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Abstract: Inertial microfluidic technology, which can manipulate the target particle entirely relying
on the microchannel characteristic geometry and intrinsic hydrodynamic effect, has attracted great
attention due to its fascinating advantages of high throughput, simplicity, high resolution and low
cost. As a passive microfluidic technology, inertial microfluidics can precisely focus, separate, mix or
trap target particles in a continuous and high-flow-speed manner without any extra external force
field. Therefore, it is promising and has great potential for a wide range of industrial, biomedical and
clinical applications. In the regime of inertial microfluidics, particle migration due to inertial effects
forms multiple equilibrium positions in straight channels. However, this is not promising for particle
detection and separation. Secondary flow, which is a relatively minor flow perpendicular to the primary
flow, may reduce the number of equilibrium positions as well as modify the location of particles
focusing within channel cross sections by applying an additional hydrodynamic drag. For secondary
flow, the pattern and magnitude can be controlled by the well-designed channel structure, such as
curvature or disturbance obstacle. The magnitude and form of generated secondary flow are greatly
dependent on the disturbing microstructure. Therefore, many inventive and delicate applications
of secondary flow in inertial microfluidics have been reported. In this review, we comprehensively
summarize the usage of the secondary flow in inertial microfluidics.

Keywords: secondary flow; Dean flow; inertial microfluidics; particle manipulation and separation

1. Introduction

Microfluidic technology is defined as the precise manipulation of very tiny quantities of fluids
(from 10−9 to 10−18 L) by leveraging the delicate channel with the dimension of tens to hundreds
of micrometers [1]. In the past decades, the development of microfluidic technologies is booming,
with applications in bioanalysis, chemical synthesis, medical chemistry, cell biological research, etc. [1].
As a rapidly developing technology, there are many fascinating advantages of microfluidics compared
with the traditional macroscale technology, including (1) less sample and reagent amounts required;
(2) reduction of analytic time; (3) high detection sensitivity; (4) low cost; (5) small footprint and (6)
good automation and integration characteristics for less risk of human intervention, etc. [2].

Owing to the capability of manipulating fluids at the order of microliter level, microfluidics
is expected to be the revolutionary technology in fields of biomedicine and clinical diagnostics.
Precise particle manipulation is an essential ability in most biological assays and medical diagnostics [3].
Particles (e.g., cells) can be orderly manipulated based on differences in their biological and physical
characteristics, such as size, shape, magnetism, dielectric property, density, etc. [3–5].

Many microfluidic technologies of particle manipulation have been developed. According to
the manipulation principle, microfluidic particle-manipulation technology can be classified as either
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passive or active methods. The active methods refer to the ones taking advantage of the external field
for its functionality. In contrast, the passive methods merely rely on the channel geometry and intrinsic
hydrodynamic effects for effective particle manipulation. The high-sensitivity acoustophoresis (AP) [6],
dielectrophoresis (DEP) [7], magnetophoresis (MP) [8], optical force [9], electrokinetics [10] and their
combination [11] are typically employed by the active microfluidic particle-manipulation methods.
In general, the active particle manipulation can provide and contribute to a more precise particle
movement, but the external functional field restricts the throughput as they require particles to be
exerted for a sufficient period. Moreover, bulky auxiliary equipment complicates the whole system and
complex fabrication process increases the cost of device. On the other hand, the passive microfluidic
methods, such as deterministic lateral displacement (DLD) [12,13], pinched-flow fractionation (PFF) [14],
hydrophoresis [15,16] and inertial microfluidics [4,17,18], are normally more convenient to operate and
have relatively higher throughput.

In microfluidics, an extra lateral force that is perpendicular to the primary flow direction is
always needed to move the target particles or fluid to the desired position. This lateral force can
be: (1) an electrical [7], acoustic [6] or magnetic [8] force, originating from an external power source;
or (2) a hydrodynamic effect due to intrinsic fluid properties and fluid lateral movement, such as
inertial migration, viscoelastic focusing and secondary flow [4,19]. For the microfluidic technology
that employs external active force fields, inertial migration, and viscoelastic focusing, there have been
technical review articles that specifically discussed each technology [4,17,20,21].

Secondary flow, which is the relatively minor flow perpendicular to the primary flow, can apply an
extra force on the particles and displace their positions. This hydrodynamic force is normally associated
with the inertial flow regime, serving as one of the most important effects for implementation of particle
manipulation. Secondary flow has been extensively employed for fluid and particle manipulation,
such as mixing, trapping, focusing and separation [3,17,22]. However, to the best of the authors’
knowledge, so far, there has been no technical review to summarize and discuss specifically the
mechanism and usage of secondary flow on the manipulation of fluid and particles in microfluidics.

Therefore, in this review, we discuss the mechanism of secondary flow in various structured
channels and summarize their applications on the fluid mixing and particle manipulation. Based on
the channel feature, we categorize the channel structures as a spiral or serpentine channel, a channel
with obstructions or with expansion-contraction cavity arrays (ECCA), or a multilayer channel with
top/bottom groove array, Figure 1. Then, we discuss the mechanism and characteristics of secondary flow
in each channel structure. And it is found that Dean flow, Dean-like flow and irregular secondary flow
are correspondingly generated according to the disturbing microstructure. After that, we summarize
their biomedical applications. Finally, we point out some perspectives on the future development of
secondary flow usage in inertial microfluidics. This review article is expected to provide a deep insight
into secondary flow and its up-to-date biomedical applications.
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Figure 1. Category illustration of microchannels using secondary flow. There are five typical types of
microchannels summarized in our work, which can generate secondary flow through the curved channel
or obstruction obstacle. They are the spiral microchannel, serpentine microchannel, microchannel
with expansion-contraction cavity array (ECCA), microchannel with obstructions and double-layered
microchannel with groove array. The single-layered microchannel generates the specific type of
secondary flow, Dean flow and Dean-like flow, to control particle movement, whereas the multilayered
microchannel induces complicated irregular secondary flow.

