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ABSTRACT
Intrusion detection systems (IDS) are commonly categorized into misuse based, anomaly based and

specification based IDS. Both misuse based IDS and anomaly based IDS are extensively researched in

academia and industry. However, as critical infrastructures including smart grids (SG) may often face

sophisticated unknown attacks in the near future, misuse based attack detection techniques will mostly

miss their targets. Despite the fact that anomaly based IDS can detect novel attacks, they are not often

deployed in industry, mainly owing to high false positive rate and lack of interpretability of trained models.

With misuse based IDS’ inability to detect unknown attacks and requirement for frequently manually

crafting and updating signatures and with anomaly based IDS’ bad reputation for high false alarm rate,

specification based IDS can be regarded as the most suitable detection engine for cyber-physical systems

(CPS) including SG. We argue that specification based IDS especially using rule learning could prove to

be the most promising IDS for SG. Intrusion detection rules are learned through rule learning techniques

and periodically automatically updated to accommodate dynamic system behaviors in SG. Fortunately, rule

learning based IDS can not only detect previously unknown attacks but also achieve higher interpretability,

due to symbolic representation of learned rules. It can thus be considered more “trustworthy” from human

perspective and further assist human in the loop security operation. The present work provides a systematic

and deep analysis of rule learning techniques and their suitability for IDS in SG. Besides, it concludes the

most important criteria for learning intrusion detection rules and assessing their quality. This work serves

not only as a guide to a number of important rule learning techniques but also as the first survey on their

applications in IDS, which indicates their potential opportunities in SG security.

INDEX TERMS Intrusion Detection, Interpretable Machine Learning, Rule Learning, Data Mining, Smart

Grid

I. INTRODUCTION

As a complement to security appliances like encryption,

authentication, authorization, firewalls and VPN, intrusion

detection systems (IDS) are often regarded as the second

defense line in the so called defense in depth. The defense in

depth concept is referred to a holistic approach that combines

several countermeasures implemented in layers to create an

aggregated, risk-based security for defending against cyber-

security threats [1].

In many cyber-physical systems (CPS) like smart grids

(SG), though, the lack of basic security measures like encryp-

tion and authentication in their standard communication pro-

tocols like Modbus and DNP3 makes industrial networks es-

pecially vulnerable. With the raised security attention, efforts

are made to entrench security infrastructure, such as by in-

troducing authentication in Secure DNP3 protocol. However,

the secure versions of industrial protocols are not always

implemented due to various factors like added complexity

and varying vendor support [2]. Even if security measures

are applied in industrial protocols, it is still necessary to have

IDS acting as the second defense line regarding to the defense

in depth concept as aforementioned.

A good number of soft computing based methods and
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solutions have been adapted in IDS in cybersecurity re-

search works to improve detection accuracy and efficiency.

Seeking to imitate human intelligence, to improve learning

and decision-making processes and thus to solve real-world

problems, soft computing as a general term describes a set

of optimization techniques including fuzzy logic, artificial

neural networks, probabilistic reasoning, association rule

mining, genetic algorithms, particle swarm intelligence, ant

colony optimization etc. [3]. Often their applications in IDS

are inspired by the successful use cases in other scientific

fields like medicine, bioinformatics, economics, computer

networks etc. What makes them attractive to be applied in

intrusion detection is that soft computing techniques are ca-

pable of handling uncertain and partially true data, which are

oftentimes seen in cybersecurity research field. Inexpensive

solutions are achieved with an acceptable trade-off between

robustness and forbearance for inaccuracy and partial truth

[4]. When used in intrusion detection, soft computing tech-

niques can be complemented by rule based expert knowledge

described as a set of IF-THEN rules [5]. An IF-THEN rule is

composed of a rule body, i.e., antecedent, and a rule head,

i.e., consequent. The rule body or antecedent is represented

as a conjunction of conditions, also called as attributes or

constraints, which need to be fulfilled to “fire” a rule. The

rule head or consequent can be “attack”, “no-attack” or

“unknown.”

In specification based IDS, specifications can be generated

either manually from human experts or automatically from

rule learning techniques. The rules or policies in the majority

of current specification based IDS are created manually by

human experts, and they can be based on protocol specifi-

cations like in [6] and [7]. If all the allowable actions or

behaviors of a system can be known and described easily

beforehand, then the specifications can be formulated by

human experts and implemented in IDS without altering it

afterwards. However, oftentimes, the set of possible benign

system behaviors or action sequences can not be fully as-

certained before its real-world deployment and/or should be

adjusted periodically after the deployment. That is to say,

generating specifications from human experts can prove to

be time-consuming and error-prone. Nevertheless, we see a

great laborsaving potential in rule learning techniques that

are yet to be fully explored for practical use cases in IDS.

Hence, the present work mainly investigates specification

based IDS making use of rule learning techniques. As one

of the core technologies in machine learning, the topic of

rule learning is large and complicated. It is worth mentioning

that rules are applied in a broad variety of machine learning

activities in different areas and for different purposes, which

sometimes leads to invention of totally different terminolo-

gies [8].

Note that in the literature, on the one hand, specification

based IDS are sometimes considered as misuse based IDS,

since they also use rules for attack detection, but with the

capability of detecting unknown attacks. On the other hand,

specification based IDS are seen as more strict anomaly

based IDS for detecting abnormal system behaviors, as per

[9]. Besides, specification based IDS are also referred to

as model based IDS [7] or behavior based IDS [10]. We

advocate that the fundamental difference between anomaly

based techniques and rule learning based techniques is that

the former ones directly model training data to detect data

point deviation and the latter ones try to infer rules from

training data to model the system behaviors and thus to detect

policy violation. Due to the fact that these inferred rules

or policies are often human understandable, rule learning

based approaches can contribute to higher interpretability

of decision-making process and probably better situation

awareness as well. Interpretability is described by Miller [11]

as the degree to which a human can understand the cause of

a decision. Moreover, rules are preferred by security analysts

as allowing them to easily express their domain knowledge

in simple conditions [12].

In spite of the current shift from learning logical con-

cept representations to statistical learning algorithms in ma-

chine learning research, rule learning algorithms are still

applied in a wide range of areas such as Semantic Web,

whose knowledge representation process is supported and

automated by rule learning techniques [13]. Likewise, we

observe that the current research trend in machine learning

based IDS is running with bias towards deep learning based

approaches, which however suffer from their arguably best-

known drawback: lack of explainability1 due to their black-

box nature. Moreover, we believe that rule learning based

IDS are currently somehow understudied and their potentials

especially for CPS like SG are yet to be explored with more

efforts. Through this work, we aim to attract more attention

from security researchers into rule learning techniques to

develop more explainable and hence more practical machine

learning based IDS.

The remainder of this paper is organized as follows: Sec-

tion II overviews a number of existing IDS surveys with vari-

ous foci, and highlights the distinction between our work and

the previous ones. Section III gives an introduction into IDS

and numerous categorization criteria. Section IV presents

an overview of SG, communication technologies in SG and

attack space in SG. Section V summarizes a number of rule

learning techniques, whose relationships and differences are

highlighted and explained in an easily understandable way.

Section VI emphasizes the importance of dataset, feature

engineering and performance metrics. Section VII discusses

various applications of rule learning based IDS. Section VIII

presents the existing challenges and prospects of intrusion

detection research. Section IX concludes this work and points

out our future directions.

1Given that explainability and interpretability are often used interchange-
ably in machine learning community due to being closely related, they do not
differ from each other in this work either. However, it is worth noting that
they are distinguishable in which explainable models are interpretable by
default, but the reverse does not always hold true [14]. Simply put, a model
can be understood even better if it is explainable rather than interpretable.
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II. RELATED WORK

With plenty of studies performed to review the current state

of intrusion detection systems, the foci vary from one to an-

other in analyzing, comparing and summarizing the investi-

gated intrusion detection techniques and identifying research

gaps and future research directions. For instance, Aburom-

man et al. [15] provide an overview of IDS based on ensem-

ble and hybrid classifiers considering both homogeneous and

heterogeneous types of ensemble methods, whereas Zhou

et al. [16] present a review of collaborative IDS against

coordinated attacks like distributed denial-of-service (DDoS)

attacks. Arshad et al. [17] compare the current IDS laying

emphasis on computational overhead, energy consumption

and privacy implications and point out that these aspects are

yet to be highly considered in future IDS research. Berman

et al. [18] give a comprehensive review of deep learning

methods applied for cybersecurity. A survey of IDS only

considering host-based approaches is presented by Bridges

et al. [19]. Buczak et al. [20] present a summary of IDS

leveraging data mining and machine learning approaches and

propose that the methods for fast incremental learning should

be further exploited. Chandola et al. [21] provide a very

comprehensive overview of anomaly detection covering a

plethora of applied techniques in the literature.

Mitchell et al. [22] investigate proposed intrusion detec-

tion approaches for CPS, and discuss merits and drawbacks

of various intrusion detection techniques when applying to

CPS. They indicate that physical process monitoring, closed

control loops, attack sophistication and legacy technology

represent the uniqueness of intrusion detection in CPS. More-

over, they emphasize that more efforts ought to be given

to specification based and federated IDS. Whereas Tong et

al. [9] present a survey of IDS concerning only advanced

metering infrastructure (AMI) of SG, Grammatikis et al.

[23] provide a very comprehensive overview of IDS for

SG ecosystems and subsystems. Besides, Grammatikis et

al. point out that in the literature no IDS is demonstrated

specifically for protecting microgrids of SG yet.

Furthermore, a handful of surveys only targeting IDS

datasets are also performed, e.g., [24]. A summary of these

previous works is provided in Table 1. However, as showed

in Table 1, none of them explicitly investigates rule learning

based IDS. To the best of our knowledge, no systematic

review of IDS based on rule learning techniques was per-

formed in the research community previously. Hence we aim

at providing a systematic and deep analysis of rule learning

techniques and their suitability for IDS in SG. Besides, we

conclude the most important criteria for assessing quality of

learned intrusion detection rules. Apart from giving a gentle

introduction to intrusion detection systems and smart grids,

we also provide the first survey focusing on rule learning

based IDS. As mentioned in Section I, this is of great impor-

tance in terms of interpretability and practicality of developed

intrusion detection methods.

TABLE 1. Summary of related existing surveys

References Main objectives

Aburomman et al. [15] IDS based on ensemble and hybrid classifiers

Zhou et al. [16] Collaborative IDS against coordinated attacks

Arshad et al. [17]

Computational overhead, energy consumption

and privacy implications of IDS for IoT

Berman et al. [18] Deep learning methods applied for cybersecurity

Bridges et al. [19] IDS leveraging host data

Buczak et al. [20]

IDS based on data mining and machine learning

approaches

Chandola et al. [21] Anomaly detection techniques in general

Mitchell et al. [22] IDS for cyber-physical systems

Tong et al. [9] IDS for advanced metering infrastructure

Grammatikis et al. [23] IDS for SG ecosystems and subsystems

Ring et al. [24] Network-based IDS datasets

III. INTRUSION DETECTION SYSTEM AND ITS

CATEGORIZATION

As a complementary security application in the defense in

depth suite, an IDS is a program or device applied to monitor

a system or network and thus to detect intrusive activities

against it. Any suspicious events are flagged and reported to

an administration system. Although IDS are often associated

with firewall, the main difference lays in that a firewall

is configured with a set of static (ordered) rules to block

some system activities or network connections and hence to

prevent intrusions without giving much efforts to examine

them. However, IDS can also be integrated in a firewall,

referred to as next-generation firewall (NGFW).

As it can be found in the literature, there are a plethora

of ways to categorize IDS. Yet it is often seen that the cat-

egorization criteria are not explicitly mentioned. Moreover,

a tree structure is usually used to show the taxonomy of

IDS. This kind of depiction, though, can sometimes be a

little confusing, since differently categorized IDS are often

not mutually exclusive and this aspect can hardly be high-

lighted in a tree structure. Thus we prefer using plain text

to categorize IDS and meanwhile always pointing out the

categorization criterion.

