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A Review of Regression Diagnostics
for Behavioral Research

Sangit Chatterjee and Mustafa Yilmaz
Northeastern University

Influential data points can affect the results of
a regression analysis; for example, the usual sum-
mary statistics and tests of significance may be
misleading. The importance of regression
diagnostics in detecting influential points is
discussed, and five statistics are recommended for
the applied researcher. The suggested diagnostics
were used on a small dataset to detect an influen-
tial data point, and the effects were analyzed.
Colinearity-based diagnostics also are discussed
and illustrated on the same dataset. The non-
robustness of the least squares estimates in the

presence of influential points is emphasized.
Diagnostics for multiple influential points, multi-
variate regression, multicolinearity, nonlinear
regression, and other multivariate procedures also
are discussed. Index terms: Andrew-Pregibon
measure, colinearity, Cook’s distance, covariance
ratio, influential observations, measurement error,
partial residual plot, regression diagnostics.

Explanation of the relationships among vari-
ables is a major goal of the behavioral and social
sciences. To achieve this goal, relevant variables
and constructs must be discovered and measured

on reasonably precise scales. Because many be-
havioral variables do not lend themselves to ex-

act measurement, establishment of reliable and
valid measures for these variables is a continuing
challenge facing behavioral scientists.
Common approaches to the study of relation-

ships among variables include correlation and
regression models. For these models to be useful,
the variables must be measured with as little error
as possible because errors in measurement tend
to attenuate or distort the relationships among

variables, which causes serious difficulties in the
interpretation of results. Consequently, avoiding
additional distortions that arise from influential

data points and outliers gains added importance
in the use of these models in the behavioral

sciences.

Observed variables include errors only when
a model can be specified for the variables that
distinguishes between underlying unobservable
and observable components of measurement
errors. Regression models have extensive psycho-
metric problems. For example, Lord & Novick

(1968) and Nunnally (1967) include in-depth
discussions of corrections for attenuation, restric-
tion of range, unreliability, measurement errors,
and other errors. Although awareness of the psy-
chometric problems is vital, it is also important
to recognize the estimation bias arising from
discrepant data points and the important role that
diagnostics play in uncovering such points.
Although the concern here is less with the psy-
chometric issues and more with the study of
regression diagnostics, an integrative approach is
used because problems such as measurement
errors are common to both concerns. Only a full
understanding of the importance of both kinds
of issues can lead to acceptable models for the
social and behavioral sciences.

The importance of influential data points and
outliers on estimates calculated in a linear regres-
sion model has generated such a large body of
work that a new subfield-regression diagnos-
tics-has developed. With some recent exceptions
noted below, this work has received little atten-
tion in statistical analysis books used by social
scientists or in social science journals. For ex-
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ample, Pedhazur (1982) only briefly discusses
outliers and influential points, even though
popular statistical software provides several

diagnostics [e.g., BMDP (Dixon, 1984), MINITAB
(Ryan, Joiner, & Ryan, 1991), SAS (SAS Institute,
Inc., 1982), SPSS (SPSS Inc., 1988), and SYSTAT
(Wilkinson, 1992)].

Recent reviews somewhat narrower in scope
than this review include Cook & Weisberg
(1982b), Stevens (1984), and Bollen & Jackman

(1985). Most recent applied statistics books (e.g.,
Darlington, 1990) also contain at least some
discussion of regression diagnostics. Specialized
books by Chatterjee & Hadi (1988), Atkinson
(1985), Cook & Weisberg (1982a), and Belsley,
Kuh, & Welsch (1980) deal exclusively with regres-
sion diagnostics, influential observations, and
outliers. For useful and substantive applications
of regression diagnostics in the social sciences,
see Bollen & Jackman (1985) and Chatterjee &
Wiseman (1984). The present paper is intended
to be broader in scope and less technical in its

presentation. The concepts behind the statistics
are emphasized at the cost of mathematical rigor.
Formal tests of hypotheses are not emphasized,
because regression diagnostics are intended as
exploratory data analysis.

Regression Models

This paper considers the general linear regres-
sion model,

or y xo + ~ F, in matrix notation, where

y = (y¡, ... , yet is a n x I column vector of
rc observations of a stochastic response (depen-
dent or criterion) variable y, and T denotes the
transpose. For the ith observation, x;&dquo; x,2, ... ,

xi, are the observed values of k regressor (in-
dependent or predictor) variables X,, X,, ... , I Xil.
P = (P., ... , Bk)T is a (k + 1) x 1 column vec-
tor of unknown constants, £ = (E~ , ..., EnY is
a aa x 1 column vector of random errors, and x

is a rc X (k + 1) matrix with its first column con-
sisting of Is, and the remaining columns contain-

ing the regressor values x;;, i = 1, 2, ..., n and

j = 1, 2, ..., k. As usual, the ordinary least
squares (ALS) estimates are denoted by b = (b~,
- - . , ~)~, given by b = (XTX)-IXTy, which is ob-
tained by minimizing ZTZ with respect to (3. It is
assumed that the random errors Fi are indepen-
dent with mean 0 and variance cr2 (homoscedas-
ticity). If the xiis can be regarded as fixed con-
stants, then the OLS estimates are optimal in the
sense of being unbiased and having minimum
variance among all linear estimators (i.e., the best
linear unbiased estimator). The estimates of the
slopes are given by bp b2, ... , bk; the estimate
of the standard error of the regression equation
02 is given by

and the measure of fit by

where y is the fitted value. The adjusted RZ value
is given by

For purposes of inference beyond point estima-
tion, such as tests of hypotheses, errors are often
assumed to be normally distributed.

