Stockholm, Sweden. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 45 

LINDBERG, B. 1973. IMPEXB, a procedure for solution of systems of stiff differential equations. 
Rep. NA 73.03, Dept. of Information Processing, Royal Institute of Technology, Stockholm, 
Sweden. 

LINGER, W. 1976. High Order A-stable averaging algorithms for stiff differential equations. In 
Numerical Methods for Differential Systems, L. Lapidus and W. E. Schiesser, eds. Academic 
Press, Orlando, Fla., pp. l-23. 

LINIGER, W., AND ODEH, F. 1972. A-stable accurate averaging of multistep methods for stiff 
differential equations. IBM J. Res. Develop. 16, 335-348. 

MIHELCIC, M. 1977. Fast A-stabile Donelson-Hansensche zyklische Verfahren zur numerischen 
Integration von ‘stiff Differentialgleichungssystemen. Angew. Inform. 7, 299-305. 

NORDSIECK, A. 1962. On numerical integration of ordinary differential equations. Math. Comput. 
16,22-49. 

N~RSEIT, S. P. 1974. Semi-explicit Runge-Kutta methods. Mathematics and Computation, Rep. 
No. 6/74, Mathematics Dept., Univ. of Trondheim, Trondheim, Norway. 

ORAIMGLU, A. 1979. A multirate ordinary differential equation integrator. Tech. Rep. UIUCDCS- 
R-79-959, Dept. of Computer Science, Univ. of Illinois, Urbana-Champaign, Mar. 

PETZOLD, L. R. 1978. An efficient numerical method for highly oscillatory ordinary differential 
equations. SZNUM 18,455-479. 

PETZOLD, L. R. 1982. Differential/algebraic equations are not ODES. SIAM J. Sci. Stat. Comput. 
3,367-384. 

PETZOLD, L. R. 1983a. Automatic selection of methods for solving stiff and non-stiff systems of 
ordinary differential equations. SIAM J. Sci. Stat. Comput. 4, 136-148. 

PETZOLD, L. R. 1983b. A description of DASSL, a differential-algebraic system solver. In Scientific 
Computing, R. S. Stepleman et al., Eds. North-Holland Publ., Amsterdam, pp. 65-68. 

PIOTROWSKI, P. 1969. Stability, consistence and convergence of variable, K-step methods for 
numerical integration of systems of ordinary differential. In Lecture Notes in Mathematics, vol. 
109. Springer-Verlag, Berlin and New York, pp. 221-227. 

ROSENBROCK, H. H. 1963. Some implicit processes for the numerical solution of differential 
equations. Comput. J. 5, 329-330. 

ROSSER, J. B. 1967. A Runge-Kutta for all seasons. SIAM Rev. 9,417-452. 

SACKS-DAVIS, R. 1980. Fixed leading coefficient implementation of SD-formulas for stiff ODES. 
ACM Trans. Math. Softw. 6,4 (Dec.), 540-562. 

SACKS-DAVIS, R., AND SHAMPINE, L. F. 1981. A type-insensitive ODE code based on second 
derivative formulas. Comput. Math. Appl. 7,487-495. 

SCHEID, R. E., JR. 1983. The accurate numerical solution of highly oscillatory ordinary differential 
equations. Math. Comput. 41,487-509. 

SEAGER, M. K., AND BALSDON, S. 1982. LSODIS, a sparse implicit ODE solver. In Proceedings of 
the 10th ZMACS World Congress (Montreal, Aug.). IMACS, New Brunswick, N. J. 

SEDGWICK, A. E. 1973. An effective variable order variable stepsize Adams method. Tech. Rep. 53, 
Dept. of Computer Science, Univ. of Toronto, Ont., Canada. 

SHAMPINE, L. F. 1977. Stiffness and nonstiff differential equation solvers II: Detecting stiffness 
with Runge-Kutta methods. ACM Trans. Math. Softw. 3,1 (Mar.), 44-53. 

SHAMPINE, L. F. 1979. Evaluation of implicit formulas for the solution of ODES. BIT 19,495-502. 

SHAMPINE, L. F. 1980a. Lipschitz constants and robust ODE codes. In Computational Methods in 
Nonlinear Mechanics, J. T. Oden, Ed. North-Holland Publ., Amsterdam. 

SHAMPINE, L. F. 1980b. Implementation of implicit formulas for the solution of ODES. SIAM J. 
Sci. Stat. Comput. 1, 119-130. 

SHAMPINE, L. F. 1981a. Evaluation of a test set for stiff ODE solvers. ACM Trans. Math. Softw. 7, 
4 (Dec.), 409-420. 

