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Ball and rolling element bearings are perhaps the most widely used components in
industrial machinery. They are used to support load and allow relative motion inherent in
the mechanism to take place. Subsurface originated spalling has been recognized as one
of the main modes of failure for rolling contact fatigue (RCF) of bearings. In the past few
decades a significant number of investigators have attempted to determine the physical
mechanisms involved in rolling contact fatigue of bearings and proposed models to
predict their fatigue lives. In this paper, some of the most widely used RCF models are
reviewed and discussed, and their limitations are addressed. The paper also presents the
modeling approaches recently proposed by the authors to develop life models and better
understanding of the RCF. �DOI: 10.1115/1.3209132�
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1 Introduction

Ball and roller bearings commonly referred to as bearings are

frequently used in simple and complex machinery �e.g., bicycles,

gas turbines, transmissions, dental drills, etc.�. They are used to

allow rotary motion and support significant load. Before the

1940s, their design and application in machinery were more of an

art than a science and little was known about their operation.

However, since the 1940s, due to ever increasing demand for

bearings, usage has required better knowledge and understanding

of bearing operation �i.e., elastohydrodynamic lubrication �EHL�,
dynamics, rolling contact fatigue �RCF�, etc.�. This paper deals

with the bearing rolling contact fatigue empirical and analytical

models developed and proposed over the past few decades. It has

been proposed that if a ball or a rolling element bearing is prop-

erly loaded, lubricated, installed, and kept free of foreign contami-

nants, then the main mode of failure is material fatigue. Histori-

cally, it has also been postulated that a rotating bearing has a

limited life because of probability of subsurface initiated fatigue

spall. The localized contact stresses in ball and rolling element

bearings are extremely high as compared with stresses acting on

rotating structural components �e.g., shafts�. Neglecting the lubri-

cation effects, stress in bearing contacts is governed by the Hert-

zian theory, where the pressures are in the order of a few gigapas-

cal. RCF results in metallic particles flaking from the surface of

the ball and rolling elements or raceways. When the bearing is

properly lubricated this phenomenon commences as a crack below

the surface and propagates to the surface causing a pit or a spall in

the bearing raceway. The high level of cleanliness of bearing

steels in current bearing technology is one factor in minimizing

the probability of fatigue spalls �1–5�. A second important factor
is the microplastic deformation behavior of bearing steel under the
action of RCF. During the running-in process, the bearing raceway

material will experience an elastic response after shakedown. The

ability to maintain an elastic response during cyclic loading can be

compromised by the microstructural changes brought about by

microplastic deformation, leading to localized damage and in-

crease in probability for crack initiation and fatigue failure. Physi-
cal parameters such as the applied stress level, operating tempera-
ture, number of revolutions, and material parameters such as the
alloy steel selected, heat treatment, residual stress level, and work-
hardening response during running-in affect the ability to maintain
an elastic response during cyclic RCF loading. Microplastic de-
formation precedes crack initiation and typically occurs at micro-
structural discontinuities such as inclusions and carbide clusters
where the resultant stress exceeds the local microyield limit at that
fatigue cycle �5�. The cyclic strain amplitudes due to RCF de-
crease with distance below the running surface �6�. The material
degradation due to RCF in ball bearing inner rings can be de-
scribed as a three-stage process: �I� shakedown, �II� steady-state
elastic response, and �III� instability �1–5,7–9�. A residual stress is
induced during shakedown with an increase in material strength-
ening and microyield stress, due to work hardening, and also
likely due to the transformation of part of retained austenite to
martensite �5,10�. The subsurface volume that is plastically de-
formed is effectively reduced to nearly zero by over-rolling �5,7�.
The length of stage II, where no fatigue damage is thought to
occur since cyclic response is elastic �4�, is a function of maxi-
mum load-induced stress, material characteristics, and operating
temperature �10�. The operating temperature is considered to be
very significant �5�. Maintaining a stage II elastic response under
cyclic loading for as long as possible is critical for extending
bearing life, and, hence, understanding the mechanism of stability
of stage II can lead to significant improvement in bearing opera-
tional reliability. The stability of the finely dispersed carbides in
the tempered martensite is thought to be important for extending
stage II �5�. Stage III is marked by a decrease in yield stress due
to material softening, causing an increase in subsurface volume
that is deformed plastically. Carbon diffusion, caused by local
temperature peaks, is thought to activate underpinning and poten-
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tial slip systems, leading to softening. The development of a radial
tensile stress and texture development promotes growth of cracks
parallel to rolling surface �7,11�. A higher initial load applied dur-
ing the shakedown stage results in a higher saturation level of
work hardening, resulting in extended fatigue life by modifying
material response in stages II and III. Apart from rolling element
bearings, RCF is also commonly observed in gears, cam-follower
mechanisms, and rail-wheel contacts. RCF manifests itself in a
variety of different mechanisms that ultimately lead to final failure
�12,13�. The two most dominant RCF mechanisms are subsurface
originated spalling and surface originated pitting. These are often
competing modes of failure, and the ultimate mechanism that pre-
vails depends on a number of factors, e.g., surface quality, lubri-
cant cleanliness, material quality, etc.

Subsurface originated spalling occurs when microcracks origi-
nate below the surface at material inhomogeneities such as non-
metallic inclusions and propagate toward the surface to form a
surface spall. These cracks are most often found to originate in the
region of maximum shear stress below the surface as seen in Fig.
1 �from Ref. �14��. Factors favoring subsurface originated spalling
are smooth surfaces, presence of nonmetallic inclusions in the
material, and absence of surface shear. This mechanism is the
dominant mode of failure in rolling element bearings that have
smooth surfaces and operate under EHL conditions. Surface origi-
nated pitting, on the other hand, occurs in cases where surface
irregularities in the form of dents or scratches are present. Here,
cracks initiate at the surface stress concentrators and thereafter
propagate at a shallow angle �15–30 deg� to the surface �15�.
When they reach a critical length or depth, the cracks branch up
toward the free surface, removing a piece of surface material and
form a pit as shown in Fig. 2 �from Ref. �16��. This mechanism of
failure is common in gears where substantial sliding occurs be-
tween the contacting surfaces.

There are a number of differences between classical fatigue and
RCF that make it impossible to directly apply the results from
classical fatigue to RCF. The most important differences can be
listed as follows.

1. The state of stress in nonconformal contacts where RCF
occurs is complex and multiaxial and governed by the Hert-
zian contact theory. For the derivation of the subsurface
stresses for line and point Hertzian contact, please refer to
Refs. �17–24�.

2. Contrary to most classical fatigue phenomena, rolling con-
tact fatigue is typically a multiaxial fatigue mechanism. In
the past few decades, several multiaxial fatigue criteria have
been developed and verified with experiments �25–31�.