If either assumption-homoscedasticity or in-
dependence of errors-is not tenable, it is still

theoretically possible to obtain optimal estimates
of the flys using generalized least squares estima-
tion, which minimizes ~T~-’~, where ~ is the
n x n variance-covariance matrix of s. If the

observed values of the regressors are regarded as
fixed constants, then the values of the regressors
should be fixed prior to sampling, and repeated
observations of the response variable should be

made only for these fixed values of the regressors.
In most behavioral studies, it is not feasible

or appropriate to conduct experiments by fixing
the regressors as known constants. Fortunately,
the linear model and its estimation remain essen-

tially unchanged if the conditional distributions
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of the yi, given x = lxijl, are independent with
constant variance a2, and regressors are indepen-
dent random variables with distributions that do

not depend on the parameters [3 or the constant
variance o~. Even correlated errors present no ad-
ditional problems if it can be assumed that the
distribution of x does not depend on [3 or E.

Because the true values of these parameters are

unknown, sample estimates provide the only
adequate means of testing the validity of these
assumptions in practice. This is usually achieved
by examining plots of residuals (the observed
value minus the fitted value) resulting from an
estimated model, such as the plots of residuals
against the predicted response or against each
regressor variable. If the assumptions are not met,
however, parameter estimates obtained from OLS
either will be biased or have other non-optimal
properties (such as lack of consistency). Least
squares estimates will be nonoptimal, for ex-
ample, if the regressor variables are stochastic but
are correlated with the errors.

If the distributional assumptions stated above
are not met for the stochastic variables, a sug-
gested alternative to OLS estimation involves

searching for additional variables that can be used
to model the regressor variables and that satisfy
the usual assumptions. These lead to two-stage
least squares estimation and linear structural equa-
tions models that are outside the scope of the pres-
ent review (see, e.g., Bollen, 1989; Judge, Griffith,
Hill, & Lee, 1980; Malinvaud, 1970).

Models With Measurement Error

Errors in measuring the response variable y do
not require any special attention, because these
errors are absorbed in the random errors of the

regression model. Thus, the net effect of errors
in y is a larger standard error of the estimated
regression coefficients. On the other hand,
measurement errors in regressor variables pro-
duce error terms that are correlated with the

regressors. Measurement error may affect statis-
tical analysis because it can cause the probability
distribution of observed data to differ from the
distribution of the error-free data [see Cochran

(1972), Stefanski (1985), and Chesher (1991) for
information on measurement error models]. As
noted above, the presence of measurement error
leads to estimates of the regression coefficients
that are nonoptimal (i.e., biased or inconsistent).
The effect of this nonoptimality can be inves-
tigated using (1) the asymptotic approach, (2) the
perturbation approach, and (3) the simulation
approach.

In the asymptotic approach, which is popular
in econometrics, large sample biases are

calculated analytically and limiting values are
sought (Chatterjee & Hadi, 1986). In the pertur-
bation approach, the effects on the regression
coefficients of perturbing the regressors by small
amounts are studied analytically. This method
provides an upper bound on the relative errors
in the estimated coefficients (see Stewart, 1987).
In the simulation approach, the structure of the
errors in the regressor variables is simulated, and
the effects are studied on the estimated regres-
sion coefficients (Chatterjee & Hadi, 1986).
These three approaches require the researcher to
make assumptions about the form of the distribu-
tions, the moments of the distributions, and/or
the bounds on the errors in the variables. Refer
to Chatterjee & Hadi (1988) for details of all three
methods. Fuller (1987) and Heller (1987) provid-
ed specialized discussions for studying various
aspects of measurement errors on the parameter
estimates, and Bollen (1989) discussed modeling
in the presence of these errors.

In theory, &dquo;instrumental variables&dquo; may pro-
vide a possible solution to the problem of
measurement errors in the regression variables.
Instrumental variables correlate very highly with
the regressors but not with the measurement

errors in the regressors or the random errors
associated with the dependent variable. If such
variables can be found, they can be used as
regressor variables; alternatively, regressor
variables could be modeled in terms of the in-

strumental variables. This last approach leads to
the estimation of simultaneous equations by the
two-stage least squares approach mentioned

above (Judge et al., 1980). Clearly, the main
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problems with this approach are identifying the
instrumental variables and collecting data for
them. When measurement errors are of concern,
the researcher must decide on a strategy for deal-

ing with them before using regression diagnostics.

Cross-Validation

Regression diagnostics are useful for detecting
influential observations and may help the user
select the proper statistical model. Cross-

validation is another technique used in the social
sciences to test the appropriateness of a model
for a given set of observations. In cross-

validation, a portion of the data is not used in
developing the regression model (Picard & Berk,
1990; Picard & Cook, 1984). Three different ways
to conduct cross-validation are suggested in the
literature: (1) the split-sample method, (2) the
hold-out method, and (3) the leave-one-out or
jackknife method.

The first two approaches are very similar

techniques in that they are both simple and in-
tuitively appealing. In the split-sample method,
50% of the observations are used for estimation,
and the remaining 50% are used for the valida-
tion of the model under consideration. This pro-
cedure may result in inefficient and/or inaccurate
estimation and validation if the total number of
observations is not large. In the hold-out method,
a larger portion (e.g., 80%) of the data are used
for estimation, and a smaller portion (e.g., 20%)
are used for validation. The rationale for holding
out a larger portion of the observations is that
the accuracy of the cross-validation cannot be

judged without precise estimates. However, even
with this method, a small sample might result in
imprecise estimation.