2. Hydrodynamic Force in Microchannel

Inertial microfluidics is one of the most popular passive technologies relying on natural inertial
effects at high flow speed. Originally, the inertia of fluid and particles in the microfluidic system was
ignored. There used to be a misconception that the flow condition of laminar flow can be equated to
Stokes flow [4]. However, the inconsistent results between the experiments and this approximation
always imply the unreasonable aspect, especially with the increase of Re (Re = ρfUH/µ ρf: fluid density;
U: maximum velocity; H: hydraulic diameter of microchannel; µ: dynamic viscosity). Therefore,
an increasing number of research works began to focus on the intermediate flow condition (Re is from
~1 to ~100) [23,24].

Early in the 1960s, it was found that particles which were disorderly dispersed at the entrance of a
straight channel would gradually migrate laterally to several equilibrium positions without any external
intervention after travelling a long enough distance [25,26]. This intriguing phenomenon which is
referred to the inertial migration has been comprehensively investigated and widely recognized by
the counteraction of two dominated forces in the inertial regime, the shear gradient lift force FLs

(FLs ∝ ρfU
2a3/H, a : particle diameter) and the wall lift force FLw (FLw ∝ ρfU

2a6/H4) [27,28]. Wall lift
force is induced by the interaction of suspending particles and adjacent walls, pushing particles to
the channel centerline. On the other hand, the shear gradient lift force is generated by the parabolic
velocity curvature of Poiseuille fluid, driving particles away from the centerline of the microchannel.

The inertial microfluidics typically works in an intermediate Re range. And the phenomenon
of particle migration was observed in various kinds of microchannels [29–31]. We have known that
inertial lift force exerts on flowing particles, forming some equilibrium positions, and it closely depends
on the geometry of the channel’s cross section. Ignoring the far weaker hydrodynamic forces (such as
the Saffman force, Magnus force, etc.), the inertial lift force is mainly composed of the shear gradient
lift force and the wall lift force. The analytical expression of the inertial lift force (FL) exerting on a
small rigid sphere particle (a/H<< 1) was, through the method of matched asymptotic expansions,
first derived by Asmolov as: [32]

FL = fLρfγ
2a4 (1)



Micromachines 2020, 11, 461 4 of 23

This expression can be simplified as:

FL = fLρfU
2a4/H2 (2)

fL ∝ H2/a2
√

Re (3)

where γ is the shear gradient. The lift coefficient fL is a function of the lateral position of particles x

and the Re [32,33]. The scaling was derived from experimental results, and it is found that fL remains
nearly constant (0.5) when Re is less than 100 [23,31].

Meanwhile, the viscous drag force on a flowing particle is influenced by particle Reynolds number
(Re’ = νtρfa/µ; here vt is the relative velocity of the fluid to the particle). At the low Re’, the drag force
exerting on a rigid spherical particle can be expressed as follows:

When the Re’ is in the range between 10−4 to 0.2,

FD = 3πrµ
(

vf − vp

)

(4)

When the Re’ is in the range between 0.2 to 103,

FD = 3πrµ
(

vf − vp

)(

1 + 0.15Re′0.687
)

(5)

where r is the radius of the particle, vf is the velocity of the fluid, and vp is the velocity of the particle [34].

3. Spiral Microchannel

In the curved channel, the transverse secondary flow is generated within the cross sections due to
the velocity mismatch. In Poiseuille flow, the fluid element near the centre area of the cross section
possesses larger inertia, while the fluid element at the adjacent area of the channel sidewall possesses
lower inertia. As a result, the fluid in the centre tends to migrate outwards, and the fluid originally
located at the outer position moves laterally inwards through the top and bottom space based on the
conserve mass principle [4], Figure 2a. The stable flow field within the cross section transforms into
two symmetric counter-rotating microvortices, defined as Dean flow [35]. Several external parameters,
including channel cross-sectional dimensions, Dean number (κ), Re and curvature radius of the channel
can affect the magnitude and form of Dean flow. The dimensionless parameter κ was proposed by
Berger et al. to evaluate Dean flow, expressed as [36]:

κ = (
H

2R
)

1/2
Re (6)

where R is the radius of curvature.
Furthermore, the velocity of the Dean flow (UD) and the Dean drag force (F′

D
) can be derived

as [37]:
UD = 1.8× 10−4De1.63 (7)

F′D = 3πrµ(UD − vp) (8)

Meanwhile, with the increase of Dean number, the center of the two symmetric vortices is going
to move outwards to the outer channel wall in the radial direction [36].
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Figure 2. (a) Transverse counter-rotating microvortices within the cross section of the curved channel.
Dean flow is generated by the inertial mismatch and centrifugation effects in the cross section of
microchannel [4]. Adapted with permission from Di Carlo. (b) Optical microscopic images of the dyed
fluid flow distribution captured at the end of the spiral micromixer, illustrating the mixing performance
at different flow rates. Re is gradually increased from 3 to 30 [38]. Adapted with permission from
Howell Jr. et al. (c) Schematic drawing of the three-dimensional focusing of co-flow streams in the
planar spiral microchannel with the assistance of Dean vortices [39]. Adapted with permission from
Mao et al. (d) Modified Dean flow separation method using the spiral microchannel with trapezoid cross
section [40]. Adapted with permission from Wu et al. (e) High throughput blood plasma extraction
using multiplexing slanted spiral microchannel with the trapezoidal cross section [27]. Adapted with
permission from Rafeie et al. (f) Confined spiral microchannel with ordered micro-obstacles for the
accelerated Dean flow particle manipulation [41]. Adapted with permission from Shen et al.

The spiral microchannel is one of the widely used curved channels, which has been extensively
investigated owing to its robust ability and easy principle [22,42]. As the curvature of the spiral channel
is constant in a single direction, the generated Dean vortices at different curved parts along the spiral
microchannel are approximately the same, which enables the prediction of the particle dynamics by the
superposition of the inertial migration and Dean flow. Normally, flowing particles with similar density
with the fluid experience coupled effects from the Dean flow drag force and inertial lift force, as the
centrifugal force is negligible [17]. Di Carlo et al. introduced the inertial force ratio Rf (Dean flow drag
force/inertial lift force) to evaluate the order of magnitude scaling between two effects determining the
particle behavior [43]. It is suggested that the particle behaviour would be modified by the Dean drag
force, as Rf was larger than 0.04 [44].