3. Contrary to classical fatigue, the loading history at a point
below the surface is nonproportional; i.e., the stress compo-
nents do not rise and fall with time in the same proportion to
each other; for example, as shown in Fig. 3, the stress his-
tory for a point located at the depth where the orthogonal

shear stress �xz is maximum. As seen, there is a complete

reversal of the shear stress �xz, while the normal stresses �x

and �z always remain compressive. Also, the peaks of the
two normal stresses do not coincide with the peaks for the
shear stress.

4. There is a high hydrostatic stress component present in the
case of nonconformal contacts, which is absent in classical
tension-compression or bending fatigue.

5. The principal axes in nonconformal contacts constantly
change in direction during a stress cycle due to which the
planes of maximum shear stress also keep changing. Thus, it
is difficult to identify the planes where maximum fatigue
damage occurs.

6. The phenomenon of RCF occurs in a very small volume of
stressed material, because the contact stress field is highly
localized. Typical bearing contact widths are of the order of

200–1000 �m.
7. The evolution of RCF damage leading to a fatigue spall

involves a three-stage process: �i� shakedown, �ii� steady-
state elastic response, and �iii� instability. Localized plastic
deformation and development of residual stresses are precur-
sors to fatigue damage, and therefore the ability to compute
the 3D elastic-plastic stress fields that accounts for cyclic
loading and traction effects, and acknowledge microstruc-
tural changes, is a necessary tool for quantifying raceway
fatigue damage.

Since fatigue is the predominant mode of failure in rolling el-
ement bearings, the life of bearings is governed by its RCF life.
Over the years, several mathematical models have been proposed
to estimate lives of bearing components under RCF. These models
can be classified into �i� probabilistic engineering models and �ii�
deterministic research models. The engineering models are largely
empirical in nature and include variables that are obtained from
extensive experimental testing. They do not directly consider the
details of the constitutive behavior of materials under contact

Fig. 1 Subsurface cracks in rolling contact fatigue †14‡

Fig. 2 Mechanism of surface initiated pitting †16‡

Fig. 3 Stress history at a subsurface point in a Hertzian line
contact
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loading, nor the residual stress and strain computations in the
contact areas. The research models, on the other hand, are theo-
retical in nature, require complete stress-strain behavior informa-
tion for the materials in contacts, and are used in conjunction with
a material failure model. However, these models are usually con-
fined to a specific aspect of the failure process, e.g., only the crack
initiation part or only the crack propagation part.

This paper presents a review of existing models for predicting
rolling contact fatigue lives for bearings. Sections 2 and 3 provide
a review of life models for RCF lives existing in literature. Both
analytical and empirical models are discussed and the emphasis is
on the models dealing with the subsurface originated spalling.
Then, the models developed by the authors for life estimation of
the rolling elements are reviewed.

2 Probabilistic Engineering Life Models for Rolling

Contact Fatigue

Due to the special nature of RCF and the inability to relate
directly to classical component fatigue, most of the early work in
determining lives of rolling bearings was based on empirical re-
sults and therefore resulting formulas �32�. The first theoretical
basis for the formulation of a bearing life model was provided by
the seminal work of Lundberg and Palmgren �33,34�. They sup-
posed that a crack initiates a subsurface due to the simultaneous
occurrence at a particular depth of the maximum orthogonal shear
stress and a weak point in the material. Such weak points were
hypothesized to be stochastically distributed in the material. The
Weibull statistical strength theory was applied to the stressed vol-
ume in a pure Hertzian contact to obtain the probability of sur-
vival of the volume from subsurface initiated fatigue. Failure was
assumed to be crack initiation dominant. The Lundberg–Palmgren

theory �33� states that for bearing rings subjected to N cycles of

repeated loading the probability of survival S is given by

ln
1

S
= A

Ne�0
cV

z0
h

�1�

where �0 is the maximum orthogonal shear stress in the contact, z0

is the corresponding depth at which this stress occurs, and V is the

stressed volume of material. The parameters A, c, and h are ma-
terial characteristics that are determined experimentally. The pa-

rameter e is the Weibull slope for the experimental life data plot-
ted on a Weibull probability paper. The stressed volume of

material V was assumed to be

V = a z0�2�rr� �2�

where the dimensions a, z0, and rr correspond to the width, depth,
and length of the volume as shown in Fig. 4. The following load-

life equation for the bearing was obtained by substituting for �0,

z0, and V in terms of the bearing dimensions and contact load in
Eq. �1�,

L10 = �C

P
�p

�3�

Here, L10 is the life for 10% probability of failure, C is the bearing

basic dynamic load rating, and P is the equivalent load on the

bearing. The exponent p is 3 for ball bearings having an elliptical
contact area, 10/3 for roller bearings having modified line contact
areas, and 4 for pure line contacts.

Equation �3� formed the basis of the first bearing life standards
used in the industry �ISO 281 �35��, and the Lundberg–Palmgren
theory �33� has been extensively used since the 1950s. In spite of
its wide acceptance, the Lundberg–Palmgren theory �33� suffers
from several limitations. It completely overlooks the possibility of
surface initiated failure and the presence of a surface lubricating
film. The loading on the bearing contact was assumed to be pure
normal, with no surface shear traction. However, in practice, some
shear traction is always present on the surface, which moves the
location of the maximum orthogonal shear stress closer to the

surface. Also, the theory assumed the contacting surfaces to be
perfectly smooth. In practice, the surfaces contain irregularities
such as roughness, scratches, and dents, which deviate the subsur-
face stress field considerably from a pure Hertzian case.

Further development in bearing life modeling occurred when
Chiu et al. �36� presented a statistical model for subsurface origi-
nated spalling in bearing contacts. Spalling was attributed to the
presence of material defects having a severity distribution depen-
dent on their size and physical nature. The model was based on a
crack propagation law and took into account matrix elastic and
plastic properties, defect type, and concentration and geometry of
the macrostress field. The model yielded an equation of the fol-
lowing form:

ln
1

S
= ��

i=0

4

�i�N� �4�

where the factors �i with i=0–4 depend on material, geometry,
loading, and defect distribution.

Ioannides and Harris �37� proposed a new model for prediction
of bearing lives in order to overcome the limitations associated
with the Lundberg–Palmgren model �33�. Their model was crack
initiation dominated and was based on similar principles as the
original Lundberg–Palmgren theory �33� with some modifications.
The first distinction was the assumption of discrete material vol-
umes, each with its own probability of survival. The failure risk
over each volume was integrated to obtain the overall failure risk
for the contact. Second, they recognized the presence of a stress
threshold, similar to a fatigue limit for structural components be-
low which no failure was possible. Accordingly, Eq. �1� was
modified to

ln
1

S
= ANe�

V

�� − �u�c

zh
dV, � � �u �5�

where � is a stress quantity occurring at a depth z, �u is the stress

threshold, while A is an empirical constant. The stress quantity �
was not limited to the orthogonal shear stress but could be another
stress measure, e.g., the maximum shear stress or the equivalent
von Mises stress. Then, the load-life equation was correspond-
ingly modified by Ioannides et al. �38� to

Fig. 4 Stressed volume in the Lundberg–Palmgren theory †33‡
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L10 =
A

	1 − �Pu

P
�w
c/e

�C

P
�p

, P � Pu �6�

where Pu is the load corresponding to the stress threshold �u.
Figure 5 depicts a comparison between the Lundberg–Palmgren
�33� and Ioannides–Harris theories �37�. It is obvious that the
Lundberg–Palmgren theory �33� offers a more conservative life
estimate. This is mainly because of the greater amount of stressed
volume assumed in this theory. Harris and Barnsby �39� devel-
oped the Ioannides and Harris �37� method into a more general-
ized stress-life method. Their method, which was still based on
the Lundberg–Palmgren theory, employed a single stress-life fac-
tor to modify fatigue life predicted by the Lundberg–Palmgren
theory �33�. In the fatigue life prediction for a bearing application,
the stress-life factor integrates the effect on life of all applied,
induced, and material residual stresses together with empirically
determined fatigue limit stresses.