A. CATEGORIZATION BASED ON TARGET SYSTEM

IDS can be categorized into host-based IDS and network-

based IDS according to the target system being monitored

and protected. Whereas host-based IDS aims at only monitor-

ing a single host/computer, the observation scope of network-

based IDS is an entire or part of network with multiple hosts.

1) Host-based IDS

Host-based IDS is a computer program installed on individ-

ual devices. It focuses on activities in a device and strives to

detect intrusions usually by analyzing audit trails or system

logs produced by the host operating system. Host-based IDS

is deemed to be better suitable for detecting attacks for a

particular device.

2) Network-based IDS

Network-based IDS, also referred to as IDS sensor, is often

a dedicated hardware with a collection of special software.
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It analyzes packets captured directly from a network to

catch possible attacks against hosts in the network. Hence

its location needs to be carefully considered for being able

to catch all important network traffics. It is usually put at a

strategic point in a network via a TAP (test access point) or

SPAN (switch port analyzer).

B. CATEGORIZATION BASED ON DATA

IDS can also be categorized on the basis of input data

type. Although audit logs are mostly associated with host-

based IDS, and network packets are mostly associated with

network-based IDS, these data types do not indicate the de-

marcation between host-based IDS and network-based IDS.

1) Audit logs based IDS

Audit logs are the historical reports of system behaviors

and provide an invaluable view into the current and past

system states. The trails can be analyzed to help determine

what happened, thus to detect intrusions. Most software in

existence may include some logging mechanisms. The other

way around, alerts generated from IDS themselves are also

a form of audit logs for tracing the source of attacks. Audit

logs can not only be used in host-based IDS, often in the form

of system calls, but also be taken as data source in network-

based IDS. For example in [25], event logs generated from

network communication are applied for detecting attacks

against hosts on the network.

2) Network flow based IDS

Network flow based IDS, also referred to as network

connection-oriented IDS, utilize data of network layer and

transport layer of the OSI model. This kind of IDS is pri-

marily amenable for detecting attacks at network level, such

as denial-of-service attacks, port scanning. Packet data can

be used not only in network-based IDS but also in host-

based IDS. An example is stack based IDS, which operate

directly on the TCP/IP stack and pull the packets from the

stack before the host operating system.

3) Packet payload based IDS

Packet payload often means application layer data. As per

[26], in the modern attack landscape, vulnerabilities at ap-

plication layer are the main targets of attackers. Most of

these attacks appear to be normal when only considering

packet header attributes, however, may significantly differ

from legitimate traffic if packet payloads are checked. That is

to say, solely relying on network flow data may no longer be a

viable solution and packet payload based IDS is essential for

attack detection. Moreover, based on how data are utilized,

IDS can be categorized into stateless and stateful IDS, in

which only stateful IDS leverage sequential data ordered by

timestamp.

C. CATEGORIZATION BASED ON DETECTION

TECHNIQUE

Detection technique is probably the most used IDS cate-

gorization criterion. Each technique has its own merits and

drawbacks, and none of them is perfectly suitable for every

situation. Detection techniques can also be combined to

create hybrid ones.

1) Misuse based IDS

Misuse based IDS, often referred to as signature based IDS,

rely on a database of signatures/patterns of known attacks.

When deployed, the IDS try to match analyzed data against

these signatures. The underlying assumption is that the char-

acteristics of intrusions are mapped in these signatures, and

matches found signify malicious activities. Although misuse

based IDS are accredited for low false alarm rate and are

widely in use, it is often pointed out that misuse based IDS

are easy to circumvent, due to the fact that it is usually

possible to modify the syntax of an attack without changing

its semantics [26].

2) Anomaly based IDS

The first anomaly detection model was introduced by Den-

ning [27] as complementary to misuse based detection meth-

ods. Statistical models describing normal behaviors are built

to catch significant deviations. Anomaly based IDS have an

underlying assumption that normal behaviors can be statisti-

cally modeled and any deviations from baseline models can

be seen as intrusive actions. As per [21], anomalies fall into

point anomalies, contextual anomalies and collective anoma-

lies. As the simplest anomaly type and the focus of anomaly

detection research, point anomalies represent individual data

instances. A contextual anomaly is regarded as conditional

anomaly in which each data instance has contextual attributes

and behavior attributes. A collective anomaly is associated

with sequence, graph or spatial data.

3) Specification based IDS

The concept of specification based intrusion detection was

firstly proposed by Ko [28]. It is based on the following

assumption: profiles or rules for attack detection can be spec-

ified by using expert knowledge and/or by learning from only

limited amount of data. Violation against constructed normal

profiles or rules is considered as malicious. Specification

based IDS differ from their anomaly based counterparts from

the aspect that they try to construct declarative knowledge

instead of a set of procedures that does not have any con-

textual meaning, i.e., from a human-reasoning perspective

[29]. We believe that this aspect is especially useful for

intrusion detection in SG, since specifications may allow

the description of extreme variations in regular operation of

SG. Nevertheless, developing a good specification can be

regarded as a hard task, since it requires significant insight

into complex programs and continuous analysis for new

program revisions [29].
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4) Hybrid IDS

As it can be found in the literature, hybrid IDS are a current

hot research topic. The underlying assumption is that the best

detection performance can perhaps only be achieved by com-

bining different techniques in a harmonized way and aggre-

gating their merits. For example in [6], the authors combine

specification based IDS with anomaly detection methods to

ease the task of constructing specification and to reduce false

positive rate. In [30], a misuse based IDS complemented with

anomaly detection is proposed to enhance detection rate of

both known and unknown attacks while maintaining low false

alarm rate.

One should not forget that IDS can also be categorized via

many other criteria not mentioned above. For example, based

on architecture, IDS can be categorized into standalone IDS

and distributed IDS, which include centralized and decentral-

ized IDS.

IV. SMART GRIDS AND ATTACK SPACE

A smart grid can be considered as the fusion of two major net-

works, i.e., a power network and a communication network.

While the massive integration of renewable energy con-

tributes to the main novelty of power network in SG, the rapid

evolution of communication network in SG is supported by

numerous emerging information and communications tech-

nologies (ICT). Backed by the aggregation of a rising number

of communication technologies, the entire process in SG,

including energy generation, transmission, distribution and

consumption, can be optimized to reach higher efficiency,

transparency and lower cost both for energy providers and

consumers. However, the increased connectivity also brings

many risks to SG assets.

A. SMART GRIDS ARCHITECTURE

SG are by no means a single system, but rather a very

complex interconnection of multiple systems, also referred

to as SG subsystems. Most of these individual SG subsys-

tems per se are also complex. Though, it is important to

understand the architecture of SG in order to understand

the information communication flow, and thus to protect SG

against malicious actors. It is beneficial to possess a good

grasp of SG subsystems and their own components. A good

comprehension of how various components and subsystems

are deployed and interconnected helps identify vulnerable

sections and potential attack space in SG [31].

Due to the modernization of existing power generation,

transmission, distribution and metering infrastructures, the

very complex SG architecture is currently usually broken

down into following subsystems: bulk power generation

systems, microgrids, SCADA (supervisory control and data

acquisition) systems, transmission systems with synchropha-

sors, distribution substations, and advanced metering in-

frastructure (AMI). From an intrusion detection viewpoint,

understanding SG architecture is helpful for developing effi-

cient detection techniques, as different SG subsystems have

different characteristics and some techniques are more suit-

able than the others in a given subsystem.

B. ICT IN SMART GRIDS

The “smart” features of SG heavily rely on advanced infor-

mation and communications technologies. The proliferation

of ICT in SG can be very different in various SG subsystems,

and hence the ICT landscapes look different in individual

subsystems. We group these subsystems into four sections

according to their ICT similarities.

1) ICT in power generation systems/microgrids/SCADA

As the backbone of SG, power generation systems, mi-

crogrids and SCADA systems are where industrial control

processes are mostly involved. The ICT in this section share

a lot of similarities with ICT in industrial networks. In these

networks, communication needs to fulfill the requirements of

very high reliability, availability and very low latency. As per

[2], the communication protocols in industrial networks can

be categorized into fieldbus protocols and backend protocols.

Fieldbus protocols represent a broad variety of protocols that

are commonly applied in process and control level. They

are used to connect process devices to control devices, e.g.,

field sensors to PLC (programmable logic controller), as

well as to connect control devices to supervisory devices,

e.g., PLC to HMI (human-machine interface). Prevalent field-

bus protocols include Modbus RTU, Modbus TCP, DNP3,

PROFIBUS, PROFINET, industrial Ethernet etc. Backend

protocols include the communication protocols deployed on

or above supervisory level, which provide efficient inter-

systems communication, e.g., between operation control cen-

ters. Popular backend protocols are OPC (open process

communication), ICCP (inter-control center communications

protocol) etc. [2].

2) ICT in AMI

As the main enabler of “smart” grids, AMI provides bidi-

rectional communication between energy consumers and

providers for monitoring and demand-response system. In

AMI, a broad variety of new communication technologies

emerge and constantly evolve, which contributes to the in-

tegration of a great number of intelligent appliances into SG.

When analyzing information flow, AMI is often broken down

into LAN (HAN/IAN/BAN), NAN and WAN, which repre-

sent different area networks regarding to their geographical

coverage. Whereas smart meters serve as the demarcation

between LAN and NAN, metering data collectors mark the

boundary between NAN and WAN. Power line communica-

tion (PLC), as the predominant smart metering technology in

the EU and China due to no need of extra wiring [32], can

be used through an entire AMI. Whereas narrowband PLC

is applied for communication between power consumers and

smart meters as well as between smart meters and metering

data collectors, broadband PLC is employed for communica-

tion between metering data collectors and metering head-end

systems. Nevertheless, a plethora of other communication
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technologies including wired and wireless ones are broadly

deployed in AMI as well, of which all have their own merits

subject to use cases. For example, wireless technologies

are the most popular options for automatic meter reading

in the USA, among which cellular networks and radio fre-

quency mesh networks are widely in use [32]. The ICT in

AMI advances probably most quickly in HAN/IAN/BAN

(home/industry/business area network). Prevalent communi-

cation technologies in these networks include IEEE 802.15.4,

Zigbee, Z-Wave, Wi-Fi HaLow, Ethernet, Bluetooth Low

Energy, PLC [32] [33] [34].

3) ICT in transmission systems

One of the most frequently mentioned ICT in transmission

systems is the IEEE C37.118 standard, which covers the

synchronization and communication of phasor measurements

in transmission systems. By allowing multiple measurements

to be synchronized together, the IEEE C37.118 standard is

essential for obtaining overall power quality assessments,

since an isolated phasor measurement does not provide

much value. IEEE C37.118 standard defines the real-time

communications of measurements from phasor measurement

unit (PMU) to phasor data concentrator (PDC) with syn-

chronization realized by tagging each measurement with an

absolute time reference, such as a GPS clock [31]. However,

C37.118 represents a similar challenge as other industrial

control protocols, i.e., the lack of inherent security. Phasor

measurements can be easily intercepted or manipulated if

PMU, PDC and their communications are not sufficiently

protected [35].

4) ICT in transmission/distribution substations

The IEC 61850 standard and IEC 62351 standard have gained

a wide acceptance in transmission/distribution substations.

While the IEC 61850 provides a number of useful speci-

fications, e.g., data modeling, reporting, data transfer and

command capability, as well as event messaging using GSE

(GOOSE/GSSE), it does not include its own security speci-

fications. The IEC 62351, on the contrary, provides security

specifications for substation communications and is broken

down into several parts. The IEC 62351-6 is responsible for

the security of IEC 61850 messaging and is of particular

interest [36] [2].