At the nascent stage, different fluids mixing was the pivotal problem for microfluidic development.
The spiral microchannel was originally employed to generate Dean vertices performing the mixing
functionality through increasing the interfacial area for diffusive mixing [38,45]. Jiang et al. presented
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that the periodic transverse Dean vortex patterns in curved microchannel enabled rapid chaotic mixing
for Dean number over 140 [46]. Howell et al. proposed the Dean vortex-based micromixer using a
spiral microchannel, as shown in Figure 2b [38]. The mixing effect was found to be improved as the
applied Re increased from 1 to 10. Furthermore, the aspect ratio of microchannel influenced mixing
performance as well. Low aspect ratio (0.5) strongly suppressed the vortex formation, while mixing
could be enhanced as the ratio exceeded 1. Then, mixing performance using a spiral microchannel
was investigated by Sudarsan et al. by introducing five spiral designs with different dimensions.
In experiments with Re ranging from 0.02 to 18.6, mixing results were influenced by the flow rate, length of
spiral contour and quantity of arc, while it has been demonstrated that the abrupt expansion change of
the cross-sectional area was able to improve the mixing through the expansion vortex as well [45].

Additionally, for confined Dean flow, the transverse Dean flow drag force has been demonstrated
to contribute to ordered particle manipulations. The combination effects of Dean flow and inertial
migration in the spiral microchannel was explored for the particle-focusing component of on-chip
flow cytometry [39,47]. Mao et al. reported a three-dimensional hydrodynamic focusing in the planar
spiral microchannel with the aid of one pair of sheath flows [39]. As shown in Figure 3c, Dean vortices
transformed vertical co-flow streams into horizontal streams. The additional pair of sheath flows
subsequently pinched horizontal streams forming the three-dimensional streamline focusing. Moreover,
Bhagat et al. further developed the three-dimensional hydrodynamic focusing method in the spiral
microchannel for a microscale flow cytometer [37]. As a powerful single-cell analysis tool, a commercial
flow cytometer was normally bulky and expensive. The planar spiral microchannel design could take
advantage of the Dean flow drag force and inertial lift force to focus the particles in three dimensions.
With a laser-induced fluorescence module integrated, the on-chip flow cytometer system could offer a
high detection throughput of 2100 particles/s. Moreover, using the adjusted curved spiral microchannel,
Cruz et al. realized ultrasensitive submicro particle focusing [48]. Particles with size between 0.5 µm
to 2.0 µm could be aligned on corresponding equilibrium positions at the end of the microchannel.

It is known that the direction of the streamline determines the particle migration tropism and the
magnitude difference of drag force enables particle distributions at different positions, subsequently,
particle separation can be realized. Yoon et al. investigated the size-based particle separation theory
based on Dean vortex in the spiral microchannel [49]. The large particle with diameter larger than
0.72 times channel height h was guided by transverse flow in the center area to outward direction,
while the small particle whose size was smaller than 0.27h was pushed by boundary circulating flow to
the inward sidewall.

The spiral microchannel has been extensively exploited for applications of particle sorting and
separation in past decades [37,47,50–53]. Evidence from the Equation (8), Dean flow drag force exerted
on particle is dependent on the size of particles, which is useful for particle differentiation. Bhagat et al.
successfully used a five-loop spiral microchannel to completely separate 7.32 µm and 1.9 µm particles at
Re of 5 [54]. Inside the curved channel, small particles were retained in Dean flow, while large particles
were equilibrated by the counterbalance of Dean flow effects and inertial effects to the new position.
Recently, circulating tumor cells (CTCs) separation and enrichment have attracted great attention
because of the important biomarker potential of CTCs in clinical diagnostics. Hou et al. developed a
Dean Flow Fractionation (DFF) method through the spiral microchannel to continuously isolate CTCs
from diluted blood samples [51]. Later, Sun et al. proposed the double-spiral microfluidic channel to
continuously isolate tumor cells from blood sample [53]. The throughput of this on-chip method could
be comparable with the conventional macroscale technology, reaching up to 2.5 × 108 cells/min and
the isolation efficiency could be more than 90%.

Meanwhile, the effect of the cross-sectional shape of the spiral microchannel on amplifying
the difference of particle migration was investigated [40,55]. Various cross-sectional shapes such as
trapezoid and pentagon were introduced for the spiral microchannel to control particle alignment
using a specific Dean flow. Depicted as Figure 2d, Wu et al. proposed the novel spiral microchannel
with a trapezoidal cross section to separate polymorphonuclear leukocytes (PMNs) and mononuclear
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leukocytes (MNLs) from diluted blood samples [40]. In the spiral microchannel with rectangular cross
section, the large particle was focused on the inner sidewall by the Dean flow drag force, while the
smaller particle was trapped near the core of Dean microvortices. The settling locations of different-size
particles were overlapped, which reduced the separation efficiency. In contrast, the trapezoidal cross
section shifted the core of microvortices to the outer sidewall with larger depth, for which the gap
of different equilibrium positions was amplified and the broadening space at the outer side was able
to accommodate more quantity of particles. Then, the particle-focusing mechanism within the spiral
microchannel with the trapezoidal cross section was comprehensively investigated by Guan et al. [56].
Moreover, Warkiani et al. reported an ultra-fast, label-free CTCs-isolating inertial microfluidic device
using the spiral microchannel with trapezoidal cross section [57]. The stronger Dean vortex trapped
small size hematologic components while large CTCs were concentrated on another equilibrium
position to the opposite direction. Compared with the previous method, the requirement of sheath flow
is neglected, which improve the throughput by an order of magnitude. In the validation experiment,
cancer cell line cells could be isolated from a 7.5 mL blood sample within 8 min for a high purity
of over 80% (400–680 WBCs counts/mL, ~4 log depletion of WBCs). Furthermore, most recently,
Rafeie et al. proposed the slanted spiral microchannel with trapezoidal cross section to isolate plasma
in a high-throughput manner, Figure 2e [27]. In this scheme, the inner depth of the cross section was
larger than the outer depth so that more locating space was prepared for blood cells deviated inwards.
The proposed spiral device was able to isolate plasma with a purity of 100% and a throughput of
1.5 mL/min for diluted blood sample (0.5–1% Hct).

