
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

8

A Review of Risk Management in Different Software
Development Methodologies

Haneen Hijazi

Hashemite University
Zarqa, Jordan

Thair Khdour
Al Balqa Applied University

Salt, Jordan

Abdulsalam Alarabeyyat
Al Balqa Applied University

Salt, Jordan

ABSTRACT

Different software development methodologies exist.

Choosing the methodology that best fits a software project

depends on several factors. One important factor is how risky

the project is. Another factor is the degree to which each

methodology supports risk management. Indeed, the literature

is rich in such studies that aim at comparing the currently

available software development process models from different

perspectives. In contrast, little effort has been spent in purpose

of comparing the available process models in terms of its

support to risk management. In this paper, we investigate the

state of risk and risk management in the most popular

software development process models (i.e. waterfall, v-model,

incremental development, spiral, and agile development). This

trend in such studies is expected to serve in several aspects.

Technically, it helps project managers adopt the methodology

that best suits their projects. From another side, it will make a

way for further studies that aim at improving the software

development process.

General Terms

Software Engineering, Risk Management.

Keywords

Risk; Risk management; Software development process

model; Software development methodology; Waterfall;

Spiral; Incremental; V-model; Agile.

1. INTRODUCTION
The recent report by Standish group in 2009 revealed that

only one-third of software projects can be considered

successful [1]. This implies that software projects’ failure rate

remains unacceptably high, which could be attributed to the

increased complexity of software development projects

besides the absence or the poorly-applied risk management

process.

In order to achieve project success, we believe that the best

way to manage risks in software projects is to select the most

suitable methodology that best fits the intended project, and to

consider it during the development process as a mean to

manage risks.

A software development methodology or a software

development process model is an approach to the Software

Development Life Cycle (SDLC) that describes the sequence

of steps to be followed while developing software projects [2,

3].

Many software development methodologies exist, they differ

from each other in terms of time to release, quality, and risk

management. Regardless of the followed methodology, the

basic lifecycle activities are included in all lifecycle models,

but probably in different orders. These models might be

sequential (i.e. waterfall) or iterative (i.e. evolutionary). They

might be specification-driven (i.e. waterfall), code-driven (i.e.

evolutionary), or risk-driven (i.e. spiral). Moreover, they

might be conventional (i.e. traditional waterfall) or agile (i.e.

scrum).

Indeed, there is no ideal model that fits all the software

development projects; in certain circumstances each model

has its advantages and disadvantages. Deciding upon the

methodology to follow depends on the development

environment, the type of the project underdevelopment, the

development team, and the potential risks. Thus, it falls on

behalf of the developer to select the methodology (or any

customized combination) that best fits the project

circumstances [4].

As the potential risks in any software project greatly influence

the selection of the most appropriate software development

methodology, risk management is currently considered the

major goal of any selected methodologies. Hence, any

software development methodology is best implemented if it

is considered as a mean to manage risks.

Different software development methodologies support risk

management by nature in variant levels. In the following

sections we investigate the state of risk management in the

most common software development methodologies. The

research method followed was a systematic literature review

that did not mainly aim at comparing the existing software

development methodologies, rather to conduct this

comparative study between these models with respect to their

representation of risk management. The main objective of this

investigation is to present a body of evidence that is risk

management is need in all software development

methodologies even the risk-driven ones.

2. RELATED WORK
Much work has been done around the field of software

development methodologies. Most of these studies are

comparative analysis between these methodologies from

different perspectives. Indeed, the literature lacks such studies

that conduct the comparative analysis in terms of risk

management. In 1996, Sommerville [4] reviewed the

dominant models and concluded that the existence of an ideal

model that suits all projects is unrealistic. Guimaraes and

Vilela [2] in 2005 compared between the waterfall and the

spiral using a more systematic approach called “Compare

Development Model” (CDM).The comparable components

used in their study were objectives, requirements, analysis,

procedures, project, tests, and the operation. In 2008, Shahzad

et al. [5] discussed the major factors that the project being

developed may encounter using the incremental model.

