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Abstract: To achieve a targeted production level in mining industries, all machine systems and
their subsystems must perform efficiently and be reliable during their lifetime. Implications of
equipment failure have become more critical with the increasing size and intricacy of the machinery.
Appropriate maintenance planning reduces the overall maintenance cost, increases machine life,
and results in optimized life cycle costs. Several techniques have been used in the past to predict
reliability, and there’s always been scope for improvement of the same. Researchers are finding new
methods for better analysis of faults and reliability from traditional statistical methods to applying
artificial intelligence. With the advancement of Industry 4.0, the mining industry is steadily moving
towards the predictive maintenance approach to correct potential faults and increase equipment
reliability. This paper attempts to provide a comprehensive review of different statistical techniques
that have been applied for reliability and fault prediction from both theoretical aspects and industrial
applications. Further, the advantages and limitations of the algorithm are discussed, and the efficiency
of new ML methods are compared to the traditional methods used.

Keywords: reliability; fault diagnosis; predictive maintenance; machine learning; lifetime distributions

1. Introduction

Reliability refers to the probability of a system meeting its desired performance stan-
dards in yielding output for a specific time duration when used under specific conditions [1].
For instance, if a machine is designed to run continuously for 10,000 h with no faults in
between, the machine is said to be 100% reliable for that period. However, if a failure occurs
after 10,000 h of operation, the machine’s reliability after 10,000 h is less than 100% [2].
Component reliability is a function of time and is always measured at a specific operating
time. Reliable operation is interrupted or terminated by failures. A failure is an event that
results in the inability to complete the required duties and meet the requirements. The
theoretical definition of reliability is (Reliability = 1 − Probability of Failure), given by
R(t). Availability and maintenance are related to reliability and are defined as essential
components of it [3].

Understanding heavy equipment’s complexities, efficiency, and failures can help
achieve better production results and reduce unexpected and unneeded costs. Industries
can maintain consistent levels of productivity by conducting regular reliability assess-
ments [4]. Performance measurement is significant because it identifies existing perfor-
mance gaps between existing and desired performance and shows how far the gaps have
been closed [5,6]. A production system consists of many subsystems. In order to make
the system efficient and viable to operate, each subsystem must be optimized concerning
one another. The system’s availability, reliability, and maintainability, as well as its ability
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to perform as intended, significantly impacts the equipment’s effectiveness. Since the
mid-1980s, reliability analysis methodologies have steadily gained acceptance as standard
tools for developing and operating automated and complex mining systems [7].

A proper maintenance plan is of paramount importance to increase or maintain the
system’s reliability at a standard level. The role of equipment maintenance has evolved in
the last few decades, from merely being a part of the production to an essential strategic
element in mining operations. Since the early 2000s, maintenance practices have been
recognized as a profit contributor, giving more importance to maintenance practices, and
elevating them to the same level as production [8]. With proper maintenance strategies
many abrupt failures can be prevented, decreasing the downtime and increasing the
system’s reliability. This helps in achieving targeted levels of production in the industry.

Equipment maintenance is so vital that around 35% to 50% of the annual operating
budget can be spent on equipment maintenance and repair alone in the mining industry,
and around 30% in the construction industry [9,10]. The evolution of maintenance in
the mining and construction industry has come a long way in the last decade, aided by
real-time data availability. There are four common maintenance approaches that can be
applied to mine assets: reactive, preventive, condition-based, and prescriptive [11,12].

Often known as unscheduled maintenance, corrective maintenance is only conducted
when equipment fails. This is because it could result in a lot of equipment downtime and a
lot of secondary failures, resulting in a loss of production [13].

Preventive maintenance (PM), is carried out at predetermined intervals and according
to a prescribed criterion; “it is intended to reduce any cost of unplanned maintenance from
unexpected equipment failure” (EN 13306 2001). All preventive management programs
are time driven. The component to be maintained can either be replaced or reconditioned
depending on its condition. PM can be further categorized into condition-based and
predicted maintenance [14].

Condition-based monitoring (CBM) is a form of preventive maintenance that repairs a
system before it fails by looking for signs of fatigue or other failure precursors. CBM creates
an optimum maintenance period by extending the time between preventive maintenance
and reducing the expense of unnecessary excessive maintenance and downtime. CBM is
based on the study of maintenance of gathered data (such as vibration, crack propagation,
oil, pressure, and viscosity) [15].

An overview of the maintenance classifications is shown in Figure 1. It is required that
any maintenance strategy should minimize equipment failure rates, improve equipment
reliability, prolong the equipment’s life, and reduce maintenance costs. Many KPIs are
used to monitor the long-term trends in reliability and maintenance performance. These
KPIs help understand if all the small and large modifications in maintenance practices
and system changes are having the desired effect over time. The mean time between
failure (MTBF) and mean time to failure (MTTF) are two essential KPIs for determining the
system’s reliability and faults. A successful maintenance strategy and reliability policies
lead to resolving issues that lead to equipment failures and show a steady increasing
performance trend that stabilizes at industry benchmark levels [16].
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Fault detection and reliability analysis of the system have evolved over the years. The
history of the reliability field may be traced back to the early 1930s, when probability con-
cepts were applied to problems associated with electric power generation. The beginning of
the maintainability field may be traced back to 1901. By the 1960s, equipment maintenance
activities started to be regarded as technical and involved optimizing maintenance solutions
and activities [1]. Most literature on reliability and maintenance analysis in the mining
and construction industry is present from 1975 onwards. During the 1975–1985 period,
several literature works can be found on reliability analysis of mining equipment that was
based on theoretical approaches [18–21]. Authors used manually drawn probability density
functions and KS tests to identify the availability of continuous mine systems [22] and
determined the reliability of bucket wheel excavators by doing probability calculations. In
the next few years (1985–1995), graphical methods using total time on test and analytical
methods using KS test and maximum likelihood estimations were used for reliability test-
ing [4,23,24]. Authors used proportional hazard models to investigate the effects of two
different designs and maintenance of power transmission cables [21]. Fault tree analysis,
failure mode, effect and criticality analysis were used in the late 1980s for fault detection
and reliability analysis [25–28]. By the 2000s best fit probability distribution using reliability
software was extensively used in mining to predict reliability and schedule maintenance
using information from reliability plots [29]. Weibull++6 software (from Reliasoft, Tuscon,
AZ, USA) was used to determine best-fit distributions for characterizing the failure pattern
of the two crushing plants and their subsystems. Authors used Statgraphic software to
estimate parameters of probability distributions for the shovel and its subsystems [30].
Most work in reliability is found around estimating best fit distributions for independent
and identically distributed data (I.I.D) and NHPP models for non-I.I. D data [31–33]. The
genetic algorithm was first applied in the reliability analysis of equipment in mining in
2001 [34]. Authors used Pareto analysis and statistical modeling of failure and repair dis-
tribution for reliability analysis of a hydraulic shovel [35]. Machine learning applications
for mine equipment reliability analysis were largely introduced from late 2000’s. Several
articles in the last ten years have used machine learning and deep learning for reliability
and maintenance analysis. Genetic algorithms, discrete event simulations, SVM regression,
KNN models, ANN, and reinforcement learning, have been widely used in the application
of fault predictions and reliability analysis.

2. Methodology

Most of the relevant literature and research work reviewed in this study is regarding
Machine learning applications in equipment fault detection and reliability analysis and
their components, focusing on artificial intelligence and machine learning usage. This paper
aims to provide a comprehensive review of advanced statistical and ML techniques widely
applied for reliability and maintenance analysis by classifying the research according to
the different statistical models and ML algorithms to offer guidelines and a foundation
for further research. In addition, a critical analysis of previous articles was carried out to
identify the advantages and shortcomings of the latest technological systems in the fault
detection and maintenance field to identify areas for the future scope of the study.

To achieve the mentioned, the paper is organized into five sections. In the first section,
there is a brief description of the current field of study. Section 2 presents the methodology
in the literature that is employed to categorize the previous work. Section 3 presents the
application of different traditional reliability methods. Section 4 discusses the application of
ML methods used in failure and reliability predictions. Section 5 discusses the conclusions
drawn based on the review and the potential future scope for the same.

