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Abstract: Road surfaces suffer from sources of deterioration, such as weather conditions, constant
usage, loads, and the age of the infrastructure. These sources of decay generate anomalies that could
cause harm to vehicle users and pedestrians and also develop a high cost to repair the irregularities.
These drawbacks have motivated the development of systems that automatically detect and classify
road anomalies. This study presents a narrative review focused on road surface anomaly detection and
classification based on vibration-based techniques. Three methodologies were surveyed: threshold-
based methods, feature extraction techniques, and deep learning techniques. Furthermore, datasets,
signals, preprocessing steps, and feature extraction techniques are also presented. The results of this
review show that road surface anomaly detection and classification performed through vibration-
based methods have achieved relatively high performance. However, there are challenges related
to the reproduction and heterogeneity of the results that have been reported that are influenced by
the limited testing conditions, sample size, and lack of publicly available datasets. Finally, there is
potential to standardize the features computed through the time or frequency domains and evaluate
and compare the diverse set of settings of time-frequency methods used for feature extraction and
signal representation.

Keywords: road surface; anomaly classification; threshold; machine learning; deep learning; feature
extraction

1. Introduction

Road surface anomalies, such as potholes, cracks, rutting, or speed bumps deterio-
ration, result from the constant usage, traffic loads, weather conditions, and age of the
infrastructure and materials used in the construction of the roads [1,2]. These anomalies can
be referred to as any deviation or variation from standard road conditions [3]. Furthermore,
road defects have financial costs for governments to constantly maintain the road and keep
it in good condition [4]. Moreover, it is crucial to attend to and monitor the road pavement
condition due to the potential harm or accidents that could inflict on the vehicle users and
pedestrians, its impact on fuel consumption, and the potential vehicle damage that these
irregularities could inflict [5]. In addition, according to the World Bank, the density of
paved roads in an optimal state can be used as an indicator of the economic strength and
competitiveness of a country [6,7]. These factors make monitoring and maintaining the
road in an optimal condition a crucial task for governments [8].

The traditional approach to monitoring and maintaining the road’s optimal condition is
to employ Pavement Condition Index (PCI) surveys that are based on human observations.
These surveys have been used by international road and highway technicians as a reference
to diagnose road anomalies [9]. The roughness of the road surface is another crucial
indicator used to assess the quality of roads and detect cracks and bumps [10,11]. However,
in the case of PCI surveys, they are prone to subjective evaluation by the technician and
can put the health of road operators at risk [12]. Otherwise, visual inspection methods are
time-consuming and prone to human errors [13]. Thus, to counter the disadvantages of
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traditional approaches to evaluating the condition of roads, the literature has proposed
developing systems that can automatically detect and classify these defects. There is
great interest in developing these systems due to the potential impact they could have on
intelligent transportation systems [14] and advanced driver assistance systems [15].

The systems developed in the literature for road surface anomaly detection and
classification can be divided into vision-based, vibration-based, and 3D-reconstruction-
based techniques [16]. Vision-based techniques use images to determine the presence of
road anomalies through image processing and deep learning algorithms. On the other hand,
the vibration-based techniques mainly employed inertial sensor measurements to detect
and classify the presence of road anomalies. Finally, 3D-based reconstruction methods use
stereo-vision technology to recognize and characterize the presence of road surface defects.
The main goal of road surface anomaly detection and classification systems is to generate
robust platforms that can provide information on the quality of the roads and warn of
potential hazards [17].

A summary of the advantages and disadvantages of these systems can be appreci-
ated in Table 1. As can be seen, vibration-based techniques have the main advantage of
being the most cost-effective of the three methods since data are usually collected from
smartphones [18]. However, this system requires the driver to pass over the anomaly to
detect and characterize it since it relies on the measurements of inertial sensors such as
gyroscopes and accelerometers. In the case of vision-based methods, they can detect the
anomaly without passing over the anomaly. However, it is susceptible to lightning and
shadow conditions. Finally, 3D reconstruction techniques can model the anomaly more
precisely; nevertheless, it is a more expensive method [16].

Table 1. Advantages and disadvantages of road surface anomaly detection and classification tech-
niques [11,16].

Road Anomaly
Detection Method Advantages Disadvantages

Vision-based

• Can be useful to determine the
dimension of the anomaly.
• Can be useful to determine
the number of anomalies.
• It is less expensive compared
to 3D reconstruction.

• It is affected by light and shadows.
• It cannot determine precisely
the depth and shape of the anomaly
compared to 3D reconstruction.

Vibration-based

• It is the most cost-effective method
compared to vision and
3D reconstruction methods.
• Real-time execution can be performed.

• It can be affected by the position
and type of vehicle used.
• It is complicated to determine
the shape and depth of the anomaly.
• It is necessary to pass
over the anomaly.

3D Reconstruction
• It can measure the shape and depth
of the anomaly more precisely than the other
techniques.

• Expensive method compared to
vibration and vision techniques.

Vibration-based techniques for road surface anomaly detection and classification have
gained popularity due to the cost-effectiveness of this type of system. Inertial sensors (i.e.,
accelerometers and gyroscope sensors) commonly used for developing these systems can be
easily embedded and used through smartphones [19]. However, as pointed out previously,
some disadvantages mitigate its use, such as different sensor properties, smartphone or
sensor placement within the vehicle, and diverse vehicle mechanical characteristics [11].
Hence, the above drawbacks have the potential to be addressed with further research.

Previous studies have made literature reviews or surveys focused on road surface
anomaly detection. For example, Kim et al. [16] reviewed pothole detection methods in
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which vibration, vision, and 3D reconstruction methods were discussed and compared.
Dib et al. [20] also presented a similar review in which the strengths and limitations of
deep learning techniques and non-deep learning techniques for detecting damaged road
surfaces are presented. Furthermore, in Dib’s study, vision-based procedures are extensively
reviewed using deep learning techniques and non-deep learning technologies. However,
vibration-based technologies have been reviewed to a lesser extent. Sattar et al. [10] present
a literature review focused on detecting anomalies through smartphone sensors, such as
accelerometer and gyroscope data, with particular attention to the threshold, machine
learning, and dynamic time warping methods. However, no review has been conducted
that presents a deeper explanation of vibration-based techniques for road surface anomaly
detection and classification that expands on the feature engineering methods that have
been used and the areas of opportunity that can be fulfilled to improve the performance of
learning-based techniques.

This narrative literature review aims to provide a detailed presentation and discussion
of approaches based on the vibration-based methods used to detect and classify anoma-
lies on the road surface. The proposed categorization of vibration-based techniques is
based on threshold, feature extraction, and deep learning techniques. A review of the
datasets, sensors, preprocessing steps, and feature engineering methods (i.e., time analysis,
frequency analysis, and time-frequency analysis) is also provided. The remainder of this
study is organized as follows. Section 2 presents the search strategy used in the present
narrative literature review. Section 3 presents the background of road anomaly detection
and classification based on vibration-based techniques. Section 4 presents the datasets,
sensors, and the preprocessing steps used for road surface anomaly detection and classi-
fication. Furthermore, Section 5 shows a detailed presentation of the feature extraction
techniques commonly used to detect and classify road surface anomalies using machine
learning or deep learning techniques. The discussion of the results of this literature review
is presented in Section 6. Finally, Section 7 presents the findings of this study and future
research directions.