The jackknife method is an attempt to com-
bine the strengths of the above two methods. The
regression model is estimated with (n - 1) obser-
vations, and the observation which is left out is
predicted from the regression model obtained
from the (n - 1) observations. This process is

repeated by bringing in the previously left out
observation and leaving out a different observa-
tion. Thus, ~a predictions are obtained that can

be used to judge the efficacy of the model. In
this case, a balance is reached for both estima-

tion and prediction. This idea also appears in
some regression diagnostics, such as the ex-

ternally studentized residual.

Influential Observations and

Regression Diagnostics

A distinction must be made between outliers

and influential points. Outliers are unusually ex-
treme values in the response variable. Influential

variables are extreme values in regressor variables
that have a disproportionate effect on parameter
estimates such as the slope, estimated standard
error of the regression equation, R2, and so
forth. Because each point in a regression space
is defined by a combination of a response vari-
able and a regressor variable, outliers may or may
not be influential observations and influential

variables may or may not be outliers. Figure I

illustrates this in the context of a bivariate linear

regression. In Figure la, A’ is an outlier but not
an influential data point; if A’ is shifted to posi-
tion A&dquo;, it becomes an influential point and not
an outlier. In Figure lb, A’ is an influential point
but not an outlier. If A’ is moved to position A&dquo;,
then it continues to be an influential point but
also becomes an outlier. In the context of multi-

ple regression, simple two-dimensional scatter
plots cannot be used and the value of diagnostics
becomes apparent.

If influential points are present, serious errors
may be made in interpreting the regression model.
In extreme cases, it is possible to conclude that
a hypothesized relationship exists when in fact
it does not, or to conclude that no relationship
exists when it does. In Figure lc, point A is highly
influential-the regression line has a positive
slope when A is included, but it has a horizontal
line indicating no relationship when A is exclud-
ed. In Figure Id, the inclusion of the influential
point A yields a horizontal regression line,
whereas its exclusion gives a line having positive
slope.

Point A in Figure lc is no longer an influen-
tial point if a curvilinear model is used. Thus,
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Figure 1
Examples of Outliers and Influential Points

a. Outlier or Influential Point

a point is influential only with respect to a model.
Before searching for influential points or outliers
a model must be selected; the model must be in-
trinsically nonlinear and must be one which can-
not be transformed easily to a linear model.

Model selections are driven by a priori condi-
tions, such as theory or the experience of other
researchers. Using outlier and influence analysis,
it may be discovered that the model should be
modified. However, in practice, there is never a
&dquo;true&dquo; or &dquo;correct&dquo; model; therefore, influen-
tial points and model selections may depend on
each other. In practice, a proper balance between
model selection motivated by theory and model
selection guided by data must be maintained.
This paradigm of an iteration between theory and
data analysis has been supported by many, in-
cluding Box (1983).

The importance of various diagnostics does
not diminish as the sample size increases.

Although the illustrative datasets here are based
on small samples, the relevance of regression
diagnostics remains valid for samples of any size
(e.g., Rousseeuw & LeRoy, 1987).

Regressor-Based Measures

To study the impact of x and y on b, define
a n x n prediction matrix, given by
H = x(xlx)-Ixl. Denote the fitted values y, where
y = y, and H maps the observed values into the
predicted values. The diagonal elements of H are
denoted by hi, and the off-diagonal elements are
denoted by hii. From hi = Xi(XTX)-IX/, it follows
that the fitted value y; depends on the ith obser-
vation through the value of h;. Because h; is only
a function of the observed values of explanatory
variables or the design matrix, it is called a

regressor-based diagnostic measure. The hi values
are such that 0 :::; hi :::; 1, and they also are
called leverages because they indicate how ex-
treme the observed regressor values are. High
values of h; are indicative of influence; an h; value
greater than 2(k + I)ln for a moderate sample
size (k > 10, n - k > 50) usually indicates the
presence of an influential point. For smaller k and
n, an h; value greater than 3(k + I)ln is sug-
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gested by Velleman & Welsch (1981) as indicating
an influential point. h; values also enter into the
calculation of other diagnostics. The diagonal
elements also give some information about the
influence of other observations on g, because
hi = ~;=ih;, so that no entry h,~ can be larger in
absolute value than (hJ1¡z. In other words, the
contribution of the jth observation on the ith
parameter is bounded by (h;)1’2.
Analysis of Residuals

The OLS residuals, i.I YI .719 are the

primary means for detecting outliers. Although
the magnitudes of the OLS residuals are difficult
to judge directly, their scaled versions, called

studentized residuals, allow for easier detection
of outliers.

For the ith observation, an internally student-
ized residual is defined as

where s is the estimate of the standard error of
the regression equation given by

and the externally studentized residual is given by

where s,~ is the standard error of the regression
equation obtained from deleting the ith obser-
vation. The internally studentized residual uses
the standard error s; in the scaling, whereas the
externally studentized residual uses the standard
error sri) without the ith data point. Typically, ab-
solute values of t, or t* that exceed 2 or 3 are con-
sidered evidence of a possible outlier with signi-
ficance levels of .05 or .01, respectively. In other
words, approximately 5 070 of &dquo;good&dquo; data will
be declared &dquo;bad&dquo; data, because under normal

theory t*s are distributed as t(n - k - 2).
When multiple outliers are being tested for

statistical significance, individual significance

levels are no longer valid. Cook & Weisberg
(1982a) suggested using the Bonferroni inequali-
ty to obtain the p values for outliers. Outliers may
or may not be influential data points, but a
substantial difference between ti and t* suggests
the presence of an influential point. In any case,
the presence of an outlier should at least alert the

analyst of the possible uniqueness of the data
point.