Additionally, the spiral microchannel was decorated with the confined microstructure to improve
the expected manipulating performance on particles. Recently, Shen et al. presented the spiral
microchannel with a library of ordered obstacles for establishing the sheathless, high-throughput,
long-term and highly efficient particle-manipulation method [41]. As shown in Figure 2f, through the
introduction of the micro-obstacles along one side of the spiral microchannel, cross-sectional area
was decreased, therefore, the flowing streamline velocity within the microchannel was accelerated.
The numerical simulation showed that the magnitude of transverse Dean flow was amplified.
With application of the confined spiral microchannel, they successfully conducted the particle sorting
for a ternary mixture, fluorescently labeled cell focusing and separation of CTCs from a complex blood
sample and blood-plasma extraction. On the other hand, typical 2D planar spiral microchannel does not
generate constant strong Dean flow. The Dean flow is greatly influenced by the varying curvature radius.
As a result, spiral microchannels require the covering of a large footprint at the square-centimeter
scale to realize particle manipulation. The compact 3D helical spiral microchannel can overcome this
shortcoming by arraying the curved channel with a constant radius in a 3D microfluidic network [58,59].
Paie et al. presented that the tightly curved helical-spiral microchannel induced and maintained strong
Dean flow to focus particles in three dimensions [59].

4. Serpentine Microchannel

Different from the spiral microchannel, and another typical curved channel, the curvature direction
of the serpentine microchannel is not constant, which makes the Dean flow’s effects on particle migration
much more complicated. It is challenging to predict the particle behavior through the coupled static
superposition of inertial lift force and Dean flow drag force like that of the spiral channel. As a
result, the research progress on the serpentine microchannel was a little slower compared with the
spiral microchannel. However, due to its intrinsic advantages of small footprint and easy layout for
structure optimization, the serpentine microchannel is still receiving increasing attention, and various
interpretations of different particle-migration phenomena have been proposed by researchers [17].

Alternating fluid streamlines and fluid-element folding and stretching in the serpentine channel
is advantageous for fluid mixing. The three-dimensional serpentine microchannel with C-shaped
repeating units was reported by Liu et al. utilizing secondary flow to stretch and fold the fluids,
increasing the interfacial area for mixing [60]. The serpentine microchannel provided 16 times the
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mixing performance compared with a straight microchannel. In this earliest work, the serpentine
microchannel was a three-dimensional structure and fabricated by the complex double-sided KOH
(Potassium Hydroxide) wet-etching technique. Afterwards, by harnessing the combination of Dean
flow and horizontal expansion vortices, Sudarsan et al. presented an asymmetric serpentine micromixer
(ASM) to improve microfluidic mixing performance through both curvature and width changing
configuration [24]. As shown in Figure 3a, with Re ≈ 32, the ASM was able to achieve 80% mixing
efficiency in the downstream distances, and the micromixing performance could be improved by
increasing Re. In this configuration, optimization of the ASM was dependent on two geometric
considerations: the aspect ratio of the cross section and expansion counterrotation angle.

Figure 3. (a) Schematic diagram of the asymmetric serpentine micromixer (ASM) configuration
and top microscopic view visualizing the color dye change in the expansion curved channel at
different Dean numbers [24]. Adapted with permission from Sudarsan et al. (b) Fluorescent particle
trajectories captured in the symmetric and asymmetric serpentine microchannel [23]. Adapted with
permission from Di Carlo et al. (c) Continuous size-based particle separation using the symmetric
serpentine microchannel. At moderated Re, different size particles receive corresponding Dean
flow drag force, resulting in different focusing phenomena [61]. Adapted with permission from
Zhang et al. (d) Consistent results of particle trajectories along the serpentine microchannel between
experimental capturing images and simulation results [62]. Adapted with permission from Liu et al.
(e) High-throughput micrometer and submicrometer size-based particle filtration approach using the
customized asymmetric serpentine microchannel [63]. Adapted with permission from Wang et al.
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The group of Di Carlo was the first to investigate hydrodynamic effects on particle focusing
in serpentine microchannels [23,64]. Two types of serpentine microchannels were fabricated to
investigate the influence of Dean flow on inertial migration, Figure 3b. In the symmetric serpentine
microchannel, particles were observed to be focused at two side equilibrium positions firstly, and this
focusing condition would be disturbed by increasing flow rate. On the other hand, in the asymmetric
serpentine microchannel, particles were concentrated to the single streamline on the center of channel,
and this equilibrium position would be blurred once again by increasing the flow rate. Hence,
the relationship between inertial lift force and Dean flow drag force determined the quantity and
location of particle equilibrium position within the serpentine microchannel. When inertial lift force
dominates, particles could be observed to be concentrated under the modification of Dean flow
drag. However, when Dean flow drag force dominates, particles would be mixed by the Dean flow
microvortices. Furthermore, the asymmetric system induced the bias of particle distribution for
the single equilibrium position. On the contrary, the system symmetry would generate transverse
forwards and backwards particle movements for two symmetric equilibrium positions. Based on this
fundamental research, Di Carlo et al. developed the rapid particle separation and filtration platform
by differential inertial particle focusing at moderated Dean number using the asymmetric serpentine
microchannel [64]. For the separation results, the purity of the small particle collected was more
than 90%, though the small-particle recovery rate was relatively low, and the purity of filtrated large
particles was also not ideal.