C. ATTACK SPACE IN SMART GRIDS

The great reliance of SG on ICT, however, can potentially

expose all elements of SG to malicious attacks. That is to say,

SG are facing immense potential threats, which could affect

the SG deployment and growth. The intentions of attackers

can vary from one to another, including data theft, financial

gain, service disruption and assets sabotage. For example, the

bidirectional communication in AMI, as inherent criticality

and availability of AMI, is a high-potential target for large

scale attacks, which may cause regional blackouts and hence

harmful consequences [37]. Moreover, a manipulated reading

of a synchrophasor might initiate a faulty state. The manip-

ulation of substation automation systems might cause local

loss of service. The attacks leveraging the interconnection

mechanisms of SG subsystems might be the most dangerous

ones [31]. That is to say, attacks against one subsystem

could be utilized as staged attacks against other subsystems,

since those subsystems are mutually dependent. For example,

a successful intrusion on distribution substation could be

leveraged to further attack AMI, owing to the close interde-

pendence between power demand-response system of AMI

and distribution substations where metering data collectors

are often located [31].

V. RULE LEARNING TECHNIQUES

In general, rule learning techniques are categorized into de-

scriptive rule learning and predictive rule learning. Whereas

descriptive rule learning focuses on only finding patterns

in a given dataset without considering evaluation on new

data samples, predictive rule learning produces rules capable

of generalizing to new data samples [13] [8]. For intrusion

detection, though, we are almost exclusively interested in

predictive rule learning. Unlike descriptive rule learning, pre-

dictive rule learning often confronts two types of problems,

i.e., multiple rules fire on the same new example, and no

rule fires on a new example. In the former case, more than

one rule firing on a single example can cause contradiction,

and this conflict is resolved either by preferring rules with

higher importance or by extracting a separate rule set for

handling contradictory predictions. Like in expert systems

[38], top-level control parameters are used to handle rule

contradictions. The second problem is tackled either by a pre-

defined default rule favoring the majority class or by more

complex algorithms finding the closest rule [13].

We conclude that the following criteria should be con-

sidered when assessing the quality of a derived rule set for

intrusion detection:

Rule correctness: This explains how often the extracted

rules hold true on existing datasets, which is mostly reflected

in detection rate and false positive rate.

Rule coverage: This evaluates how complete a rule set is

and to what extent the derived rules can be generalized for

prediction on new data samples.

Rule redundancy: This states the degree of compactness of

a rule set and whether there exists overlapping between rules.

The goal is to eliminate redundant rules in a rule set.

Rule length: This refers to the number of condi-

tions/attributes in a rule body/antecedent, which should be as

small as possible while achieving the same rule correctness.

Removing redundant conditions in a rule body is beneficial

for rule interpretability and hence its applicability as well.

Rule set size: This indicates the number of rules in a rule

set. Sometimes for the sake of short processing time, it can

be necessary to reduce the number of rules for time critical

applications, even if it slightly decreases the detection accu-

racy, i.e., trade-off between detection efficiency and detection

accuracy.

Rule set freshness: This denotes how much rules get updated
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periodically after receiving new data instances, which reflects

the incremental learning ability, i.e., adaptability to environ-

mental changes.

It is worth noting that all these criteria can be integrated

into a fitness function for learning process, but must be

carefully weighted due to their potential interdependence and

contradictions.

The rule learning techniques presented in the following

can be referred to either as rule learning strategies, i.e.,

how to induce rules, or as rule representation strategies, i.e.,

how to construct and represent rules and thus to accelerate

rule induction process. Both rule learning strategies and

rule representation strategies are of critical importance for

effectively alleviating the oftentimes burdensome process of

extracting useful representative rules. Although the following

methods are discussed separately, they are often associated or

overlapped with each other and frequently combined for rule

induction.

A. DECISION RULE

As the most expressive and comprehensible knowledge rep-

resentation, decision rules are constantly exploited with

various approaches. Two very prevalent learning strategies

are divide-and-conquer, i.e., recursively partitioning feature

space such as decision tree, and separate-and-conquer, i.e.,

repeated rule learning and removal of covered data points

[39]. Decision rules induced from dataset can be represented

either as an unordered rule set or as an ordered rule set,

also known as decision list. Whereas with an unordered

rule set all rules have to be successively tried to make the

democratized prediction for a new instance, a decision list

has an order for rules, of which only the first rule satisfying a

new instance matters. Decision lists inherently solve the first

problem faced by predictive rule learning as aforementioned

[13].

RIPPER (Repeated Incremental Pruning to Produce Error

Reduction) by Cohen [40] is a representative case which

uses separate-and-conquer strategy and can run in ordered

mode to extract a decision list. As the first rule learning

technique that effectively handles the overfitting problem via

incremental pruning and yet the state-of-the-art in inductive

rule learning, RIPPER integrates a post-processing phase

for optimizing a rule set by removing rules from previously

learned rule set and relearning them in the context of both

previous rules and subsequent rules [41] [13].

B. DECISION TREE

Despite sharing some similarities, decision trees differ from

decision rules in terms of expressivity and learnability [42].

As mentioned above, whereas decision rules can be repre-

sented as ordered rule sets, decision trees are regarded as

unordered rule sets. Decision trees are classification models

whose structures consist of a number of nodes and arcs.

Whereas a node is labeled by an attribute name, the from

this node originated arcs are assigned a valid value associated

with the attribute individually [8]. The hierarchical structure

is beneficial for eliminating overlapping in rule sets, which

makes classification easier. However, it can lead to more

complex rules and make decision trees large and difficult to

interpret [42] [43]. In general, decision rules/lists are more

expressive than decision trees, and hence easier for humans

to understand. In practice, decision trees are often converted

into decision rules after being trained. Among many decision

tree induction algorithms, the most popular ones are C4.5,

developed by Quinlan [44], and its variants [8].

C. INDUCTIVE LOGIC PROGRAMMING

The term inductive logic programming (ILP) was defined

by Muggleton [45] as the intersection of inductive learning

and logic programming. By making use of logic programs as

expressive representation for examples, background knowl-

edge (BK) and hypotheses, ILP can learn complex relational

theories and renders itself distinguishable from most other

machine learning techniques. Given positive and negative

examples along with BK, commonly in the form of Horn

clauses, an ILP system aims at forming a hypothesis which

explains examples in terms of BK and entails as many posi-

tive and as few negative examples as possible [45] [46]. With

the use of BK as a form of inductive bias, ILP systems can

normally generalize from small numbers of examples, which

addresses one of the major limitations of current machine

learning techniques, i.e., the need for a large amount of

training data [47]. This distinct advantage of ILP can be

further exploited by leveraging recursion, i.e., having the

same predicate in rule body and head, which is regarded

as one of several improvements of current ILP techniques

[47] [48]. Like selecting appropriate features in common

machine learning approaches, choosing appropriate BK is

seen as a crucial step in learning process of ILP. To address

the limitation that ILP has traditionally relied on manually

designed BK by human experts, a shift to automatically

learning BK is supported both by inventing new predicate

symbols and by performing lifelong and transfer learning to

discover reusable knowledge [47].

D. ASSOCIATION RULE LEARNING

As one of the most popular data mining methods, association

rule learning is applied on a great variety of applications for

discovering correlations among a set of attributes in a dataset

and representing them as association rules [49]. Although the

idea of association rules originates in 1960s with the aim of

automatically generating numerous statistical hypotheses in

the form of association rules [13], the arguably first asso-

ciation rule learning algorithm, i.e., Apriori algorithm, was

designed by Agrawal and Srikant [50] in 1994 for frequent

itemset mining and association rule learning over relational

databases. A so-called breadth-first level-wise search is per-

formed for acquiring all frequent itemsets, which are then

converted into association rules in a post-processing phase

[13].

The importance of an association rule is often measured

with two factors, i.e., support and confidence. Whereas sup-
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port denotes the proportion of all items in a database satisfy-

ing both rule body and head, confidence indicates the ratio

of number of items satisfying both rule body and head to

number of items satisfying rule body [50]. To overcome the

problem that Apriori algorithm may suffer from large com-

putational complexity for rule extraction in a dense database,

a large number of successor algorithms with modifications

mostly conducted on finding frequent itemsets are proposed

for performance boost, e.g., [51] [52].

E. FUZZY LOGIC

When dealing with continuous attributes in rules, sharp

boundary or strict threshold in attribute values can often

cause classification system to make inaccurate or unfair

decision. To solve this problem, fuzzy logic proposed by

Zadeh [53] is normally applied to allow blurry boundary or

threshold, which is enabled by discretizing continuous values

into categories, typically represented as linguistic variables

(e.g., high, middle and low). Meanwhile it introduces mem-

bership function like triangular function, sigmoid function

or Gaussian function. A value between 0 and 1 is used

for describing membership degree in each category, which

hence eliminates a sharp boundary between categories. Also

known as possibility theory, fuzzy set theory is seen as an

alternative to traditional bivalent logic, i.e., either true or

false. Whereas in traditional crispy sets every element only

belongs to one set/category, in fuzzy set theory elements can

belong to more than one fuzzy set with different membership

degrees. Fuzzy logic allows a higher abstraction level and

offers more flexibility when dealing with imprecise data [43].

A very successful application of fuzzy logic is the fuzzy

controller firstly explored by Mamdani et al. [54], which is

a reasoning system composed of a fuzzification module, a

fuzzy rule base, an inference engine and a defuzzification

module [3]. To investigate the possibility of human interac-

tion with a learning controller, heuristic control rules stated

by a human operator are transferred into an automatic control

strategy in the fuzzy controller. The control strategy set up

linguistically can prove to be very effective [54].

F. ROUGH SET THEORY

Although often contrasted with fuzzy set theory, rough set

theory, introduced by Pawlak [55], is another independent ap-

proach to imperfect knowledge, and their relationship should

be considered as complementary rather than competitive

[55] [56]. Unlike fuzzy set theory which needs additional

information about data, e.g., membership degree, rough set

theory has the merit of not relying on any preliminary infor-

mation about data [57]. As a mathematical tool to deal with

vagueness and uncertainty from imprecise and insufficient

knowledge, the main idea behind rough set theory is an

indiscernibility relation associated with a set of attributes. A

rough set is a formal approximation of a (original) crisp set,

which results in a pair of crisp sets, called as lower approx-

imation and upper approximation sets [56]. Whereas lower

approximation set represents a lower boundary of the target

set, upper approximation set represents an upper boundary

of the target set. In any case, rules derived from lower

approximation are certainly valid and rules extracted from

upper approximation do not always hold true. Given real-

world data, oftentimes some classes can not be distinguished

only making use of a set of available attributes. Rules induced

by employing rough set theory, which approximately defines

such classes, are more general than information contained

in the original imprecise or noisy dataset. Thus new data

samples may be more correctly classified by these rules. An

example is the data system LERS (Learning from Examples

based on Rough Sets) presented by Grzymala-Busse [58],

which induces rules from data with conflicting objects, i.e.,

data inconsistency. Conflicting objects appear if objects of

different classes have the same values for all current existing

attributes.

G. GENETIC ALGORITHM

Unlike the aforementioned rule induction approaches which

use existing examples and background knowledge to gen-

erate their first set of rules, genetic algorithms (GA), as

another family of stochastic separate-and-conquer rule learn-

ing algorithms for finding good rules [59] [8], perform a

randomized global search in solution/hypothesis space and

randomly generate a collection of solutions/hypotheses as

the first set of rules. GA, introduced by Holland [60] as

an inspiration of natural selection and evolution, have laid

a foundation for a number of other techniques. Whereas a

rule, also called as solution or hypothesis, is regarded as

an individual, the newly derived rules form a generation

and the entire rule set is referred as a population. Rules are

encoded as chromosomes, i.e., strings of attributes, in which

an attribute is a bit in a string. Assume that in a given training

set every instance consists of two Boolean attributes, i.e., A1

and A2, and belongs to one of two possible classes, i.e., C1

and C2. The rule “IF A1 AND NOT A2 THEN C1” can be

encoded as the bit string “100” [43].