The current ISO standard �35� for rolling bearing life is based
on a modification of the Lundberg–Palmgren equation �33� and is
given by

L = a1a2a3�C

P
�p

�7�

where a1, a2, and a3 are life modifying factors that account for
reliability, material, and operating conditions.

Schlicht et al. �40� presented a bearing life prediction model
based on the following principles: �1� Fatigue failures originate
primarily, if not exclusively on the surface; �2� the critical stress
leading to failure is the von Mises equivalent stress; and �3� plas-
tic flow and residual stresses that arise in rolling contact cycling
are governing factors that influence bearing life. Their life equa-
tion was given by

L = a1a23f t�C

P
�p

�8�

where a1 is the ISO factor for reliability �a1=1 for S=0.9�, a23

adjusts for operating conditions, and f t adjusts for the loss of
hardness of AISI 52100 steel at higher operating temperatures.

Tallian �41,42� proposed a statistical model for fatigue lives of
rolling element bearings based on a given defect severity distribu-
tion. The model used the orthogonal shear stress field as a func-
tion of depth below the bearing raceway and computed fatigue life
as the crack propagation life through this stress field according to
a Paris type law. Crack initiation life was assumed to be negli-
gible. The model considered material fatigue susceptibility, fa-
tigue limiting stress, and defect severity distribution as the main
parameters. The life equation is given by

ln
1

S
= �0�2	 pmax

�

n0z0


�

N�V �9�

Here, �0 is a fatigue susceptibility parameter, �2 is a defect pa-
rameter that takes into account the defect density and severity

distribution, n0 is a dimensionless crack growth integral param-

eter, z0 is the depth of occurrence of the maximum orthogonal

shear stress, � is the dispersion coefficient, and 	=9.4 is the Paris-
law exponent used in the model.

It needs to be pointed out that for a given probability of survival

S and given bearing dimensions, the Lundberg–Palmgren equation
�Eq. �1�� �33� relates the critical stress-life exponent to the Weibull

slope e according to

N 

1

�0
��c−h+1�/e� �10�

Thus the stress-life exponent depends on the dispersion in bearing
life data. However, exponents published in literature appear to be
independent of the life dispersion. In recognition of this fact, Za-
retsky �43� presented a similar model to Lundberg and Palmgren
�33� with two modifications: �1� Dependence of the stress-life

relation on the Weibull slope e was eliminated, and �2� depen-
dence on the depth term was eliminated. In addition, the critical
stress quantity used was the maximum shear stress instead of the
orthogonal shear stress. Zaretsky’s equation �43� is given by

ln
1

S
= Ne�ceV �11�

Harris and McCool �44� carried out a statistical comparison of
bearing lives obtained using the Lundberg–Palmgren �33� and
Ioannides–Harris �37� theories. For both theories, ratios between
predicted lives according to the equations and actual lives ob-
served experimentally were largely distributed.

Kudish and Burris �45� presented a similar model to Tallian
�42� for statistical bearing life prediction. Their model included
the following parameters: �1� contact pressure and size of contact;
�2� friction coefficient; �3� residual stress distribution with depth;
�4� initial statistical defect distribution versus defect size, location,
and orientation; �5� material fracture toughness; �6� variation of
material hardness with depth; and �7� material fatigue parameters
as functions of material hardness. The model considers crack
propagation from initial cracks as the mechanism of failure and
neglects the crack nucleation life. The life in terms of number of

cycles N that a contact can withstand with a given survival prob-
ability is given by

N =
C

g0pmax
n

�12�

Here, C is a constant that depends on material fracture toughness

while g0 and n are Paris-law parameters.
Shao et al. �46� and, consequently, Leng et al. �47� recorded the

process of development of contact fatigue cracks in a case-
hardened steel by tracing crack propagation drawings. They
showed that spalling of a case-hardened steel was resulted from
the coordinated development of a so-called leading group of
cracks, which consists of three to seven cracks. The process of
contact fatigue was divided into three stages: the incubation, the
stable propagation, and the branching propagation periods. Leng
et al. �47� obtained 13%, 56%, and 31% contributions to the fa-
tigue life for these three stages, respectively. They used the dislo-
cation theory to explain the initiation of contact fatigue cracks and
concluded that the contact fatigue cracks initiate where the maxi-

mum value of �max occurs.
Otsuka et al. �48� developed a test method to obtain the intrinsic

mode II crack growth characteristics of metals and suggested,
according to their results, that the subsurface cracks due to rolling
contact fatigue are produced through the mechanism of mode II
fatigue crack growth created by the shear stress component of the
contact stress. Miyashita et al. �49� studied the spalling mode of

Fig. 5 Comparison between the Lundberg–Palmgren †33‡ and
Ioannides–Harris theories †37‡
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failure under rolling contact fatigue of sintered alloys using the
rolling contact fatigue tests and finite element model �FEM�
analysis. The location of the ��xy estimated by their FEM analysis
coincided with the depth of the crack initiation point observed in
their experiment. Similarly, Otsuka et al. �48� showed that subsur-
face crack growth behavior was controlled by the stress intensity

factor range �kII. Also, they concluded considering the surface
friction force causes the depth of maximum shear stress becomes
closer to the contact surface. However, the effect of friction force

on the value of ��xy was not significant.
Shimizu �50� showed that bearing steel does not show any fa-

tigue limit, whereas structural steel does have a distinct fatigue
limit. In the absence of a fatigue limit for bearing steel, a third

parameter � known as minimum life prior to failure was proposed
for the analysis of fatigue life behavior under a given rolling con-
tact fatigue load, leading to a three-parameter Weibull life distri-
bution function

L − � = �C

F
�p� ln R

ln 0.9
�1/m

�13�

where C is dynamic load capacity, F is equivalent load, p is load-

life component, R is the survival probability of the inner and outer

rings of bearings, m is Weibull slope, and L is fatigue life. Apply-
ing the three-parameter Weibull distribution with a normalized

Weibull slope m=10 /9 used in the analysis of a point contact
fatigue test data for rotary and linear ball bearings, he calculated a

constant value of the load-life exponent p=8 /3 for both L10 and

L50 lives.
Kotzalas �51� investigated the statistical distribution of tapered

roller bearing fatigue lives at high levels of reliability. He showed
that the original two-parameter Weibull distribution cannot predict
a finite life value for which 100% of the population will survive.
However, since empirical evidence of a minimum life at 100%
reliability has been shown for through hardened ball and spherical
roller bearings, linear ball bearings, and tapered roller bearings, he
showed that analytical methods using the three-parameter Weibull
distribution are able to detect a finite life at high reliability fatigue.