Volume Measures

The preceding measures indicate the

unusualness of an observed point either with
respect to the regressor values (along the horizon-
tal axes), or with respect to the vertical deviations
from the regression model. A given data point
might not be unusual in either of these respects,
but might be significant in their particular com-
binations. For example, a data point might have
a moderately extreme value of both its leverage
and residual. Thus, there is a need for influence
measures that combine these into an overall in..

dication of influence. Measures based on volume

or distance use this idea.

Append the y vector onto the design matrix
x, and let x* be the resulting n x (k + 2) matrix,
x* = (x, y). The determinant of (X*)TX*, denoted

by ) ) I (x*)Ix* I ( is proportional to the square root
of the ellipsoidal volume of the n vectors in the
(k + 2)-dimensional Euclidean space. With the
ith data point deleted, the volume spanned by the
(n - 1) vectors is obtained.

The Andrew-Pregibon (A) measure (Cook &
Weisberg, 1982a) is

If this ratio is close to 1, the ith data point is
similar to the rest of the observations and is

therefore not an influential point. If A; is much
larger than 1, then the ith data point may be
influential.

Volume measures are intuitively appealing. In
two dimensions, if the space enclosed by the scat-
ter of points is very different without a point that
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is suspected to be an outlier or influential point,
then that point may indeed be an outlier or an
influential point. Thus, volume ratios like A; alert
the analyst to the presence of possible data points
that require further study. A value of Ai greater
than 2 suggests a problematic data point. More
importantly, all Ai values should be examined
and if a particular value stands apart from the
rest, then that particular observation requires
special scrutiny.

It can be shown that A; = 1 - p~, where pt
is the ith diagonal element of P*; P* = x*
[(x*)Tx) -’(x*)T, and x* is the extended matrix. A
similar but slightly different ratio is called the
covariance ratio (C) and is defined by

where s2 and S2 are defined above. Belsley et al.
(1980) suggested informal tests based on C for
detecting influential observations. In particular,
they suggest that if the absolute value C, - 1 is
greater than 3(k + 1)lrc + 1, then the

corresponding point should be considered as a
possible candidate for being influential and/or
an outlier.

easures Based on Distance

If an observation is influential, the entire

estimated vector b is affected and each compo-
nent is influenced by different amounts. If b and
b(¡) are the vectors of regression estimates, with
and without the ith data point, then Cook’s
distance (DJ is a standardized measure of the
distance between the estimated vectors b and b~;~,
and is given by

which also is equal to

A large value of D; relative to the C¡ values of
other data points usually indicates that the ith

data point is an influential point. There are other
versions of C;, such as that proposed by Welsch
& Kuh (1977), and these all are variations of the
well-known Mahalanobis distance (Belsley, Kuh,
& Welsch, 1980). 

’

The VVclsch-I~uh (1977) distance (T~;), also

called DFFITS by Belsley et al. (1980), is a measure
of the effect of the ith observation on the ith

predicted point and is measured by scaling the
change in prediction at xi when the ith observa-
tion is deleted. Thus,

which also is equal to

W¡ is similar to a t statistic, and a value greater
than [(k + I)ln] &dquo;2 has been suggested in the
literature as a warning sign to examine the data
point carefully.

Selection of Diagnostics
The regression diagnostics literature contains

25 or more diagnostic indexes. Many of these
measures convey similar information, and no
single measure is fully informative or definitive
in diagnostic assessments. Three to five measures
that are easily available from common statistical
software programs should be sufficient for a

comprehensive data analysis in most cases, par-
ticularly if they are supplemented by graphical
tools. Five useful diagnostics include the exter-
nally studentized residuals, diagonal elements of
H, 1~;, Wi, and C;.

These five statistics were selected for the

following reasons. The studentized residual yields
information about outliers. The diagonal ele-
ments his of H provide information about the in-
fluence independent of the value of the response
variable. D; gives the change in the parameter
estimates. C; provides an indication of the

aloofness (i.e., a distinct separation of the point
from the rest of the data points) that may be due
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to its influence or because it is an outlier. Finally,
U{ provides a numerical measure of the contribu-
tion of a data point to the overall fit of the model.
These five measures cover the important aspects
of regression diagnostics and the various vital
statistics used for studying the appropriateness
of a model. When used in conjunction with each
other, these measures should allow successful
detection of influential points in most situations.

Graphical Diagnostics

The discussion above centered on influential
observations assuming that the number of

regressors k is fixed. However, the impact of a
regressor variable on the estimates of other

regression coefficients also may be studied. Such
influences are called partial influences, and

various diagnostics are available to study them.
Partial leverage (or added variable plots) and
augmented partial residual plots are examples of
such diagnostics, in addition to the usual residual
plots (Atkinson, 1985; Chatterjee & Ali, 1988;
Cook, 1986; Cook & Wcisberg, 1982a, 1982b;
Daniel & Wood, 1980; Mosteller & Tukey, 1977,
discussed graphical influence measures from the
perspective of differential geometry). Partial

leverage plots are briefly discussed here; for fur-
ther discussions refer to the papers cited above.
A partial leverage plot for the mth explanatory

variable is a plot of two sets of residuals. The first
set is obtained by regressing y on Xl’ X2’ ... , I X(--1)5
x(m + 1)’ ... , xk; the second set of residuals is ob-

tained by regressing xm on x, 9 x2, ... , 9 X(M-I)$ X(m + 1)’ s
... , xk. This removes the linear effect of the
other regressors from both y and x&dquo;~. The slope
of the regression line between the two sets of
residuals is the same as the regression coefficient
of x~ when y is regressed on x&dquo; x2, ... , xk, hence
the name partial leverage (or added variable)
plots. Many other properties of partial leverage
plots can be found in Velleman & Welsch (1981).
A partial leverage plot for variable x,, may point
out the functional form of its relationship with
y (presence of curvilinearity), heteroscedasticity,
and the presence of influential points or outliers.
Partial leverage plots thus may be considered as

a multivariate analogue of an ordinary bivariate
scatterplot. For a demonstration of a practical
use of partial leverage plots on two substantive
problems in sociology, see Bollen & Jackman

(1985).