Research databases, including Google scholar, Scopus, IEEE Xplore, ScienceDirect
and SpringerLink were mainly used for this study. Strategic keywords like reliabil-
ity/maintenance/failure analysis/fault detection and mine equipment (component) and
machine learning/statistical/graphical method were used in the searches. Figure 2 shows
the number of documents reviewed and used in each segment.
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3. Review on Application of Different Traditional Methods Used in Reliability and
Fault Analysis
3.1. Graphical Methods

Graphical methods can identify fault time and monitor and schedule preventive
maintenance. The graph plots the number of failures per unit versus the total time on test
per unit. This method assumes the time between failures (TBFs) to be independently and
identically distributed. Therefore, the actual chronological orderings of the TBFs can be
ignored. Thus, using a TTT plot is not useful to evaluate failure data that has structures
or is positive to the serial correlation test. However, a significant aspect of these plots is
that they can be used to analyze incomplete data. The failure rate of the equipment can be
inferred from the shape of the plot. If the plot is concave downwards, the equipment is
deteriorating (increasing failure rate), but if it is concave upwards, the equipment improves
over time [36]. If the plot crosses diagonal multiple times, the equipment has a constant
failure rate [4]. Graphical methods can be used to arrive at maintenance intervals. TTT plots
can be used to monitor health of equipment in terms of constant failure rate/increasing or
decreasing failure rate. The technique of TTT-plotting, originally suggested by Barlow and
Campo, is very simple to use for failure data analysis (Refs. [4,37,38]).

Graphical approaches can also be used to verify the presence of trends in failure and
repair data by plotting the cumulative number of failures against the cumulative time [36].
Before modeling the reliability data, it should also be tested for mutual independence
by testing it for the presence of serial correlation. The serial correlation can be tested
by plotting the ith TBF Xi against (I − 1) th TBF, Xi − 1. If the plotted points exhibit no
pattern, it can be interpreted that the TBFs are free from serial correlation. In case the plot
reveals serial correlation, then the TBFs are plotted at greater lags, such as Xi against Xi − 2,
Xi − 3, Xi − 4 . . . . etc., to search for serial correlation over greater lags [39]. Since the 1990s,
reliability and maintenance engineering has incorporated graphical methods, and recent
studies show that graphical methods are still in use for the initial exploratory investigation.
The input data for the graphical approaches are TTF and TBF data. Graphical methods
are typically used to estimate the reliability of large equipment like excavators, draglines,
and LHDs. From the existing literature work, it can be deduced that graphical methods
are mostly employed in planning maintenance intervals, identifying the machine’s failure
trends (increasing/decreasing failure rate), and testing the goodness of fit of other reliability
estimating methods [40].

Authors used TTT plot to estimate the reliability of LHD machines and identified
components that needed improvement in design [4]. In [23] scaled TTT was used to review
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the goodness of fit of the power-law-process model using both graphical and analytical
procedures. In [41] used TTT plots for i.i.d failure data to plan maintenance intervals for
material handling equipment operating in the mining industry. In [42] authors collected
failure data of hydraulic shovels for a period of 1.5 years, analyzed the machine’s reliability
using distribution plots and studied increasing/decreasing failure rates using a TTT plot.
Authors used failure mode effect analysis (FMEA) and TTT plots to study the reliability of
the cone crusher [40,43].

3.2. Fault Tree Analysis

Fault Tree analysis translates a physical system into a logical diagram, making it one
of the industry’s most popular approaches for reliability and safety calculations. It can also
update a system’s setup to make it less vulnerable and sensitive [44]. Fault trees can also
assess the impact of design changes or proposed corrective actions [45]. The causes of an
event are deduced using a top-down deductive analysis. The components of a fault tree
analysis are “events” and “logic gates”, which connect the events to determine the reason for
the top unwanted event. The process of creating a fault tree is one of trial and error, and no
failure causes should be overlooked [46]. The completed fault tree is assessed considering
the analysis’ goals. There are several stages to the evaluation: listing minimum cut sets,
grading minimum cut sets, calculating probabilities, and so on. When there is quantitative
data on the likelihood of events, FTA is very useful, although qualitative analysis is also
possible [44]. Other risk analysis approaches aren’t as effective at discovering faults as
fault trees. Its visual presentation of the failure causes makes it simple to identify a
single failure that leads to a complete system failure. A fault tree is often normalized
to a given interval, and an event’s probability depends on the relationship between the
event risk function and this interval. The reliability is calculated using a sequence of gates,
considering the probabilities of the outputs of a set of Boolean logic operations. It can also
be used to assess the impact of design changes or proposed corrective actions [45]. Two
major approaches used for determining minimal cut sets for fault trees are Monte Carlo
simulation and deterministic methods. A basic fault tree structure is represented below
(Figure 3). According to the literature, FTA is used in the fault analysis of HEMM. Several
studies have been published in the last five years using SFT and DFT. From the previous
work, it can be noted that FTA is used both with descriptive and numerical data combined
with Boolean algebra to make decisions on optimized maintenance intervals, qualitative
and quantitative fault analysis, and reliability estimations of the equipment [47]. FTA was
helpful in identifying risk priority number (RPN), equipment value, and impact on value,
identifying basic events that cause failures, and building mathematical models by logically
correlating the events.
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In [49], authors used fault tree analysis to understand the effects of each component or
subsystem of a dragline on its reliability, and to get an insight of an optimized maintenance
schedule. Probability distribution that best defined TTF data of each subsystem of dragline
was identified. The obtained distributions were then combined with a fault tree for defining
the system to identify the influence of individual component reliability on a dragline.
Dragging rope is predicted to have the highest contribution to a number of failures within a
year, but the motors and generators will cause the longest downtime if they fail. Probability
values were also useful in deciding which components need attention at certain time
intervals. In [50], the authors used fault tree analysis for fault identification of CNC turning
center. Boolean algebra was used to evaluate the fault tree (FT) diagram and to derive
the machine’s governing reliability model. Qualitative and quantitative analysis is carried
out to identify critical sub-systems and components of CNC turning center. The results
are the estimation of the reliability of the CNC machine after one year of the warranty
period and identify the number of failures during this period. In [51], the authors used fault
tree analysis to analyze failures associated with the mine cage conveyance while showing
the various branches of events that can lead to failures and their order of criticality for
the various associated components. Failures associated with one or more components
compromised the effectiveness of the mine cage conveyance as a system, and efforts were
geared toward managing the critical components identified in this study by reviewing the
existing maintenance plans and developing more robust strategies. In [52], the authors
developed a methodology to determine the critical machine of the company, based on
impact on production, impact on value, availability standby and equipment value and this
identified machine was further analyzed by using failure mode and effect analysis and fault
tree analysis in detail to determine its risk priority number (RPN). The risk priority number
(RPN) is the product of severity rating, probability of occurrence, and the probability of
detection [53]. A case study used a fault tree for a heavy-duty machine’s hydraulic system,
and the result shows that there are 27 basic events that cause hydraulic failure in the
hydraulic system, where oil pollution is the most critical basic event. As the outcome of
quantitative analysis is entirely dependent on the precision of the numerical data used
in the analysis, if uncertainties are left unresolved, then there is a chance of producing
misleading results. Hence, different methodologies, mainly based on fuzzy numbers, were
proposed to tackle the issue of uncertain failure data in FTA.

Standard fault trees (SFTs) can only assess the reliability of static systems. The dynamic
nature of a system leads to several dynamic failure features such as functional dependent
events and priorities of failure events. Although SFTs are commonly used for dependability
analysis, they are incapable of capturing dynamic data. SFTs have been expanded in several
ways to assist dynamic dependability analysis, such as dynamic fault trees (DFTs), state-
event faults, and stochastic hybrid fault trees. The DFT is one of the most extensively used
dynamic extensions of the SFT, and it captures sequence-dependent behavior, functionally
dependent component behavior, and event priority [54,55]. In [56], the authors proposed
a method to set the dynamic fault tree of a roadheader. The modular method was used
to split the fault tree into dynamic and static states, and a binary decision tree was used
to analyze the static state, and the logical relationship between faults was used to assess
the dynamic module. In [57], the authors constructed a dynamic fault tree using a binary
decision tree and Markov method in a modular approach for an electric haulage shearer.
The study revealed that improper installation of the first shaft bearing, cage off of first
shaft bearing, cutting motor damage and poor quality of lubricating oil were the major
contributors to the faults of the shearer [44].