A concise summary of probabilistic engineering bearing life
model development is provided in Table 1, in chronological order,
starting with Palmgren’s �32� seminal work in 1945 to current
models. Since the engineering models are empirical in nature,
they offer no significant insights into the physical mechanisms of
RCF. On the other hand, the research models are more insightful
in this regard and are attempts to explain some of the mechanisms
observed during the failure process. Section 3 provides a summary
of the research models for estimating the fatigue life of the rolling
elements.

3 Deterministic Research Life Models for Rolling

Contact Fatigue

The deterministic research models are based on physical prin-
ciples and take into account the actual mechanics of the failure
process. Two different sets of models have been traditionally de-
veloped to estimate the fatigue lives: �1� models based on the
crack initiation and �2� models based on the crack propagation.
However, some models account for both the initiation and propa-
gation parts of life.

The first analytical approach to study the RCF problem was
adopted by Keer and Bryant �52� who used two-dimensional frac-
ture mechanics to evaluate fatigue lives for rolling/sliding Hert-
zian contacts. Their approach assumed the crack initiation life to
be small in comparison to the crack propagation life. The number

of cycles to failure N was expressed in terms of the maximum

Hertzian pressure pmax and the contact half-width b as

N =
b1−m/2

�0pmax
m

�14�

Here, �0 and m are material parameters governing the crack
growth rate. However, it was found that the fatigue lives calcu-
lated using this model were orders of magnitude shorter than those
predicted for similar Hertzian pressure using engineering models
�41�.

Zhou et al. �53,54� introduced a life model that included both
the crack initiation and crack propagation lives. The total life was
expressed as

N =
AWc

��� − 2�k�
2D

+�
ai

af da

c�Kn
�15�

where A, c, and n are material parameters; Wc is the specific

fracture energy per unit area; �� is the local shear stress range; �k

is the friction stress for the material; D is the damage accumula-

tion factor; and �K is the stress intensity factor range at the crack
tip.

Bhargava et al. �55� presented a life model based on plastic
strain accumulation in strain hardening materials under cyclic
contact stress. The spalling lives were predicted from the plastic
strain. Cheng and co-workers �56,57� proposed a micromechani-
cal model based on the dislocation pileup theory to estimate the
crack initiation life in contact fatigue. Microcracks were assumed
to be nucleated in slip bands located in material grains. The mi-

crocrack initiation life Ni was given by

Ni =
c

��� − 2� f�D
�16�

where c is a material constant, �� is the critical shear stress am-

plitude resolved on the slip layer, � f is a threshold stress below,

which cracks do not initiate, and D is a damage accumulation
factor.

Vincent et al. �58� proposed a similar model for crack initiation
based on the dislocation pileup idea. Their model took into ac-
count the effect of all stress components and also included re-
sidual stress effects. Dislocation emissions were assumed to occur
due to the presence of subsurface inclusions in the bearing steel
matrix that leads to local stress concentrations and local plastic
straining. Inclusions were assumed to be spherical. The number of

cycles to crack initiation N was found according to the following
equation:

�

��1 − �
��pl + 2fN�pc�

d

2�
ln	1

8
���pl + 2fN�pc�

d

b�
�2
 −

�x + �y

2

=
�

�
�17�

Here, � and  are the shear moduli and Poisson’s ratio for the

matrix, f is a damage efficiency accumulation factor, d is the

inclusion diameter, � is the length of the domain in which dislo-

cations are accumulated, �pl is the effective plastic strain after the

first loading cycle, �pc is the effective plastic cyclic strain, b� is

the modulus of Burgers’ vector, �x and �y are components of the
stress tensor, which include the Hertzian as well as residual

stresses, and � is the theoretical strength factor of the order of 5
for most metals. Xu and Sadeghi �59� developed an analytical
model to investigate the effects of dent on spall initiation and
propagation in lubricated contacts. Their model was based on the
damage mechanics concept that the fatigue spall initiation and
propagation is due to the accumulated plastic strain process rather
than the stress intensity at the tip of the crack.

Lormand et al. �60� extended the model of Vincent et al. �58� to
include crack propagation according to a Paris law. Crack growth
was assumed to occur due to shear stresses �mode II propagation�.
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Table 1 A chronological listing of probabilistic engineering bearing life prediction model development

Year Researchers Ref. Model description/hypothesis

1945 Palmgren �32� Empirical.
1947 Lundberg and Palmgren �33� First probabilistic bearing life model, termed the LP

model, based on probability of crack initiation at a

subsurface depth �z0� where orthogonal shear stress ��0�
is maximum in stressed volume �V� in the contact,

expresses the probability of survival �S� after N RCF

cycles as �Eq. �1��: ln�1 /S�=A�Ne�0
cV /z0

h�, where A, c,

and h are experimentally determined material parameters

and e is the Weibull slope for the experimental life data.

The L10 life �Eq. �3�� is expressed as L10= �C / P�p, where

C is the bearing basic dynamic load rating, P is the

equivalent load acting on the bearing, and exponent p
depends on contact shape.

1952 Lundberg and Palmgren �34�

1971 Chiu et al. �36� Probabilistic model �Eq. �4�� that attributes spalling to
intrinsic material defects and includes influence of
material elastic and plastic properties, defect type,
concentration, and geometry on the contact stress field

via factors �i, given by ln�1 /S�= � �
i=0

4

�i�N
�. �=dispersion

coefficient.
1985 Ioannides and Harris �37� Improves on the LP model by �i� assuming discrete

material volumes, each with its own probability of
survival, and overall risk obtained by integration; and �ii�
introducing a stress threshold ��u� below which no

failure is possible, resulting in the following relation �Eq.
�5��:

ln�1/S� = ANeV

�� − �u�c

zh
dV, � � �u.

1986 Schlicht et al. �40� Model assumes that fatigue failures originate at the
surface due to von Mises stress, and plastic flow and
residual stress development due to RCF influence

bearing life. The life model is given by L=a1a23f t�C / P�p

where a1 and a23 are life modifying factors based on
reliability, material, and operating conditions.

1987 Shao et al. �46� The development of cracks due to RCF in case-hardened
bearing steels was described by a three-stage process:
incubation, stable propagation, and branching/
propagation.