2. Search Methodology

The narrative review presented in this study was primarily performed through the
Web of Science and, to a lesser extent, with the help of Google Scholar databases. The
search focused on conference and journal articles published from 2018 to 2022. The list of
keywords used to perform this search was as follows:

• Road anomaly;
• Detection;
• Vibration;
• Machine Learning.

The articles were classified into three categories defined as threshold-based techniques,
feature extraction with machine learning techniques, and deep learning techniques. The
studies collected for this search mainly used acceleration and gyroscope data to detect and
classify road anomalies or conditions. Figure 1 depicts the flow of activities in which the
searching process was performed for this review. The information extracted from each
study was focused on the year of publication, the author, the methodology, algorithms, and
the preprocessing steps. In addition, special attention was given to the feature engineering
methods that each author proposed. Therefore, this review is not focused on methods
based on image processing or 3D reconstruction techniques since Kim et al. [16] presents an
extensive review that covers them. However, specific articles selected for this survey were
added when the authors compared or used vision-based and vibration-based techniques to
develop their studies. The following sections present the main findings from this search
and their respective discussion.
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Figure 1. Schematic representation of the search process performed for this narrative review that
focuses on vibration-based techniques used for the detection and classification of anomalies on the
road surface.

3. Road Anomaly Detection and Classification Approaches through
Vibration-Based Techniques

Vibration-based techniques to detect and classify road anomalies can be categorized
into three approaches [17]. The first is threshold-based methods, the second is learning-
based techniques employing feature extraction before the learning stage, and machine learn-
ing techniques without feature extraction, such as deep learning algorithms [1]. Figure 2
shows an overview of the road anomaly detection and classification approaches based
on vibrations collected from accelerometer and gyroscope data. As depicted in Figure 2,
threshold techniques do not require a training process however an empirical calibration
is needed before the validation. In the feature extraction and deep learning approaches,
a step of model generation is performed through the training process and, consequently,
a validation stage is performed. This section provides a brief overview and examples of
these approaches and the authors’ reported methods and results.

Figure 2. Overview of the approaches used for the detection and classification of road surface
anomalies based on vibration-based techniques.
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In the case of the threshold-based methods, the metrics commonly reported are the
true positives and false positives [21]. However, other metrics, such as the F1-score or the
area under the receiver operating characteristic (ROC), have been reported [22,23]. On
the other hand, the learning-based techniques with feature extraction or deep learning
approaches are commonly evaluated through the accuracy and the metrics derived from
the confusion matrix (i.e., recall, precision, and F1-score). Figure 3 shows a confusion
matrix illustration along with the metrics derived from it, and Table 2 shows a summary
of commonly reported validation metrics used to evaluate algorithms for detecting and
classifying road surface anomalies based on vibration-based methods.

Figure 3. Confusion Matrix and the formulas of accuracy, precision, specificity, recall, and negative
predictive value. TP refers to True Positives, TN refers to True Negatives, FP refers to False Positives,
and FN refers to False Negatives.

Table 2. Metrics used to evaluate the performance of threshold-based methods and machine learning
models for the detection and classification of road surface anomalies [24,25].

Metrics Equation

Accuracy TP+TN
TP+TN+FP+FN

True Positive Rate/Recall/Sensitivity TP
TP+FN

Specificity TN
TN+FP

Precision TP
TP+FP

False Positive Rate FP
FP+TN

F1-Score 2 (Precision)(Recall)
Precision+Recall

TP: true positives, TN: true negatives, FP: false positives, FP: false negatives

The accuracy represents the proportion of correctly identified observations among all
the observations tested. The sensitivity indicates the percent of real positive cases accurately
recognized, whereas specificity is the proportion of real negative data points accurately
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classified. The sensitivity and specificity are used to determine a classification model’s
individual class performance. Otherwise, precision is defined as the ratio of true positives
to true positives plus false positives. The F1-score value is calculated using the recall and
precision parameters as shown in Table 2. Its value ranges from 0 to 1, with 0 indicating
a poor forecast and 1 indicating a good forecast [25]. The F1-score is used to compare the
performance across models.

3.1. Threshold-Based Methods

Threshold-based methods try to detect and classify road anomalies when a change
in the amplitude, root mean square, or crest factor of the signal acquired from inertial
sensors exceeds a certain predefined value [26]. Regarding this type of methodology,
early studies, such as that of Astarita et al. [27] proposed to detect potholes and speed
bumps by analyzing the extreme peaks of the z-axis of accelerometer data where the
accuracy in detecting the speed bump was 90%, and the detection rate of potholes was 65%.
Rishiwal et al. [28] proposed a threshold approach based on the analysis of the z-axis of the
accelerometer data to measure the severity of bumps and potholes into three levels average
severity, high severity, and very high severity. The thresholds were set empirically, and the
method reported an accuracy of 93.75%.

In addition, Nguyen et al. [22] applied the Grubbs test on a sliding window to improve
the threshold methods initially proposed by Mednis et al. [29]. These algorithms were the
Z-THRESH, Z-DIFF, STDEV(Z), and G-ZERO. Z-THRESH aims to identify the anomaly if
the amplitude of the z-axis of the accelerometer exceeds a specific value. Z-DIFF detects
the anomaly if the difference between two successive measurements is more significant
than a specific value. Furthermore, STDEV(Z) is related to the standard deviation of the
sliding window; if the standard deviation surpasses a specific threshold, the anomaly is
recognized. Finally, G-ZERO identifies the anomaly if the values in the three axes of the
accelerometer are below a particular value [22,29]. Carlos et al. [14] also evaluated the
thresholds proposed by Mednis’s study; his analysis showed that STDEV(Z) achieved the
best results compared to G-ZERO, Z-DIFF, Z-THRESH, and support vector machines in
terms of sensitivity, precision, and F1-score.

Other studies have also explored the combination of threshold-based techniques
with learning-based techniques. For instance, Zheng et al. [21] proposed a threshold
technique to identify where there might be an anomaly with a sliding window method.
From this first detection, a random forest was used to filter out the window segments been
actually normal from the segments that had anomalies. Finally, dynamic time wrapping
classified the set of identified anomalies into potholes, speed bumps, and metal pumps.
Sattar et al. [11] presented a similar approach, which consisted of employing the threshold
method proposed by Yi et al. [30] and a Gaussian Mixture Model (GMM) to detect the road
surface anomaly.

Finally, in Ref. [23], a querying-based road anomaly detection algorithm is proposed
that takes advantage of self-similarity. This algorithm consists of two stages: first, the
road anomaly is extracted by matching it with existing labeled anomalies; second, a re-
comparison is made on suspicious road anomalies to classify the type of road anomaly (i.e.,
potholes, speed bumps, and metal pumps). The query algorithm is based on threshold
values. A summary of the reference studies that have used threshold algorithms and their
performance is presented in Table 3.

Based on the referred studies, it is appreciated that threshold-based techniques can
achieve relatively high accuracy. In addition, it can be possible to combine threshold and
machine learning techniques to improve or make a more robust algorithm. However, this
method may require calibration since the threshold values are set empirically and may lack
reproducibility, as pointed out by Li et al. [31]. In addition, thresholds are susceptible to
noise and can only detect a single anomaly [22,32]. Therefore, the technique’s usefulness in
different road scenarios could lead to underperformance in the detection and classification
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capability of the algorithms. However, the above could potentially be countered with
dynamic thresholds instead of only a static threshold, as suggested in Ref. [10].

Table 3. Methods used for road anomaly detection and classification based on threshold techniques.