FTA’s design concept can be used to demonstrate its limitations. It focuses on building
a mathematical model of a complex physical condition by logically correlating events. The
strategy is solely based on the analyst’s judgement if all peripheral, environmental, and
operating parameters are not given [58]. Another important difficulty with a quantitative
FTA is the lack of reliable and meaningful failure data and the probabilities of events.
The cost of development in a first-time application to a system is the most notable. For
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investigating small systems, inductive analysis approaches such as failure-mode-and-effects
analysis are significantly easier and less expensive to deploy [58].

Even though several fault tree extensions have been proposed, they all have a variety
of shortcomings. Even when software tool help is available, many investigations involve a
significant amount of manual work. Over the last two decades, researchers have focused
on ways to automate the synthesis of dependability information from system models,
with the goal of simplifying dependability analysis. As a result, the field of model-based
dependability analysis has emerged (MBDA) [44]. As part of MBDA, many tools and
approaches for automating the development of dependability analysis, such as fault trees,
have been developed. Because the analyses in MBDA are carried out on formal models, they
may be carried out iteratively, which helps to generate more results and new results if the
system design changes. When compared to manual procedures, this process takes less time
and costs less money, and because it is more structured, the chances of introducing errors
in the analysis or producing incomplete results are reduced. Furthermore, by allowing
sections of an existing system model or libraries of previously analyzed components to be
reused, the MBDA methodologies give a higher degree of reusability [44,55].

3.3. Probability Distributions and NHPP Models

The reliability of the system and sub-system can be determined from the failure rate
using probability distribution methods. Both parametric and non-parametric methods are
used in reliability estimations. Trend and correlation tests can be used to check if the data
points are independent and identically distributed. Parametric distributions can be used if
no trend or correlation is observed in the data. Otherwise, non-parametric methods can
be used to analyze data. In non-parametric methods, the failure data are analyzed with-
out assuming any particular distribution. The non-parametric analysis methods include
Kaplan–Meier, simple actuarial and standard actuarial methods. Reliability evaluation by
parametric method considers fitting the failure rate to any statistical distribution, such as
the exponential, normal, Weibull, or lognormal. This will result in a better understand-
ing of failure, and the resulting model can be used for analytical evaluation of reliability
parameters for the whole lifespan of the system.

Parametric probability distributions are used both in stochastic analyses of system
reliability, where the systems are mostly assumed to be fully known, and corresponding
properties of the system are analyzed, and for statistical inference, where process data are
used to estimate the parameters of the distribution, often followed by a specific inference of
interest [59]. Goodness of fit tests like the Chi-square test, Kolmogorov–Smirnov, Anderson–
Darling and Shipiro–Wilk tests are used to analyze how best the distribution fits the
given data. The model that most efficiently describes the data can be selected based on
goodness-of-fit tests for reliability estimations. The Weibull distribution function, among
all distributions, is usually the most used method to evaluate system reliability as the
distribution could be used to show an assortment of life behaviors. In this distribution,
cumulative probability, failure rate and probability density function (PDF) curves are
changed by the influence of either shape parameter, β, scale parameter, η and location
parameter, γ variation. The shape parameter mainly indicates the condition of the system.
If β < 1, it indicates that the rate of failure of a system or component will be decreasing with
respect to time. This condition can be treated as an early-life failure. Weibull distributions
with β nearer to or equivalent to 1 have a constant rate of failure, also known as the useful
life. Similarly, Weibull distributions with β > 1 have an increasing failure rate with respect
to time, denoted as a wear-out failure. A typical ‘bathtub curve’ plot clearly depicts the
three segments of failure zones. Figure 4 shows the bathtub curve representing the failure
rate over time.
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Most work in the literature is based on probability distributions in equipment relia-
bility estimations and maintenance analysis. TBF, TTF and TTR data are mainly used in
parametric and non-parametric estimations. Probability distribution and NHPP models
are mainly used in reliability centered maintenance and to identify critical systems and
sub-systems of the equipment. In [61], the authors presented reliability analysis based on
probability density function and failure rate of a shovel-dumper system of an open pit
coal mine using probability distribution functions. The KS test was used to evaluate the
best fit distribution for TBF data of shovels and dumpers. In [62], the authors adopted
a three-parameter Weibull distribution approach to analyze the data sets of load-haul-
dumper (LHD) in underground mines using the ‘Isograph Reliability Workbench 13.0’
software package. The parameters were evaluated using best fit distributions, and Weibull
likelihood plots and the percentage reliability of each individual subsystem of LHD were
estimated. Using the results, the authors identified preventive maintenance time intervals
and enhanced the overall reliability of the LHD. The equipment performance evaluation
was based on availability and utilization. In [63], the authors presented a case study de-
scribing the reliability analysis of crushing plants in a bauxite mine where the crushing
plants were divided into seven subsystems and reliability analysis was done for each
subsystem using failures data. The parameters of some idealized probability distributions
were estimated by using ReliaSoft’s Weibull ++ 6 software, and the best fit distributions
that characterized the failure pattern of the two crushing plants and their subsystems
were identified. Further reliability of both the crushing plants and their subsystems were
estimated at different time missions using the best fit distribution. Other aspects of system
failure behavior were also analyzed briefly for machine improvement. Analysis of the
total downtime, breakdown frequency, reliability, and maintainability characteristics of
different subsystems shows that the reliability of crushing plant 1 and crushing plant 2 after
10 h reduce to about 64% and 35%, respectively. The study showed the importance of
reliability and maintainability analysis for deciding maintenance intervals and for planning
and organizing maintenance. In [64], the authors considered two approaches (a basic
maintenance approach and a reliability-based approach) to analyze maintenance data.
To find the best-fit distribution, different types of statistical distributions were tested by
the Easyfit software. The developed model based on these data showed that the reliabil-
ity of loader No. 1 and No. 2 decreased to a zero value after approximately 477 h and
309 h of operation, respectively, and suggested a review on the maintenance program to
be performed to increase reliability. In [65], the authors presented a reliability analysis
of load-haul-dumpers in an underground coal mine. The distribution parameters were
estimated by both graphical and MLE processes and the goodness-of-fit test was carried
out using the Cramer von mises statistical test. Further, using this analysis, the total cost of
operation was reduced by estimating the reliability-based preventive maintenance time
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intervals. In [66], the authors presented a case study describing reliability analysis and life
cycle cost optimization of a band saw cutting machine. A few components followed the
parametric distribution and certain components followed the non-parametric distribution.
The failure distribution parameters for each component of the machine were estimated
using ReliaSoft’s Weibull++6 software. The result of the analysis indicates critical parts of
the machine and with certain design changes indicated by the authors, there is around 16%
improvement in the overall reliability of the system, and the life cycle costs are reduced
by 22%. In [67], the authors used a renewal process (Poisson distribution) for modelling
the LHD’s mechanical failures. The graphical method tests if the data is independent and
identically distributed (IID). The parameters of various distributions were found by using
Math Wave Easy Fit 5.6 professional software. Chi-square test was applied to select the
best-fit distribution model. Further, the study of the two-parameter log normal distribution
theory and its parameters are presented using log-normal probability theory. The study
reflects that reliability analysis is a powerful tool for determining maintenance intervals.
Maintenance activity every week was suggested for the machine to achieve a reliability
of 75%. In [68], the authors developed a basic methodology for the reliability modelling
and development of a maintenance program for a fleet of four drilling rigs. Failure and
performance data was collected from the Sarcheshmeh copper mine in Iran for two years.
Then, the available data was classified and analyzed and the reliability of all subsystems
and whole rigs were modelled and studied. Easyfit and MS Excel software were used for
data analysis and finding the best-fit distributions and parameters, and the Kolmogorov–
Smirnov (K-S) test was used to select the best distributions. NHPP and renewable processes
were used for the reliability modelling of the subsystems of the drill rigs. The probabilistic
possibility of all fleet states was calculated, and maintenance operations were suggested
for 80% reliability.