Diagnostics for Colinearity

The discussion above implicitly has assumed
that the regressor variables are more or less in-

dependent. However, colinearity is often present
in practice. Estimation in the presence of multi-
colinearity leads .to larger standard errors of the
parameter estimates. Remedies for this problem
include ridge regression and ridge estimation
(Delaney & Chatterjee, 1986).

If multicolinearity is present, the effect of a
regressor variable on the variability of the

response variable cannot be isolated from the ef-

fects of other explanatory variables. Although
this does not prevent the use of the regression
model for prediction purposes, it is a serious
drawback when the main objective of the model
is to understand and explain relationships, as is
often true in behavioral research. To detect

multicolinearity, examination of the correlation
matrix of independent variables is often the first
step. However, if an independent variable is a
linear combination of several explanatory
variables, then the correlation matrix is not suf-
ficient. In this case, the variance inflation fac-
tors (Vjs) are recommended. For information on
practical methods for detecting multicolinearity,
see Mansfield & Helms (1982).

The precision of a least squares estimate is
measured by its variance, which is proportional
to 02, the variance of errors. The constant of
proportionality is called ~. There is a ~ cor-
responding to the least squares estimate bj of
each parameter py, given by

where Rjl is the square of the multiple correlation
coefficient from the regression of the jth ex-
planatory variable on all other explanatory
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variables of the regression equation. The

denominator (1 - RJ) is sometimes called

&dquo;tolerance&dquo; (Stewart, 1987). If Rj2 is close to 1,
indicating a strong relationship of variable j to
the explanatory variables, then Vj will be large
and tolerance will be low. On the other hand, if

RJ is close to 0, ~ will be near 1. The literature

suggests that Vj in excess of 5 to 10 is an indica-
tion that multicolinearity may be a problem.
A more sensitive measure for colinearity,

called the condition number, has been studied by
Stewart (1987). The condition number is the ratio
of the largest to the smallest eigenvalue of the
inverse of the sum of squares matrix xlx.

Although Vjs and condition numbers are related,
the latter are easier to work with (from a

theoretical and computational standpoint) for
studying colinearity arising from a single data
point or a group of data points and for studying
the numerical precision of the parameter
estimates in least squares estimation. However,
the Ijs are more specific to covariates, local in
nature, and more useful for the practitioner. Con-
dition number, on the other hand, describes the
overall colinearity of the regressors and,
therefore, is global. For a further discussion of
~, condition number, and their impact on least
squares estimates, see Stewart (1987), Belsley et
al. (1980), and Chatterjee & Price (1973).

Because researchers in the behavioral sciences
often use scaled data, it is important to know the
effect of scale changes on the computed diag-
nostics. None of the diagnostics presented here
that deals with outliers, influential points, and
measures of colinearity is invariant to nonlinear
transformations. Statistics based on eigenvalues
of xTx, such as the condition number, are not in-
variant to linear changes in scales nor are most
of the procedures based on ridge regression.
There is a great deal of discussion in the literature
as to whether condition numbers should be

calculated on untransformed data or mean-

centered data. Belsley (1984; see also the follow-
ing discussions and the rejoinder by Belsley) shed
light on this controversial issue. Casella (1983)
employed concepts of leverage to decide whether

or not to include an intercept in the model. Other
diagnostics based on measures of regressors,
residuals, volume, and distance for computing
influence and leverage diagnostics are invariant
to linear scale changes. Diagnostics should be
interpreted within the context of the particular
model being investigated, including the scales
used.

Regression Diagnostics in Statistical Software

Most statistical software packages such as
SPSS (SPSS, Inc., 1988), SAS (SAS Institute, Inc.,
1982), BMDP (Dixon, 1984), and MINITAB (Ryan
et al., 1991) include a variety of regression
diagnostics. In SPSS, the REGRESSION command
has options that produce various forms of

residuals, elements of the prediction matrix
(leverage), and various partial residual plots. In
SAS, the PROC REG command has the subcom-
mands COLLIN, Y, INFLUENCE, and RESIDUAL
that produce eigenvalues, condition number,
~s, I3;, the prediction matrix, C&dquo;;, 1~ (called
DFFITS), and various other residuals. Cook &

Weisberg (1982b) listed the options and com-
mands that SAS, SPSS, and BMDP offer and a set
of MINITAB instructions for computing various
diagnostics. For users of microcomputers, SYSTAT
(Wilkinson, 1992) provides a fairly extensive set
of regression diagnostics including OLS, stu-

dentized (internal) and partial residuals, leverage,
Ci, and the standard errors of prediction. SYSTAT
also has the capacity to plot these against the
observation index (case) number, and the es-
timated and actual y values. The regression out-
put includes the case numbers of extreme diag-
nostic values.