1988 Leng et al. �47� The three stages described in Ref. �46� were allocated
13%, 56% and 31% contributions to life.

1989 Current ISO Standard �35� The life relation is given by L=a1a2a3�C / P�p, where ai

are life modifying factors.
1992 Tallian 41 and 42 Probabilistic life model uses orthogonal shear stress field

solution in conjunction with a Paris-law exponent ���
and growth parameters �n0�, material fatigue

susceptibility ��0�, and defect ��2� parameters, given by

�Eq. �9��: ln�1 /S�=�0�2�pmax
�

/n0z0��N�V.
1994 Zaretsky �43� Life equation �Eq. �11�� is ln�1 /S�=Ne�ceV and is similar

to LP model, with two modifications: �i� dependence of

the stress-life relation on the Weibull slope e was
eliminated, and �ii� dependence on the depth term was

eliminated. �ce is the maximum shear stress and not
orthogonal shear stress.

1996 Harris and McCool �44� Statistical comparison of actual and computed bearing
lives from LP and Ioannides and Harris’s �37� models
showed wide dispersion.

1996 Otsuka et al. �48� RCF testing and FEA showed that subsurface crack
growth behavior was controlled by mode II stress

intensity range, �KII.
1999 Ioannides et al. �38� The load-life relation, incorporating model in Ref. �37�,

is given by Eq. �6� as

L10 = �A/	1 − �Pu

P
�w
c/e��C

P
�p

, P � Pu,

where Pu is the load corresponding to �u.
2000 Kudish and Burris �45� Model improved by Tallian �41,42� by including the

effects of contact pressure and size, friction coefficient,
residual stresses, initial defect, size, location and
orientation distributions, material fracture toughness,
material hardness variation with depth, and material
fatigue parameters as function of hardness.
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However, in order to account for the compressive stress compo-

nent �n acting along the crack faces, a Coulomb friction stress
�61� given by

�eff = �� − c�n� �18�

was assumed. A coefficient of friction c=0.4 �used also by Me-
lander �62�� was chosen although no justification for this value
was provided. Later, Lormand et al. �63� applied a new physically
based model to determine the influence of inclusion population
and loading conditions on the distribution of rolling bearing lives.
Recently, in order to estimate the rolling contact fatigue range and
quality control of bearing steel, Girodin et al. �64� did a statistical
analysis of nonmetallic inclusions.

Harris and Yu �65� showed that application of surface shear
stresses in combination with Hertz stresses can significantly influ-
ence the subsurface octahedral shear stress distribution. However,
they concluded that such surface shear stresses do not alter the
maximum range of the subsurface orthogonal shear stress. There-
fore they suggested using the octahedral shear stress �von Mises
stress� as the failure-causing stress in fatigue life prediction analy-
ses.

Jiang and Sehitoglu �66� applied an elastoplastic finite element
model that included the effects of cyclic ratcheting in conjunction
with a multiaxial fatigue criterion �67� to compute the total life

under rolling line contacts. Total damage D was assumed to be a

sum of damage due to fatigue D f and due to ratcheting Dr. Failure
was assumed to occur when the total damage equaled unity. This
approach was again based only on the crack initiation life and
neglected the crack propagation aspect. The rates of damage ac-
cumulation for the two phenomena were given by

dD f

dN
=

�FP − FP0�m

C
,

dDr

dN
=

�d�r

dN
�

�crict

�19�

where FP is a fatigue parameter; �r is the ratcheting strain FP0;

and m, C, and �crict are material constants. The fatigue parameter
FP was related to stresses and strains on a critical plane according
to the following multiaxial fatigue criterion �67�:

FP =
��

2
�max + J���� �20�

where �� is the normal strain range, �max is the maximum normal

stress, �� is the shear strain range, �� is the shear stress range,

and J is a material dependent constant. They concluded that the
combination of fatigue and ratcheting damage is maximum at a
depth corresponding to the occurrence of maximum orthogonal
shear stress range. This is in accordance with the Lundberg–
Palmgren theory �33�. Ringsberg �68� combined elastic-plastic fi-
nite element analyses, multiaxial fatigue crack initiation model
�67� used together with the critical plane concept, fatigue damage
summation calculations, and comparison of results from numeri-
cal analyses and experiments to develop a strategy for fatigue life

prediction of rolling contact fatigue crack initiation. He concluded
that the strategy developed has the capacity to predict the position
for greatest fatigue damage, the orientation of crack planes, and
the fatigue life to crack initiation due to both low-cycle fatigue
and ratcheting. Multiaxial fatigue damage due to RCF using the
critical plane approach, with applications to railway wheel contact
fatigue, is addressed by Liu et al. �69� and Liu and Mahadevan
�70�. Table 2 provides a concise summary of the deterministic
models, in chronological order.

4 Limitations of Existing Life Models

The research models proposed in literature are based on a ho-
mogeneous description of material in the contact region to esti-
mate the contact fatigue life. Such homogeneous material descrip-
tion overlooks the inhomogeneities such as nonmetallic inclusions
that are invariably present in the contact region as byproducts of
the bearing manufacturing methods, as shown, for example, in
Fig. 6 �from Ref. �71��. These inclusions often act as nucleation
sites for the fatigue cracks �72,73�. The inclusions not only cause
early damage due to their inferior strength properties but also
cause local stress concentrations owing to their differential con-
stitutive properties in relation to the surrounding matrix �74,75�.
In addition, nonmetallic inclusions cause stress induced micro-
structural alterations in the surrounding matrix under cyclic load-
ing �76,77�. These structural changes assist in the fatigue process.
Two commonly structural changes occurring under the raceway in
rolling element bearings are the “butterfly” effect as shown in Fig.
7 �from Refs. �78,79��, and slip bands as shown in Fig. 8 �from
Ref. �79��.

Very few models relate the micromechanical material behavior
to the phenomenon of RCF. The first fatigue cracks invariably
appear as microcracks at weak material points, and the crack ini-
tiation mechanism is influenced by the microscopic characteristics
of the material. Therefore, the models that are based on a macros-
cale description of the material tend to overlook the microscopic
details. Rolling contact fatigue lives of bearings are known to
show scatter because of the spatial dispersion in material strengths
and inclusion distributions. In fact, experimentally observed bear-
ing lives follow the Weibull distribution closely. The process of
crack initiation is essentially one of seeking the weakest point in
the material where the local strength is a minimum. However, the
analytical models proposed in literature are deterministic in nature
and hence do not take this into account. Also, from experimental
evidence, the material properties under contact fatigue are nonuni-
form but vary along different subsurface layers �56�. This is an-
other aspect that is overlooked in previous analytical models.