In [69], the authors studied the reliability of a drum shearer machine using operation
and maintenance data from an Iranian mine for a period of two years. The tests for trend
and serial correlation showed that the times between successive failures for the cable system
were not independent and identically distributed and the graphical tests revealed that the
cable system of the shearer is a deteriorating system. A goodness-of-fit test showed that
the power law process model is a good fit for this system’s failure data. After parameter
estimation for the power law model, reliability and failure rate plots were obtained. Based
on analysis and results, a period of 125 h was defined as the reliability-based maintenance
interval for the cable system of the shearer. The analysis shows that, using this strategy,
the system’s reliability would improve by at least 50%. In [70], the authors studied the
reliability, availability, and maintainability (RAM) of a 36T dumper machine with failure
and repair data using the KME method and outlined the constraints and reasons for
machine unavailability. The results were verified using maximum likelihood estimation
and piecewise exponential estimation methods. The reliability and maintainability of
an LHD system are disappointing. They suggested maintenance planning and machine
improvement from this analysis. The Kaplan–Meir estimator is used to find the design life
and optimal maintenance period which are useful information in maintenance planning.
In [71], the authors developed a computational tool and programming with VBA in Excel for
reliability and failure analysis of underground rock bolters. The developed approach used
the modelling of stochastic processes, such as the renewal process, the non-homogeneous
Poisson process, and the Bayesian approach. The tool gives the best-associated model, the
parameters estimation, the mean time between failure and the reliability estimate. This
approach is validated with the reliability analysis of inter-failure times from underground
rock bolters subsystems over a two-year period. Results show that Weibull and lognormal
probability distribution fit to the most subsystem inter-failure times. The study revealed
that the bolting head, the rock drill, the screen handler, the electric/electronic system,
the hydraulic system, the drilling feeder and the structure have a high repair frequency.
The hydraulic and electric/electronic subsystems represented the lowest reliability after
50 operation hours. In [23], the authors conducted a preliminary analysis of a fleet of LHD
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machines, found that engine and hydraulic systems are the two most critical systems and
selected hydraulic systems for further study. Maintenance data for two years for these
machines were analyzed. The tests for trends and serial correlation showed that times
between successive failures for the hydraulic systems were in most cases not independent
and identically distributed. Goodness-of-fit tests (Cramer–von Mises test and graphical
methods) showed that the power law process model is a good fit for the hydraulic systems’
failure data. Methods for parameter estimation in the power law process model and
estimation of optimal maintenance intervals for the LHDs are presented, emphasizing the
use of graphical methods for data analysis.

4. Machine Learning Applications in Failure Predictions and Reliability Estimations

Machine Learning (ML) is a subclass of artificial intelligence (AI) that can be defined
as a semi-automated system in which computers create an algorithm by learning from
observed data. Machine learning algorithms create a model based on training data and use
it to make predictions or judgments without having to be explicitly programmed to do so.
In recent years, decision makers and the scientific community have paid close attention
to the use of machine learning in risk and reliability assessment. Currently, quite a good
amount of work is being carried out in mine equipment failure and reliability assessments
and predictive maintenance analysis [72]. A machine learning approach can be used for
predicting failures and also to identify important parameters that predict failures.

From the equipment failure perspective, machine learning can be useful to replace or
repair a component before a fault happens and restore the original condition of the equip-
ment to maintain reliability. The algorithms use previous failure data or the equipment’s
vibration/condition monitoring data to study failures and make predictions. This would
lead to decreased downtime and achieve expected production levels at all times. Machine
learning helps predict future failures to accurately schedule maintenance operations. ML
techniques are designed to derive knowledge out of existing data. The following diagram
(Figure 5) gives a basic understanding of ML application for fault analysis.
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Businesses can profit from big data since it aids in guiding systems with a prescriptive
maintenance strategy. To improve the performance of machine learning algorithms, it
is critical to acquire usable data from the dataset [73]. Depending on the availability of
labelled data, ML-based data-driven methods can be further classified as supervised, semi-
supervised or unsupervised approaches. Machine learning algorithms are classified into
taxonomies based on the algorithm’s expected outcome. The following are a list of common
algorithm types:

• Supervised learning: The algorithm creates a function that maps inputs to outputs.
Output variables are known. The classification problem is a common supervised
learning challenge in which the learner must learn (or estimate the behaviors of) a
function that maps a vector into one of many classes by studying multiple input-output
samples of the function.
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• Unsupervised learning: There is no target or outcome variable to predict/estimate in
this method. It is used for clustering populations in different groups and when there
is a lack of sufficiently labelled data [74].

• Semi-supervised learning: Combines both labelled and unlabeled examples to generate
an appropriate function or classifier [75]

• Reinforcement learning: The machine is taught to make a certain decision using this
algorithm. It works like this: the machine is placed in an environment where it would
constantly train itself through trial and error. This system learns from its previous
experiences and seeks to capture as much information as possible to make accurate
decisions [74].

Predictive modelling can be described as the mathematical problem of approximating
a mapping function (f) from input variables (X) to output variables (y). This is called the
problem of function approximation. The algorithms are divided into two types: classifi-
cation and regression based on the output variable. Classification predictive modelling
is the task of approximating a mapping function (f), from input variables (X) to discrete
output variables (y). The output variables are often called labels or categories. The map-
ping function predicts the class or category for a given observation. Regression predictive
modelling is the task of approximating a mapping function (f) from input variables (X) to a
continuous output variable (y). A continuous output variable is a real value, such as an
integer or floating-point value. Classification models use different metrics like accuracy,
precision, recall, F1-score, ROC, confusion metrics, specificity, sensitivity, and AUC to
evaluate model performance. Regression models use mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), bias-variance and learning curves to
estimate error and evaluate model performance [76]. Classification models are mostly used
in the literature to predict and classify faults. A few ML algorithms used majorly in the
literature of equipment reliability and fault analysis are discussed in this section.

4.1. Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised machine learning algorithm that can
be used for classification and regression problems. In the SVM algorithm, each data item is
plotted as a point in n-dimensional space where n is the number of features considered,
with each feature being the value of a particular coordinate [77]. Then, the aim is to
perform classification by finding the hyper-plane that differentiates the two classes very
well. SVMs maximize the margin around the separating plane, and the decision function
is fully specified by a subset of training samples called the support vectors [78,79]. The
optimal SVM hyperplane for binary classification is represented in Figure 6.