Data Analysis Using Diagnostics

The data consisted of a random sample of 24
patients who filled out a questionnaire. The
variables were as follows:

1. Y perceived satisfaction level,
2. Xi, patient’s age in years,
3. X,, severity of illness index, and
4. X,, level of anxiety felt.
X, and X, were obtained from patient surveys
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and other records. Information for X, was pro-
vided by the resident physician. With the excep-
tion of Xl’ these variables were measured on im-
precise subjective rating scales and are typical of
the variables commonly used by behavioral and
social scientists. The data are provided in Table 1.

Table 1
Patient Satisfaction Data

for Four Variables

The proposed model is

and the estimated regression equation is given by

(the calculated t values are given in parentheses
in Equation 16, and in other equations below).

For this equation, Ra~~ _ .634, F = 14.38,
p < .001. For Equation 16, X, is not signifi-
cant. Equation 16 is referred to as Model 1 (see
Table 2).

Examination of the residuals in Table 2 does

not provide evidence of any possible outliers.
However, from examination of Di, hi, Wi, and C’;,
Person 10 appears to be an influential point.
Figures 2a, 2b, and 2c provide a plot of hi, I~;,
and C, for each person. Figure 2 and Table 2
show that Person 10 is a highly influential point.
This point deserves careful scrutiny and often
raises interesting questions, such as: Have the
data been recorded or transmitted incorrectly? Is
the influence due to additional variables that have

Figure 2
Values of Ð¡, C¡, and h, From
Model 1 For Each Person
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not been included in the model, or due to interac-
tion among the existing variables? Is the point
simply an aberration? These questions may lead
the researcher to modify the model, search for
other explanatory variables, gather additional
data, or drop the influential point from the
analysis. To demonstrate the effect of this obser-
vation on the current model, it was excluded from
the dataset.

The regression for the reduced dataset without
Person 10 is referred to as Model 2. The estimated

regression equation is given by

which resulted in R,2,,j = .621, with F = 13.01,
p < .001. In Model 2, both XZ and X3 are not
significant.

There is a large difference between the two
models even though an explanatory variable
which was highly significant in Model 1 becarne
insignificant in Model 2. Moreover, removal of
Person 10 revealed possible multicolinearity
between X2 and X3. The T1’ values in Model 1

were 1.6, 1.8, and 1.2 for variables Xl, ~2, and
.X3, respectively. The highest correlation was

between X, and XZ (r = .61). On the other

hand, the T1’s for Model 2 were 1.4, 2.8, and 2.9.
The correlation betwcen ~2 and X3 was approx-
imately .80, indicating strong colinearity. Thus,
the removal of a single data point can reveal
considerable multicolinearity. Extended dis-

cussions of multicolinearity from insertion and
deletion of a small set of data points can be
found in Chatterjee & Hadi (1988).

The diagnostics after deleting Person 10 also
are given in Table 2, and plots of hi, Wi, and Cm
by person for this reduced dataset are given in
Figure 3; these results do not reveal any influen-
tial data point.

If X, or X3 is dropped, the regression equa-
tions are

with R;dj = .631

Figure 3
Values of Ð¡, C¡, and h; From
Model 2 For Each Person

and

with R a 2&dquo;j = .627; the diagnostic values showed
no influential points.

rtial Residual Plot

The partial residual plot for ~3 was con-
structed by regressing Yon Xl and X2and retriev-
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ing the residuals (called IZes,), and by regressing
X~ on the regressors Xl and X2 and retrieving the
residuals (called Res2). Figure 4 is the partial
leverage plot for X3 with IZes, (vertical axis)
against Res, (horizontal axis). Note the influen-
tial nature of Person 10. Without Person 10, the
statistical significance of X3 becomes doubtful.
Similar plots for other regressor variables yielded
identical conclusions. In general, it is advisable
to look at the partial regression plots for all the
explanatory variables to detect possible misspeci-
fication in functional form, heteroscedasticity,
and influential points and/or outliers.

Figure 4
A Partial Leverage Plot

~ .- A&dquo;’&dquo;

There are two additional possibilities, other
than gross errors, that may explain the data for
the deleted Person 10. One is the possibility of
interaction between regressor variables, and the
other is the relevance of other unmeasured ex-

planatory variables. These possibilities must be
investigated before final conclusions can be
reached. Thus, a researcher faced with the

analysis of actual data may proceed in two ways:
In the absence of any relevant information on
errors in variables, the usual regression diagnos-
tics should be used to detect any influential or

outlier points and proceed accordingly. On the
other hand, if there is information available on
the error structure of the regressors, the re-

searcher can use the structural equations ap-
proach or study the sensitivity of the regression

coefficients by any three of the methods men-
tioned earlier.

Discussion

Do regression diagnostics help uncover

substantive issues? For the full dataset, the

variability in Y was explained by X, and X,, but
X2 was not statistically significant. However,
when the data for Person 10 were dropped from
the analysis, both X3 and X2 were jointly not
significant. These results suggest that Xl and
either ~.’2 or X3 should be used to explain the
variability in Y This parsimonious description of
the data was facilitated through the use of regres-
sion diagnostics.

Such findings are not limited to small data-
sets (Belsley et al., 1980). Huber (1981) in-

vestigated robustness properties of least squares
estimates and concluded that 1 to 5% of the

number of observations that are influential can

affect the results of a regression analysis. The
percentage of influential points that significantly
distort or bias the parameter estimates of a model
is called the &dquo;breakdown point of an estimator&dquo;
(Rousseeuw & LeRoy, 1987). Theoretical investi-
gations have shown that the breakdown point of
least squares estimates approaches 0 as the

number of observations becomes large. Conse-
quently, even a srnall percentage of influential
points in large datasets can affect the results, em-
phasizing the need to examine various diagnostics
irrespective of the sample size.