Generated candidate rules are evaluated by a fitness func-

tion, which is normally a weighted function of rule accuracy,

complexity and other performance metrics. In order to let

the selected best candidates evolve and pass some of their

characteristics to their offspring, they are modified by ap-

plying two genetic operators called crossover, i.e., randomly

exchanging conditions between rules, and mutations, i.e.,

randomly inverting conditions in a rule. Whereas crossover

is considered as deterministic operator passing best attributes

of two parent rules to an offspring, mutation is a probabilistic

operator which tries to find new useful attributes. Moreover,

rule constraints are satisfied by either introducing penalties in

the fitness function or directly encoding them in the rule data

structures [3]. The iterative process of generating new rules

continues until one of predefined stopping criteria is met.

GA are easily parallelizable and are employed for various

optimization problems along with their role in data mining

as fitness evaluation function for other algorithms [43]. But

a fundamental problem of GA is that they could repeatedly
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generate ineffective rules due to randomized global search.

H. GENETIC PROGRAMMING

As an extension of the GA, genetic programming (GP) in-

troduced by Koza [61] employs a different solution encoding

method with the aim of solving more complicated real-world

problems in a variety of fields. Generally speaking, whereas

genome structures in GA are fixed-length strings that encode

candidate solutions, structures of genome are expressed in

GP as syntax trees rather than strings. A tree consists of

multiple nodes and links, in which nodes indicate execution

instructions and links denote the arguments for each instruc-

tion. In order to construct complicated programs, programs

can be composed of multiple components in more advanced

forms of GP, i.e., a set of sub-trees/branches grouped together

under a root node to form a tree with complex structure

[62]. As a systematic method for letting computers to au-

tomatically solve a problem, GP initially starts from a high

level statement of what needs to be done and attempts to

produce a computer program to solve it. Certain well defined

preparatory steps can be specified by humans. Then GP

iteratively evolves a population of computer programs by

applying genetic operators like crossover, mutation, repro-

duction, gene duplication, and gene deletion [62].

I. GENETIC NETWORK PROGRAMMING

To overcome a GP’s fundamental problem “bloat”, i.e., the

search for better programs halts after certain generations

as the programs become too large, a new type of evolu-

tionary method named genetic network programming (GNP)

is proposed by Hirasawa et al. [63]. With integration of

a directed graph structure for its individual representation,

GNP exhibits great expressiveness in modeling complicated

programs/problems and hence can overcome the low search-

ing efficiency of GP [63]. Originally, this graph-based evo-

lutionary algorithm with network structure representing its

genome is developed to leverage the more expressive rep-

resentation ability of graphs, i.e., with reusability of nodes,

for applications in dynamic environments. A directed graph

in GNP contains two types of nodes, i.e., judgment node

and processing node, which allow flexible representation and

recombination of rule attributes. Another structural property

of GNP beneficial for handling dynamic problems is that a

previous node transition can affect the current node to be

used, called as implicit memory function [64].

Moreover, the potential of GNP is further exploited in [64],

in which GNP is coupled with reinforcement learning (RL) to

create effective graph structures for producing better results.

Besides, an unique graph-based feature of GNP “transition by

necessity”, i.e., only activating relevant nodes and the tran-

sitions for one particular task, is studied in [65] along with

traditional genetic operators like crossover and mutation for

evolving the directed graphs. The proposed simplified genetic

operators alleviate unnecessary difficulty for evolution and

can efficiently evolve even more compact programs [65].

J. LEARNING CLASSIFIER SYSTEMS

Yet another rule learning technique with great dependence

on GA is known as learning classifier systems (LCS), which

were introduced also by Holland in the work [60]. Although

LCS are less famous than GA, with a raising number of

application areas LCS are gaining more and more visibility

in scientific research [66]. Two biological components, i.e.,

evolution and learning, are employed in LCS, in which the

evolution process is guided by the learning process to induce

better rules. The evolutionary component plays a key role

in discovering novel rules and is embodied by a discovery

mechanism often applying GA. The learning component is

responsible for assigning credit to rules and is embodied

by a learning mechanism often employing RL [67]. Both

mechanisms rely on the system environment, i.e., limited

source of input data. By interacting with this environment,

LCS receive feedback in the form of numerical reward which

drives the learning process [68].

Note that there are two forms of GA, namely generational

GA and steady state GA. Whereas in generational GA a

population is renewed from one generation to the next, in

steady state GA individuals are renewed in the population

one by one without notion of generation [66]. Analogically

there are two distinct LCS styles, i.e., Michigan style by

Holland and Pittsburgh style by Smith [69]. Whereas in

Michigan style LCS the GA operate at the level of individual

rules, the GA in Pittsburgh style LCS operate at the level of

an entire rule set. Although Pittsburgh style LCS have the

advantage of circumventing the potential problem caused by

credit-sharing among individual rules, they suffer from heavy

computational requirements in evolving multiple rule sets

simultaneously. In contrast to Pittsburgh style, the Michigan

style has drawn more attention and is seen as the standard

LCS framework as it can be widely applied online in a

broader range of problem domains [66] [68]. Another major

criterion for LCS division is how reward in RL is taken into

account in fitness function, which results in strength-based

LCS [70], accuracy-based LCS [71], and anticipation-based

LCS [72]. The XCS (eXtended Classifier System) [71] as a

representative accuracy-based LCS is notably one of the most

studied LCS [66].

K. PARTICLE SWARM OPTIMIZATION ALGORITHM

Like the aforementioned Pittsburgh style, another population-

based heuristic rule learning strategy called particle swarm

optimization (PSO) algorithm also targets at the level of an

entire rule set for rule evolution, i.e., taking each rule set as an

individual instead of a single rule in a rule set. PSO algorithm

is inspired by social behavior through simulation of bird

flocking and has already found a wide range of applications

across different fields shortly after its introduction in [73]

by Kennedy et al. [74]. Thanks to its ability to achieve a

fast convergence, insensitivity to population size, and high

scalability, PSO algorithm proves to be effective in opti-

mizing complex multidimensional discontinuous problems

in various research areas [75]. As a stochastic evolutionary
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algorithm based on swarm intelligence, PSO algorithm may

outperform GA due to its simple implementation and hence

reduced effort for optimizing hyperparameters, i.e., parame-

ters of an algorithm. PSO is based on swarms of individuals

called particles and every swarm is regarded as a solution in

the solution space. The goal of PSO algorithm is to efficiently

evolve a set of coadapted rules that cooperate with each other

to solve a given problem [76]. Like in GA, a set of rules are

randomly initialized and distributed in the multidimensional

search space and a fitness function is employed to iteratively

select and evolve rules by modifications. At every iteration,

position and velocity of a particle are updated by means of

three components, i.e., inertial component, self-recognition

component and social component. In contrast to GA’s three

main operators, i.e., selection, crossover and mutation, PSO

has just one major operator, namely velocity, which is repre-

sented as a matrix with the particle dimensions [76].

L. SEQUENTIAL PATTERN MINING

Whereas the rule induction techniques mentioned above

mostly focus on stateless input data, i.e., data not in an order

with timestamp, another rule learning technique introduced

by Agrawal and Srikant [77] is known as sequential pattern

mining (SPM), which is designed to discover symbolic se-

quences in data with a concrete notion of time. In SPM, a

sequential pattern is a frequent subsequence in a sequence,

or sometimes also called as a sequence in another larger

sequence. A sequence is composed of several consecutive

states/events ordered by timestamp, and a state/event can

have a number of attributes, which can be represented as rule

conditions as aforesaid. Besides, the sequential ordering of

states is also taken into account in the rule bodies, which

makes SPM track the operating states and thus be able to find

extra details for rule construction.

Other rule learning techniques like association rule mining

may fail to discover important useful patterns in some data

by ignoring the sequential relationship between states, i.e.,

information about the “dynamics” in data. This holds true

especially in some domains [78], like in energy consump-

tion behavior recommendation [79] where data are naturally

encoded as sequences, and in network intrusion detection

where order of events is also important. A close analogy is

stateful firewall2 [80]. In data mining, two common forms of

sequence data are time-series, i.e., an ordered list of numbers,

and symbolic sequence, i.e., an ordered list of nominal data

(symbols) [43].

M. EPISODE MINING

The methodology of SPM can be extended to mining peri-

odic sequential patterns, partial order patterns, trees, lattices,

episodes etc. by introducing user-specified constraints, fold-

ing events into proper-size windows or relaxing the require-

ment of strict sequential ordering [43]. An independently

2While a stateful firewall performs better at identifying attacks, a stateless
firewall is normally faster and still suitable for heavy network traffic loads.

proposed technique called episode mining by Mannila et al.

[81] may be referred to as constraint-based SPM with the

aim of reducing the search space. As per Mannila et al.

[81], an episode is defined as a small partially ordered set

of events that frequently occur in the sequential data within a

given time interval. Such small temporal patterns/episodes of

interest can be discovered to construct rules for describing or

predicting the sequence behaviors. Although episode mining

shares many similarities with SPM, their major difference is

that episode mining targets at patterns appearing in a single

sequence instead of a set of sequences. Episode mining is ap-

plied in various domains such as web-click streams, telecom-

munication, network traffic, sensor readings [82] [78]. One

should bear in mind that episode mining and sequential

pattern mining along with other pattern mining approaches

may sometimes be used interchangeably in the literature.

N. MARKOV CHAIN

Another rule learning technique relying on (temporal) se-

quence is Markov chain, which is a very important type of

stochastic process for describing a number of possible events

based on conditional probability. The usual representation

of labeled Markov chain as transition system or automata

is exploited to model normal system behaviors with respect

to certain contexts, and the normal behaviors can then be

formalized as a set of rules. A labeled Markov chain is a

state transition graph with every state having a unique label,

which can be used to define a probability distribution and

the probabilities are assigned to the directed transition arcs,

i.e., discrete time Markov chains [83]. In Markov chains,

the conditional probability of choosing a next system state

only depends on the current system state, which is known as

Markov property [84]. Markov chains also lay the foundation

for other Markov models, such as hidden Markov models

in which every sequential system state is only partially ob-

servable. Hidden Markov models are applied in a wide range

of fields to recover data sequences that are not immediately

observable, especially in speech recognition [85]. Moreover,

hidden Markov models are also applicable for inferring be-

havior rules [26].

O. BAYESIAN NETWORK

As per Han et al. [43], mining graphs and networks repre-

sents a more general class of structures than sequences and

trees, and can find a wide range of applications. Bayesian

networks, viewed as a form of probabilistic graph for knowl-

edge representation and reasoning, can be learned from data

and then further transferred into a set of probabilistic classifi-

cation rules for even more compact and interpretable knowl-

edge representation [86]. A Bayesian network is composed

of a network structure, i.e., a directed acyclic graph, and

a set of probability tables. While the nodes/vertices in the

network represent variables, links/arcs denote dependence

between the corresponding variables. Given the values of

relevant attributes, the posterior probability distribution of the

class node can be inferred via different inference algorithms.
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Bayesian networks are very popular in data mining due to

their abilities to deal with incomplete dataset; to learn causal

relationships; and to combine prior knowledge with patterns

learned from data [87]. Bayesian networks can be either man-

ually built by experts or automatically learned from data, in

which data features are used to construct nodes. A hybrid way

to create Bayesian networks [88] is to use expert knowledge

to build only a network structure and leverage data to learn

the conditional probability tables for the structure, in which

the learning can be conducted using empirical conditional

frequencies from data [89]. As per Hruschka et al. [86], the

Markov blanket strategy3 can be integrated to select only the

most influential attributes to be used in rule antecedents while

extracting rules from Bayesian networks, which hence can

reduce the number of conditions in rules.

P. RADIAL BASIS FUNCTION NETWORK

Another case where rules are induced from network structure

is radial basis function (RBF) network based rule extrac-

tion. Along with providing a good solution to many pattern

recognition and classification problems, RBF networks as

a local Gaussian representation technique enable an easy

conversion of the hidden units into symbolic rules [91]. A

RBF network, proposed by Broomhead and Lowe [92], is

a type of feedforward artificial neural network, which uses

a radial basis function as activation function in its hidden

layer. There are typically only three layers in RBF networks,

i.e., an input layer, a hidden layer and an output layer of

linear units, hence also known as shallow neural network.