Author Year Classified
Road Anomalies Algorithm Reported Performance

Metrics

Carlos et al. [14] 2018
Potholes
Bumps
Metal bumps

STDEV(Z)
threshold Average F1-score: 74.40%

Nguyen et al. [22] 2019 Potholes
Grubss Test
and threshold
(Z-THRESH)

Precision-Recall curves graphs.
F1-score curves graphs.

Zheng et al. [21] 2020
Pothole
Speed bump
Metal bump

Query filter plus
self-similarity

F1-score: greater than 70% for
potholes, speed bumps,
and metal bump.

Zheng et al. [23] 2020
Pothole
Speed bump
Metal bump

Threshold in
combination with
Random Forest and
Dynamic Time Warping

F1-score: 93.90% for pothole
F1-score: 87.4 % for speed bump
F1-score: 81.9% for metal bump

Sattar et al. [11] 2021

Potholes
Manholes
Cracks
Road joints

Hybrid approach
Threshold plus
Gaussian Mixture Model

Accuracy: 70%

3.2. Learning-Based and Feature Extraction Methods

Some studies have opted to extract features from the accelerometer or gyroscope data
by extracting features in the time-domain or frequency-domain (i.e., transforming the signal
through the Fourier Transform (FT)) for road surface anomaly detection and classification.
The above is done to input the extracted features into machine learning techniques. Figure 4
shows the flow of activities to apply learning-based techniques [33]. The first step consists
in collecting the dataset. The second step is related to the preprocessing steps performed on
the dataset, such as outliers detection, missing values handling, sensor data reorientation,
re-sampling, and segmentation. The third step is related to the feature extraction process
performed on the data. Finally, the last steps are related to the model generation and
validation stages. In these two last stages, there is an iterative process in which different
models are tested and validated since it is complicated to find a priori a model that
represents all reality according to the No Free Lunch theorem [34].

Figure 4. General methodology to apply machine learning or deep learning techniques for classifica-
tion tasks.
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Examples of studies that have performed this process are shown next. For instance,
in Ref. [35], the data from accelerometers were used to identify potholes, speed bumps,
straight roads, and curve roads by employing the power spectrum of the signal using the
Fast Fourier Transform (FFT). In this case, the learning was completed with a k-nearest
neighbor (KNN) and a multilayer perceptron with four hidden layers. The authors reported
an accuracy of 95.55% for the KNN and 96.79% for the multilayer perceptron. Additionally,
Celaya et al. [5] proposed to extract features from accelerometric data, such as the mean,
variance, standard deviation, skewness, kurtosis, the minimum value, the maximum value,
and dynamic range to detect speed bumps. The results of this study reported an accuracy
of 97.14% by employing a logistic regression and finding the optimal coefficients of the
logistic model through a genetic algorithm.

Similar research was conducted by Ferjani et al. [18], who explored the features of
the time and frequency domains for road monitoring by testing a support vector machine,
a decision tree, and a multilayer perceptron. The time-domain features were the mean,
variance, standard deviation, integral square, root mean square, median, entropy, and
range. The tested frequency-domain features were the spectrum energy, median frequency,
mean power peak magnitude, minimum magnitude, and total power. Additionally, the
authors tested the wavelet transform through a Daubechies 2 wavelet. Wu et al. [26]
presented a similar feature extraction process that also proposed to extract features in the
time, frequency, and time-frequency domain representations. The extracted features in
the time-domain and frequency-domain were used to train a random forest classifier that
achieved an accuracy of 95.7%, a precision of 88.5%, and a recall of 75.00%. In addition,
Chen et al. [32] proposed to compute scale-invariant features from accelerometer signals.
The methodology of this study was first to segment the road anomaly using a piecewise
aggregate approximation method and then classify the anomaly by learning scale-invariant
features by computing shapelets.

Anaissi et al. [36] worked with the vertical and lateral acceleration data to assess
the condition of the road. The justification for working with the vertical and lateral data
is to generate a system that can distinguish between benign anomalies and defects on
the road. The features computed to generate the detection algorithm were the coefficient
of variation applied to the vertical acceleration component. A second feature was to
use the singular value decomposition and the coefficient of variation but applied to the
lateral acceleration component. The classification was made with two one-class support
vector machines with a reported accuracy of 97.5%. Similar to other studies reported in
the literature, Zhou et al. [37] proposed to compute time and frequency domain features
from both the accelerometer and gyroscope data and apply a support vector machine to
classify the quality of manholes into three classes labeled as good, average, and poor. These
labels represent the degree of subsidence; this study reported a mean accuracy of 84.40%.
Furthermore, in Ref. [38], the authors proposed to detect surface road environments, such
as cobblestones, flatlands, and transits, with a KNN and eight features derived from linear
accelerations from the z and y axes and gyroscope data (i.e., roll and pitch angles) achieving
an accuracy of 93.2%. Table 4 shows a summary of the studies that have used feature
extraction and machine learning for road surface anomaly recognition and the performance
reported in each reference work.

One of the critical advantages of learning-based techniques in combination with
feature extraction is that the computational cost can be lower since no transformation is
required, as in the case of time-domain features. However, the feature extraction could vary
depending on the representation or domain in which the features are extracted or which
statistics are computed, as presented in Ref. [26]. Furthermore, it is complicated to know a
priori whether the set of proposed features could be invariant between samples and also
assure class discrimination. The above was also pointed out in Ref. [18].
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Table 4. Methods used for road anomaly detection and classification based on feature extraction tech-
niques.

Author Year Classified
Road Anomalies

Algorithm Performance
Metrics

Celaya et al. [5] 2018 Speed bump Logistic
Regression

Accuracy: 97.14%

Annaisi et al. [36] 2019 Benign anomalies
Defect of the road

One-class
Support Vector
Machine

Accuracy: 97.50%

Wu et al. [26] 2020 Potholes Random Forest Accuracy: 95.7%

Zhou et al. [37] 2022 Manholes Support Vector
Machine

Accuracy: 84.40%

Bustamante et al. [35] 2022
Pothole
Speed bump
Curve
Plain

k-Nearest
Neighbor

Accuracy: 95.55%

Ferjani et al. [18] 2022
Potholes
Metal bumps
Asphalt bumps
Worn out roads

Decision Tree Accuracy: 94.00%

Julio-Rodríguez et al. [38] 2022 Cobblestones
Flatlands
Transits

k-Nearest Neighbor Accuracy: 93.20%

According to Chen et al. [32], one of the main drawbacks of time-domain and
frequency-domain features is that the differences related to different classes of road anoma-
lies are attributed to local signal segments rather than global features. This problem can be
attributed to the noise and outliers present in the signal segments or due to shifting or scal-
ing. The problem of shifting and scaling could also be counter with convolutional neural
networks (CNNs) due to their ability to create invariant representations to translations and
scaling from the input data [39]. This type of architecture used for vibration-based road
surface anomaly detection and classification is presented in the next section.