Rodrguez et al. conducted a descriptive comparative study in

2009 between the SDLC process models; they used a Meta

model and suggested that each model should be an instance of

it. In 2008, Nyfjord and Kajko- Mattsson [7] conducted a

comparative study between the waterfall and the iterative

incremental development (IID), they adopted three parameters

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

9

in their comparison that are cost, duration, and comparison. In

2010, Dash and Dash [8] discussed the waterfall model and its

exposure to risks throughout the SDLC. In the same year,

Ruparelia [3] reviewed the most popular software

development process models in terms of the application types

each fits. Also in 2010, Munassar and Govardhan [9]

conducted a comparative study between the dominant

methodologies, illustrated their phases, advantages and

disadvantages, and how they differ from each other.

3. ANALYSIS
In this section we review the leading software development

methodologies (i.e. waterfall, V-model, incremental, spiral,

and agile) and investigate the state of risk management in

each of these models. For each one, we highlight the sources

of risks it came to resolve, and uncover the risky areas

hindering its implementation.

3.1 Waterfall Model
It was first introduced but not named by Royce in 1970. It

abstracts the essential software development activities (i.e.

requirements, analysis, design, coding, testing, and operation)

in a sequential manner.

Waterfall development was proposed to avoid the risks

introduced by the code and fix technique by inserting the

requirements and analysis stages before the coding stage. This

ensures that user requirements are clearly defined in advance,

thus, reduces the time and effort wasted on several iterations

of code and fix.

In the original waterfall model, any error occurs at any stage

propagates into the subsequent stages until it is lately

discovered in the testing phase. To avoid this risk, Royce [10]

suggested that at the beginning of each stage a review to the

previous stage should be conducted to ensure that the previous

stage was properly done. Later, he modified his original

waterfall model by adding localized iterations that provide

feedback to the previous phases. However, even with these

localized iterations, problems are still being discovered in the

testing phase, these problems are usually due to problems in

the design stage or in the requirements stage. Thus, to recover

from these errors, complex iterations to the design stage and

to the requirements stage were added. These iterations

consume a lot of time, efforts, and other resources.

In order to avoid the risks of the operational constraints,

Royce [10] suggested a preliminary design phase to be

inserted between the requirements phase and analysis phase in

order to impose constraints on the analysts. This is properly

accomplished by the iterative loop between the preliminary

design and the analysis stages until a satisfactory preliminary

design is reached.

Major Sources of Risk in the Waterfall Model

From the above discussion, we can conclude that risks in the

waterfall model are unavoidable, even in the Royce’s

modified waterfall model; this is due to the nature of the

model itself. The major sources of risk in the waterfall model

are listed below:

 Continuous requirements change

The major risk factor threatens the waterfall projects is the

continuous requirements change during the development

process. The waterfall model cannot accommodate with these

changes due to its strict structure. The waterfall model

requires that all requirements be clearly defined in advance in

the requirements stage in order to guarantee that no change

could appear later on during the development process.

Clearly, this is an idealistic situation, since it is difficult for

the real projects to identify all requirements previously. Thus,

it is even impossible to guard requirements from being

changed. Actually, continuous requirements change is not a

problem to be solved, neither it is restricted exclusively to the

waterfall model. Rather, it is the unstable nature of the

software projects besides the highly strict nature of the

waterfall model what made its consequences significant in the

waterfall model mainly.

 No overlapping between stages

Another source of risk in the waterfall model is that it requires

each stage to be completed entirely before proceeding into the

subsequent phase. In other words, it does not allow

overlapping between stages. Obviously, this will waste time,

cost and other resources, since the stages in the waterfall

model are relatively long. Hence, most team members who

are responsible for specific stages will spend most of their

time waiting for other stages to complete so that they can start

doing their work.