On the other hand, in the engineering life models, different
critical stress criteria have been proposed to be used in the life
equation. These include the orthogonal shear stress �33�, the maxi-
mum shear stress �80�, the von Mises stress �37�, and the octahe-
dral shear stress �54�. Note that the maximum value of each stress
measure occurs at different depths below the surface in a bearing

Table 1 „Continued.…

Year Researchers Ref. Model description/hypothesis

2002 Shimizu �50� A three-parameter Weibull life distribution function was
proposed, after showing that bearing steels subject to RCF do

not exhibit a fatigue endurance limit, given by �Eq. �13�� L

−�= �C /F�p�ln R / ln 0.9�1/m, where � is the minimum life

prior to failure.
2003 Miyashita et al. �49� The location of ��xy estimated by FEA was shown to

coincide with the depth of crack initiation observed in RCF
experiments using sintered alloys.

2005 Kotzalas �51� A three-parameter Weibull distribution was shown to be able
to predict finite life in the high reliability regime, based on
statistical distribution of tapered roller bearings.

Journal of Tribology OCTOBER 2009, Vol. 131 / 041403-7

Downloaded 24 Sep 2009 to 128.46.98.146. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



contact and is different in magnitude. Hence, each criterion pre-
dicts a different depth where crack initiation could occur. Experi-
mentally, cracks have been found to initiate at various depths be-
low the contact surface �81–83�. Therefore, the exact stress
measure governing crack initiation under rolling contact condi-
tions is not clear yet. Moreover, calibration of the engineering life
models requires extensive RCF endurance testing that becomes
both expensive and time consuming. From a practical point of
view, a model with a few input parameters that can be calibrated
easily using simple and inexpensive bench tests is desired.

In view of the limitations of the current state of bearing life
modeling, some modeling approaches, for predicting the fatigue
lives of the rolling element bearings, recently proposed by the
authors are summarized in Sec. 5. The new approaches investigate

Table 2 A chronological listing of deterministic research bearing life prediction model development

Year Researchers Ref. Model description/hypothesis

1983 Keer and Bryant �52� First deterministic analysis of RCF life. A 2D fracture
mechanics approach is used for life estimation in
rolling/sliding Hertzian cylindrical contacts assuming
initiation life is small compared with propagation life.

Cycles to failure N=b1−m/2
/�0pmax

m , where pmax is

maximum Hertz pressure, b is contact half-width, and �0

and m are crack growth parameters. Life computed
greatly underpredicted compared with LP-based models.

1989 Zhou et al. �53� Model included both crack initiation and propagation

lives. The total life is �Eq. �15�� N=AWc / ���−2�k�
2D

+ai

af�da /c�Kn�, where A, c, and n are material

parameters; �k is the specific fracture energy per unit

area; Wc is material friction stress; D is the damage

accumulation factor; and �K is the stress intensity factor
range at the crack tip.

1990 Bhargava et al. �55� Model based on plastic strain accumulation in strain
hardening materials under cyclic RCF.

1992 Sehitoglu and Jiang �67� Multiaxial fatigue crack initiation model for RCF.
1993 Zhou �54� Extension to model in Ref. �53�.
1994 Cheng et al. �56� Micromechanical model based on dislocation dynamics

�pileup�. Crack nucleation was assumed to take place in
slip bands at the grain level. Initiation life is given by

�Eq. �16�� �Ni= �c / ���−2� f�D��, where �� is the critical

shear stress amplitude and � f is a threshold.

1995 Cheng and Cheng �57�

1997 Melander �62� A FEA study of cracks subjected to RCF including crack
face friction due to closure.

1998 Vincent et al. �58� Crack initiation model based on dislocation pileup and
accounted for full stress tensor and residual stress field.
Dislocation emissions were assumed to occur due to the
presence of subsurface inclusions that lead to stress
concentration and localized slip/plasticity.

1998 Lormand et al. �60� Extension of model in Ref. �58� to include crack
propagation via Paris law, driven by mode II loading. A
Coulomb stress was included to account for crack face
friction due to closure.

1999 Harris and Yu �65� The inclusion of surface traction along with Hertzian
normal pressure was shown to significantly increase
subsurface octahedral shear stress �von Mises stress�, but
not the maximum stress range.

1999 Jiang and Sehitoglu �66� Elastic-plastic FEA that included effects of ratcheting
under RCF in conjunction with a multiaxial fatigue
damage criterion was used to compute initiation life for
line contacts �Eqs. �19� and �20��. Maximum damage
corresponded to depth where orthogonal shear stress
range was maximum, in accordance with LP theory.

2001 Ringsberg �68� Elastic-plastic FEA, multiaxial fatigue crack initiation
model based on a critical plane approach, and fatigue
damage accumulation concepts were used to develop a
procedure for life prediction under RCF loading.

2006 Liu et al. �69� Multiaxial fatigue damage due to RCF using the critical
plane approach, with applications to railway wheel
contact fatigue.

2007 Liu and Mahadevan �70� A unified multiaxial fatigue damage model for RCF
using the critical plane approach for isotropic and
anisotropic materials.

Fig. 6 Subsurface inclusions in bearing steel AISI-52100 †71‡
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the RCF problem from a different viewpoint, by treating the ma-
terial in the contact region as a nonhomogeneous microstructure
consisting of randomly shaped, sized, and oriented structures that
are sized to be the same as a grain in bearing material. This mi-
crolevel modeling is motivated by the fact that at some level, all
physical materials are discontinuous. Commercially used bearing
materials, including bearing steels and bearing grade ceramics,
exhibit a granular microstructure �84� with average grain sizes of

the order of 1–10 �m. These materials have a nonhomogeneous
microstructure at the micron level, where the grain boundaries can
act as physical discontinuities in the system. In bearing contacts
where the characteristic length scale is of the order of hundreds of
microns, the microstructural length scale is no longer negligible.
In these cases, it is reasonable to look at the material domain as a
granular matrix. Better understanding of the microscopic mecha-
nisms of failure can be obtained through such analyses where
some of the microgeometric material features are included.

The proposed approaches offer several advantages over existing
research models for RCF life. First, they are based on a nonho-
mogeneous description of the material. In this regard, they can
easily incorporate the effects of material inclusions in bearing
contacts. Second, unlike the crack propagation approaches
adopted in literature where some initial crack geometry and loca-
tion are assumed, the present approaches do not require the pres-
ence of initial cracks or flaws in the material domain. In fact,
cracks can be naturally initiated under the contact loading and can
continue to grow if the stress conditions permit. Third, instead of
presuming a Weibull slope, the new approaches are capable of
modeling the scatter in crack initiation and propagation lives and
obtaining the Weibull slope as an output of simulations. Finally,

the models have the potential to offer more insight into the physi-
cal mechanism of the failure process occurring during RCF.