3.3. Deep Learning-Based Methods

Deep learning techniques that have been used for road surface anomaly detection and
classification are deep feedforward networks (DFN), CNNs, recurrent neural networks
(RNNs), and long-short term memories (LSTMs) neural networks. These techniques have
the main advantage of not requiring a feature engineering process since the algorithms
can handle the raw data without needing any signal transformation or representation.
Hence, the methodology presented in Figure 4 does not have a separate feature extraction
stage since this process is performed during the model generation stage. For example,
Varona et al. [1] proposed to automatically identify potholes and destabilizations produced
by speed bumps or driver actions by comparing CNNs and LSTMs by processing the
accelerometer data from smartphones. Baldini et al. [40] proposed to use time-frequency
representations from inertial sensors to train CNNs to detect and classify road anomalies
reporting an accuracy of 97.2%. The time-frequency representations tested were the short-
time Fourier Transform (STFT) and the continuous wavelet transform (CWT). In addition,
Luo et al. [3] compared DFNs, CNNs, and RNNs to identify eight pavement anomalies
based on processing inertial sensors, spindle, and shock signals. This study showed that
the RNNs performed better than the DFNs and CNNs with fewer parameters. Furthermore,
Tiwari et al. [41] proposed a CNN for the road surface quality assessment and considered
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it as input accelerometer data. The proposal achieved a performance of 98.5% in terms of
precision compared to neural feedforward networks and support vector machines.

Other studies have aimed to compare feature extraction approaches with deep learning
techniques. An example is the one presented by Basavaraju et al. [42] that compared the use
of decision trees and support vector machines with features extracted from accelerometer
and gyroscope data with the input of raw data into a multilayer perceptron architecture
to detect and classify smooth roads, potholes, and deep transverse cracks. The previous
study used the three axes of the sensors instead of using only one single axis of the data,
such as previous works [29]. Likewise, Menegazzo et al. [43] used inertial sensor datasets
collected in different contexts to detect and classify surface road anomalies, such as dirt,
cobblestone, and asphalt roads, by comparing classical machine learning techniques and
deep learning techniques. Based on the results reported by the authors, it was observed
that a CNN achieved the best performance with an accuracy of 93.17% compared to an
LSTM and a gate recurrent unit. Finally, the study of Agebure et al. [44] developed a
system focused on detecting road anomalies and determining the classification of unpaved
road types. The algorithm used to perform the detection was a Spiking Neural Network
originally proposed by Yellakour et al. [45] that, according to the authors, achieved a better
performance than support vector machines and multilayer perceptrons. Table 5 shows a
summary of the studies that have employed deep learning algorithms for road surface
anomaly detection and classification, along with their performance.

Table 5. Methods used for road anomaly detection and classification based on deep learning techniques.

Author Year Classified
Road Anomalies Algorithm Performance

Metrics

Basavaraju et al. [42] 2019
Crack
Pothole
Smooth Road

Multilayer
Perceptron Accuracy: 92.12%

Varona et al. [1] 2020

Call
Door
Message
Potholes
Speed bump
Street Gutter

Convolutional
Neural Network Accuracy: 93.00%

Baldini et al. [40] 2020

Potholes
Cracks
Transverse cracks
Patches
Rumble strips
Speed bump

Convolutional
Neural Network Accuracy: 97.20%

Luo et al. [3] 2020

Pothole
Bump
Gravel
Cobblestone
Broken concrete

Recurrent
Neural Network Accuracy: 99.26%

Tiwari et al. [41] 2020
Good road
Medium road
Bad road

Convolutional
Neural Network Accuracy: 98.5%

Menegazzo et al. [43] 2021
Asphalt road
Cobblestone road
Dirt road

Convolutional
Neural Network Accuracy: 93.17%
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Although deep learning techniques can automatically extract features from raw ac-
celerometer data and achieve relatively high performance, as depicted in the mentioned
studies, typical disadvantages of deep learning techniques exist. For example, the need
for large sample size, high computational power requirements, the black-box structure of
these classifiers that limits their interpretability and the setting process of its parameters
could be considered an art [46,47].

4. Datasets and Signals

In this section, the datasets that have been used in the literature for road anomaly detec-
tion and classification based on vibration techniques are presented. Moreover, the sensors
and preprocessing steps performed before the threshold or learning stage are shown.

4.1. Datasets

Regarding the datasets used for road surface anomaly detection and classification,
authors have decided to generate or employ real datasets or generated datasets through
simulation environments. For instance, Ferjani et al. [18] use the Pothole Lab dataset
introduced in Ref. [14] to generate a simulated dataset for road anomaly detection and
classification. Another dataset that was used in this study is the Gonzalez et al. [17] dataset;
this is one of the few datasets that are publicly available, which facilitates the reproducibil-
ity and comparison of the methodologies, algorithms, and results. Chen et al. [32] also
employed the datasets mentioned earlier in his study.

One of the major drawbacks in the current state of the art is that the study must be
limited to describing the methodology or algorithm proposed and the experimental settings
of the data collection process. However, the dataset in most cases is not available by the
authors, which limits the potential reproducibility of the studies and, consequently, the
validation of the algorithms or methodologies. The above is crucial for learning-based
techniques since they depend on the sampled data to provide a performance metric that
allows a homogeneous comparison. Examples of studies without publicly available datasets
are Refs. [1–5,8,35,37,38].

4.2. Signals

This section presents an overview of the type of signals employed for road surface
anomaly detection and classification. Moreover, the frequent preprocessing steps that have
been applied to these signals before feature extraction or model generation stages are also
presented. Finally, Table 6 shows a summary of the previously mentioned studies with the
corresponding analyzed signals in each study.

4.2.1. Accelerometer Data

As pointed out, one common signal for road anomaly detection and classification
is obtained through an accelerometer. An accelerometer is a device that measures the
acceleration in an object (e.g., a vehicle, rocket, or aircraft) relative to the g-force. The
output measurements of these devices can be viewed as a time series sampled at a specific
frequency. This time series varies along time due to the movements of the analyzed object,
which in the context of road anomaly detection will be the vehicle in a three-dimensional
space [48]. When accelerometers are used for detecting and classifying road anomalies, it
is expected that vehicle acceleration in different directions varies when the vehicle passes
through the anomaly. This variation is sampled by the accelerometer embedded in smart-
phones [21]. One key factor that needs to be considered before working with accelerometer
data is the minimum sampling frequency required to obtain a reliable time-domain repre-
sentation of the signal and avoid aliasing problems. In this regard, the literature concerning
a specific sampling rate is not concrete. For instance, in Ref. [49] a 50 Hz sampling frequency
was chosen; however, other authors have worked with 95 or 100 Hz [5,37,43]. The selection
of an adequate sampling rate is crucial to have a correct signal representation following the
Nyquist criterion [50] and to realize a correct signal transformation and analysis through
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the use of either the FT or wavelet transform. The above also requires real-time embedded
systems to assure a deterministic sampling procedure.

Table 6. Summary of the type of signals used for road surface anomaly detection and classification
through vibration-based techniques.

Author Year Data Used for the Road Anomaly Detection and Classification

Carlos et al. [14] 2018 Z-axis of the accelerometer sensor.

Celaya et al. [5] 2018 X and Y axes gyroscope data.
Y-axis accelerometer data.

Nguyen et al. [22] 2019 Z-axis of the accelerometer sensor.

Basavaraju et al. [42] 2019 Three-axes of the accelerometer data.

Anaissi et al. [36] 2019 Z-axis and X-axis of acceleration data.

Zheng et al. [21] 2020 Z-axis acceleration.

Luo et al. [3] 2020 Three-axes acceleration and gyroscope data.

Varona et al. [1] 2020 Three-axes accelerometer sensor.

Baldini et al. [40] 2020 Z-axis of the accelerometer sensor.
Y-axis of the gyroscope sensor.

Wu et al. [26] 2020 Three-axes of the accelerometer sensor.

Baldini et al. [40] 2020 Three-axes acceleration and gyroscope data.