SHAMPINE, L. F. 1981b. Type-insensitive ODE codes based on implicit A-stable methods. Math. 
Comput. 36,499-510. 

SHAMPINE, L. F. 1982a. Type-insensitive codes based on A(cu)-stable formulas. Math. Comput. 39, 
109-123. 

SHAMPINE, L. F. 198213. Type-insensitive codes based on extrapolation methods. Tech. Rep. 
SAND82-1195, Sandia National Laboratories, Albuequerque, N. M., June. 

SHAMPINE, L. F. 1982c. Implementation of Rosenbrock methods. ACM Trans. Math. Softw. 8, 2 
(June), 93-113. 

SHAMPINE, L. F. 1982d. What is stiffness? Tech. Rep. SAND82-0782, Sandia Laboratories, Albu- 
querque, N. M., May. 

Computing Surveys, Vol. 17, No. 1, March 1985 



46 . G. K. Gupta, R. Sacks-Davis, and P. E. Tischer 

SHAMPINE, L. F. 1982e. Global error estimation for stiff ODES. Tech. Rep. SAND82-2517, Sandia 
Laboratories, Albuquerque, N. M., Dec. 

SHAMPINE, L. F. 1983. Measuring stiffness. Tech. Rep. SAND83-1119, Sandia Laboratories, Albu- 
querque, N. M., June. 

SHAMPINE, L. F., AND GEAR, C. W. 1979. A user’s view of solving stiff ordinary differential equations. 
SIAM Rev. 21,1-17. 

SHAMPINE, L. F., AND GORDON, M. K. 1975. Computer Solution of Ordinary Differential Equations. 
Freeman, San Francisco, Calif. 

SHAMPINE, L. F., AND WAITS, H. A. 1969. Block implicit one-step methods. Math. Comput. 23, 
731-740. 

SHAMPINE, L. F., ANI) WATTS, H. A. 1976. Global error estimation for ordinary differential 
equations. ACM Trans. Math. Softw. 2, 2 (June), 172-186. 

SHAMPINE, L. F., AND WATTS, H. A. 1977. The art of writing a Runge-Kutta code, Part I. In 
Mathematical Software ZZZ, J. R. Rice, Ed. Academic Press, Orlando, Fla., pp. 257-276. 

SHAMPINE, L. F., AND WATTS, H. A. 1979. The art of writing a Runge-Kutta code, Part II. Appl. 
Math. Comput. 5,93-121. 

SHAMPINE, L. F., AND WATTS, H. A. 1980. DEPAC: Design of a user oriented package of ODE 
solvers, Tech. Rep. SAND79-2374, Sandia Laboratories, Albuquerque, N. M. 

SHAMPINE, L. F., AND WAITS, H. A. 1984. Software for ordinary differential equations. In Sources 
and Development of Mathematical Software, L. R. Cowell, Ed. Prentice-Hall, Englewood Cliffs, 
N. J., pp. 112-133. 

SHAMPINE, L. F., WARS, H. A., AND DAVENPORT, S. M. 1975. Solving non-stiff ordinary differential 
equations-The state of the art. SIAM Rev. 18,376-411. 

SHAMPINE, L. F., GORDON, M. K., AND WISNIEWSKI, J. A. 1980. Variable order Runge-Kutta 
Codes. In Computational Techniques for Ordinary Differential Equations, I. Gladwell and D. K. 
Sayers, Eds. Academic Press, Orlando, Fla., pp. 83-102. 

SHERMAN, A. H., AND HINDMARSH, A. C. 1980. GEARS: A package for the solution of sparse stiff 
ordinary differential equations. In Electrical Power Problems: The Mathematical Challenge, A. 
M. Erisman, K. W. Neves, and M. H. Dwarakanath, Eds. SIAM, Philadelphia, Pa., pp. 190-200. 

BNCOVEC, R. F., AND MADSEN, N. K. 1975. Software for nonlinear partial differential equations. 
ACM Trans. Math. Softw. I,3 (Sept.), 232-260. 

SINGHAL, A. 1980. Implicit Runge-Kutta formulae for the numerical integration of ODE’s Ph.D. 
dissertation, Dept. of Mathematics, Univ. of London, London, England. 

SKEEL, R. D., AND KONG, A. K. 1977. Blended linear multistep methods. ACM Trans. Math. Softw. 
3, 4 (Dec.), 326-345. 

SKELBOE, S., AND CHRISTIANSEN, B. 1981. 
of absolute stability. BIT 21, 221-231. 