5 Computational Models for Rolling Contact Fatigue

As mentioned earlier, Lundberg and Palmgren �34� applied the
Weibull weakest link theory to formulate an empirical life formula
�Eq. �1�� for bearing lives. The scatter in bearing lives was taken

into account through the parameter e that represents the Weibull
slope for experimentally observed bearing lives. As shown in
Secs. 2 and 3, Ioannides and Harris �37�, Zhou �53�, Zaretsky
�43�, and Cheng and Cheng �57� proposed similar empirical mod-
els to Lundberg and Palmgren �33�. The underlying idea in the
development of the empirical life models is a direct application of
the Weibull strength theory without explicit incorporation of the
material microstructural characteristics. In other words, it is as-
sumed that the lives follow a Weibull distribution, rather than the
resultant life distribution being an outcome of the inhomogeneous
and random nature of the material microstructure. Raje et al. �85�
presented a statistical model to estimate life scatter in rolling el-
ement bearings that took the material microstructure explicitly
into account. Their modeling approach is based on a discrete
rather than a continuous representation of the material in the bear-
ing contact region �86,87�. The semi-infinite domain constituting
the subsurface region in the bearing line contact is assumed to be
formed by an assemblage of discrete, interacting, micro-elements,
as shown in Fig. 9. These micro-elements are connected along
their contacting sides through fibers to form compliant joints �Fig.
10�a��. Loads applied on the boundary of the domain are trans-
ferred to the internal elements through deformation of these joints.
As shown in Fig. 10�b�, each interelement joint comprises of both
normal and tangential fiber sets, so that elements can overlap in

Fig. 7 Formation of butterflies around nonmetallic inclusion
under rolling contact: „a… bearing steel AISI-52100 †78‡, and „b…
bearing steel M50 074A †79‡

Fig. 8 Cross section of M50 Bearing 216 slightly past the spal-
led area showing slip bands: „a… circumferential cross section,
and „b… circumferential cross section at higher magnification
†79‡

Journal of Tribology OCTOBER 2009, Vol. 131 / 041403-9

Downloaded 24 Sep 2009 to 128.46.98.146. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the normal direction as well as slide relative to each other. Thus,
both normal and shear tractions are transferred between elements.
The fibers are assumed to be linear-elastic, and the fiber stiff-

nesses, namely, Kn in the normal direction and Kt in the tangential

direction, are related to the macroscopic elastic properties E and 
�86�. By assigning unique fiber stiffnesses to each joint, the ma-
terial domain can be made nonhomogeneous. Due to the interele-
ment connectivity, the overall material domain behaves as a
single, deformable body. The stress fields in such a discontinuous
material domain are obtained through the solution of equations of
motion for each element independently. Details of the solution
scheme and the discrete element model used to obtain the stress
field can be found in Ref. �86�.

It is hypothesized that it is the variation in the magnitude and
location of the critical stress quantity that leads to scatter in the
bearing fatigue life. The model does not explicitly assume a
Weibull distribution of fatigue lives. Rather, the life distribution is
an outcome of numerical simulations performed using statistically
generated material microstructures. The microstructures are gen-
erated using the process of Voronoi tessellation. Two sources of
randomness in the material are considered: �1� the topological
randomness due to geometric variability in the material micro-
structure and �2� material property randomness due to a statistical
distribution of material properties spatially throughout the mate-

rial. The fatigue life N is assumed to be related to the critical
stress and the corresponding depth quantities by a relation of the
form

N �
zr

�q
�21�

However, an explicit Weibull life distribution is not assumed; i.e.,

the equation is independent of the Weibull slope e. Instead, the

critical stress and depth quantities � and z are assumed to be the
variable parameters that lead to variability in life. This variation
occurs due to randomness in the material microstructural charac-

teristics. For convenience, the exponents q and r are assumed to

be the same as the exponents c and h in the original Lundberg–
Palmgren theory �33�. It is assumed that fatigue damage occurs
along internal planes of weakness that are subjected to alternate
shear stressing. Fatigue damage first starts along planes that expe-
rience the maximum range of alternating shear stress during the
loading cycle. This is in accordance with several multiaxial fa-
tigue criteria proposed in literature �25,27�. Figure 11 illustrates
the effect of variable number of internal flaws on life distribution.
It was found that lives are distributed according to a two-
parameter Weibull distribution with Weibull slopes ranging from

1.29 to 3.36. Similarly, there is a reduction in the Weibull slope e
with increasing number of flaws. Further, the results reach a lim-
iting value beyond which there is no change in the Weibull slope
with further increase in number of flaws, as observed in Fig. 12.

The limiting value of e is found to be 1.29, which is close to the
value of 1.125 used in the Lundberg–Palmgren theory �33�.

Jalalahmadi and Sadeghi �88� proposed a new Voronoi finite
element method �VFEM� using the Voronoi tessellation to simu-
late the material microstructure and its effects on rolling contact
fatigue. In their model, a fatigue life criterion similar to Raje et al.
�85� �Eq. �21�� was adopted, but instead of employing the discrete
element method �DEM�, they used the Voronoi finite element
method as the numerical model to investigate the effects of mate-
rial microstructure on rolling contact fatigue. Again, unlike the
Lundberg–Palmgren theory �33� an explicit Weibull life distribu-
tion was not assumed, instead the critical stress and its depth were
assumed to be the variable parameters, occurring because of the

Fig. 9 „a… Discrete representation of the semi-infinite domain
forming the bearing line contact; „b… zoomed view

Fig. 10 „a… Interelement contact in the discrete model; „b… fiber
model
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random shape and size of grains in the material microstructure
that lead to variability in the life. They considered both the maxi-

mum range of octahedral shear stress ���xy� and the maximum

unidirectional shear stress ��max� as the critical stress quantities.

They studied the effects of material microstructure topology, non-
uniform elastic properties, and initial flaws on rolling contact fa-
tigue. The Weibull slopes of the fatigue lives calculated by their
model agreed with the experimental works �89� and the analytical
results �85�. They showed that considering material inhomogene-
ity using elastic modulus variation and initial flaws increased the
average value of the critical stresses and changed the depths rela-
tive to the values obtained for the homogeneous domains. How-

ever, the average value and range of depths remain relatively the
same for both homogeneous and inhomogeneous domains. Ac-
cording to their results, introducing both inhomogeneous material
properties and initial cracks into the domains reduced the fatigue
lives and increase their scatter. A general reference for the prop-
erties of Voronoi tessellation is given by Okabe and Boots �90�
and a more mathematical one by Moller �91�.

The model presented in Ref. �85� was restricted to predicting
only the life distributions and not the absolute lives. It was further
improved upon in Ref. �92� by coupling it with a damage mechan-
ics based fatigue model to explicitly take into account the gradual
material degradation that occurs under rolling contact cycling.

Damage was incorporated through an internal damage variable D
and was implemented through degradation of the joint spring stiff-
nesses. Figure 13 shows the degradation of joint stiffnesses under
cyclic loading. Damage evolution is assumed to occur according
to an equation of the following form:

dD

dN
= 	 ��

�r�1 − D�

m

�22�

Here, �� is the shear stress range acting along the interelement

joint. The parameters �r and m are material parameters that are
determined from torsional fatigue tests according to the following
equations:

m = B, �r = 2� f�B + 1�1/B �23�

Here, B is the slope of the torsional S-N curve for the material and

� f is known as the torsional fatigue strength coefficient, which is

also determined from the torsional S-N curve. A microcrack was
assumed to be initiated at an interelement joint when the accumu-

lated damage in it equaled unity �D=1�. The process of spalling

was modeled through growth of damaged zones in the material.
Final failure is defined when a crack reaches the surface. Figure
14 shows a sample spall formation process. Spall formation is
manifested through several distinct cracks rather than a single
crack as assumed in models based on fracture mechanics �49,93�.
This observation has been made experimentally by several re-
searchers using metallographic examinations of spalled sections
of contacting elements �14,46,47,81�.