Robust statistics (Huber, 1981) allow the

analyst to select a weight between 0 and 1 for each
data point, which enables the observation to ex-
ert influence on the results proportional to its
weight. A weight of 0 implies deletion, and a
weight of 1 leaves the observation in the estima-
tion sample. The researcher who is acquainted
with both the problem and the dataset must
decide how to treat an influential observation.

Regression diagnostics can only point to the
presence of influential observations.

Although commonly available regression
diagnostics are adequate in the context of linear
regression models, there are some situations in
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which using regression diagnostics are inade-
quate. The paper by Huber (1983) and the discus-
sions following by several researchers and the
subsequent rejoinder by Huber provide a helpful
guide to the applied researcher. A study of the
impact of the usual regression diagnostics when
the assumptions of the regression model are
violated (particularly the assumption of the in-
dependence of errors) was studied by Polasek
(1984). The behavioral researcher should be aware
of situations in which the usual diagnostics may
be inadequate.

ultiple Influential Points

Multiple influential points are common in
practical datasets. Provided that the influential
points do not mask each other, the methods
described above are adequate for their detection.
Masking occurs when one influential point hides
the presence of others. Figure 5 shows a simple
case of masking. The least squares line is given
by AB. Points 3 and 4 are individually influen-
tial, but neither Point 1 or 2 appears to be in-
fluential by itself. According to some researchers,
masking is not a problem in practice (see Chatter-
jee & Hadi, 1986).

Figure 5
Example of Individually Influential
Data Points (3 and 4) and Masked
Jointly Influential Points (1 and 2)

The data for Figure 5 (reproduced in the

second and third columns of Table 3) are used to
illustrate the masking phenomenon. The OLS
regression of these points is given by

Table 3

Regression Diagnostics for Masked Data

hi, 1~~, and externally studentized residuals t;* also
are shown in Table 3. Note that only Observations
3 and 4 are influential data points when measured
by D, and h,. To demonstrate that Points 1 and
2 are jointly influential, Observation 1 was

deleted, which resulted in the following regression
equation:

and with Observation 2 deleted (but including
Observation 1),

However, if both Observations 1 and 2 are

deleted,

The individual regression diagnostics for Obser-
vations 1 and 2 were small, but the absence of
these points changed the slope of the regression
estimate from 1.28 to 1.87, and changed the in-
tercept from 5.28 to 3.72.

When masking is present, jointly influential
points can be detected by computing the diag-
nostics after removing pairs, triplets, and so forth
of points from the dataset. However, for any
reasonable dataset, the number of computations
become unmanageable. There are several strate-

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



223

gies to deal with this problem.
The first approach uses the off-diagonal

elements of H. The off-diagonal elements of H,
h,;, play a significant role in the determination
of joint influence. For example, a high value of
hij may indicate the presence of the joint in-
fluence of the ith and the jth observations. Gray
& Ling (1984) detected influential subsets in
regression using a clustering algorithm. They pro-
vided a graphical method for detecting jointly in-
fluential points. For a more complete discussion
of the use of off-diagonal elements of H for
detecting joint influence, see the discussion

following Gray & Ling (1984).
The second strategy advocated by Rousseeuw

(1984) and Rousseeuw & Leroy (1987) uses the
least median squares (LMS) approach. With LMS,
the estimates are obtained by minimizing the
median squared residuals and are robust in the
presence of multiple outlier points. The LMS
estimates can be thought of as determining a
median or modal plane (model) and are not
influenced by multiple outliers. Rousseeuw and
Leroy discussed the properties of LMS estimates
and provided an algorithm for determining the
LMS estimates and subsequent detection of

outliers. Rousseeuw & Van Zomeren (1990) pro-
vided an alternative approach, based on the
Mahalanobis distance, for unmasking multi-

variate outliers and leverage points.
A third strategy considers the data as n points

in a (k + 1)-dimensional space. The vertices of
the convex hull (smallest convex set) of these
points are proposed as candidates for testing for
joint influence. Figure 6 presents the outermost
convex hull of a set of points in two-dimensional
space. The vertices of the outermost layer (peel)
are denoted by Points 1 through 8. This layer of
points may be removed in order to continue ex-
amining vertices of inner hulls. This approach,
which reduces the exhaustive search for multiple
influential points, was proposed by Chatterjee &

Chatterjee (1990). It is still in an experimental
stage, as is the suggestion to examine each vertex
together with the points that are in the vicinity
of that vertex. The convex hull approach was used

Figure 6
The Outermost Convex Hull of a Set of Points

successfully by Chatterjee, Jamieson, & Wiseman

(1991) for detecting multiple influential points in
factor analysis. Peeling of convex hulls for order-
ing multivariate data can be found in Green (1984),
and other uses of the vertices of convex hulls as

extreme points are discussed in Barnett (1976).

Diagnostics for ultivariate
Regression and Other Models

Multivariate Diagnostics

There appears to be very little work done on

multivariate diagnostics, other than the work of
Hossain & Naik (1989). Residual-based, volume-
based, and distance-based diagnostics for the
multivariate regression model are discussed brief-
ly. There appears to be no commonly available
software to implement these, but the diagnostics
described below can be computed using the PROC
MATRIX command in SAS (SAS Institute, Inc.,
1982).