 Poor quality assurance

Lack of quality assurance during the different phases of the

development process is another source of risk. Validating the

product is restricted to a single testing phase lately in the

development process. Hence, the testing phase in the waterfall

model is the highest risky phase, since it is the last stage

wherein the system is put as a subject for testing. Thus, all

problems, bugs, and risks are discovered too late when the

recovering from these problems requires large rework which

consumes time, cost, and effort.

 Relatively long stages

Another source of risk in this model resides in the relatively

long stages, which makes it difficult to estimate, time, cost,

and other resources required to complete each stage

successfully. Additionally, in the waterfall model, there is no

working product until late in the development process when

the product is almost complete and any change is impossible.

To make things worse; imagine if the product failed to meet

users’ expectations!

3.2 Incremental Development
Incremental development is a variant of the waterfall model

which consists of a series of waterfall lifecycles wherein the

software development project is broken down into smaller

segments called increments.

The proposal of the incremental development was to

accommodate with risks inherent from implementing the

overall software project over a single lifecycle in the pure

waterfall model [11].

First of all, since the project is broken down into smaller

segments, the development effort is distributed among several

increments. Thus, risks are spread over multiple iterations

rather than single iteration as in the pure waterfall

development. Clearly, it would be easier to manage those

risks in the former case.

The major risk factor threatens the waterfall development is

that it requires all requirements be clearly defined in advance,

since its structure does not allow requirements to be changed

during the development process. The incremental

development reduces this risk by grouping requirements, then

implementing each group in an increment repeatedly until the

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

10

system is complete and all requirements are met. Despite the

fact that most requirements have to be known in advance,

building requirements incrementally allows new requirements

to be added later on in subsequent increments. The

incremental development also allows requirements to be

changed; these changes are reflected in the subsequent

increments. Changing requirements comes after a feedback

from the customer about the already developed increments

which can be considered as prototypes for the subsequent

increments.

The other risk of the waterfall reduced by the incremental

development is the time, cost, and other resources wasted

from prohibiting overlapping. The incremental development

allows many mini increments to overlap, thus most team

members can work in parallel. Errors in the previous

increments could be fixed during the development of the

current increment. Obviously, this saves time, cost, and other

resources. Thus, the initial deadlines are more likely to be

met.

Unlike the waterfall model, the incremental development

allows initial releases with core functionality to be delivered

to the customer early. Indeed, these releases are working non-

completed systems delivered early to the customers in order to

help them build a realistic impression about the system

underdevelopment, and to enable them to give their feedback

early so that the cost of any change would be as less as

possible.

Another issue related to the user acceptance of the system; the

system would be more acceptable if it is introduced to the end

users gradually bit by bit instead of introducing differently

new system at once as in the waterfall model [12].

Major Sources of Risk in the Incremental Development

Still, the incremental development suffers from different

sources of risks that are illustrated below:

 Delayed requirements implementation

One major risk of the incremental model resides in that

developers tend to postpone requirements, so that they are

included later on in subsequent increments. Obviously, this

risk factor should be avoided, since the delayed requirements

might be core ones upon which the user acceptance of the

whole system depends. Thus, it is recommended that all

identified requirements be addressed in the initial increments

of the system, and the later increments should be left for any

newly identified requirements or any change in the previously

defined ones.

 Propagation of bugs through increments

Another source of risk is that letting any undiscovered bug in

one increment to propagate through subsequent increments. It

is easier to repair from bugs in the earlier increments of the

development, while it might be much more difficult or even

impossible after the system enlarges. This might be due to

poor testing and maintenance process conducted at the end of

each increment.

 Underestimation of time and other resources

required for each increment

The inadequate estimation of time, cost, and other resources

required for each increment also affects the project

underdevelopment. The underestimation of time required for

each increment delays the implementation of the subsequent

increments. This delay results in an unmet project deadlines.

This inadequate estimation might cause time contention

wherein either extra burden is put on the shoulders of

developers, or some requirements be ignored.