The number of hidden units is directly related to the dataset

complexity. Unlike multilayer perceptron (MLP) networks,

RBF networks provide a local learning system [93] that

contains elements responsive to only a part of the input space

and is particularly helpful to rule extraction [91]. In general,

as knowledge learned by neural networks is distributed across

the internal parameters and mostly not well-interpretable for

humans, extraction of meaningful rules is regarded as an

important and powerful technique for neurosymbolic inte-

gration within hybrid systems [94]. The local nature of RBF

networks provides a very useful mechanism that can interpret

the input to output mappings of networks in the form of

symbolic rules [91].

VI. DATASET AND FEATURE ENGINEERING

Reliable datasets and well-performed feature engineering are

recognized as a highly crucial part for efficient rule learning,

as they are in any machine learning and data mining ap-

proach. Data are seen as observations of real-world phenom-

ena, in which a limited aspect of reality is obtained through a

small window provided by each piece of data [95]. However,

the collection of all these observations normally gives us a

messy and noisy picture with missing pieces. Still, by means

3The concept Markov blanket, introduced by Pearl [90], is applied to
extract useful features from all available ones. It states that the conditional
probability distribution of a given node in a Bayesian network is only
influenced by the closely located nodes.

of appropriate feature engineering, these often incomplete,

redundant and occasionally partially wrong data are of great

interest and importance to be exploited in machine learning

processes in order to acquire insights and make predictions.

A feature or an attribute is a numeric representation of an

aspect of raw data and is taken as input in machine learning

models. Oftentimes the right features can only be earned in

the context of both the model and the data, which makes

it difficult to generalize the practice of feature engineering

across projects [95]. In rule learning, there exist 3 types

of features, i.e., simple features, time-stamped features and

contextual features. Oftentimes, the contextual features are

of critical importance for distinguishing abnormal behaviors

from attacks.

A. DATASET FOR IDS

Unlike other machine learning application fields, e.g., com-

puter vision and natural language processing, in which avail-

able datasets are seldom a problem, the lack of datasets

exposes one of the most challenging hurdles of applying

machine learning in intrusion detection. As it can be seen

in image recognition and speech recognition research areas,

publicly available datasets can speed up their developments

greatly. Hence the dire need for appropriate datasets is very

obvious, in order to accelerate progress in machine learning

based IDS.

There are different kinds of IDS datasets, such as public

dataset and private dataset according to its availability; real-

world dataset and simulated/synthetic dataset in terms of data

source; attack-inclusive and attack-free dataset by presence

of attacks. Simulated datasets, though, can not be treated

equally, since some are generated purely from computer sim-

ulation programs and others are collected from test bed simu-

lation with real components, often deemed as more realistic.

Analogically, attack-inclusive datasets are not of the same

importance. While some datasets contain only a single type

of attack, other datasets are composed of numerous different

attack vectors. Whereas some attack scenarios are emulated

online, other attack data are just offline synthesized. One

should bear in mind that how carefully and realistically the

attack data are generated is crucial for training an effective

machine learning model and extracting meaningful rules in

practice.

In machine learning based IDS research, more often than

not, evaluation is conducted on the currently “deprecated”

benchmark datasets, i.e., DARPA dataset and/or its succes-

sors KDD CUP 99 dataset and NSL-KDDCUP dataset, as it

can be seen in the Section VII. However, the DARPA dataset

is often criticized by researchers [96] [97] due to its unreal-

istic attacks, redundancy etc. A summarized comprehensive

list of publicly available datasets can be found in the work

[24]. However, to the best of our knowledge, no reliable

dataset generated from (simulated) energy systems appears

publicly available at the present time. We strongly believe

that an effective IDS should be trained using domain specific

data.
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Another common dataset problem is the dominant pres-

ence of unbalanced datasets, in which observations in

one class significantly outnumber observations in the other

class(es). This again especially holds true in machine learn-

ing based IDS research, since reliable attack data are really

seldom available. Unbalanced dataset can influence the learn-

ing performance in an unfavorable manner, because learning

system may have difficulties to gain enough information

related to the minority class(es). Nevertheless, a number of

data sampling methods are proposed to combat the learning

difficulties due to unbalanced dataset. Two very common

ones are random over-sampling, i.e., random replication of

observations in minority class , and random under-sampling,

i.e., random elimination of observations in majority class. As

per [98], the very simple random over-sampling proves to

be more useful than under-sampling and very competitive to

more complex over-sampling methods.

B. FEATURE ENGINEERING

Feature engineering, often known as a data (pre-)processing

step, is the process to extract meaningful features from raw

data with the goal of improving learning performance. Hav-

ing the right features can alleviate unnecessary difficulties of

modeling and hence make model yield better prediction re-

sults as well. However, machine learning practitioners agree

that feature engineering is predominantly a time consuming

task and can take the vast majority of time in building a

machine learning pipeline [99] [95].

Feature engineering includes feature transformation, i.e.,

creating more discriminatory features from the existing ones;

feature selection, i.e., removing unnecessary features by

means of feature filtering, wrapping, embedding [95]; di-

mensionality reduction, i.e., transforming feature space into

a lower dimension via numerous techniques like PCA (prin-

cipal component analysis), autoencoder; and feature scaling,

i.e., data standardization, normalization etc. An often used

example of feature engineering is that categorical data, in-

cluding nominal and ordinal variables, are often converted

into numeric representation, since machine learning algo-

rithms require numeric inputs. One common approach is

one-hot encoding, in which each categorical type is mapped

to a binary vector and thus it ensures higher numbers not

assumed to be more important during learning. Since feature

engineering can prove to be labor-intensive and sometimes

tedious works, a number of research works endeavor to

automate feature engineering, e.g., [99].

C. PERFORMANCE METRICS

As per [100], the purpose of evaluation is to estimate model

performance; to determine the most suited model; and to

convince potential users. That is to say, it aims at finding the

model with best performance. The term best performance is

actually hard to define and mostly context-dependent, since

there are various performance metrics that have (slightly)

different viewpoints about what is better. One could refer

them as “competitor” metrics owing to existing trade-offs.

There are a number of ways to select data from an original

dataset for evaluation. The simplest one is arguably the

hold-out validation, i.e., randomly choosing a portion of the

dataset, along with two other also very popular methods, i.e.,

k-fold cross-validation and leave-one-out cross-validation.

Prediction performance is measured by comparing the

predicted class and actual class, and then estimating how well

the trained model can make predictions. One key concept in

classification performance is the confusion matrix (Table 2),

which calculates the frequencies of each possible prediction

outcome and forms the basis for calculating many other

performance metrics. The four possible prediction outcomes

are: true positive (TP), true negative (TN), false positive (FP),

false negative (FN). The mostly used performance metrics

in IDS are: detection rate, also referred as true positive rate

(TPR), sensitivity, recall; false alarm rate, also called false

positive rate (FPR), fall-out; precision, also called positive

predictive value; accuracy; misclassification rate; F1 score,

or F-measure. Most of these performance metrics are self-

explanatory by means of formulas (1) to (5). As defined

in formula (6), the F-measure is the harmonic mean of

precision and recall. While recall indicates how complete

the found positive instances are, precision denotes how often

the positive predictions turn out to be correct [100]. Another

widely used performance measure is ROC (receiver operating

characteristic) index, i.e., ROC curve and AUC (area under

the curve). ROC curve plots TPR against FPR, and shows

TPR and FPR for various threshold values. It is often seen

that ROC curves of various models are presented on a single

ROC plot for easy performance comparison. AUC measures

the area under a ROC curve and a higher AUC normally

indicates better performance.

TABLE 2. Confusion matrix

Actual class
Positive Negative

Predicted
class

Positive TP FP

Negative FN TN

Detection rate = TP

TP+FN
(1)

False alarm rate = FP

FP+TN
(2)

Precision = TP

TP+FP
(3)

Accuracy =
TP+TN

TP+TN+FP+FN
(4)

Misclassification rate =
FP+FN

TP+TN+FP+FN
(5)

F = 2 ·
precision·recall
precision+recall

(6)

12 VOLUME x, 20xx



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3071263, IEEE Access

Q. Liu et al.: A Review of Rule Learning Based IDS and Their Prospects in SG

VII. RULE LEARNING BASED IDS

As mentioned in Section III, the major distinction between

rule learning based IDS and other types of IDS is that in

rule learning based IDS human interpretable rules are learned

using ongoing training data and an intrusion detection engine

can be periodically provided with updated rules. Mostly,

these rules can either describe normal system behaviors or

model normal protocol behaviors, i.e., system specification

or protocol specification.

In the following, we study various application cases of

rule learning based IDS which are categorized by the imple-

mented techniques. Each type of IDS is presented mainly by

only one or two selected articles, since this work primarily

serves to provide an overview of how these rule learning

techniques can be applied in intrusion detection research.

Table 3 summarizes and compares the reviewed rule learning

based IDS.

A. DECISION RULE BASED IDS

In [101], Helmer et al. study system call traces based IDS

using the decision rule algorithm RIPPER for rule induction

assisted with a genetic algorithm for feature selection. The

presented multi-agent distributed IDS consists of data gath-

ering agents that collect system logs and audit data, low level

agents that monitor and classify ongoing activities, and data

mining agents that use machine learning to discover predic-

tive rules for intrusion detection. Inspired by the success of

the bag-of-words representation of documents, they propose

4Note that the performance of developed intrusion detection techniques
in the listed references is often evaluated using only some specific attacks
or only few attack samples, and thus can not be generalized for various
attack scenarios or different target systems. In some cases, the performance,
e.g., detection rate, is not directly given by the authors in numeric form, but
can be concluded from the experimental results, like in [29]. Unfortunately,
the false alarm rate is not always given in these references. Only providing
detection rate does not make much sense, since one could always achieve
100% detection rate by simply classifying every observation as attack
without even examining it. Similarly, misclassification rate or accuracy
alone can not prove anything when dealing with highly unbalanced data.
Any detection technique could obtain 0% misclassification rate or 100%
accuracy effortlessly in an extreme case when testing data only contains
benign samples.

5Not mentioned in the article specifically.
6Computer Immune Systems (CIS) Dataset from University of New

Mexico https://www.cs.unm.edu/~immsec/systemcalls.htm
7Knowledge Discovery and Data Mining (KDD) Cup Dataset from

University of California, Irvine http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html

8https://www.isi.edu/nsnam/ns/
9Defense Advanced Research Projects Agency (DARPA) Dataset from

Lincoln laboratories at Massachusetts Institute of Technology, TCPDump
files (network traffic) https://www.ll.mit.edu/r-d/datasets

10Network Security Laboratory (NSL)-KDD Dataset from University of
New Brunswick https://www.unb.ca/cic/datasets/nsl.html

11GureKddcup Dataset http://www.sc.ehu.es/acwaldap/gureKddcup/
12Defense Advanced Research Projects Agency (DARPA) Dataset

from Lincoln laboratories at Massachusetts Institute of Technology,
BSM files (system call sequences) https://www.ll.mit.edu/r-d/datasets/
1998-darpa-intrusion-detection-evaluation-dataset

13Information Exploration Shootout (IES) Dataset from University of
Massachusetts Lowell http://ivpr.cs.uml.edu/shootout/about.html

14The U.S. National CyberWatch Mid-Atlantic Collegiate Cyber Defense
Competition (MACCDC) https://www.netresec.com/?page=MACCDC

a feature vector representation to describe the system calls

executed by privileged programs, in which a feature vector

represents a process and each trace is composed of a few

feature vectors. This feature vector approach contributes to

the simplicity of the learned rules, which not only allows

the application in near real time intrusion detection, but also

eases the rule discovery process for learning algorithms and

helps human expert examine rules.

B. DECISION TREE BASED IDS

Sindhu et al. [102] propose a so-called lightweight intrusion

detection system, in which decision tree and neural network

are combined to achieve better detection performance. In

order to maximize the detection rate, a wrapper based feature

selection algorithm is presented to identity suitable features

after data pre-processing and removing redundant instances.