Sattar et al. [11] 2021

X, Y, and Z-axes linear acceleration
(Calculated from gyroscope and magnetometer data)
Gyroscope data used for reorientation
of linear acceleration.

Menegazzo et al. [43] 2021 Three-axes acceleration and gyroscope data

Julio-Rodríguez et al. [38] 2022 Z and Y-axes linear acceleration
Roll and pitch angles gyroscope data

Zhou et al. [37] 2022 Three-axes of accelerometer and gyroscope sensors.

Bustamante et al. [35] 2022 Three-axes accelerometer data.

Ferjani et al. [18] 2022 Three-axes accelerometer data.

Despite their relatively easy use, accelerometer sensors have certain disadvantages
that are essential to point out related to the noisy nature of the signals generated from these
devices. This noisy nature difficulties road anomaly detection and classification since the
feature extraction process could be complicated and, in some cases, even impossible [48].
To remove the low-frequency noise from the acceleration signals, what has been proposed
is to use high-pass filters, such as Butterworth filters as proposed by Basavaraju et al. [42]
and Wu et al. [26]. The above authors, in particular, proposed to use 11th-order Butter-
worth high-pass filters. Moreover, discrete wavelet transform (DWT) has been used for
denoising acceleration and gyroscope signals, as proposed in the study of Zhou et al. [37].
Wakeel et al. [8] proposed to use the wavelet packet denoising technique to accelerometer
and gyroscope data collected from a smartphone for road condition monitoring.

In addition, while working with accelerometer data, it is necessary to apply a reori-
entation process of the accelerometer’s coordinate system into the vehicle’s coordinate
system [26]. The above can be achieved with the use of Euler angles [51]. Leonhard Euler
introduced in his rotation theorem that any rotation can be described by employing only
three angles. The rotations of a rigid object can be expressed in terms of rotation matrices
labeled as D, C, and B; consequently, the general rotation A can be expressed as shown in
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Equation (1). Euler angles are the three angles that provide the three rotation matrices [52]
established in Equation (1).

A = BCD (1)

One component of accelerometers commonly analyzed for road anomaly detection is
the z-axis, which is related to the vehicle’s vertical acceleration. However, other authors
have also proposed to work with the other two axes to improve the performance of detection
systems as proposed by Anaissi et al. [36]. Table 6 shows a detailed overview of the
accelerometer and gyroscope axes analyzed in the literature for road surface anomaly
detection and classification.

4.2.2. Gyroscope Data

Another type of sensor used for road surface anomaly detection and classification
but to a lesser extent is the gyroscope. These devices can sense the angular velocity of an
object when they are mounted on a frame while it is rotating. Several gyroscopes can be
embedded in gyrocompass, inertial navigation systems, or inertial measurement units [53].
Like the accelerometer, an adequate preprocessing (i.e., correct sampling frequency and
filtering) stage is needed to use this type of sensor for road surface anomaly detection
and classification. Some of the studies that have used gyroscope data are the ones of
Baldini et al. [40] that only study the y-axis of this device. Furthermore, similar to the
accelerometer data, a reorientation process from the smartphone coordinate system to the
vehicle coordinate system needs to be performed on the gyroscope data with the help of the
Euler angles [42]. Despite that, gyroscopes have less use for road surface anomaly detection
and classification, as depicted in Table 6, linear acceleration estimations can be computed
through gyroscope and accelerator sensor data, as pointed out in Refs. [10,11]. Hence, its
use in combination with other sensor readings could potentially improve the performance
of road surface anomaly detection and classification systems.

5. Feature Extraction

This section describes and defines the computed features from both accelerometer and
gyroscope data proposed in the literature. These features can be divided into time-domain,
frequency-domain, and time-frequency domain features. Figure 5 shows an overview of
the analysis techniques and features employed.

Figure 5. Overview of signal representation techniques commonly used for road surface anomaly
detection systems, classification systems, and feature extraction.

5.1. Time-Domain Features

Time-domain features are computed based on the signal amplitude that changes with
time. Often these types of features are used to maintain low computational complexity.
Moreover, this type of analysis often does not require additional signal transformation.
Within the time-domain features, the magnitude of the accelerometer and gyroscope data
are some of the commonly computed features. The reason to compute the magnitude is
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to remove the sensor data’s negative effects and reduce the variability imposed on the
dataset due to the placement and inclination of the inertial sensor within the vehicle [37].
The magnitude calculation of the accelerometer data is shown in Equation (2) and for the
gyroscope data in Equation (3) as proposed by Zhou et al. [37]. In Equation (3), Accx, Accy,
and Accz represent the triaxial accelerometer components while AccM is the magnitude of
the accelerometer signal. On the other hand, in Equation (3), Gyrx, Gyry, and Gyrz, are the
triaxial angular velocities, and GyrM is the magnitude of the gyroscope signal.

AccM =
√

Acc2
x + Acc2

y + Acc2
z (2)

GyrM =
√

Gyr2
x + Gyr2

y + Gyr2
z , (3)

Commonly computed statistics extracted from the accelerometer signal in the time-
domain are the mean, variance, standard deviation, skewness, kurtosis, the maximum
value, and dynamic range [54]. Table 7 shows the expression that allows computing the
above features. In the expressions shown in Table 7, n represents the signal’s length or the
window’s length, and Xi is one single sample of the signal.

Other types of computed features in the time-domain are the mode, median, range,
and root-mean-square, also used by Zhou et al. [37]. Another technique used for feature
extraction is to compute the autocorrelation (i.e., the degree of similarity between the signal
and a lagged version of itself [55]). The autocorrelation was proposed in the study of
Wu et al. [26] for feature extraction of the z-axis of the accelerometer. The computation
of these features requires that a signal window is measured. Thus, it is required that
the anomaly is within that measured window. There is no exact methodology to select
the correct window length of the signal; hence, a common approach is to test the system
with different window lengths and select the one that produces the best performance, as
suggested in the study of Menegazzo et al. [43].

Table 7. Time-domain features extracted from inertial sensors based on statistics for road surface
anomaly detection and classification [5,18,37,56]. The n term refers to the length of the signal segment
and Xi is one single sample of the signal.

Feature Formula

Mean x = 1
n ∑n

i=1 Xi

Variance σ2 = 1
n ∑n

i=1(Xi − x)2

Skewness γ = 1
n ∑n

i=1
(Xi−x)3

σ3

Kurtosis κ = 1
n ∑n

i=1
(Xi−x)4

σ4

Standard Deviation σ =
√

1
n ∑n

i=1(Xi − x)2

Max max {Xi....Xn}
Min min {Xi....Xn}

Range max {Xi....Xn} −min {Xi....Xn}
Mode Mode{Xi....Xn}

Median Median{Xi....Xn}
Dynamic Range DR = Xn −min {Xi....Xn}

Root Mean-Square
√

1
n ∑n

i=1 X2
i

In the same way, another type of characteristics that are commonly computed in what
refers to the classification of signals are those obtained through different representations.
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For example, that is the representation in frequency and the time-frequency representations.
These techniques will be introduced in the next sections.

5.2. Frequency-Domain Features

This section presents the background of Fourier analysis techniques used for feature
extraction for road surface anomaly detection and classification. Moreover, the studies that
used this signal representation are presented and analyzed. Additionally, the common
features that have been computed based on the FT are also listed.

The FT is the technique used to generate a frequency representation of a signal defined
in the time-domain. The FT’s basic concept is to create an orthogonal basis of sine and
cosine functions with increasing frequency. The mathematical representation of the FT can
be appreciated in the equation below [57].