Meanwhile, our group has comprehensively investigated the mechanism of particle migration
and differential focusing in symmetric serpentine microchannels and developed practical biological
applications using the proposed mechanism [61,65–67]. Effects of particle centrifuge force on particle
migration were studied [65]. In a low-aspect-ratio microchannel (0.2), mixing effects of Dean flow were
weakened, while Dean flow microvortices were expected to benefit particle focusing. The centrifugal
force of particles was important for particle focusing when the density difference between particle and
fluid was significant. As shown in Figure 3c, the high-purity particle separation using the symmetric
serpentine microchannel was proposed as the small particles were dominated by the inertial lift
force while large particles were modified by Dean drag force [61]. The purity of particles were
both over 90% at a high throughput of 600 µL/min. Recently, Zhang et al. systemically investigated
effects of different parameters, including particle size, microchannel geometry, fluid viscosity and flow
conditions on particle migration in the serpentine microchannel [67]. It was found that particle-blockage
ratio, channel geometry, channel aspect ratio and Reynolds number could affect the particle-focusing
performance significantly. Moreover, through the scaling parameter and analytical analysis, the single
operational map for different particle-focusing patterns was derived, which could be useful for guiding
the design of microchannels for particle separation.

Additionally, numerical modeling has been introduced to calculate different forces in the inertial
flow regime through the direct numerical simulation (DNS). However, it is not suitable for long
microchannels with a complicated structure. Liu et al. presented a fitting formula for inertial
microfluidics based on DNS data obtained in straight channel, which could be used to predict
the particle trajectories in serpentine microchannels [62].

Due to the size limitation (a > 0.07H), the submicrometer or nanometer particle manipulation is
always challenging to inertial microfluidics. However, bacteria, organelles and viruses whose sizes
are smaller than 2 µm, are critically important for clinical diagnostics, environmental monitoring,
food-safety testing, etc. [68,69]. By shrinking down the serpentine microchannel, Wang et al. presented
the inertial focusing and separation method for submicrometer particles using the asymmetric
serpentine microchannel [63]. This approach leveraged the coupled effects of Dean drag force and
inertial lift force presented by Di Carlo mentioned above. The asymmetric serpentine microchannel
showed a robust particle-focusing performance in a short distance within the large flow-rate range.
Particles with a diameter of 2 µm could be focused from 100 to 1400 µL/min, while revealing a
fantastic flow-rate-independence feature. Moreover, submicrometer particle separation was successfully
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achieved by filtrating the large particles, Figure 3e. At the flow rate of 80 µL/min, 2 µm particles could
be filtrated from the 920 nm particles.

Similar to spiral microchannels in 3D layout, researchers search for robust serpentine devices
through modification with the novel physical module. Most recently, novel microfluidic systems were
reported to employ customized serpentine configurations for biological applications. Martel et al.
introduced the delicate design to combine particle focusing and microsiphoning for continuous
bioparticle concentration [70]. The microdevice was an asymmetric serpentine microchannel integrated
with a microsiphoning channel, by which cell-free fluid was siphoned, and cells could be concentrated
by 400 times at a high throughput of 240 mL/h.

5. Microchannel with Expansion-Contraction Cavity Array (ECCA) or Obstructions

In addition to curved channels, microchannels with expansion-contraction cavity array (ECCA)
are also employed in inertial microfluidics, taking advantage of geometry-induced secondary flow
for particle manipulation. Compared with spiral or serpentine microchannels that make use of the
velocity mismatch within cross sections, ECCA microchannels generate secondary flow due to the
abrupt change of cross section in terms of size or shape. The secondary flow also consists of two
counter-rotating microvortices similar to Dean flow, which was defined as Dean-like flow.

The group of Park has conducted comprehensive research on contraction-expansion array (CEA)
microchannels for different particle manipulations [71–75]. In the CEA microchannel to mix two different
fluid flows by the Dean microvortices [71], Figure 4a, Dean-like flow occurred at the contraction
channel enabled continuous stretching and folding effects on fluid flows. This micromixer provided
a 90% mixing performance when Re was from 4.3 to 28.6. Besides, with the assistance of a single
sheath flow, the three-dimensional particle-focusing method using the same CEA microchannel was
achieved [72]. The sheath flow with a high flow velocity gradually wrapped the low-velocity sample
flow deviated by centrifuge-induced Dean-like flow, causing three-dimensional particle focusing.
Moreover, the CEA microchannel has been also demonstrated to separate particles based on size
difference [73]. In studies of focusing and mixing applications, the secondary flow was expected to be
dominant on particle migration, while inertial lift force could be ignored because of the relatively low
Reynolds number and small dimension. On the other hand, for particle separation, both inertial lift
and Dean flow drag played an important role to guide particles to their corresponding equilibrium
positions. As shown in Figure 4b, large particles were dominated by inertial lift force and concentrated
to the equilibrium position near side S1, while small particles were dominated by Dean-like-flow drag
force and concentrated to the equilibrium position near side S2. At the same time, this proposed
sheath-flow-assisted inertial approach was available for the carrier-medium exchange, which was
important for the biochemical assays. Furthermore, the CEA microchannel with sheath flow has been
developed to separate blood cells from whole blood to achieve pure plasma as well as filtrate rare
cancer cells from blood samples [74,75].
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Figure 4. (a) Rapid laminating micromixer using the contraction-expansion array (CEA) microchannel
and simulated Dean flow microvortices induced by centrifugation effects at the contraction channel [71].
Adapted with permission from Lee et al. (b) Schematic illustration of the large and small size particle
migration within the CEA microchannel and the captured fluorescent particle (10 µm and 4 µm)
trajectories with the increase of Re [73]. Adapted with permission from Lee et al. (c) Size-based
multiorifice microfluidic particle separator using inertial lift force and Dean flow drag force [76].
Adapted with permission from Choi et al. (d) Schematic drawing of the size-based microfluidic
multimodal particle sorting system with multiple pairs of expansion-contraction side collection
chambers for the sorting of complicate components in the heterogeneous solutions [77]. Adapted with
permission from Wang et al.