A neurotree paradigm, which indicates the hybridization of

improved neural network and decision tree with enhanced

C4.5 algorithm, is proposed to overcome individual limita-

tions and achieve synergetic effects for intrusion detection.

With evaluation carried out on KDD CUP 99 dataset, the

authors compared the proposed approach with six other

popular decision tree classifiers, e.g., decision stump and

random forest, and conclude that their approach can achieve

the highest detection rate (98.4%) while keeping the error

rate as the lowest (1.62%). Error rate is calculated as the sum

of weighted false positive rate and false positive rate.

Similarly, Nancy et al. in [103] present an intrusion detec-

tion system which integrates decision tree with convolution

neural networks. A feature selection algorithm called dy-

namic recursive feature selection algorithm (DRFSA) is pro-

posed. The demonstrated system consists of a pre-processing

module, a feature selection module, a decision tree classifier,

a rule based decision manager, a fuzzy rule manager, a

temporal constraints manager and a knowledge base. All the

system modules are connected to the rule based decision

manager which acts as coordinator in intrusion detection

process. The authors demonstrate the performance of pro-

posed system using KDD CUP 99 dataset and network traces

recorded from the ns2 network simulator. The conducted

experiments show that their approach can achieve not only

better intrusion detection accuracy, but also higher packet

delivery ratio and network throughput when comparing with

other IDS using algorithms like enhanced C4.5 or SVM.

C. INDUCTIVE LOGIC PROGRAMMING BASED IDS

Ko [29] introduces a specification based IDS using inductive

logic programming, which allows using complex security

background knowledge in the learning process to generate

reasonable and consistent detection rules. The author devel-

oped a specification induction engine by extending an exist-

ing ILP tool to automatically construct valid behavior rules of

programs, irrespective of certain system vulnerabilities. The

inductively learned specifications are easily understandable

for humans and thus formally analyzable as well. Firstly,

the Mode Directed Inverse Entailment [117] approach is

VOLUME x, 20xx 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3071263, IEEE Access

Q. Liu et al.: A Review of Rule Learning Based IDS and Their Prospects in SG

TABLE 3. Summary of reviewed rule learning based IDS

References Target system Techniques Protocols Attack purposes Attack types Dataset Features Performance4

Helmer et al. 2002 [101] Unix programs RIPPER algorithm SMTP Privilege escalation —5 CIS dataset 6 System calls

Accuracy: 0.99

False positive rate: 0

Sindhu et al. 2012 [102] Internet
Decision tree

Neural network TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc. KDD CUP 997
Connection duration
Network service etc.

Detection rate: 0.984
Error rate: 0.016

Nancy et al. 2020 [103]
Internet
WSN

Decision tree
Fuzzy logic

TCP/IP suite
LEACH

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc.
KDD CUP 99
ns2 simulator8

Connection duration
Network service etc.

Precision: 0.574-1
Recall: 0.283-0.98

Ko 2000 [29] Unix programs Inductive logic programming TCP/IP suite Privilege escalation Buffer overflow Simulated System calls Detection rate: 1

Stakhanova et al. 2007 [104] MANET Inductive logic programming
AODV
DSR Route disruption

fake request message

fake response message ns2 simulator Network layer features —

Li et al. 2010 [105] Internet Association rule learning TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc. DARPA999
Connection duration
Network service etc.

Detection rate: 0.7 at
False positive rate: 0.1

Elhag et al. 2019 [106] Internet

Fuzzy association rule learning

Evolutionary algorithm TCP/IP suite

Denial-of-service
Privilege escalation

Probing

SYN flooding

Port scanning

Buffer overflow etc.

KDD CUP 99
NSL-KDDCUP10

Gure-KDDCUP11
Connection duration
Network service etc.

Detection rate: 0.78-0.96
False positive rate: 0.003-0.01

etc.

Nagarajan et al. 2011 [107] Internet Fuzzy logic TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc. KDD CUP 99
Connection duration
Network service etc.

Accuracy: 0.90-0.99

Precision: 0.05-0.99

Rawat et al. 2005 [108] Unix programs Rough set theory IP suite Privilege escalation Buffer overflow etc. BSM 98 12 System calls
Detection rate: 1 at

False positive rate: 0.042

Patel et al. 2015 [5] Internet Genetic algorithm TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc. KDD CUP 99
Connection duration
Network service etc. Detection rate: 0.987

Lu et al. 2004 [109] Internet Genetic programming TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc. DARPA99
Connection duration
Network service etc.

Detection rate: 1 at
False positive rate: 0.014

Mabu et al. 2010 [49] Internet

Fuzzy association rule mining

Genetic network programming TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc.
KDD CUP 99

DARPA98
Connection duration
Network service etc.

Detection rate: 0.987 at
False positive rate: 0.005

Shafi et al. 2009 [110] Internet Learning classifier systems TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc. KDD CUP 99
Connection duration
Network service etc.

Overall accuracy: 0.92 at

False positive rate: 0.006

Abadeh et al. 2006 [111] Internet PSO algorithm TCP/IP suite

Denial-of-service
Privilege escalation

Probing

Smurf
Ipsweep

Buffer overflow etc. KDD CUP 99
Connection duration
Network service etc.

Detection rate: 0.942 at
False positive rate: 0.011

Pan et al. 2015 [112]
Power transmission

system Sequential pattern mining
IEEE C37.118
Modbus TCP Against distance protection False data injection Test bed simulation

Measurement data
Various logs avg. Detection rate: 0.73

Lee et al. 1998 [113]
Unix programs

Internet

Association rule mining

Episode mining IP suite

Privilege escalation

Probing

IP spoofing

Port scanning etc.
CIS dataset

IES dataset13

System calls

Connection duration etc.
Misclassification rate:

0.009-0.42

Luo et al. 2000 [114] Internet

Fuzzy association rule mining

Fuzzy episode mining IP suite

Privilege escalation

Probing
IP spoofing
Port scan IES dataset

TCP ports

TCP flags etc. —

Ali et al. 2015 [37] AMI
Markov chain

Linear temporal logic
ANSI C12.22

PLC
Denial-of-service

Probing

Scanning

Mimicy attacks etc.
Real-world dataset
Test bed simulation Event logs

Accuracy: > 0.95 at

False positive rate: 0.0.001

Pan et al. 2015 [25]
Power transmission

system Bayesian network
IEEE C37.118

Telnet Against over-current protection

False data injection

Physical manipulation Test bed simulation
Measurement data

Various logs Detection rate: 1

Ganesan et al. 2018 [115] Internet Bayesian abductive reasoning IP suite

Privilege escalation

Probing etc. Port scanning etc. MACCDC 201214 Network layer features —

Naik et al. 2018 [116] Internet

Dynamic fuzzy

rule interpolation IP suite Probing Port scanning Simulated

Packet frequency

Time interval etc. —

employed to confine and structure the search space of the

suitable specifications. Then he specifies the evaluation cri-

teria for the candidate solutions and a searching algorithm

to find the best solution. To test the validity of proposed

approach, an extended ILP tool is used to synthesize the

valid specifications for more than 10 privileged programs

in FreeBSD OS. However, the author discussed only the

evaluation of generated specifications for two Unix programs

against buffer overflow attacks very shortly. Whether all

learned specifications are tested by implementing various

attack vectors is not mentioned. Nevertheless, he concludes

this work by saying that the automatically generated rules,

regardless of possessing specific knowledge about the vul-

nerabilities, are very effective and accurate in detecting in-

trusions with a low false positive rate, and comparable with

those rules manually developed by human experts. At the

end, the author points out that the developed approach can

also be applied to learn valid behavior of network protocols

or services.

By extending previous work from unix programs to net-

work protocols, Stakhanova et al. [104] present one of the

first efforts to automatically generate specifications from

observed run-time monitoring of routing protocols. Based

on the assumption that specifications of mobile ad-hoc net-

works (MANET) routing protocols can be learned from the

request-reply flow of network traffic using inductive logic

programming, they aim at deriving abstract model of pro-

tocol behavior from background knowledge and individual

observations. Each observation is represented by a sequence

of routing messages initiated during a single route discovery.

The authors present a generalization algorithm for inducing

easily interpretable specifications in the form of graph for

AODV (ad-hoc on-demand distance vector) and DSR (dy-

namic source routing) protocols. They use traces of valid

protocol behavior from the network simulator ns2 to derive

the specifications and validate them with implemented route

disruption attacks via fake request and reply messages, re-

spectively. The preliminary experiments show effective at-

tack detection by observed violation against learned spec-

ifications. However, no systematic evaluation of developed

approach against various attacks is conducted.

D. ASSOCIATION RULE LEARNING BASED IDS

Li et al. in [105] present an attack detection method based

on association rule learning, which discovers user behavior

patterns from network traffic data. The knowledge extracted

from database can be applied as detection rules in IDS.

They claim that the proposed Length-Decreasing Support

constraint can improve the Apriori algorithm. The Length-

Decreasing Support constraint is used to address some limita-

tions of Apriori algorithm, which generates frequent patterns

using constant support value, regardless of the length of dis-

covered patterns. The proposed approach can prevent target

system from exclusively generating a very large number of

short patterns, as long but infrequent patterns are also de-

sired. The experiment performed on the DARPA 1999 dataset
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shows that the Apriori algorithm with proposed Length-

Decreasing Support is generally more efficient than the orig-

inal Apriori algothrim, and can enhance the detection rate

under the same false alarm rate. Unfortunately, the authors

do not discuss the evaluation very much in detail.

In [106], Elhag et al. combine a multi-objective evolution-

ary algorithm and fuzzy association rule learning to extract

a more compact and informative rule set in comparison

with other similar rule learning algorithms. The so-called

multi-objective evolutionary fuzzy system can be trained

using different performance metrics as objectives to adapt to

user’s requirement in accordance with detection trade-offs,

and hence is better suited for its individual applications. In

order to build the fuzzy associative classifier, the first step

is to mine fuzzy association rules from training dataset by

employing a search tree, which lists all possible frequent

fuzzy item sets. A pre-selection procedure is carried out to

reduce the size of a rule set, which therefore makes it more in-

terpretable. Then a genetic selection and tuning process with

an evolutionary algorithm is introduced to acquire a more

compact and accurate rule set. They evaluate the suggested

approach with public datasets KDD CUP99, NSL-KDD and

Gure-KDDCUP, respectively. The evaluation result shows

that their approach can outperform several other similar rule

learning techniques under various aspects.

E. FUZZY LOGIC BASED IDS

Shanmugavadivu et al. [107] propose a network intrusion de-

tection system using rule learning technique based on fuzzy

logic. They present a strategy for automatic generation of

fuzzy rules. Note that fuzzy rules are often crafted manually

by system experts. However, in case of having lots of input

attributes, it is nearly unfeasible to generate fuzzy rules man-

ually. The lowest and highest values in the range {min, max}

of a feature of the training data are used as a criterion to select

a subset of all available features, referred as discriminative or

predictive features. Comparing the value range of a predictive

feature in the normal data, e.g., {2, 5}, with the one in attack

data, e.g., {4, 8}, simple rules can be generated like: rule 1

“IF predictive feature > 5, THEN it is attack”; rule 2 “IF

predictive feature < 4, THEN it is normal.” By replacing the

numerical values with linguistic terms like high, medium and

low using the triangular membership function, those rules can

be transferred to fuzzy rules like: rule 1 “IF predictive feature

is high, THEN it is attack”; rule 2 “IF predictive feature

is low, THEN it is normal.” The Mamdani fuzzy inference

system [54] is utilized here to synthesize a set of fuzzy rules

with respect to the given criteria: as few rules as possible; rule

body as short as possible. The evaluation on a subset of KDD

CUP 99 dataset shows that their approach has an accuracy

above 90% for all types of attacks, but suffers from a very

high false positive rate for privilege escalation attacks, i.e.,

R2L (remote to local) and U2R (user to root).