A separating hyper plane can be used to divide data that is linear. However, the data
is frequently non-linear, and the datasets are closely linked. To account for this, the input
data is non-linearly mapped to a high-dimensional space. After that, the new mapping is
linearly separable. Kernel trick allows SVM’s to form nonlinear boundaries. The kernel
function’s purpose is to allow operations to be conducted in the input space instead of the
possibly high-dimensional feature space. As a result, the two classes can be separated in
the feature space. Different kernel functions exist, such as polynomial, radial basis function
(RBF), and sigmoid function, and the choice of a kernel function is determined by the
application [80]. From the literature review, it can be noted that SVM is mainly used for
forecasting failures, fault diagnosis and pattern recognition. The previous works used TTF,
TBF, audio signals, vibration data, and fault states as input data for SVM algorithms. From
the time horizon, it can be noted SVM was widely popular from 2010 to 2015 in mining.
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In [82], the authors used SVM to detect defects and fault patterns of unexpected
heavy equipment failures. SVM classifier was used to divide data as normal and abnormal
and only normal data was used for learning using restricted Boltzmann machine (RBM)
and then based on patterns, faults in the system were identified. In [83], the authors
used the SVM regression algorithm to forecast TBFs using historical observations of LHD
failures. A Pareto analysis detected the LHD’s engine as the most critical system. TBFs
of 32 failures were obtained. Twenty-five records were used for SVR modelling and the
remaining for testing. Mean absolute percentage error (MAPE) and normalized root mean
square error (NRMSE) values were used to evaluate model performance. A polynomial
kernel function of the third degree resulted in the best predictions (minimum errors). An
absolute percentage error value of less than 2% was achieved, demonstrating excellent
forecasting applicability of SVR. In [84], the authors have explored the application of the
SVM classification approach for pattern recognition and failure forecasting on mining
shovels. The failure behavior of a fleet of ten mining shovels during 1 year of operation
was investigated and the shovels were classified into four clusters using k-means clustering
algorithms, based on their reliability. Future failures were predicted using the support
vector machine (SVM) classification technique. Historical failure (component type) and
time to repair data were used to predict the next failure type for all shovels. Four different
kernel functions, namely linear, polynomial, RBF and sigmoid function were examined in
combination with different values of C parameter, using a grid search attempt. The best C–K
pair that resulted in the maximum number of correct classes for the test dataset was selected
for each shovel from each cluster using a grid search method, and the results were validated
using particle swarm optimization. The SVM technique was shown to be successful with
a prediction accuracy of over 75%. In [85], the authors proposed principal component
analysis (PCA) with the SVM method for fault diagnosis of mine hoists. PCA was used
to extract relevant time domain and frequency domain features and using these, a multi-
class SVM algorithm model corresponding to nine different fault states output was built.
Comparison of various methods showed the PCA-SVM method successfully diagnosed
faults in the mine hoists system. The RBF kernel function system had the best classification
properties and the accuracy of the model turned out to be around 98%. In [86], the authors
developed a SVM based ensemble model for reliability forecasting of a mine dumper. The
hyperparameters of the SVM were selected by applying a genetic algorithm. A case study
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was conducted investigating a dumper operated at a coal mine in India. Time-to-failure
historical data for the LHD were collected, and cumulative time to failure was calculated for
reliability forecasting. The hyperparameters of the SVM models were selected using genetic
algorithm-based learning. Study results demonstrate that the developed model performs
well with high accuracy (determination coefficient R2 = 0.97) in the prediction of LHD
future failure times, and a comparison with other methods demonstrates the superiority
of the proposed ensemble SVM model. In [87], the authors have proposed a classification
method for an automated operating mode to increase the performance of vibration-based
online condition monitoring systems for applications such as gearboxes, motors, and their
constituent components. Several variations of the system have been tested and found to
be successful. A swing machinery system of an electromagnetic excavator is used to see
how this method functions on dynamic signals gathered from an operating machine. The
empty and full swing cycles are the two classification classes with vibration and speed
as input parameters. SVM and other classification models were used to analyze swing
performance. Data were collected over a period of 45 h on an operation. In [88], the
authors developed a method for monitoring and tracking both location and action for
automated construction equipment. The authors have proposed an audio-based method for
tracking and activity analysis of heavy construction equipment. The equipment generates
distinct sound patterns while performing a certain task and these audio signals are filtered
and converted into time–frequency representations. This data is classified into different
activity representations using a multiclass SVM classification algorithm, and the results
demonstrated the potential capacity to correctly recognize various equipment actions with
80% model accuracy.

4.2. The k-Nearest Neighbors KNN

The k-nearest neighbors (KNN) method is a supervised machine learning algorithm
that can be used to address classification and regression problems [89]. KNN is a kind
of instance-based learning (also known as lazy learning), in which the function is only
estimated locally, and all computation is deferred until classification. When there is very
little prior knowledge about the data distribution, the KNN is the most basic and simplest
classification algorithm. The data points are categorized based on how their neighbors are
classified. The algorithm’s idea is that all data points with similar characteristics are in
close proximity. Given a K value, the nearest K neighbors are chosen for any new point, and
the class containing the most points out of the k points is allocated to the new point. The
choice of K, as well as the distance measure used to pick the nearest K points, determine
the performance of a KNN classifier. In the case of KNN, a small training sample size can
significantly impact the selection of the optimal neighborhood size K, and the sensitivity of
K selection can significantly decrease KNN classification performance. In general, KNN is
susceptible to data sparsity, noisy mislabeled points, and outliers from other classes if the K
value chosen is too small or too large [90–92]. From the literature review, it can be inferred
that KNN data is recently gaining popularity in mining. It is mainly used in fault diagnosis
and real time fault monitoring. Faults are monitored and identified both at system and
sub-system levels.

In [93], the authors studied a historical failure dataset of a dragline to conduct pre-
dictive maintenance. The authors used the k-Nearest Neighbors algorithm to predict the
failure mode but there was a chance of overfitting in the methodology. Hence, a combina-
tion of the genetic algorithm and k-Nearest Neighbor algorithm was applied for the failure
dataset. This enhanced the model performance, and the results were better predicted. In
another study, [94], the authors collected vibration signals of main journal-bearings of an
IC engine from condition monitoring methods. The vibration signals were classified under
normal, oil starvation, and extreme wear fault. Thirty features were extracted from the
processing of signals, and KNN and ANN were applied to train the dataset and later for
diagnostic use. Variable K ranging from 1 to 20 with the step size of 1 was used to get
better classification results. The experimental results showed diagnostic methods were
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reliable in separating fault conditions in the bearings. In [95], the authors proposed a new
methodology of weighted k-Nearest Neighbor classifier where a square inverse weighting
technique was used to improve the accuracy of the KNN model for fault diagnosis of rolling
bearing elements. Three bearing conditions were classified: healthy, inner, and outer race
fault. The algorithm indicated that this method enables fault detection in bearings with
high accuracy. In [96], the authors presented a fault diagnosis technique based on acoustic
emission (AE) analysis with the Hilbert–Huang transform (HHT) and data mining tool.
In [97], the authors proposed a real-time online fault diagnosis method for rolling bearings
based on the KNN algorithm. The rolling bearing vibration signal is preprocessed, and
feature parameters are extracted. The data was preprocessed, with 100 raw points as one
sample, for a total of 8496 samples. Different classification models like decision tree C4.5,
CART algorithm and KNN were used to classify fault data. Real-time online extraction of
the characteristic parameters of the vibration signal was used to realize real-time online
faults through the fault diagnosis model. Results show that the fault diagnosis model based
on the KNN algorithm is better than the fault diagnosis model.

4.3. Naïve Bayes Classifier

Naïve Bayes, a supervised machine learning algorithm, assumes an underlying prob-
ability distribution and captures uncertainty about the model logically by calculating
probabilities of occurrences. It is used to solve diagnostic and predictive issues. It calculates
explicit hypothesis probabilities and is robust to noise in the input data [98]. The naïve
Bayes algorithm is a straightforward probability classifier that derives a set of probabilities
by counting the frequency and combinations of values in a data set. When assessing the
value of the class variable, the method applies Bayes’ theorem and assumes that all vari-
ables are independent. In a range of controlled categorization challenges, the algorithm
learns quickly [99].

There are different types of Naïve Bayes classifiers. When characteristic values are
continuous, it is assumed that the values associated with each class are spread according to
the Gaussian distribution, which is the Normal distribution. On multinomial distributed
data, multinomial naïve Bayes is preferred. Bernoulli naïve Bayes is employed when data
is distributed according to multivariate Bernoulli distributions. That is, multiple features
exist, but each one is considered to have a binary value. As a result, binary values are
required for features [100,101]. Naïve Bayes has recently earned a lot of attention because
of its high learning and prediction accuracy, and more importantly, the algorithm works
well for mining data and conditions. In the literature work, naïve Bayes was used in fault
diagnosis and assessing faults’ damage and fault classifications.