F(ω) =
∫ ∞

−∞
f (t)e−iωtdt (4)

where f (t) is a time-domain function multiplied with a complex exponential of frequency
omega (ω) that corresponds to the term e−iωt. Nonetheless, the FT on discrete data vec-
tors must be defined when computing or operating with real data. The Discrete Fourier
Transform (DFT) is a discretized Fourier sequence for data vectors. For this purpose, the
mathematical representation of the DFT is presented below.

F(k) =
N−1

∑
n=0

f [n]e
−i2πnk

N (5)

The DFT is practical to approximate and compute the FT of data vectors, but it does
not perform well with huge data vectors since the computational complexity increases.
In this case, the computational complexity of the DFT is O(N2). The FFT was developed
to reduce the computational complexity of the DFT. The FFT scales the computational
complexity of the DFT to the order of O(Nlog(N)). As N becomes very large, the log(N)
component grows slowly, and the algorithm approaches linear scaling [58].

Frequency analysis is a crucial feature extraction technique; the magnitude of the FT is
used to calculate the feature that will be used for the classification tasks. Common features
that are derived from the magnitude of FT are listed below as proposed by Ferjani et al. [18],
Andrades et al. [56], and Zhou et al. [37].

• The Spectrum Energy of the signal is equivalent to the squared sum of the FT coeffi-
cients;

• The Median Frequency refers to the frequency that divides the FT magnitude into
two partitions of equal size;

• The Peak Magnitude refers to the maximum value of the FT magnitude;
• The Minimum Magnitude refers to the minimum value of the FT magnitude;
• The Mean Power refers to the FT magnitude power average;
• The Total Power is the aggregate of the signal power;
• The Discrete Cosine Component refers to the first component of the magnitude of

the FT;
• The Mean Frequency refers to the average frequency in the signal’s magnitude of

the FT;
• The Maximum Frequency refers to the highest frequency in the signal’s magnitude of

the FT.

In addition, FT is a crucial step in computing other types of features, such as the
power spectral density (PSD), Mel Frequency Cepstral Coefficients (MFCCs), and the
perceptual linear prediction coefficients (PLP) [59]. The PSD of a signal analyzes the
distribution of power along all the frequency ranges. The primary purpose of the PSD
is to compute the spectral density estimation of a given signal [60]. MFCCs is a feature
extraction method widely used in speech recognition tasks that focuses its resolution



Appl. Sci. 2022, 12, 9413 16 of 26

analysis at low frequencies [61]. PLP is a frequency-based feature extraction technique
used for speech recognition. A feasible engineering approximation of various well-known
hearing characteristics is used in the PLP technique, and an autoregressive all-pole model
is used to mimic the resulting auditory-like spectrum of speech [62].

MFCCs and PLP have been used for road condition monitoring as presented in the
study of Cabral et al. [63]. Otherwise, in Refs. [26,42] the PSD was computed to extract
features for road anomaly recognition. Moreover, the FT plays a crucial role in developing
time-frequency analysis and is another feature extraction technique used in road surface
anomaly detection and classification; these methods are presented in the next section.

5.3. Time-Frequency Domain Features

This section presents the fundamental background of time-frequency analysis, the
motivation to develop these methods, and how they have been used for road surface
anomaly detection and classification. In particular, this section introduces the STFT, the
CWT, and the DWT since these are the common time-frequency methods used in the
literature. In addition, studies that have used these types of techniques for road anomaly
detection and classification are presented in more detail.

The term time-frequency analysis summarizes analytical techniques which quantify
the time trend in spectral signals [64]. Although the FT provides detailed information on
a signal’s frequency content, it does not provide information on when those frequencies
occur. One technique that tries to produce a time-frequency representation of a signal is the
STFT. This method tries to produce details about the times and frequency by splitting the
overall time interval into many short intervals and then taking the FFT for every interval.
The STFT, also known as Gabor Transform, is defined as follows [65].

G(t, ω) =
∫ ∞

−∞
f (τ)e−iωτ g(τ − t)dτ (6)

where the function g(t) is referred to as the STFT kernel and provides the short-time
windows to perform the FT, this kernel is often a Gaussian function, expressed as follows.

g(t) = e−(t−τ)2/a2
(7)

The a parameter controls the spread of the window, while τ controls the center of
the moving window of the STFT. In time-frequency analysis, there is the Heisenberg
uncertainty principle, that states that a signal cannot arbitrarily be compressed in both
time and frequency [66]. That above limits the possibility of simultaneously obtaining
high resolution in both the time and frequency domain. Therefore, the STFT spectrogram
tries to provide a time-frequency representation of the signal but with lower resolution in
both domains.

The above limitation introduces the wavelet transform. A wavelet is a limited wave-
form with an average zero value. In contrast to sinusoidals, which go from minus to
plus infinity, wavelets have finite support. In addition, wavelets are of short length, non-
symmetrical and irregular. One of the differences between the STFT and wavelets is that
the signal is divided into scale segments instead of time segments. Wavelets can partially
overcome the uncertainty principle by performing a multiresolution decomposition. There
are two types of wavelet analysis tools, the CWT and the DWT [67].

In wavelet analysis, the fundamental principle is first to use a function called mother
wavelet ψ(t) to create a family of versions that are scaled and translated by values of a and
b, respectively. This mother wavelet is represented as shown in the equation below [65,67].

ψa,b(t) =
1√
a

ψ(
t− b

a
) (8)

The factor 1√
a ensures that all scale functions possess the same energy. The CWT is

defined mathematically as follows [65].



Appl. Sci. 2022, 12, 9413 17 of 26

W(a, b) =
∫ ∞

−∞
f (t)ψa,b(t)dt (9)

The above representation creates a two-dimensional mapping in the time and scale
domains. CWT generally provides a trade-off between time-domain and frequency-domain
localization. Nevertheless, they do not occur at the exact time or frequency. Therefore, it is
more precise to say that the representation obtained through the CWT is well contained in
both the frequency and time domains. However, the CWT produces an infinite redundancy
because it generates innumerable coefficients, more than is sufficient to represent the
original signal correctly. This redundancy is computationally costly only when the original
signal is reconstructed; therefore, the DWT is introduced in the next section to avoid
this drawback.

The DWT can be represented as shown in the expression below.

ψj,k(t) =
1√
2j

ψ(
t− k2j

2j ) (10)

where j is the scale parameter and k is the shift parameter, both of which are integers. The
above expression makes it possible to notice the similarities between the DWT and the CWT.
The main differences are that the scale and shift parameters for the DWT are powers of two.
This scaling and shift process is also known as dyadic sampling. This dyadic sampling
allows the DWT to reduce its computational cost compared to the CWT. Figure 6 depicts
the DWT’s decomposition process or analysis stage in a graphical representation. This
method is applied based on the convolution between the input signal x[n] and the low pass
filter L that produces the approximation coefficients aj[n] and the high pass filter H that
generates the detail coefficients dj[n] of the DWT [68]. This decomposition is also known as
Decimated Discrete Wavelet Transform since the length of the signal is down-sampled in
each of the levels. It is crucial to notice that the information is discarded by down-sampling
the signal by 2, producing aliasing. The downsampling process does not produce a shift-
invariance output since some samples are discarded. The above characteristics restrict how
the filters must be selected. To cancel the effect of aliasing, the filter types used are Perfect
Reconstruction Quadrature Mirror Filters [69]. In addition, by applying the DWT through
filter banks, the computational complexity of the transform is O(N) [70].