 Time and cost overrun

Time and cost overrun is a critical factor too. This deadly

interrupts the development process. Despite the fact that any

interrupt at any point in the incremental development process

results in a working system, mostly this system would be an

uncompleted system wherein some functionalities are not

implemented yet.

3.3 The V-Model
As discussed before, one of the major risk factors threaten the

waterfall model is the poor verification and validation

methods, which are restricted to a single testing phase

conducted lately in the development process.

Another variant of the waterfall model that came out to deal

with this risk is the V-model. The V-model is a testing-

focused software development process. It gives equal

importance to both development and testing. Its symmetrical

shape allows the testing process to start early at the

development process, and to be aligned with its different

phases. This could be achieved by designing test plans and

test cases during each development phase prior to the actual

testing; this allows requirements and designs to be verified

easily during the corresponding testing phases.

Moreover, test planning conducted at each stage helps at early

identification of project’s specific risks and reducing them

through an improved process management. Another enhanced

version of the V-model is the V+ model; it adds user

involvement, risk, and opportunities to the z-axis of the V-

model. Although the V-model is a highly structured, well

disciplined process model, today’s developers think of it as a

too rigid process model due to the inflexibility it exhibits

against the current evolutionary nature of software projects

[3].

3.4 Spiral Development
The spiral model was proposed by Boehm [13] in 1988 as a

risk-driven software development process model, wherein the

whole development process is guided by the involved risks. It

aims at identifying and evaluating software project risks, and

helps in reducing these risks and controlling project cost in a

favour of a better controlled software project. Indeed, the

explicit risk management in spiral distinguishes it among

other process models which employ some kinds of risk

management as subtasks; without this level of the explicit

representation as in spiral [14]. In spiral, this feature

guarantees that most risks are recognized early and much

earlier than it is in other process models.

Spiral development supports risk management in software

projects in several ways summarized in the following:

 The initial risk analysis that acts as a look-ahead step

and aims at:

o Identifying most risks threaten the project.

o Classifying risks into user interface risks and

development risks

o Evaluate these risks to decide upon the risks to

handle through each cycle. Moreover this

classification helps developers in implementing risk

resolution techniques such as prototyping and

benchmarking.

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

11

 The evolutionary prototyping spirals that aim at

resolving performance and user interface related risks.

These spirals help in reducing major risks before

proceeding into the development process.

 The risk analysis stage at each cycle that precedes each

phase of the waterfall phases in purpose of:

o Resolving program development and interface

control risks inherent from the start of the project.

o Evaluating and resolving the new risks that might

arise after changing any of the objectives,

alternatives, or constraints at the beginning of the

cycle.

 The iterative feature of the spiral which allows the

development process to go back to the first quadrant at

any point in progress which allows:

o Objectives, alternatives and constraints to change as

more attractive alternatives exist.

o New technology to be incorporated easily during the

development process.

o The maximum optimization of project resources

usage.

o To deal with poorly done activities in the earlier

phases.

 The review conducted at the end of each cycle with

main stakeholders as a decision point to avoid the lack

of commitment risks during the next cycle.

 Time and cost overrun risks are best managed using

spiral development due to the risk analysis stage

conducted at each cycle. In this stage, the cost and time

required for each cycle are analyzed in advance to give

a clear picture about the critical state of the project. This

helps the project manager and the developers get more

control over these risks.

 Risks related to the increased complexity of the project

are also managed using spiral. This is achieved by the

partitioning activity conducted at the planning phase.

 Decomposing the project into portions to be developed

in parallel spirals obviously reduces time contention

related risks, since more work could be achieved during

the same interval.

Major Sources of Risk in the Spiral Model

Despite its risk driven nature, spiral has its own sources of

risks which are summarized in the following:

 High reliance on the human factor

All the activities related to identifying, analyzing, and

resolving risks rely on the experience of developers and their

abilities in identifying and managing risks [13]. If these

abilities are unavailable, major risks might remain hidden for

several lifecycles and discovered late when it matured into

real problems. At that time, the cost of rework to recover from

these risks becomes very high.