In [102], the authors predicted RUL of bearings using the naïve Bayes algorithm.
Firstly, the statistical method is used to extract the features of the vibration signal, and the
root mean square (RMS) is regarded as the main performance degradation index. Second,
the correlation coefficient is used to select the statistical characteristics that have high
correlation with the RMS. Then, in order to avoid the fluctuation of the statistical feature,
the improved Weibull distributions (WD) algorithm is used to fit the fluctuation feature
of bearings at different recession stages, which is used as the input of the naïve Bayes
(NB) training stage. During the testing stage, the true fluctuation feature of the bearings
is used as the input of NB. After the NB testing, five classes are obtained: health states
and four states for bearing degradation. Finally, the exponential smoothing algorithm
is used to smooth the five classes and to predict the RUL of bearings. The experimental
results show that the proposed method is effective for RUL prediction of bearings. In [98],
the authors used Naïve Bayes for bearing fault diagnosis on enhanced independent data.
Data-based fault diagnostics of mechanical components has become a new hotspot. Their
approach was based on processing the data vector (attribute feature and sample dimension)
to reduce the limitations of Naïve Bayes by an independence hypothesis. The statistical
characteristics of the bearings’ original signal were extracted, decision trees were used to
select important features of the signal, and low correlation features were selected. The
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authors used SVM models in the next step to prune redundant vectors, and in the last step
used Naïve Bayes on the processed data to diagnose faults. In [103], the authors studied non-
repairable equipment with multiple and independent failure modes, where only incomplete
information about the failure mode was obtained through condition monitoring. The study
focused on obtaining a probability matrix representing the relationship between actual
health and condition monitoring information of the equipment and Naïve Bayes was used
as a classifier to classify each failure mode based on the degree of damage. An experimental
planetary gearbox system is used to gather condition monitoring data for damage degree
classification considering four failure modes. A forward feature selection is used in this
paper to find the best set of features. The classification accuracy increases to 94.76%. In [104],
the authors applied a Naïve Bayes classifier for diagnosing faults of rolling element bearings
and indicated that the Naïve Bayes classifier presented higher levels of accuracy of 96%
without any feature engineering requirement.

4.4. Decision Tree

Decision tree is a supervised machine learning method for constructing classification
systems based on multiple parameters or generating prediction algorithms for a target
variable. In this method, a population is divided into branch-like segments that form
an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-
parametric and can handle huge, complex datasets without imposing a complex parametric
framework [105]. Decision trees are mainly effective in handling non-linear datasets. Like
stepwise selection in regression analysis, decision tree methods can be used to pick the
most relevant predictor variables from a large number of features in datasets and to assess
the relative importance of these variables on the decision variable. Moreover, decision trees
can also handle missing data very well. It is also easy to handle a variety of input data:
nominal, numeric and textual [106].

However, other target functions of the decision tree can also include, minimizing the
number of nodes or minimizing the average depth to find the most important predictors.
Pruning is the practice of removing redundant nodes from a tree to obtain the best decision
tree possible. A general decision tree structure is represented in Figure 7.
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In [108], the authors in their work proposed an equipment reliability model for pumps,
designed by applying a data extraction algorithm on equipment maintenance records
residing in SAP applications. The author has initially applied unsupervised learning to
perform cluster evaluation. Thereafter, the data from the finalized model was applied to
a supervised learning algorithm where the classifier was trained to predict equipment
breakdown. The classifier was tested on test data sets where it was observed that support
vector machine (SVM) and decision tree (DT) algorithms were able to classify and predict
equipment breakdown with high accuracy and a true positive rate (TPR) of more than
95 percent.

In [109], the authors proposed the fault diagnosis method of an industrial ventilator
(Fan) based on analysis-decision trees. The operating of the fan was followed in five differ-
ent conditions: a healthy condition and then affected by four different faults, those affecting
inner and outer races of rolling bearings, the mass unbalance and mechanical looseness.
Fifteen factors including mean, median, variance indicators (including the greatest three
peaks by amplitude in each condition) that described the vibration signals were extracted
for each spectrum. In each condition, 30 signals were recorded to have 150 indicator vectors,
divided into two sets. Twelve trees were built on the base of numeric attributes, Decision-
Stump, FT, J48, J48graft, LADTree, LMT, NBTree, RandomForest, RandomTree, REPTree,
and SimpleCart. Genetic algorithms optimized the finding of the best choice representative
tree. The RandomForest Tree is preconized for establishing a diagnostic tool for the studied
industrial Fan. In [110], the authors emphasize the problem of finding out good features
that discriminate the different fault conditions of the bearing. The selection of good features
is an important phase in pattern recognition and requires detailed domain knowledge.
Their paper illustrated the use of a Decision Tree that identifies the best features from a
given set of samples for the purpose of classification. It uses Proximal Support Vector
Machine (PSVM), which has the capability to efficiently classify the faults using statistical
features. The criterion used to identify the best feature invokes the concepts of entropy
reduction and information gain that are used in Decision Tree. The vibration signal from a
piezoelectric transducer is captured for the following conditions: good bearing, bearing
with inner race fault, bearing with outer race fault, and inner and outer race fault. The
statistical features are extracted using decision tree and classified successfully using PSVM
and SVM. In [111], the authors used Decision Tree combined with Bayesian network for
fault diagnosis of motor faults. This paper describes the model structure and the basic
ideas of Decision Tree and Bayesian network, combines the advantages of the two, and
solves the uncertainty of diagnosis information effectively.

4.5. Logistic Regression

In binary classification, logistic regression analysis performs exceptionally well, par-
ticularly with categorical variables with [0, 1] classes. Based on the values of predictor
variables, either categorical or numerical, logistic regression models can estimate the like-
lihood of a failure occurrence [112]. In logistic regression, the dependent variable has a
Bernoulli distribution. Thus, for any given linear combination of independent variables,
an unknown probability, P, of the response variable is estimated. To do so, a link function
must be used to link the independent variables to Bernoulli’s distribution, with the natural
log of the odds ratio or the logit acting as the link function. This function converts a linear
combination of explanatory variables to Bernoulli’s probability distribution, which has a
domain of 0 to 1.

Logistic regression is a supervised learning technique often used in failure predictions
and preventive maintenance strategies. Cost data, failure data, sensor data and acoustic
electric signals were the input data used in logistic regression in previous work. The
algorithm was used to predict economic success, RPN, machine state in the next 24 h given
the current state and equipment reliability.

In [113], the authors used logistic regression models based on cost to accurately predict
economic success or failure using the fleet data for 378 single axle dump trucks. In [114],
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the authors proposed a systematic approach for developing a standard equation for the
risk priority number (RPN) measure, using the methodology of interval number-based
logistic regression. The aim is to reduce risks of failure, using FMEA in terms of the risk
priority number (RPN). The logistic regression model helped identify the probability of
risk of failure of high-capacity submersible pumps. Another study aimed to propose a
model for predicting mechanical equipment failure from various sensor data collected in
the manufacturing process. This study constructed a Hadoop-based big data platform
to distribute many datasets for research, and performed logistic regression modelling to
predict the main variables causing the failure from various collected variables. As a result
of the study, the main variables in the manufacturing process that cause equipment failure
were derived from the collected sensor data, and the fitness and performance evaluations
for the prediction model were made using the ROC curve [115]. In [116], the authors
applied logistic regression to predict machine state 24 h in the future, given the current
machine state. A confusion matrix was used to evaluate model performance. In [117],
the authors used logistic regression models and acoustic emissions (AE) to evaluate the
reliability of the cutting tool to determine best maintenance practice. As it is difficult
to monitor cutting forces in practice, a combination of both AE and logistic models are
effective in reliability analysis. Reliability models are constructed using AE signals and
cutting force as parameters. The results show that AE feature extractions and logistic
models work effectively in reliability estimations.

4.6. K-Means Algorithm

K-Means clustering is an unsupervised learning approach that is used in machine
learning to handle clustering problems. It divides the unlabeled data into many clusters.
The K-Means clustering method is easy and accurate, flexible to handle large data, has
a good speed of convergence, and has adaptability to sparse data. K-Means clusters the
data into different groups and provides a simple technique to determine the categories of
groups in an unlabeled dataset without any training. It is a centroid-based approach, where
each cluster has its own centroid. The goal of this algorithm is to minimize the sum of
distances between the data point and their corresponding clusters. The K-means clustering
algorithm finds the best value for K center points or centroids by an iterative process and
assigns each data point to its closest K-center. Those points which are near to the K-center
create a cluster. The distance of the point from the centroid in each step is calculated using
Euclidean method. Hence data points from each cluster are similar in some way and are far
from other clusters. The K value is user defined for the algorithm that is generated. The
Elbow method is the most popular way that helps in selecting the optimal K value. The
method is based on minimizing within cluster sum of square values (WCSS) that defines
total variation in the data [118].