Figure 6. Schematic representation of the analysis stage of the discrete wavelet transform.
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Time-frequency analysis has been used to extract features from inertial signals or to
represent the inertial sensor signal that could be used as input into other algorithms, such
as CNNs. For example, Baldini et al. [40] sought to optimize the use of the STFT for the
detection and classification of road anomalies in combination with CNNs by varying the
parameters of the STFT, such as window size, type of window, and overlap ratio. Baldini’s
study also compared the STFT with the CWT by employing a Morse wavelet as the mother
wavelet. When time-frequency methods are combined with CNNs, the time-frequency
method must generate a two-dimensional representation from a 1D signal that can be used
as input into the CNN. In this way, CNNs are expected to automatically extract the features
from this 2D signal representation corresponding to the spectrogram of the STFT or the
scalogram in the case of the CWT and DWT.

Examples that have used the wavelet transform in road surface anomaly detection
and classification can be found in the literature as described in Section 3. For example,
Li et al. [31] used the CWT to estimate the size of road anomalies and identify them. The
mother wavelet used in Li’s study was an order 3 Daubechies wavelet (DB3) following the
recommendation of Wei et al. [71]. Furthermore, In Ref. [18], a five-level decomposition
Daubechies 2 wavelet was used for feature extraction. Moreover, Wu et al. [26] proposed
using DWT to extract characteristics that classify normal roads, potholes, and transverse
roads; the wavelet used was a biorthogonal 3.1 with a decomposition of levels 1, 2, and
3. Other wavelets that were tested in Wu’s study were the Haar, Symlets 5, Daubechies 6,
and 10 wavelets. In addition, Basavaraju et al. [42] tested three wavelets to assess road
anomalies; the selected wavelets were Morlet, Daubechies 6, and Daubechies 10. The
features were extracted from scales 4 and 5. As can be appreciated, different types of
wavelets have been proposed for feature engineering the inertial sensor signals. Table 8
shows a summary of the studies and the time-frequency methods used for feature extraction.
In the same table, it can be appreciated that the Daubechies wavelet family and, thus, the
DWT are common choices to perform feature extraction.

Table 8. Time-frequency methods used to extract features from inertial sensors for the detection and
classification of road surface anomalies.

Author Method Parameters

Baldini et al. [40]
STFT

Variation of window type.
Variation of window length.
Variation of overlapping between windows.

CWT Morse wavelet used as mother wavelet
Variation of frequency scales

Li et al. [31] CWT Daubechies 3 wavelet (DB3)
as the mother wavelet

Ferjani et al. [18] DWT Five level decomposition with a
Daubechies 2 wavelet (DB2)

Wu et al. [26] DWT 3 levels Reverse
Biorthogonal 3.1 wavelet

Basavaraju et al. [42] DWT Tested 3 wavelets at scales 4 and 5.
Mortlet, Daubechies 6 and Daubechies 10 wavelets

Another widespread use of time-frequency analysis is denoising the acquired ac-
celerometer and gyroscope data through a wavelet transform. For instance, the study
of Zhou et al. [37] and Wakeel et al. [8] use the wavelet transform based-technique for
denoising purposes in the context of road anomaly recognition. As can be appreciated,
time-frequency analysis could positively impact the detection and characterization of road
surface anomalies that are not only limited to feature extraction or signal representation
but also for denoising applications. However, the setting of the parameters of this transfor-



Appl. Sci. 2022, 12, 9413 19 of 26

mation and the adequate selection of a kernel (i.e., mother wavelet or window function)
have not been fully explored or tested.

6. Discussion

As can be seen in Table 3 threshold-based techniques have been developed recently to
perform road surface anomaly detection and classification. However, recent approaches
have combined thresholds with statistical tests or learning techniques [11,14,21]. Another
aspect to point out is that the metrics commonly reported are not homogeneous among the
studies, making it difficult to compare them. At the same time, Table 4 shows the results of
the studies using feature extraction techniques with machine learning techniques. In this
case, it can be seen that there is no preference for a particular machine learning technique,
and most of the studies show accuracies greater than 80% regardless of the feature engi-
neering method and the machine learning techniques that were selected. However, it is
complicated to compare the studies since each listed author generated datasets in different
scenarios or conditions. In addition, some studies focused on specific road anomalies or
considered different anomalies to develop their respective systems. Finally, Table 5 shows
the studies that used deep learning techniques. In this case, CNNs have been more frequent
than RNNs. Finally, deep learning has shown a performance more outstanding than 90% in
terms of accuracy. Nevertheless, similar to the studies that employed feature extraction, it
is difficult to make a homogeneous comparison between the methodologies since different
datasets, road scenarios, or anomalies have been analyzed. Table 9 shows an overview
of the advantages and disadvantages of vibration-based techniques used in road surface
anomaly detection and classification tasks.

Table 9. Advantages and disadvantages of road anomaly detection and classification systems through
vibration-based techniques.

Method Advantages Disadvantages

Threshold-based
• It does not require a training process.
• Less computational costly compared to
machine learning techniques.

• Threshold are set empirically.
• It requires calibration of
the thresholds.
• It is susceptible to noise.

Feature Extraction

• Less computational costly compared to
deep learning algorithms.
• The models are less complex
compared to deep learning solutions.

• It requires of a high quality dataset.
• Its feature extraction process is not
standardize.

Deep Learning
• Can achieve relatively high accuracy.
• It does not require a feature
extraction process.

• It requires a large sample size.
• It lacks of interpretability.
• It requires large training times.
• It has a high computational cost.

The metrics reported are another factor that mitigates a homogeneous comparison
between the current proposals. For instance, the feature extraction and deep learning
approaches focus their results on the accuracy, as shown in Tables 4 and 5. On the other
hand, threshold-based techniques have focused on metrics, such as the F1-score. One of the
main drawbacks of accuracy and F1-score is that these metrics overlook the individual class
or anomaly detection capability better represented by other metrics, such as sensitivity or
specificity. However, by reporting these metrics, the comparison is still complicated due to
the different anomalies analyzed in each work. Moreover, in most of the reference studies,
validation strategies such as cross-validation or bootstrapping have not been extensively
used in the literature to demonstrate the performance of algorithms with different training
or testing sets [72].

One of the main problems that learning-based techniques have is that whether the
authors decide to employ a feature extraction technique or deep learning architectures, these
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two techniques require a high-quality label dataset to generate the models and effectively
train the algorithms. The above introduces a challenge since it could be complicated to
gather a sufficient amount of label data that represent the distributions of all the types of
road anomalies in a road or city. This problem was also noticed by Carlos et al. [14], in
Ref. [49], and highlighted in Section 4. In these same studies, it was pointed out that there
is a lack of publicly available datasets, so there is an opportunity to produce and generate
datasets that can help to validate road anomaly detection and classification algorithms
with a greater homogeneity. The set of algorithms that could be affected more directly by
the lack of label data are deep learning techniques since they often require a large sample
size to avoid overfitting problems [47]. The above limits the use of deep learning as an
automatic feature extraction technique of raw accelerometer and gyroscope data.