Fig. 11 Life distributions in the presence of variable number
of flaws

Fig. 12 Effect of internal flaws on „a… L10 life and „b… Weibull
slope e

Fig. 13 Degradation of joint stiffnesses with damage accumu-
lation: „a… normal direction and „b… tangential direction
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Figure 15 depicts the variation of the initiation and propagation
lives for multiple material domains. The initiation life is defined
as the number of cycles elapsed before the first microcrack ap-
pears. The subsequent number of cycles before a surface breaking
crack forms constitutes the propagation life. It is observed that the
initiation phase of fatigue life is a small fraction of the total life,
with the average initiation life for the 40 domains being about
20% of their total life. In relation to the total fatigue lives, the
initiation lives do not show much scatter between domains and the
overall scatter in the total lives is primarily governed by the scat-

ter in propagation lives. The Weibull slopes �e� for the initiation

and total lives using a two-parameter Weibull fit are 11.75 and
1.85, respectively. However, the total lives are found to follow a

three-parameter Weibull distribution more closely. Figure 16
shows the stress-life curve obtained from model simulations.

Here, the L10 lives are plotted against the contact pressure pmax.
Table 3 shows the corresponding stress-life exponents obtained
from the model and compares them with those obtained from
other models in literature.

Recently, Raje and Sadeghi �94� developed a statistical life
equation for subsurface initiated spalling of bearing elements
based on the life distributions and the stress-life results obtained
through their simulations. They showed that the spalling lives fol-
low a three-parameter Weibull distribution closely. Using the gen-
eral equation for the three-parameter Weibull distribution and their

simulation results, they expressed the spalling life N as

Fig. 14 Formation of subsurface initiated spall through micro-
crack initiation and coalescence: „a… first microcrack initiated
„11.84Ã106 cycles…, „b… multiple microcracks initiated „14.83
Ã106 cycles…, and „c… multiple crack coalescence and spall for-
mation „123.25Ã106 cycles…

Fig. 15 Weibull life plots for different material domains with
constant material properties

Fig. 16 Variation of L10 life with contact pressure

Table 3 Comparison of stress-life exponents for line contacts

Source Stress-life exponent

Raje et al. �92� �two-parameter Weibull estimate� 8.93
Raje et al. �92� �three-parameter Weibull estimate� 9.38
Lundberg and Palmgren �33� 8
Poplawski et al. �95� 9.9
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ln�1

S
� =

1

B1
e

· pmax
e�f−d� · Ne · �pmax

d −
A1

N
�e

�24�

where pmax is maximum Hertzian contact pressure, S is probabil-

ity of survival, e is Weibull parameter, d is power law exponent

for Weibull minimum life parameter, f is power law exponent for

Weibull scale parameter, A1 is power law constant for Weibull

minimum life parameter, and B1 is power law constant for Weibull
scale parameter. Moreover, they rearranged the Lundberg–
Palmgren equation �Eq. �1�� �33� in terms of the contact pressure
as

ln�1

S
� = M1 · pmax

c−h+1 · Ne �25�

From Eqs. �24� and �25�, it can be observed that their life equation
is similar in form to the original Lundberg–Palmgren equation
�33�, with a modification term. In the absence of a minimum life
�i.e., using a two-parameter Weibull fit�, Eq. �24� reduces to a
form similar to Eq. �25�. Table 4 lists the two equations using
two-parameter Weibull values obtained from their simulations and
the original values used by Lundberg and Palmgren �33�. Figure
17 depicts the comparison between these two life equations using
a probability of survival equal to 0.9. As observed there is a good
agreement between the two life models.

6 Summary

RCF is the most unavoidable mode of failure of ball and rolling
element bearings. There are two most dominant mechanisms for
RCF, i.e., the subsurface originated spalling and surface originated
pitting. In this paper, a review of the most acceptable empirical
and research models, existing in literature, developed for investi-
gating the rolling contact fatigue caused by subsurface originated
spalling was provided. Tables 1 and 2 provide a concise summary
of the empirical and research models, respectively. Though the
empirical models are practical life prediction tools, they do not

take the material microstructure explicitly into account. The un-
derlying idea in the development of the empirical life models is a
direct application of the Weibull strength theory without explicit
incorporation of the material microstructural characteristics. In
other words, it is assumed that the lives follow a Weibull distri-
bution, rather than the resultant life distribution being an outcome
of the inhomogeneous and random nature of the material micro-
structure. On the other hand, the research models are based on a
homogeneous description of the material in the contact region to
estimate the contact fatigue life. However, subsurface initiated
spalling, which is the classical mode of failure in rolling element
bearings that operate under conditions of EHL, is significantly
influenced by the material microstructure, which is inherently in-
homogeneous due to the presence of defects and nonuniform dis-
tribution of material properties. As a result of these inhomoge-
neous material microstructures, spalling lives of a seemingly
identical batch of bearings operating under identical load, speed,
lubrication, and environmental conditions show a significant de-
gree of scatter.

In view of the limitations of the current state of bearing life
modeling, some research models recently proposed by the authors,
in order to predict the fatigue lives of the rolling element bearings,
were reviewed. The new approaches, including DEM �85� and
VFEM �88�, investigate the RCF problem from a different view-
point, by treating the material in the contact region as a nonho-
mogeneous microstructure consisting of randomly shaped, sized,
and oriented grains. Contrary to the Lundberg–Palmgren theory
�33�, the developed models hypothesized that it is the variation in
the magnitude and location of the critical stress quantity that leads
to scatter in the bearing fatigue life. The models do not explicitly
assume a Weibull distribution of fatigue lives. Rather, the life
distribution is an outcome of numerical simulations performed
using statistically generated material microstructures. The micro-
structures are generated using the process of Voronoi tessellation.
Also, the DEM model was further extended �92� by coupling it
with a damage mechanics based fatigue model to explicitly take
into account the gradual material degradation that occurs under
rolling contact cycling. As a result, not only the life distributions,
but also the absolute lives of bearings could be predicted. It was
observed that the Weibull slopes for the fatigue lives and the fa-
tigue crack initiation depths, obtained using the models, agree
with the experimental works �82,89�. Moreover, based on the sta-
tistical distribution of spalling lives and the resultant stress-life
results, a new life equation was proposed �94�, which is similar in
structure to the original Lundberg–Palmgren equation �33� with a
modification term.
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