Backward differentiation formulas with extended regions 

SLOATE, H. M., AND BICKART, T. A. 1973. A-Stable composite multistep methods. J. ACM 20, 1 
(Jan.) 7-26. 

STEIHAUG, T., AND WOLFBRANDT, A. 1979. An attempt to avoid exact Jacobian and non-linear 
equations in the numerical solution of stiff differential equations. Math. Comput. 33,521-534. 

STETTER, H. J. 1974. Economical global error estimation. In Stiff Differential Systems, R. A. 
Willoughby, Ed. Plenum, New York, pp. 245-258. 

STEITER, H. J. 1978. Global error estimation in ODE-solvers. In Proceedings of the Biennial Dundee 
Conference, Lecture Notes in Mathematics, vol. 630. Springer-Verlag, Berlin and New York, pp. 
179-189. 

STETTER, H. J. 1979a. Global error estimation in Adams PC-codes. ACM Trans. Math. Softw. 5, 4 
(Dec.) 415-430. 

STE~ER, H. J. 1979b. Interpolation and error estimation in Adams PC-codes. SZNUM 16, 311- 
322. 

TENDLER, J. M., BICKART, T. A., AND PICEL, Z. 1978. 
Trans. Math. Softw. 4,4 (Dec.), 339-368. 

A stiffly stable integration process. ACM 

THOMSON, S., AND TUTTLE, P. G. 1982. The solution of several representative stiff problems in an 
industrial environment: The evolution of an ODE solver. In Proceedings of the International 
Conference on Stiff Computation (Park City, Utah, Apr.). To be published in Stiff Computation, 
R. C. Aiken, Ed. Oxford Univ. Press, London and New York, 1985. 

TISCHER, P. E., AND GUPTA, G. K. 1983. Some new cyclic linear multistep formulas for stiff systems. 
Tech. Rep. 40, Dept. of Computer Science, Monash Univ., Clayton, Victoria 3168, Australia. 

Computing Surveys, Vol. 17, No. 1, March 1985 



A Review of Recent Developments in Solving ODES l 47 

TISCHER, P. E., AND SACKS-DAVIS, R. 1983. A new class of cyclic multistep formulae for stiff 
systems. SIAM J. Sci. Stat. Comput. 4, 733-747. 

VAN BOKHOVEN, W. M. G. 1980. Efficient high order implicit one-step methods for integration of 
stiff differential systems. BIT 20, 34-43. 

VARAH, J. M. 1978. Stiffly stable linear multistep methods of extended order. SZNUM 16, 1234- 
1246. 

VERNER, J. H. 1978. Explicit Runge-Kutta methods with estimates of the local truncation error. 
SZNUM 15,772-790. 

VERNER, J. H. 1979. Families of embedded Runge-Kutta methods. SZNUM 5,857-875. 

WALLACE, C. S., AND GUPTA, G. K. 1973. General linear multistep methods to solve ordinary 
differential equations. Aust. Comput. J. 5,62-69. 

WANNER, G., HAIRER, E., AND NBRSE’IT, S. P. 1978. Order stars and stability theorems. BIT 18, 
475-489. 

WATKINS, D. S., AND HANSONSMITH, R. W. 1983. The numerical solution of separably stiff systems 
by precise partitioning. ACM Trans. Math. Softw. 9,3 (Sept.), 293-301. 

WATTS, H. A. 1983. Starting step size for an ODE solver. J. Comput. Appl. Math. 9,177-191. 

WAY~S, H. A., AND SHAMPINE, L. F. 1971. A-Stable block-implicit methods. BIT 12,252-266. 
WELLS, D. R. 1982. Multirate linear multistep methods for the solution of systems of ordinary 

differential equations. Tech. Rep. UIUCDCS-R-82-1093, Dept. of Computer Science, Univ. of 
Illinois, Urbana-Champaign, July. 

WILLIAMS, J., AND DEHOOG, F. 1974. A class of A-stable advanced multistep methods. Math. 
Comput. 28,163-178. 

WOLFBRANDT, A. 1977. A study of Rosenbrock processes with respect to order conditions and stiff 
stability. Ph.D. dissertation, Chalmers Univ. of Technology, Geteborg, Sweden. 

ZADUNAISKY, P. E. 1976. On the estimation of errors propagated in the numerical integration of 
ordinary differential equations. Numer. Math. 27, 21-39. 

Received November 1983; final revision accepted February 1985. 

Computing Surveys, Vol. 17, No. 1, March 1985 