Despite the disadvantages that the use of deep learning techniques can present, it
is essential to remark that there are techniques that could be used to alleviate the lack of
training data. One of these techniques is transfer learning [73]. The advantage of the transfer
learning framework is that it is proposed to use for initialization pretrained architectures.
Thus, CNNs, such as GoogleNet [74], AlexNet [75], ResNets [76], or DenseNets [77], could
be used to fine-tune their weighs by setting a low learning rate based on the new given
training dataset. On the basis of the results of this literature review, transfer learning has
not been explored extensively. Therefore, there is an opportunity to explore the use of this
technique for road surface anomaly detection and classification based on inertial sensors.
A potential problem of applying transfer learning through pre-trained CNNs is that this
method requires significant computational power. Furthermore, even though transfer
learning could be a feasible option when there are a lack of available training data, no
exact methodology could help determine the minimum sample size required to apply a
transfer learning approach. The above also highlights gaps that could be investigated in
future work.

Another area that needs further research is how feature extraction is performed. As
mentioned by Bello et al. [48] extracting features from accelerometer data is not a trivial
task. Therefore, the literature has proposed multiple types of feature extraction in either
the time-domain, frequency-domain, or time-frequency domain, as presented in Section 5.
In general, it can be appreciated that the time and frequency domains enable efficiently
extracting features based on the signal’s statistics, such as the mean, mode, maximum
value, minimum value, and moments. Nevertheless, every author proposed or chose to
extract different feature types, so there is no standard that can guarantee good performance
based on the collected features. Additionally, these features could depend on the quality
and characteristics of the collected sample. This drawback limits the reproducibility of
the methods in the current literature, especially in the studies based on machine learning
algorithms due to their data dependency [78].

Related to time-frequency methods for feature extraction, an area of opportunity can be
explored in two main aspects the techniques to construct the time-frequency representation
and the way these time-frequency representations are parameterized. For example, in
the study of Baldini et al. [40] the different hyperparameters of the STFT (i.e., window
type, window length, window overlapping) were tested in combination with a CNN
for road surface anomaly recognition; this work, in particular, is one of the few that
tried to fulfill this gap. Hence, further comparisons can be made to take advantage of
employing the STFT, the wavelet transform, or the Hilbert–Huang transforms for road
surface anomaly detection and classification [79]. Moreover, when applying the wavelet
transform, the authors have used different types of mother wavelets to produce the features.
However, as depicted in Table 8, there is no consensus about the type of wavelet transform
(i.e., CWT or DWT) or the kind of mother wavelet that can achieve an adequate signal
representation and consequently improve the performance of the classification task. In
recent studies, the Daubechies family of wavelets has been explored more frequently for
feature extraction or signal representation, as shown in Table 8. Despite the gaps that
wavelets currently have, this type of technique has also shown applications for denoising
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purposes, as presented by the study of Wakeel et al. [8] and Zhou et al. [37], which
suggest the broader range of applications that wavelet transform has in developing signal
classification tasks. Nevertheless, one aspect that may mitigate the use of time-frequency
methods is the computational cost they require compared to time and frequency domain
based-features [26].

Aside from these feature extraction methods, other types of feature representations
have been explored to a lesser extent, such as scale-invariant features, as presented in the
study of Chen et al. [32] where shapelets were used to generate scale-invariant features
from the accelerometer z-axis. According to Chen’s work, this type of method could
potentially serve to compute not only local features but also global features from inertial
sensor signals where typical time or frequency domain features are not suitable. However,
another lacking aspect is that most studies do not report feature importance or feature
selection methodology that could determine which of the computed features are associated
with a given class through either a statistical test or importance score [80].

Additionally, factors that could affect the ability to detect or recognize road anomalies
while collecting accelerometer or gyroscope data are human and hardware factors [81].
An example of a hardware factor are the sensitivities of the sensors embedded in the
smartphone that could produce errors in the data collection and, consequently, in the
training of learning-based techniques or the setting of thresholds [82]. Otherwise, an
example of a human factor is the driver’s behavior while driving that may differ across the
set of drivers, which can introduce a source of variability [83]. The above aspects have not
been considered in the literature that has developed road surface anomaly detection and
classification systems. Thus, the performance of proposed algorithms could be prone to
errors, and the relatively high performance that studies have reported could be mitigated.
The above suggests future research directions that can be explored to reduce the effects of
the scenarios mentioned earlier.

Despite the diverse type of techniques that have been proposed, the problem of
road surface anomaly detection and classification has been chiefly tackled to distinguish
between a road in optimal condition versus lousy condition (e.g., pothole detection) or
distinguish between different road anomalies (e.g., detection of potholes, speed bump,
metal bumps, manholes) with one single detection or classification system. Nevertheless,
the characterization of these road anomalies has not been extensively explored, as suggested
by the study of Gonzalez et al. [17]. For example, vibration-based techniques could further
explore and study the estimation of the pothole’s depth or the speed bumps’ state. The
above can contribute to not only detecting the presence of the road anomaly but also
providing information related to the characteristics of the anomaly and the degree of harm
to the road surface with a low-cost system compared to 3D-reconstruction devices. Thus,
there is still a gap that can be filled by exploring the use of algorithms that detect the
road anomaly and characterize the quality of the anomaly or the structures present along
the road surface. Studies that have tried to fulfill the lack of research on road anomaly
characterization are the approaches presented by Gonzalez et al. [17] and Li et al. [31].
Gonzalez et al. [17] named this new approach a second-generation problem.

7. Conclusions and Future Work

This study presented a literature review of vibration-based techniques for detecting
and classifying road surface anomalies. This work’s findings show that vibration-based
road surface anomaly detection and classification methods can be classified into three main
approaches: threshold, feature extraction, and deep learning. In general, the problem of
detecting and recognizing road surface anomalies has achieved relatively high performance
by employing each of the three methods. However, a lack of homogeneity between the
datasets, the types of anomalies analyzed, and the road scenarios complicate realizing a
homogeneous comparison between the approaches.

The feature extraction techniques used in road anomaly classification were also sur-
veyed. It was observed that common analysis techniques employed for feature engineering
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are time-domain, frequency-domain, and time-frequency representations. However, from
these feature extraction approaches, there is no exact preference for a particular method or
standardization of features that assures adequate performance to detect or classify specific
road anomalies.

Considering the above, the following points are identified as potential future research
developments for vibration-based methods used in road surface anomaly detection and
classification:

• The generation of datasets that are publicly available could facilitate the reproduction
of the studies and allow for the creation of benchmark metrics that could be used
for the comparison and testing of different feature extraction methods or machine
learning algorithms. The above could also facilitate a homogeneous comparison of
the literature results.

• The Transfer Learning framework could potentially avoid requiring a large sample
size and take advantage of deep learning processing capabilities, such as CNNs for
signal classification (i.e., accelerometer and gyroscope data categorization into road
surface anomalies) [73].

• An analysis and comparison could be performed to determine the set of features
computed through either the time or frequency-domain associated with each surface
road anomaly, such as potholes, speed bumps, metal bumps, cracks, road joints, or
manholes. This could lead to a standardization of features that could help developers
generate these road anomaly recognition and classification systems.

• Time-frequency methods, despite the fact that they have already been used in state
of the art for inertial sensor signals representations and feature extraction, future
developments could explore testing different wavelets families, parametrizations
of time-frequency representations, or different sets of time-frequency analysis tech-
niques, such as the wavelet transform, Wigner–Ville distribution, or Hilbert–Huang
transform [84].

• Characterization of road anomalies, such as the speed bumps’ state or the potholes’
depth, has not been performed extensively as suggested by Gonzalez et al. [17]. Hence,
the opportunity to test algorithms that can estimate the depth of potholes through
regression algorithms or classify the quality of speed bumps through statistical or
machine learning techniques remains to be explored.
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