F. ROUGH SET THEORY BASED IDS

In [108], Rawat et al. present a rule discovery based IDS

making use of rough set theory. Given that the boundary

between normal behaviors and intrusive behaviors can often

be blurry, the capability of rough set theory to deal with un-

certainty and vagueness can eliminate ambiguity in decision-

making process. Based on the assumption that attack be-

haviors in a host system have localized characteristics and

thus can be reflected in a piece of system calls sequence,

the author demonstrate that the application of rough set

theory facilitates extracting rules to identify these attacks

with high accuracy. Compact rough set rules for intrusion

detection can be derived by discarding redundant attributes

and expressed as simple IF-THEN rules rendering them

suitable for online attack detection, easy interpretation and

further analysis. A rough set based algorithm LEM2 [58],

which follows a heuristic strategy for inducing rules, is

implemented to discover the minimum set of detection rules,

i.e., the smallest number of rules with sufficient coverage.

The authors evaluate the developed method on DARPA 1998

BSM (basic security module) dataset, which contains audit

logs collected from a Solaris host. They perform experiments

with different sequence lengths of system calls, i.e., differ-

ent rule lengths, and compare the detection rates and false

positive rates. Detection performance improvement can be

observed with increasing sequence length until it reaches 35.

The worst false positive rate is 4.2% while keeping a 100%

detection rate. Moreover, a slightly better detection result

can be achieved by including a default rule that declares any

previously unseen system call trace as intrusive.

G. GENETIC ALGORITHM BASED IDS

In [5], the authors propose a rule discovery based IDS using

a genetic algorithm. The generated rules are represented as

individuals in a population and every individual consists of

encoded antecedent (IF part) and consequent (THEN part).

The genome of an individual is represented by a sequence

of n conditions which are formulated as a triplet (predictor

attribute, relative operator, value), e.g., (Protocol_type, =,

tcp), where n is the number of triplets. The consequent

of an individual is the predicted class, which is not repre-

sented in the genome. In terms of hyperparameters of the

implemented genetic algorithm for the training process, the

authors choose tournament selection with tournament size

equal to 5, three-point crossover with 95% probability of

rule conditions swapped between individuals, 1% mutation

probability and 2 elitists in each generation. With respect

to confidence, coverage and comprehensibility of generated

rules, a fitness function is constructed as rule evaluator for

reproducing individuals/rules with better performance. The

output of this function is calculated as the sum of weighted

values of confidence, coverage and comprehensibility, and

then normalized in the range 0 and 1. The experimental

results show that the overall detection rate is 98.7% and there

is a slight variation for different attack types. However, the

authors neither mention the false positive rate of detection
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results nor discuss the learned rules further in detail, both of

which are of critical importance with respect to practicality

of proposed approach.

H. GENETIC PROGRAMMING BASED IDS

In [109], Lu et al. investigate a genetic programming based

approach to extract rules for attack detection. Mostly based

on the idea of GA, genetic programming, however, replaces

chromosomes with more complex data structures, i.e., parse

trees, to represent rules, which enables higher representation

ability of derived rules. Such parse trees comprise internal

nodes and leaf nodes, in which internal nodes are called

as primitive functions, i.e., AND/OR operators of the an-

tecedent in a rule, and leaf nodes are called as terminals,

i.e., conditions in the antecedent. For the training process,

four genetic operators are introduced, i.e., reproduction,

crossover, mutation and condition-dropping operators. A fit-

ness function is constructed with two weighted parameters,

namely support and confidence. While support refers to the

ratio of the number of observations covered by the rules to

the total number of observations in the data, i.e., coverage of

rules, confidence is represented by the ratio of the number

of observations satisfying both antecedent and consequent

to the number of observations only needing to match the

antecedent, i.e., accuracy of rules. The authors evaluate pro-

posed approach with DARPA 1999 dataset, which shows that

the detection rate is almost 100% while the false positive rate

is between 1.4% and 1.8%. However, to achieve 0% false

positive rate, the detection rate can only reach 40%.

I. GENETIC NETWORK PROGRAMMING BASED IDS

By further exploring the aforementioned evolutionary algo-

rithms, i.e., GA and GP, Mabu et al. [49] present a genetic

network programming based technique for generating intru-

sion detection rules, which are extracted using directed graph

structures rather than strings (used in GA) and trees (used in

GP). Whereas in GA and GP a rule is directly represented as

an individual in a generation, in GNP an individual itself is

not a rule but a directed graph, which can generate several

rules. This directed graph is built with three types of nodes,

i.e., start node, judgment node and processing node, whose

reusability renders more compact structure for deriving rules.

While judgment nodes are identical with conditions, whose

connections form the antecedent of a rule, processing nodes

serve as action function which enables extracting various

rules from a single graph. Like in GA and GP, selection,

crossover and mutation are implemented as genetic operators

in GNP. In this work, two fitness functions are designed, of

which the first one is for evaluating quality of derived rules

and the second one is used to assess ability of individuals

at generating accurate rules. Moreover, the main objective of

the proposed approach is to derive as many as accurate rules

instead of creating optimal individuals, which, though, are

not necessarily contradictory.

To identify intrusions using rules, the authors leverage

both “misuse” detection and “anomaly” detection. While

in “anomaly” detection they only form “benign” rule set

using normal data, a “malicious” rule set is constructed

with attack data in “misuse” detection to assist “benign”

rule set for detecting attacks. While in “anomaly” detection

the objective is to find as many normal rules as possible

and explore the normal behavior space, they aim at mining

more accurate rules in “misuse” detection, i.e., favoring

quality over quantity. The authors evaluate the proposed

“misuse” detection approach with KDD CUP 99 dataset and

“anomaly” detection approach with DARPA 1998 dateset.

Experimental results show a higher detection rate with a

tolerable false positive rate in comparison with many other

machine learning techniques. Furthermore, they investigate

the detection performance improvement due to integration

of fuzzy set in developed approach. When dealing with

continuous attributes, fuzzy set can overcome sharp boundary

problem, which enhances flexibility of mining more accurate

rules.

J. LEARNING CLASSIFIER SYSTEMS BASED IDS

Shafi et al. [110] design a framework called UCSSE (sU-

pervised learning Classifier System with real time Signature

Extraction) for automatically generating intrusion detection

rules by applying learning classifier systems. Generaliza-

tion and control mechanisms are developed in UCSSE to

minimize overlap and conflict among detection rules by

modifying rule boundaries, and to combat noisy and imbal-

anced data, respectively. As another genetic-based machine

learning technique, LCS exploit the implicit parallelism of

GA for dynamically and incrementally inducing rules for

network intrusion detection with adaptability to environmen-

tal changes. A Michigan style LCS is employed in this

work, which considers every individual rule as a classifier.

A common problem in rule induction process is that a large

number of redundant rules could be generated, which in turn

negatively influences comprehensibility of the rule set and

its applicability in time critical attack detection application

owing to processing time. To overcome this problem, rule

set pruning is proposed for finding a subset of derived

rule collection which can achieve nearly the same cover-

age. Several modifications to the original UCS (supervised

learning classifier system) are introduced by the authors to

improve performance of developed systems, including a dis-

tance metric based function for classification, a biased class-

distributive accuracy function, online GA rate adaptation, and

fitness sharing technique in GA for promoting diversity in

a population. The proposed method is evaluated on KDD

Cup 99 dataset to demonstrate its detection performance.

Significantly better accuracy, lower false positive rate, lesser

amount of rules and more stable outcome can be achieved

with UCSSE in comparison with original UCS.

K. PARTICLE SWARM OPTIMIZATION ALGORITHM

BASED IDS

In this article [111], Abadeh et al. investigate a particle

swarm optimization algorithm based procedure for auto-
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matically generating and adjusting fuzzy rules for intrusion

detection. A rule is represented by an individual in a global

population that is divided into some subpopulations repre-

senting different classes of rule head. This PSO algorithm

based approach does not create new rules from “parent” rules,

which makes it different from GA based approaches. The

concept RAMS (Rule Antecedent Modification Sequence),

which consists of several RAM (Rule Antecedent Modifica-

tion) operators, is introduced for the heuristic local search

procedure. This procedure aims to improve the quality of

derived fuzzy rules by searching their neighborhoods with re-

spect to some restrictions. As hyperparameters of the imple-

mented PSO algorithm for the training process, the authors

choose population size equal to 20, number of particles equal

to 20, age weight parameter equal to 10000, 95% crossover

probability, 10% mutation probability, and 20% replacement

probability. Experiments carried out using the KDD CUP

99 dataset show that they can achieve an overall detection

rate of 94.15% with a false positive rate of 1.1%. Besides,

variation in detection performance is observed for different

attack types.

L. SEQUENTIAL PATTERN MINING BASED IDS

Pan et al. in [112] introduce a sequential pattern mining

based approach called common path mining for attack de-

tection in power transmission systems. System states are

represented by aggregating synchrophasor measurement data

with power system audit logs and time stamps. The system

state transitions are used to learn sequential behavior patterns

or common paths. The common paths then describe expected

normal behaviors as a sequence of system states and thus are

referred to as specifications. A frequent-pattern (FP) growth

algorithm [43] is applied in the training process to infer the

common paths, i.e., the most frequently occurred system state

sequences in a scenario, and dependent relationships between

events. The authors introduce a number of different types

of scenarios, i.e., various normal, faulty and attack scenar-

ios. The proposed multiclass classification is performed by

comparing observed system states to mined unique common

paths of each scenario, and provides additional information

in the detection result, such as which attack type the system

is undergoing, and thus enables quicker incident response

accordingly.

With respect to the fact that in power systems an anoma-

lous or faulty system state can also be linked with actions

unrelated to security, i.e., triggered by natural causes rather

than attacks, the proposed approach can distinguish system

faults and attacks based on the assumption that the system

state transitions of all devices are not completely same in

the case of system fault and in the case of under attack.

That is to say, a single difference in system state transitions

of all relevant devices can contribute to the distinction be-

tween anomalous behaviors due to natural causes and due

to attacks. The presented IDS is evaluated using test bed

simulation data, which gives an average 73.43% detection

rate for previously unseen attacks. The authors point out that

the common paths mining based IDS outperforms several

other machine learning algorithms using the same dataset

and is more suitable for high volume data stream in power

systems.

M. EPISODE MINING BASED IDS

Both association rule mining and episode mining are used

for intrusion detection in [113] [114]. Lee et al. [113] present

an association rule learning algorithm and an episode min-

ing algorithm for describing programs or user behaviors by

computing the intra- and inter-audit record patterns, respec-

tively. A systemic framework with agent-based architecture

for intrusion detection is introduced to enable both efficient

learning and real time detection, in which the learning agents

continuously provide the detection agents with updated rules.

The effectiveness in detecting intrusions gets improved by

combining evidences from multiple so-called base classifiers

that model diverse aspects of the target system behavior.

They claim that promising results are demonstrated in their

preliminary experiments both on host based intrusion detec-

tion using collected system call traces and on network-based

intrusion detection using captured network packets.

In [114], the authors extend previous work [113] by

proposing the integration of fuzzy logic into association

rule mining and episode mining to produce more abstract

and flexible rules for attack detection. It is based on the

assumption that there are many quantitative features for intru-

sion detection and security itself is fuzzy. Taking advantage

of fuzzy logic, more general rules for temporal statistical

measurements can be produced at a higher and more abstract

level than the data level, which enables detection of mali-

cious activities even with certain variation. The experimental

results of a proposed similarity evaluation function show a

low similarity score between benign data and malicious data

based on fuzzy association rules and a very low similarity

score based on fuzzy episode rules.