In [119], the authors have tried to implement a clustering method to group maintain-
able equipment based on their need for maintenance according to time to failure, and the
location of these machines. The main aim was to reduce scheduling process and time
and a standard maintenance procedure for the machines in each cell. In [120], the authors
examined the condition-based equipment data using a data analytics approach to develop a
predictive maintenance program. K-means for clustering the failure characteristic, support
vector regression (SVR) model used for predicting equipment failure were the two models
used in their study.

4.7. The Neural Network ANN

The neural network (NN) plays a vital part in the human brain, and ANN is an
unsupervised learning technique created from biology. ANN stands for artificial neural
networks, and biological neurons inspired it. It is a massively parallel computing system
made up of many basic processors connected by a large number of interconnections. ANNs
learn the basic rules from a series of given symbolic circumstances in instances rather than
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following a set of laws specified by human experts. They are organized into three layers
(i.e., input layer, several hidden layers, and an output layer).

Furthermore, the relationships between the network processing units are the source
of the ANNs’ analytical activity. ANNs are the most extensively used machine learning
algorithms. Multilayer perceptrons (MLPs) with backpropagation learning are based on a
supervised technique and have three layers: input, hidden, and output [121,122]. Compared
to other classic machine learning techniques, ANN models have significant advantages in
dealing with random, fuzzy, and nonlinear data. ANNs are best suited for systems with
a complicated, large-scale structure and ambiguous data. They are commonly employed
for a wide range of issues [123,124]. ANNs do, however, also have some drawbacks. As
a hardware-dependent algorithm, ANN requires GPU for processing and to create them
in the first place. ANN requires a large amount of training data to build the appropriate
algorithm. When using the sigmoid activation function, ANN algorithms frequently
encounter vanishing and expanding gradient difficulties and the challenge remains in
finding the loss function. The algorithms of ANN are black boxes in nature, where results
are based on the experience of training data and not a specified program, making it difficult
for modification and explanation to business stakeholders. Despite the shortcomings of
ANN, neural networks are gaining wide popularity in the mining industry and researchers
are mostly moving towards the use of ANN in failure analysis and predictive maintenance.
The sample neural network architecture is shown in Figure 8.
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ANN is widely used in reliability and fault analysis of mining machines. Several
literature works can be found using ANN for analysis. ANN has been used in mining
since the early 2000s. However, the ANN architecture was not as developed as it is today,
and only feed-forward networks were used in the algorithm. Presently, ANN is used
with higher accuracy and better results in predicting equipment failures and reliability.
ANN is used for fault diagnostics of numerous types of rotating machinery that use signal
processing techniques to extract features and further input these to the ANN model to
classify faults [126–129]. In [130] the authors studied electric motor faults with ANN
feedforward networks and self-organizing maps. Data was taken from stator current and
mechanical vibration signals for major motor faults. The study showed the effectiveness
of both algorithms and feedforward networks looked more promising for electric motor
analysis. In [131], the authors used multilayer perceptrons (MLP) in ANN to classify
dragline faults using two years failure data. There were 16 causes in total that lead to
dragline failure. Two different models for analysis of these faults, using seven causes, seven
symptoms and five fault parameters of drag systems have been developed. The prediction



Energies 2022, 15, 6263 19 of 27

accuracy of symptoms using the cause was 94.2% and that of fault using symptom was
97.1%. In [124], the authors demonstrated on how neural networks can be used in vibration
monitoring analysis of rolling element bearing and derived how it can be effective in
handling noisy data. In [132], presented a multi-state algorithm for dynamic condition
monitoring of a gear. The algorithm information referred to the gear status and estimated
the mesh stiffness per shaft revolution in case that any abnormality is detected. This
network was fed with statistical parameters obtained from the wavelet coefficients derived
for the most sensitive levels of decomposition to damage; the output resulted in the drop
in the averaged torsional meshing stiffness when a failure appears, which is highly related
to local failure. In [123], the authors proposed a rotor vibration fault diagnosis approach,
that transforms multiple vibration signals into symmetrized dot pattern (SDP) images,
and then identifies the SDP graphical feature characteristic of different vibration states
using a convolutional neural network (CNN). A CNN can reliably and accurately identify
vibration faults by extracting the feature information of SDP images adaptively through
deep learning. The proposed approach was tested experimentally using a rotor vibration
test bed, and the results obtained were compared to those obtained with an equivalent
CNN-based image recognition approach using orbit plot images. The rotor fault diagnosis
precision was improved from 92% to 96.5%.

5. Discussions and Conclusions

Various statistical techniques have been reviewed in this literature review and are
categorized based on the method of application. Based on the literature review, it can
be concluded that reliability and failure analysis play a significant role in tracking and
improving efficiency of machine systems and subsystems and a significant amount of
work is carried out with this regard. However, the effectiveness of statistical learning is
based on the amount and quality of data that can be collected. The most common data
used is historical failure data (TBF/TTF, TTR, failure component) and real-time vibration
data. As the volume of data increases, the complexity increases. With the advancement
in the integration of big data tools, the analysis should progress more efficiently. Often,
incorrect and missing data lead to lower analysis quality and accuracy, and this problem
can be mitigated by leveraging automation techniques to store failure data. At present,
research is more focused towards the analysis of failure data and less attention is given to
the process of automation of data collection and storage. This could be one of the significant
areas of improvement. As per the literature review, reliability and failures can be analyzed
using a wide range of algorithms. To sum up, every algorithm has its own advantages
and limitations and should be chosen based on the stated problem and data availability.
Choosing a sub-optimal or unsuitable algorithm can lead to reduced benefits or even loss
of time and money. The business goals should be clearly specified, and the data driven
framework should be properly established before the start of problem solving and actual
statistical analysis.

Graphical methods, probability distributions, NHPP models, supervised and unsu-
pervised classification models are discussed in the analysis. Based on the literature review,
probability distributions and NHPP models are widely applied techniques in reliability
and maintenance analysis of mine equipment and components. In the present day, arti-
ficial neural networks are gaining more importance and several works of literature are
successfully leveraging ANN. Table 1 gives a summary of the methods reviewed in the
literature, data type used in different literature for the algorithms reviewed, the application
of each algorithm in the existing literature and the distinction of the methods from the
other algorithms reviewed.
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Table 1. Different methods, f reliability analysis and failure predictions, their applications
and distinction.

Method Data Types Applications Method Distinction

Graphical methods • TBF • Plan maintenance intervals
• Know system conditions
• Goodness-of-fit test

Works with both complete
and incomplete data

FTA • Qualitative
• Quantitative

• Assessing risk priority number
• Mathematical modelling
• Root cause analysis

Can work with descriptive
and numerical data

Probability distributions
and NHPP models

• TBF
• TTF
• TTR

• RCM
• Equipment design plan
• Identifying critical components

Data can be easily and
most accurately explained

SVM • TTF
• TBF
• Fault types
• Vibration data

• TBF forecast
• Fault pattern recognition
• Reliability forecast

Can work well with small
datasets

KNN • TTF
• Fault types
• Condition-monitoring

• Failure mode prediction
• Fault diagnosis
• Real-time fault detection

Can work when
sub-classes and
similarities in data
are unknown

Naïve Bayes • Vibration • Fault diagnosis
• Damage degree of faults

Works on probability of
previous instances

Decision Tree • Vibration
• Fault types

• Features discriminating fault
conditions

• Diagnosis of equipment condition
• Uncertainty of fault diagnosis

Information gain and
pruning properties

Logistic Regression • Cost per fault
• TTF
• Sensor
• AE signals
• TBF

• Assess RPN
• Assess economic success
• Assess machine state in next 24 h
• Reliability prediction

Estimate the importance of
each feature in binary
decision models

K-Means • TTF
• Equipment Condition
• TBF

• Classification of faults based
on TTF

• Predictive maintenance strategy

Can work with the output
variable unknown
(unsupervised algorithm)

ANN • Signal processing
• Stator current
• Vibration image

• Fault diagnosis
• Condition monitoring
• Image recognition

Deep learning

Graphical methods are the oldest and most convenient techniques that can be used
in reliability analysis to get an overview of the system condition (if it has a decreasing,
increasing or constant failure rate) and only time between failure (TBF) data is required
for the analysis. However, the process is time consuming, and a deep dive analysis of the
problem is not possible using this technique. More importantly, the plots cannot be used if
the data is not independently and identically distributed (i.i.d.). Graphical methods are
used from the early 1990s to date in mining. As graphical methods are the easiest to use
to determine the system condition, though trivial, the method is still existent and is used
along with complex algorithms for initial data exploration.