Consider the multivariate regression model

where Y is a n x p response matrix of n obser-
vations of p response variables,

X is a n x (k + 1) matrix of regressors,
B is a (k + 1) x p matrix of parameter

values, and
E is a n x p matrix of residuals.
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The columns of B are denoted by b;. X is
assumed to be nonstochastic and of full rank,
[i.e., rank(X) = k + 1]. Rows ei of E are

assumed to be independent and normally
distributed, with a p x 1 mean vector of Os and
a p x p covariance matrix ~. The least squares
estimates of bj are given by

which is the same as equation-by-equation least
squares estimation.

First, note that the diagonal elements hi of H,
the prediction matrix, play the same role as in
multiple regression. Large values indicate that at
least one component of the ith data point may
be an influential point.

The residual matrix is given by E = Y - X ~.
An estimate of ~, is

Let

where f,~ = Y~t~ - X(i)B(i) is obtained by drop-
ping the ith observation. Define

and

where ~2 and T? are the multivariate analogues of
ti and t/ discussed earlier. These statistics are ap-
proximately distributed as Hotelling’s T’2 dis-

tribution and can be tested for an outlier by com-
paring their values to the upper percentage point
of an F distribution with appropriate degrees of
freedom.
A multivariate analogue of Di is given by

Influence of the ith observation on the estimate
of B is indicated by large values of 17*

Jlg can be modified accordingly as

where Fcx,p,n - k - p - is an upper percentage point
of the F distribution vaith p and z - p - 1)
degrees of freedom.

C¡* is the corresponding multivariate analogue
of the scalar variances and is given by

As before, very high or very low values of C* are
considered to be significant. Hossain & Naik

(1989) discussed other multivariate diagnostic
measures for regression.

Nonlinear Models

Many nonlinear models and generalized linear
models -including logistic regression and sur-
vival models -(McCullagh & Nelder, 1984) have
become popular in the social sciences due to the
enhanced capability they offer in building ex-
planatory models. Nonlinear regression param-
eters can be very sensitive to values that are ex-

treme in the response space or in the explanatory
variables. One particular difficulty with nonlinear
regression is that the diagnostics cannot be ob-
tained in closed analytic form as in linear regres-
sion, and specific diagnostic routines must be
built into each nonlinear regression program.
Diagnostics for logistic regression and their ap-
plications to other nonlinear models have been
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described by Pregibon (1981) and Jorgenson
(1983). Unfortunately, no suitable computer
package exists that computes and provides non-
linear regression diagnostics on a routine basis.

Other ultivariat~ Methods

Influential data points also can exert con-
siderable influence on the results of principal
components and factor analysis models. The
estimates of eigenvalues, eigenvectors, factor

loadings, and factor scores can be altered

dramatically by the presence of a small set of
influential observations. A statistic similar to

A, was proposed by Chatterjee et al. (1991)
that detects influential observations in principal
components and factor analysis models. Com-
putational requirements also are discussed

by these authors, but commercial computer
packages for detecting influential data points
in principal and factor analysis models are not
yet available.

Summary and Conclusions

Regression models need to be examined

beyond the usual summary statistics and tests of
significance. This is especially important when
behavioral variables are involved, because of the
inherent difficulties and errors in the measure-
ment of these variables. Five regression
diagnostics were recommended for a sound

analysis of data: (1) hi, the diagonal elements of
the prediction matrix; (2) t;f the externally
studentized residual; (3) 1~;, Cook’s distance; (4)
the Welsch-Kuh distance; and (5) C&dquo; the
covariance ratio. These numeric measures should

be supplemented with graphical tools, such as a
variety of residual plots.

Use of regression diagnostics often reveals data
points whose presence will affect the estimates
and significance of the parameters. As low as 1%
of influential data points may render one or more
variables significant or insignificant, may induce
or remove multicolinearity, and may change
estimates of parameter vectors and other statistics
in an unpredictable way.

Applications of regression diagnostics in other

multivariate models such as cluster analysis, and
causal models such as path analysis and LISREL
models, have not yet appeared in the literature.
Developments of both theory and computer
packages to detect outliers in nonlinear regres-
sion, weighted least squares, two-stage least

squares, and other multivariate models also

should be useful.
The interplay between measurement error,

regression diagnostics, and cross-validation is an
interesting one. Very little work has been done
on the relationship between cross-validation and
regression diagnostics and how to combine the
procedures for useful data analysis. The relation-
ship between measurement errors and regression
diagnostics is easier to comprehend. Measure-
ment errors, if arising due to an underlying causal
mechanism, obviously can be modeled. However,
when the underlying causal mechanisms giving
rise to the measurement errors are unknown or
difficult to model, then the measurement errors
will be confounded with influential points and
outliers. In that case, treatment of data by regres-
sion diagnostics will not address the problems
arising from measurement errors.

Wellman & Gunst (1991) studied how influen-
tial observations affect linear measurement esti-

mators. Their results indicate that the effects of
influential observations are in a direction or-

thogonal to and along the fitted plane, rather
than vertically and horizontally. They developed
diagnostics patterned after least squares diagnos-
tics, but these diagnostics follow the methods
used for developing diagnostics for nonlinear
regression and generalized linear models.

The techniques of regression diagnostics can
detect influential points and what would happen
if such points are removed from the analysis, but
they do not answer many important questions.
In particular, whether to keep or remove such
data points cannot be answered in an abstract set-
ting. Very often, bringing attention to a small set
of unusual data points is a first step that can
ultimately reveal much about the process under
study. If the purpose of most data analysis is
model building, regression diagnostics and
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various versions of cross-validation can be seen
as different activities with a common purpose.
Efron (1979) suggested that further research may
lead to powerful combinations of cross-

validation, the jackknife, and the bootstrap.
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