Meanwhile, in order to remove sheath flow to simplify the flow control, Park et al. developed the
sheathless particle-manipulation method using the double-sided expansion-contraction cavity array
microchannel [78]. The multiorifice microchannel could focus particles at two equilibrium positions on
both sidewalls. Here, the particle equilibrium position was found to be affected by particle size and flow
condition as well. Large particles were focused on the equilibrium position at the centerline, while small
particles were located on the equilibrium positions on both sidewalls (Figure 4c) [76]. This size-based
microfluidic particle-manipulation method was defined as multiorifice flow fractionation (MOFF).
Furthermore, Sim et al. proposed a multistage multiorifice flow fractionation (MS-MOFF) device
to improve the recovery rate and reduce the loss of purity through retreatments on particles [79].
The obtained recovery rate was found to increase from 73.2% to 88.7%.
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Hur et al. presented a sheathless particle isolation method using an ECCA microchannel [80].
In principle, large target particles or cells could be isolated into the microscale cavity from heterogeneous
solutions, and this reported microfluidic device was called “centrifuge-on-a-chip”. Particles were
focused first in the high-aspect-ratio microchannel by inertial lift force. Then, in the expansion structure,
the shear-gradient lift force pushed particles to the direction of expansion. Because the shear-gradient
lift force was proportional to the size of the particle, large particles could be pushed deeper to the
expansion cavity and trapped by the microvortices [81]. In massively parallel applications, capturing
efficiency of the channel network was higher than 25%, as each cavity could trap 11 to 25 cells.

The “centrifuge-on-a-chip” device can selectively trap, isolate rare cells based on size difference
from background particles. And selecting sensitivity of this method was believed to be one of the
highest for inertial methods [82]. Fundamentals of the manipulating mechanism and process were
comprehensively investigated for isolating cancer cells from blood [81,83] and pleural fluids [84].
However, due to the limited capacity of the trapping cavity, the total number of the target cells obtained
was normally no more than the level of hundreds. It was difficult to process a large volume sample.
To solve the problem of limited capacity, Wang et al. presented the vortex-aided inertial microfluidic
particle-separation method using the siphoning channel with symmetric expansion chambers on both
sides [85]. The abrupt cross-sectional change generated vortices to siphon particles into the expansion
chambers. Then, siphoned large particles were guided by the sheath flow within the chamber and
released through the side outlets. Based on this vortex-assisted inertial microfluidic particle-isolation
mechanism, the group of Papautsky developed the size-based microfluidic multimodal particle sorter
using the high-aspect-ratio straight microchannel with multiple pairs of expansion-contraction side
chambers, as shown in Figure 4d [77]. The cut-off size of each section in the microchannel could
be modulated easily through change of flow rate and fluidic resistance of the channel network.
Trinary particle mixtures could be individually separated by two steps in the microchannel with
high resolution.

6. Multilayered Microchannel with Groove Array

Although the vast majority of microchannels’ cross section is restricted to regular rectangle due
to characteristics of single-layer photolithography, multilayered microchannel can also be fabricated
through the layer-by-layer stacking of multistep photolithography. Accordingly, some innovative
works using straight multilayered microchannels with groove- or ridge-array structure onto the
surfaces have been also explored by taking advantage of strong geometry-induced secondary flow to
manipulate particles of interest. The secondary flow pattern is more complicated and unpredictable,
which is distinct from the curvature-induced Dean flow discussed above [20].

Herringbone or ridge structure was first introduced to rapidly mix flowing fluids in a straight
microchannel with the absence of turbulence and inertial effects at low Reynolds number (<1)
(Stokes flow). Stroock et al. presented the pioneering microchannel with ridges placed on the top floor
at the oblique angle of 45◦, and they found that the transverse secondary vortices were generated
due to the steady axial pressure gradient [86]. The generated twisting flow was also observed to be
independent of Re in Stokes flow regime. As shown in Figure 5a, they successfully demonstrated that the
staggered herringbone mixer (SHM) with ridged topography could realize effective microfluidic mixing
at Re between 0 to 100. Then, the brief developing analysis and model of transverse pressure-driven
secondary flow over ridge surfaces along a straight microchannel were conducted and derived based
on the simple anisotropic effective boundary conditions to offer the practical workable guide of SHM
mixer design [87,88]. Meanwhile, as it is found that transverse secondary-flow drag force was linearly
proportional to Re (<2), the proposed microfluidic mixing technologies were typically insensitive to
changing flow rate [89].
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Figure 5. (a) Staggered herringbone mixer (SHM) using chaotic twisting flow by the slanted
groove structure [86]. Adapted with permission from Stroock et al. (b) Optical images of the
dyed fluid distribution in different microchannel configurations showing the mixing performance
comparison between T-channel, slanted groove mixer (SGM) and barrier embedded mixer (BEM) [90].
Adapted with permission from Kim et al. (c) Layout of the herringbone-grooved microchannel used
for multiwavelength microflow cytometer. Sample flow can be hydrodynamically concentrated and
wrapped by the directed sheath flows with isolation from microchannel surfaces [91]. Adapted with
permission from Golden et al. (d) Transverse circulating secondary flow microvortices induced by
slanted groove structures on the top surface of microvortex manipulator (MVM) [89]. A particle’s
equilibrium position is dependent on its density compared with the liquid medium. Adapted with
permission from Hsu et al. (e) Flow-rate-insensitive continuous microfluidic filtration device with
shifted groove structures on the top surface. The robust and simple microchannel can be interconnected
with the syringe and operated manually through slow pushing [92]. Adapted with permission from
Song et al.

The addition of the SHM microfluidic mixer, slanted-groove mixer (SGM), barrier-embedded
mixer (BEM) and other passive derivative mixers evolving from the original SHM have been
developed [87,90,93,94]. In these works, Kim et al. have shown that the combination of periodically
inserted barriers and an SGM T-channel could provide a better mixing performance, Figure 5b [90].
In BEM, the inserted barriers exerted spatial flow perturbation effects onto the secondary flow
microvortices. Meanwhile, Sato et al. reported that slanted grooves on the top floor and both sidewalls
in the three-dimensional microchannel could generate efficient short pitch spiral flow to improve
chaotic mixing performance compared with the conventional SHM device [94]. Furthermore, Stott et al.
proposed the herringbone-chip (HB-chip) utilizing geometry-induced secondary flow to enhance
the mixing performance of blood samples [95].The interactions between target CTCs and coated
antibodies were greatly increased through microvortices. In clinical experiments, the fabricated parallel
HB-chip array showed the enhanced capture efficiency with the 26.3% improvement compared with
the CTC-chip.
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Beside microfluidic mixers, the multilayered microchannel with a groove pattern can be used to
orderly manipulate the particle distribution based on their physical characteristics (such as particle
size and density). In low Re, Stokes flow merely exerted a viscous drag on buoyant particles in
the mainstream direction, and the magnitude of the viscous effects was relatively weak. In this
case, some normally negligible effects like gravitational force are of more importance. Some creative
studies employed these forces and geometry-generated secondary flow to focus or separate particles.
Bernate et al. utilized the straight microchannel with an array of slanted open cavities on the bottom
floor to realize the separation of suspended particles depending on the difference of size and settling
velocity [96]. Particles were cumulatively deflected along different directions by the disturbed flow
field in the vicinity and interior of the open cavity.