N. MARKOV CHAIN BASED IDS

As one of the first works that leverage AMI configuration for

deriving a Markov chain model representing normal system

behavior, Ali et al. in [37] propose a robust mutation-based

IDS that accurately models observed quasi-deterministic and

predictable AMI behavior for intrusion detection while mak-

ing it yet unpredictable for attackers. Given the fact that event

log entries stored at metering data collectors exhibit a certain

level of temporal dependence, a large sequence of log entries

are utilized to learn a stochastic model based on Markov

chain depicting AMI behavior. The specifications are written

in Linear Temporal Logic (LTL). A sliding-window approach

is employed for continuously learning model online. The

features of a log entry include time stamp, source, forwarding

and destination nodes, size and type of communication. To

find the proper order of Markov chain, conditional entropy on

different Markov chain orders are calculated and compared.

The fourth-order Markov chain, in which a state consists of

four consecutive log entries, is selected as it gives enough
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information to predict future states while keeping the model

complexity still reasonable. Moreover, the authors design

a configuration randomization module, i.e., mutating AMI

behavior using secret key, to provide IDS robustness against

evasion attacks.

The detection module is implemented in metering data

collectors where it monitors both communication between

smart meters and data collectors and communication between

data collectors and metering head-end systems. In this way

it potentially eliminates significantly high cost as deploying

detection module in every smart meter. To validate the pro-

posed approach, they use a real-world dataset gathered from

thousands of smart meters of a utility provider, and synthetic

data generated from some test bed simulations, which include

different attack scenarios like DoS attacks, scanning, evasion

and false data injection attacks. It is worth noting that the

developed IDS aims only at large-scale attacks which result

in destabilization of infrastructure, like compromising a large

number of AMI devices simultaneously to cause a black-

out. Meter tampering, i.e., energy theft by individual users,

though, can not be caught, which is reflected in that metering

values are not included as features in log entries for learning

the Markov chain model.

O. BAYESIAN NETWORK BASED IDS

Pan et al. in [25] present an IDS for power transmission sys-

tems using a Bayesian network which models interdependen-

cies between variables and graphically represents their casual

relations. They design a test bed to simulate the studied

power transmission system, which addresses attacks against

over-current protection through different means including

false data injection and sabotaging physical devices. The

detection rules are derived from the constructed Bayesian

network which consists of a number of paths. Every path

can be considered as a distinct rule. The detection decision

is made by comparing the sequence of so-called signatures.

A signature includes a system state, its start time, actions,

events and temporal distance to the previous signature, of

which each combination of action and event is represented

as the label of a vertex in the graph.

Although the Bayesian network developed in this work

is constructed using human expert knowledge, we believe

that this Bayesian network could be learned from data using

appropriate algorithms. A common approach is to introduce

an objective function that evaluates each network structure

using training data, and then to search for the best Bayesian

network according to this objective function [118]. Moreover,

this work only studies a power transmission system with spe-

cific and simplified setting, which means that the developed

IDS is not suitable for a different kind of system setting.

In order to deploy such a Bayesian network based IDS in

various system settings, an individual Bayesian network must

be constructed for every single one of them, which can be

obviously very burdensome. Besides, whereas in a simple

case a Bayesian network can usually be constructed manually

by human expert, it can be very hard for humans to specify

the corresponding Bayesian network, when the target system

is too complex.

P. RADIAL BASIS FUNCTION NETWORK BASED IDS

Although radial basis function networks have been being

applied in various intrusion detection research works, the

main focus remains on anomaly detection, such as [119]

[120], instead of extracting intrusion detection rules. During

our research, we could not find any article that utilizes radial

basis function network to extract rules for intrusion detection.

Nevertheless, radial basis function networks are exploited for

rule induction in a few studies, e.g., [91] [121], irrespective of

application areas. We believe that the developed techniques

can be applied in rule learning based IDS, as per [119], which

indicates another research opportunity. In [121], Jin et al.

introduce a method for extracting interpretable fuzzy rules

from RBF networks using regularization techniques. In order

to extract interpretable symbolic rules from a RBF network

and gain a deeper insight into the logical structure of studied

system, they propose an adaptive weight sharing algorithm

while keeping the number of basis in the RBF network small.

An evaluation is carried out, in which 27 fuzzy rules are

obtained from a RBF network with 27 hidden nodes using

collected simulation data of an industrial process.

Q. RULE INTERPOLATION BASED IDS

Loosely speaking, rule interpolation based IDS can be re-

garded as rule learning based IDS. Here we distinguish rule

learning based IDS and rule interpolation based IDS by

the fact that the former ones generate rules mainly from

data/observations without pre-existed rules and the latter

ones derive rules based on existing rules. Nonetheless, both

techniques are capable of detecting zero-day attacks lever-

aging newly induced rules, which make them outperform

traditional misuse based IDS.

Based on the experience that new attacks often prove to

be modifications of existing ones, Ganesan et al. in [115]

propose a probabilistic abductive reasoning approach that

leverages existing snort15 rules tailored for known attacks

to derive new rules for detecting evolved previously unseen

attacks. A Bayesian model is trained on initial snort rules by

identifying the correlation between attributes in rules, and is

then used for abducing a number of new rules by replacing

a set of attributes. In this way, the newly derived rules are

capable of catching evolved attacks that are slightly different

from known attacks.

In [116], Naik et al. introduce a dynamic fuzzy rule in-

terpolation (D-FRI) based approach for intrusion detection,

which exploits interpolated rules in order to improve the

overall system coverage and efficiency. A transformation

based FRI system is utilized with an initial sparse rule base to

perform rule interpolation in order to generate a large amount

of interpolated rules. The antecedents of newly generated

15Snort is a popular misuse detection engine for network intrusion detec-
tion. More information in: https://www.snort.org/
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rules are allotted to a number of subgroups, of which the

nonempty ones are selected as input to a GA-based clustering

algorithm for finding a set of strong subgroups that contain

many rules. The optimally clustered rules are then chosen for

the subsequent rule promotion process. The authors integrate

D-FRI with the IDS engine snort to present an intelligent

and dynamic IDS which selects, combines, and generalizes

informative interpolated rules, and merges them with the

existing rule base. The experimental results show that the

developed method can outperform standard snort due to

enlarged coverage of dynamically learned rule base.

VIII. CHALLENGES AND PROSPECTS

The authors in [97] criticize the current machine learning

based intrusion detection research for focusing mostly on

enhancing detection rate while treating the systems as black

boxes. They argue that a deep insight into systems’ capa-

bilities and limitations should be achieved for an effective

deployment of such intrusion detection systems. As per [97],

one can always find a machine learning technique for IDS

that has slightly better performance in some specific training

and evaluation setting. We emphasize that the statements

hold especially true, when machine learning based IDS are

implemented in critical infrastructures like smart grids, since

the process of detecting intrusion should be made transparent

and clear to human experts and security analysts for further

investigation. There is a dire need to look for new domain

specific approaches for machine learning based IDS with

interpretable decision-making process.

Many in academia well-studied “best” detection tech-

niques prove to be very effective with respect to a set of

selected examples, however, may suffer in real life, because

the intrusion examples can hardly be comprehensive. By

incorporating extensive background security knowledge for

learning algorithms, good specifications can be inductively

generated using rule learning based techniques for discerning

attacks from legitimate network traffics. These specifications

can be of high quality not only regarding to examples but also

in practice [29]. Specification based IDS present potentially

the most effective attack detection techniques and meanwhile

allow for lightweight intrusion detection to be implemented

in systems with severe resource constraints [22]. A noticeable

drawback of these approaches is that these specification

rules ought to be redefined and updated continuously in an

environment like SG in which there exist multiple ongoing

alterations and modifications [23]. However, in the light of

rule learning techniques, these efforts could be significantly

reduced, which makes specification based IDS using rule

learning appear to be very promising.

Nevertheless, given the fact that no single intrusion de-

tection technique is capable of catching all attacks and/or

producing zero false alarm, different detection approaches

should be regarded as being complementary rather than com-

petitive.

IX. CONCLUSION AND FUTURE WORK

In the present work, we provide a gentle introduction and

a systematic analysis of intrusion detection systems, smart

grids and rule learning techniques, respectively. Besides, we

summarize the most important criteria for assessing quality

of learned intrusion detection rules. Furthermore, to the best

of our knowledge, we present the first survey focusing on

rule learning based IDS to shed more light on this research

area. We advocate that, when seeking opportunities to apply

rule learning techniques in IDS, one should always bear in

mind that no work can by no means include all applicable

machine learning and data mining techniques for rule extrac-

tion. Hence it is also very important to explore new machine

learning and data mining techniques for rule induction, and

to make use of rule learning techniques already applied in

other fields but not yet in IDS, along with trying to apply

and improve the techniques mentioned in our article. One

possible option would be to explore the potentials of various

artificial neural networks for rule induction. As recently

research topics move towards interpretable artificial intelli-

gence, more advances are being made in this field, which

may be further exploited for inferring knowledge in the form

of symbolic rules. If viewed from a different angle, rule

induction from artificial neural networks itself is a way to

realize interpretable artificial intelligence.

It is worth noting that specifications or rules can be con-

structed or learned through different data sources, and repre-

sented in different abstract levels to detect or only to be able

to detect a subset of all possible attacks. For instance, in [29]

specifications are learned leveraging system calls to detect

attacks against privileged programs, in [104] specifications

are constructed only by means of network layer data which

are more abstract than taking into account application data

unit as well.

As mentioned in Section IV, there is no publicly available

reliable IDS dataset for smart grids. Our future works include

building real-world test beds for various subsystems in SG,

especially microgrids due to not being commonly targeted

in the research community [23], and AMI owing to its very

critical importance for successful SG deployment. Since real

attack data are not available and conducting real attacks in

energy systems to collect data would be totally off limits,

the best viable solution is to generate and collect normal and

attack data on some carefully constructed test beds.

ABBREVIATIONS

AMI Advanced Metering Infrastructure

AODV Ad-hoc On-demand Distance Vector

AUC Area Under the Curve

BAN Business Area Network

BK Background Knowledge

BSM Basic Security Module

CPS Cyber-Physical System

D-FRI Dynamic Fuzzy Rule Interpolation

DARPA Defense Advanced Research Projects Agency

DDoS Distributed Denial-of-Service
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DNP3 Distributed Network Protocol 3

DRFSA Dynamic Recursive Feature Selection Algorithm

DSR Dynamic Source Routing

FN False Negative

FP False Positive

FPR False Positive Rate

GA Genetic Algorithms

GNP Genetic Network Programming

GOOSE Generic Object Oriented Substation Events

GP Genetic Programming

GSE Generic Substation Events

GSSE Generic Substation State Events

HAN Home Area Network

HMI Human-Machine Interface

IAN Industry Area Network

ICCP Intercontrol Center Communications Protocol

ICT Information and Communications Technologies

IDS Intrusion Detection System

ILP Inductive Logic Programming

IoT Internet of Things

KDD Knowledge Discovery in Databases

LAN Local Area Network

LCS Learning Classifier System

LERS Learning from Examples based on Rough Sets

LTL Linear Temporal Logic

MANET Mobile Ad-hoc Network

MLP Multilayer Perceptron

NAN Neighborhood Area Network

NGFW Next Generation Firewall

OPC Open Process Communication

OSI Open Systems Interconnection

PCA Principal Component Analysis

PDC Phasor Data Concentrator

PLC Power Line Communication

PLC Programmable Logic Controller

PMU Phasor Measurement Unit

PSO Particle Swarm Optimization

R2L Remote to Local

RAM Rule Antecedent Modification

RAMS Rule Antecedent Modification Sequence

RBF Radial Basis Function

RIPPER Repeated Incremental Pruning to Produce Error

Reduction

RL Reinforcement Learning

ROC Receiver Operating Characteristic

SCADA Supervisory Control and Data Acquisition

SG Smart Grid

SPAN Switch Port Analyzer

SPM Sequential Pattern Mining

TAP Test Access Point

TCP Transmission Control Protocol

TN True Negative

TP True Positive

TPR True Positive Rate

U2R User to Root

UCS sUpervised learning Classifier System

UCSSE sUpervised learning Classifier System with real

time Signature Extraction

VPN Virtual Private Network

WAN Wide Area Network

XCS eXtended Classifier System
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