Probability distributions and NHPP models work on both i.i.d and non-i.i.d data.
Probability distributions can be applied if data is not correlated and shows no trend
otherwise NHPP models can be used. TBFs or TTF or TTR are the input data for the
analysis. A wide range of software is available in the market to make the analysis easier.
The system’s reliability, subsystems at any instance, the overall reliability, failure rate, and
distribution parameters can be quickly obtained within seconds. Hence, this technique is
widely used in reliability estimations. Maintenance intervals can be scheduled by studying
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probability graphs to maintain certain reliability levels. However, the major limitation of
this method lies in not capturing parameters that influence the failures. As mining is a very
complex activity, the external and internal parameters that influence equipment failure keep
changing constantly from one state to other, and this has a major effect in failure analysis.
As Weibull distribution commonly explains a component behavior, the future scope for
improvement of this method can be the development of machine learning algorithm that
can enhance the Weibull -based curve through the integration of external knowledge.

Fault trees can effectively discover the underlying cause of every failure and trou-
bleshoot the problem from its root. Its visual presentation of failure causes makes it simpler
to identify a single failure that leads to complete system failure and find the probability
of the same. However, FTA’s design concept can be used to demonstrate its limitations. It
focuses on building a mathematical model of a complex physical condition by logically
correlating events. The strategy is solely based on the analyst’s judgement if all peripheral,
environmental, and operating parameters aren’t given. A static fault tree cannot be applied
if the system functions continuously change. Dynamic fault trees can be used in such
conditions and even though several fault tree extensions have been proposed, they all have
a variety of shortcomings. Even when software tool help is available, many investigations
involve a significant amount of manual work.

Machine learning offers a wide range of algorithms that are excellent with failure
analysis and predictions. Machine learning overcomes most of the limitations of the
traditional statistical reliability techniques. Machine learning can work both with i.i.d and
non-i.i.d data and the algorithm can easily capture underlying trends. ML can be faster than
most other methods and can be less expensive if the input data is correctly fed. It considers
external and internal feature parameters which influence failures. There are a variety of
ML algorithms available and can be adopted based on the business problem requirement.
Advantages and shortcomings of most common algorithms are discussed below.

SVM is one of the best classification and regression algorithms for failure analysis. It
can generally categorize failure data very well into different groups with high classification
accuracy. From the literature review, it can be seen that SVM is mainly used for fault pattern
recognitions and predicting future failures. SVM can excellently deal with high dimension
features, doesn’t suffer from overfitting and outliers generally have less influence. However,
SVM is not suitable for large data sets and data that has more noise. SVM was mostly
used in combination with another pre-processing algorithm (genetic algorithms, principal
component analysis) in the reviewed literature. Naïve Bayes and the ANN algorithm are
replacing other classification models due to their high learning and prediction accuracy
in mining.

K-NN is the easiest algorithm to implement and makes no assumptions about the
underlying data. K-NN is used both for failure and real time monitoring data. K-NN
presented high accuracy with failure data in the literature reviewed. However, the accuracy
of data is susceptible to the quality of data. Overfitting is one of the major problems of
K-NN and to eliminate this possibility K-NN was used with other algorithms like the
genetic algorithm. KNN also does not work well with high dimensional data and needs
feature scaling.

The Naïve Bayes algorithm is characterized by the explicit underlying probability
model. Naïve Bayes was mainly applied in the bearing fault predictions that use vibration
data. Naïve Bayes along with a forward feature selection method, provided excellent
accuracy when data had incomplete information about failure mode. It can be used very
well to analyze failure data where the predictors are independent of each other. The
disadvantage of the method is the assumption of independent predictors, which might not
actually be true and has a need of prior probability.

Decision trees need little data preparation and are used for constructing classification
systems based on multiple parameters or generating prediction algorithms for a target
variable. Decision trees in reliability and failure analysis are mainly used to identify
important features influencing target variable. SVM, KNN and Naïve Bayes are used along
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with decision trees to classify faults. The pruning method used in decision tree is one of the
best techniques to accurately select parameters for classification models. Decision trees are
very easy to understand and are able to handle multi-output problems. The major limitation
of a decision tree is the time taken to process the algorithm and can be unstable due to small
variations in data. Decision trees are piecewise constant approximations making it difficult
to predict future faults. Decision trees were previously used in fault diagnosis of mining
equipment. However, with the improvements of decision tree algorithms, new methods
like random forest, or xgboost, have replaced the traditional decision tree algorithm.

Logistic regression performs well with failure classifications. They are mainly used in
binary decision models and to estimate the importance of each feature. Logistic regression
can be easily used for linearly separable data with a low dimensional dataset. Overfitting
is the problem of high dimensional data. K-means models were mainly used to categorize
data into groups, in order to plan a preventive maintenance strategy for each group. K-
Means can also be to separate data into different fault classes and each of these classes can
be an input parameter for a training dataset of SVM or KNN classification. K-Means is very
easy to implement and computationally faster. But it is difficult to predict the value of K
and it can have a strong impact on the final results. Rescaling data may result in completely
different outputs.

ANN mimics the human brain structure to enable the model to approximate a complex
non-linear function with multi-input and multi-output. As seen, ANN has a very high
classification accuracy and a diverse use. It can very easily deal with complex non-linear
functions. ANN is used in both failure and real time monitoring vibration data. As most
other models, ANN is also prone to overfitting problems and there is an unexplained
functioning of networks. There is no physical meaning to the training data of faults. ANN
requires a large amount of training data and with the sigmoid activation function, ANN
algorithms frequently encounter vanishing and expanding gradient problems. With the
amount of quality data increasing in the mining industry, the scope for future applications of
deep learning is massive. Equipment fault detection using image recognition, incorporating
rule-based knowledge to implement logical procedures and formalizing knowledge on
the algorithm of fault detection or equipment reliability can be few areas of exploration
in future.

Overall, machine learning is a powerful tool in reliability and fault analysis. Although
classifiers have presented excellent accuracy, they are required to be trained with complete
data of all faults. Most of the literature reviewed uses single training set data and a single
prediction method to carry out predictions which may not provide the best results. Multiple
methods can be applied for a comprehensive understanding of data. Ensemble models
can be created to predict outcome either by using different training datasets or by using
different training models. Cross validations like K-fold cross validation techniques can
also be employed to improve accuracy of the model and reduce the chance of randomness
and overfitting. With the development of AI techniques and the rise of deep learning,
intelligent diagnosis is going to be the future direction of fault diagnosis development.
On the other hand, in the future diagnostic systems, not only data-driven AI methods,
but also the consideration of failure mechanism and prior knowledge should be utilized
and integrated closely to improve diagnostic performance. Statistical techniques like
graphical methods and probability distributions can be used when there is no information
on failure conditions and to get an overview of system conditions. Machine learning and
deep learning algorithms can be employed where there is enough information for analysis.
Combination of different techniques together might help in better analysis of reliability
and faults. At present, fault diagnostic systems are mostly built as the combination of
individual parts, such as data collection, feature extraction and dimensionality reduction,
fault recognition, with little consideration of the whole diagnostic system. A complete
end-to-end integrated and automated diagnostic system should be paid more attention.
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