In the application of flow cytometry, Howell Jr et al. developed the microdevice with a set of
grooves to wrap the sheath flow for the two-dimensional (2D) hydrodynamic sample focusing [97].
In this scheme, the sample flow was firstly confined horizontally by a single sheath flow, and grooves
could subsequently deviate the single sheath flow to vertically wrap the concentrated sample flow in a
2D form. Here, with the aid of the groove-generated helical flow, complete particle focusing was realized
without the requirement of the additional pair of sheath flows. Furthermore, the multiwavelength
microflow cytometry with inserted optical fibers was developed using the herringbone-grooved
microchannel [91]. As shown in Figure 5c, the herringbone grooves on the top and bottom disturbed
the flow field and guided the sheath flow to sandwich sample flow in a single streamline.

After that, Hsu et al. presented the microvortex manipulator (MVM) to passively focus particles
and cells, and further developed the mechanism to separate binary particle solutions of different density
particles (the difference could be as low as 0.1 g/cm3) in a parallel manner [89]. As shown in Figure 5d,
the slanted groove structure on the top surface could deflect the fluid laterally along with the expansion
groove structure. On the other hand, owing to the mass conservation principle, the fluid recirculated
to the opposite direction at the bottom of the microchannel, forming a closed secondary flow vortex
within the cross section. The combination of secondary flow drag force, buoyant force and gravitational
force guided particles to new equilibrium positions, which are at interfaces of adjacent secondary flow
vortices. For this technique, the amplitude ratio of the expansion ridge to the straight channel was
a critical parameter for the generated secondary flow pattern. For example, in the microchannel of
SGM with the high ratio (>0.3), a secondary flow microvortex rose within the whole channel, while the
microvortex merely occurred in the straight main channel in this work (0.1).

Besides, the group of Choi and Park introduced the novel concept of hydrophoresis [98]. In the
hydrophoresis principle, groove pattern induced pressure-driven secondary flow, guiding particle
movements, and the steric interaction between particles and channel’s walls retained particles into the
disturbed transverse flow. For effective hydrophoretic focusing, the particle’s diameter should be larger
than a half of the microchannel height, and the open cavity spacing should be larger than the particle
size to prevent clogging, but not too large or the particles would be trapped into the groove structures.
The continuous hydrophoretic filtration method was proposed using the straight microchannel with
both slanted groove patterns and filtration obstacle patterns on the top and bottom surfaces [15].
For isolation of WBCs from RBCs, slanted grooves contributed to hydrophoretic focusing on both cells,
while filtration obstacles filtrated large WBCs and withheld RBCs in the focusing streamline.

Additionally, hydrophoresis requires precise control of a low flow rate. To address this issue,
the flow-rate-insensitive microfluidic syringe filter was proposed for cell synchronization, Figure 5e [92].
There was the array of changing grooves on the top surface of microchannel. The shape of the groove
was gradually shifted from centre to side, in which generated secondary flow guided large size particles
to migrate laterally to the sides of the microchannel, regardless of flow-rate variation. As small particles
could not meet the criterion of hydrophoretic focusing, they were randomly distributed. Moreover,
Kim et al. reported the smart pipette with the designed microfluidic tip to separate plasma from whole
blood sample using a similar strategy [99]. Later, Kim et al. revised their design of smart microfluidic
pipette tip and presented the microchannel with discontinuous slanted groove array to preserve rare



Micromachines 2020, 11, 461 15 of 23

WBCs from blood cell populations [100]. As shown in Figure 6a, the WBC margination which resulted
from the deformability and biconcave disk shape of RBCs contributed to lateral deterministic migration
of WBCs. And the modified discontinuous groove array was used to solve the annoying deviation
problem of WBCs to improve WBC enrichment.

Figure 6. (a) Lateral deterministic migration-based WBC separation using the low aspect ratio straight
microchannel with discontinuous slant array (DSA) [100]. Adapted with permission from Kim et al.
(b) High-throughput, sheathless, magnetophoretic sorting of magnetic and nonmagnetic particles using
the grooved microchannel [101]. Adapted with permission from Yan et al. (c) Three-dimensional,
sheathless and high-throughput particle single-streamline focusing method using the stepped
microchannel [102]. Adapted with permission from Chung et al. (d) Sheathless, high-throughput and
three-dimensional particle-focusing method using a double-layered microfluidic device consisting of
the low aspect ratio straight channel and arc-shaped groove array pattern on the top surface [103].
Adapted with permission from Zhao et al. (e) Enhanced sheath flow-assisted particle-focusing and
separation method eliminating size limitation of conventional design [104]. Adapted with permission
from Zhao et al.

Hybrid microfluidic technologies which combine two or more physical principles have emerged
recently. Our group proposed that the assistance of the active functional field (e.g., electric field and
magnetic field) could improve the manipulation performance of hydrophoretic microfluidic devices
to weaken the limitation of particle size [105,106]. Firstly, a dielectrophoresis-active hydrophoretic
system was introduced to extract the plasma from the diluted blood sample in a relatively high
throughput manner [107]. Because the relatively low working condition of hydrophoretic devices
compared with other typical passive hydrodynamic means enabled enough retention time for particles
under the electrical field, the dielectrophoresis would exert negative DEP force on the travelling
particles and pushed them to the open cavity adjacent area where the particles under the size
criterion could be concentrated by the steric helical flow successfully. Furthermore, the application of



Micromachines 2020, 11, 461 16 of 23

rapid magnetism-based continuous particle sorting was developed based on the improved hybrid
hydrophoretic particle-manipulation approach [101]. As shown in Figure 6b, for the binary mixture of
magnetic and nonmagnetic particles, the positive and active magnetophoretic force pulled the magnetic
particle to the bottom and pushed the nonmagnetic particles away to the groove structures, forming the
different equilibrium positions. At the flow rate of ~100 µL/min, the 6 µm magnetic particles were
enriched at a purity of ~85%, and the focusing efficiency could be increased to over 95%.