 Detailed risk management process

Cost and schedule risks might increase using spiral due to its

iterative feature, especially for low risk projects wherein risk

assessment is not required to be at this level of granularity.

3.5 Agile Development
Agile is a term first introduced in 2001 to refer to a group of

lightweight software development methodologies evolved in

the mid-1990s including Scrum (1995), Crystal Clear,

Extreme Programming (1996), Adaptive Software

Development, Feature Driven Development, and Dynamic

Systems Development Method (DSDM) (1995) [15]. In

contrast to the heavyweight methodologies (i.e. waterfall), the

lightweight methodologies deemphasize a formal process

step; they proceed in the development process without waiting

for formal requirements and design specifications.

The main point that the agile focuses on is the close, Informal

communication between the different system stakeholders

including the developers and the customer representative.

Indeed, in agile, this communication is the source of planning,

requirements, identifying risks, feedback, and changes.

Building upon the literature, we can say that there are two

contrasting views regarding risk management in the agile

context. The first claims that agile is an inherent risk driven

approach and implicitly supports risk management by nature.

The proponents believe that there is no need to enhance risk

management in these projects. In contrast, the second [16]

believes that the risk management state in agile does not differ

significantly from other traditional models and that risk

management should be enhanced in agile to compensate for

the lack of risk management in the agile projects. The

advocates to the second view believe in that in some situations

the inherent risk management driven nature of the agile is

insufficient [17].

As mentioned before, the major risk factor threatens today’s

software projects is the continuous changes it faces in

requirements and the surrounding environment. The agile

development addresses this risk. The agile is an adaptive

approach; it exhibits a flexible response to change, this is due

to the incremental, iterative approach it adapts, wherein each

increment is very short and the developers are in a continuous

interaction with the customer. Thus, any change in

requirements will be discovered early as soon as the software

first releases are produced, then the project can adapt to these

changes quickly.

Due to the close frequent interaction with the customer,

requirements are collected during each increment directly

from the customer rather than from formal documents that

represent them as in other traditional development methods

[18]. This would eliminate any ambiguity in understanding

requirements, and ensure stakeholders’ commitments to the

requirements they provide.

Agile development best fits software projects which lack

structured planning, due to its adaptive planning feature which

requires minimal planning activities be conducted formally.

Using agile development, the risk of delivering software that

contains bugs will be reduced due to its reliance on automated

test cases [19]. Thus, the software is tested at each release,

and retested again if a bug was discovered to make sure that it

has been eliminated.

Major Sources of Risk in the Agile Development

In spite of the assertions it makes regarding managing risks,

the agile development lacks for any detailed suggestions for

managing these risks. Thus, many sources of risks will be left

unhandled. The following are the major sources of risk in the

agile development:

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

12

 Very large software system

The inherent risk management in agile development is not

sufficient for large, complex software systems, since the

resulting increments would be relatively large. This would

increase the time span between increments, and thus require a

higher cost to deal with changes and bugs if discovered.

 Large development team

It is not suitable for large teams, since managing the

communication between their members would be much more

difficult.

 High reliance on human factor

It relies entirely on the experience of the development team

and their abilities to communicate successfully with

customers. If the project misses these conditions, then the

failure is an inevitable issue.

 Inappropriate customer representative

The unavailability of an appropriate customer representative

is another risk factor. Actually, this factor influences the

development process as much as team members’ factor.

 Distributed development environment

This approach is not suitable for developing software projects

in distributed environment, since it requires a close face to

face interaction communication between the development

team. Else, other communication methods such as video

conferencing should be held at daily basis.

 Scope creep

Another important risk factor is the scope creep, this usually

happens due to the minimal planning conducted in this

methodology which causes developers to become distracted

from the project main objectives. As a result, the project will

enlarge, become more complex, and finally the project will

overrun.

4. CONCLUSION AND FUTURE WORK
In this paper we have reviewed the leading software

development process models and investigated the state of risk

management in each of these models. As a result, we found

that some software development methodologies inherently

involve risk management. For each methodology, this requires

certain circumstances to exist. This indicates that risks are

inevitable in most software development methodologies, and

that all software development methodologies, including the

risk-driven ones, require that risk management be enhanced in

it.

An interesting dimension for future research is to find out a

strategy that aims at enhancing risk management in the

different software development methodologies.

5. REFERENCES
[1] Standish Group, “CHAOS report,” 2009, Boston.

[2] L. Guimares and P. Vilela, “Comparing Software

Development Models Using CDM,” Proceedings of The

6th Conference on Information Technology Education,

New Jersey, 20-22 October 2005, pp. 339-347.

[3] N. Ruparelia, “Software Development Lifecycle

Models,” ACM SIGSOFT Software Engineering Notes,

Vol. 35, No. 3, 2010, pp. 8-13.

[4] I. Sommerville, “Software process models,” ACM

Computing Surveys, Vol. 28, No. 1, 1996, pp. 269-271.

[5] B. Shahzad and S. Safvi, “Effective Risk Mitigation: A

User Prospective,” International Journal of Mathematics

and Computers in Simulation, Vol. 2, No. 1, 2008, pp.

70-80.

[6] L. Rodrguez, M. Mora, and F. Alvarez, “A descriptive

Comparative Study of the Evolution of Process Models

of Software Development Lifecycles (PM-SDLCs),”

Proceedings of the Mexican International Conference on

Computer Science, 2009, pp. 298–303.

[7] J. Nyfjord and M. Kajko-Mattsson, “Outlining A Model

Integrating Risk Management and Agile Software

Development,” Proceedings of the 34th Euromicro

Conference Software Engineering and Advanced

Applications, 2008, pp. 476-483.

[8] R. Dash and R. Dash, “Risk assessment techniques for

software development,” European Journal of Scientific

Research, Vol. 42, No. 4, 2010, pp. 629–636.

[9] N. Munassar and A. Govardhan, “A Comparison

between Five Models of Software Engineering,”

International Journal of Computer Science Issues (IJCSI

), Vol. 7, No. 5, 2010, pp. 94–101.

[10] W. Royce, “Managing the development of large software

systems,” IEEE WESCON, 1970, pp. 1-9.

[11] GSAM, “Condensed GSAM Handbook, chapter 2:

Software Life Cycle,” 2003.

[12] G. Tate and J. Verner, “Case Study of Risk Management,

Incremental Development and Evolutionary

Prototyping,” Information and Software Technology,

Vol. 32, No. 3, 1990, pp. 207-214.

[13] B. Boehm, “A Spiral Model of Software Development

and Enhancement,” Computer, 1988, pp. 61-72.

[14] B. Gotterbarn, “Enhancing risk analysis using software

development impact statements,” Proceedings of the 26th

Annual NASA Goddard Software Engineering

Workshop, 2001, pp. 43-51.

[15] V. Szalvay, “An Introduction to Agile Software

Development,” technical report, Danube Technology,

2004.

[16] J. Miller and J. Grski, “A Method of Software Project

Risk Identification and Analysis,” Ph.D. Thesis, Faculty

of Electronics, Telecommunications and Informatics,

Gdansk University Of Technology, 2005.

[17] A. Schmietendorf, E. Dimitrov, and R. Dumke, “Process

Models for the Software Development and Performance

Engineering Tasks,” Proceedings of the 3rd International

Workshop on Software and Performance, 2002, pp. 211-

218.

[18] F. Nasution and R. Weistroffer, “Documentation in

Systems Development a Significant Criterion for Project

Success,” Proceedings of the 42nd Hawaii International

Conference on System Sciences, 2000, pp. 1-9.

[19] S. Murthi, “Preventive Risk Management for Software

Projects,” IT Professional, Vol. 4, No. 5, 2002, pp. 9-15.