The studies mentioned above are mostly under the regime of Stokes flow with low Re,
where fluid inertia is negligible. A particle’s motion is dominated by the viscous drag force from the
geometry-induced secondary flow. However, inertial effects cannot be neglected with the increase of
Re in the microchannel. Song et al. illustrated that the inertial effects of the microchannel on the high
Re could change the original hydrophoretic particle migration regime [108]. And they demonstrated a
multifunctional microfluidic technique to focus and separate particles through adjusting the balance
between the hydrophoresis and inertial effects. Recently, Mao et al. implemented numerical simulations
to investigate the particle migration in the microchannel with diagonal grooves on both the bottom and
top surfaces at a high Re (~20) [109]. The inertial effects of the low-aspect-ratio channel concentrated
the particles to the long sidewalls. As the vertical component of the equilibrium positions for the large
and small size particles were different, the directions of the drag force on large and small particles
were opposite. In another work, Chung et al. employed a double-layered stepped microchannel which
consisted of a low-aspect-ratio straight channel and the orthogonally located stepped-groove array
on the top surface taking advantage of the geometry-induced secondary flow to modify the original
multiple inertial particle equilibrium positions to a single-streamline [102], Figure 6c. The microchannel
could work at Re of 83.33 to focus the 9.9 µm particles on the central equilibrium position promising
a fascinating high throughput of 36,000 particles/s. They investigated the induced secondary flow
at Stokes flow (Re = 0.2778) and laminar inertial flow (Re = 83.33) for the comparison study using
numerical simulation. It is shown that the secondary flow at Re ≈ 0 was negligible with the tiny lateral
fluid flow displacement, while the magnitude of the displacement was significantly amplified with
Re = 83.33.

Our group investigated the high-throughput and sheathless passive microfluidic particle focusing
using geometry-induced secondary flow at high Re in the microchannel with arc-shaped groove
arrays [103]. Inertial lift force was used to balance with secondary flow drag force at new equilibrium
positions. As shown in Figure 6d, through the counterbalance between inertial lift force and secondary
flow drag force, the inertial microfluidic method showed good three-dimensional focusing on different
size particles as well as biological cells (such as Jurkat cells) in a high-flow rate of over 1000 µL/min.
Furthermore, the flow-rate-insensitive particle filtration method was also developed based on a similar
principle [110]. In the double-layered microchannel with grooves, secondary flow microvortices induced
by the pressure gradient varied in both magnitude and shape with increasing Re, and consequently
brought about different modes of particle focusing [111]. Moreover, we found that the selective utility
of geometry-induced secondary flow could improve the manipulation efficiency [104]. As shown in
Figure 6e, the single top sheath flow was employed in particle manipulation to overcome the limitation
of focusing on small particles (2 µm to 5 µm). The introduction of top sheath flow pushed particles to
the bottom region avoiding the deviation of geometry-induced secondary flow and to drive target
particles to the equilibrium position more efficiently. Moreover, the sheath flow did not require a
precise inlet flow rate control and this proposed inertial method was able to manipulate particles under
a wide range of flow rate ratios.

7. Discussion and Conclusions

In this review, we comprehensively discussed the phenomenon, theory and applications of
secondary flow in inertial microfluidics. In a straight microchannel, particle-focusing positions
are greatly dependent on the microchannel dimensions, particle and fluid physical characteristics.
Introduction of secondary flow can enable the particle of interest to switch to the new position.



Micromachines 2020, 11, 461 17 of 23

Based on the hydrodynamic principle, many passive inertial microfluidic methods were proposed.
According to the type of the channel structure, they are mainly classified as five parts discussed in this
review, including spiral, serpentine, channel with ECCA, channel with obstructions and multilayered
microchannel with groove array. The secondary flow can be finely tuned by the customized microchannel
and possesses a great particle-manipulation ability with some useful features like flow-rate insensitivity.

The secondary flow is a dispensable component in inertial microfluidics. It transforms the multiple
focusing positions into a single equilibrium position, and the particle-focusing positions can be
also modified precisely by the pattern and magnitude of secondary flow, which enables a variety
of microfluidic functions on particle and fluid manipulation. Based on it, a variety of biomedical
applications using secondary flow in microfluidics have been demonstrated, such as blood plasma
extraction [27], CTC isolation [57] and flow cytometry [37], etc. Compared with other microfluidic
technology, where the inertial effect is nearly negligible at a low flow speed in the microchannel.
The effects of fluid inertia should be considered when the flow Reynolds number is ~10. Besides,
secondary flow can significantly improve the functionality of inertial physics for different applications.

Although it has achieved significant progress on the investigation of physical fundamentals,
development of manipulation techniques and biomedical applications, some limitations need to
be overcome to promote the performance of secondary flow in inertial microfluidic technology.
For example, Dean flow can be quantitatively analyzed through the Dean number in the aspects
of magnitude and vortex pattern [36]. However, complicated secondary flow generated by the
double-layered microchannel with topology pattern is not consistent with the established regulation
of Dean flow. Different patterns of secondary flow have been observed including single ellipse
shape vortex, asymmetric double vortices and Dean-like vortices [89,111]. Through experimental
studies, parameters of cross-sectional aspect ratio, groove- or ridge-pattern style, amplitude ratio
between two layers’ heights and flow rate have shown effects on the geometry-induced secondary flow.
Although some empirical conclusions are summarized for a rough scheme and design of double-layered
microchannel, systematic quantitative analysis of secondary flow for precise particle manipulation is
still required.

For biological applications, body fluid samples (e.g., DNA, saliva, blood plasma, etc.) exhibit
nonnegligible non-Newtonian characteristics, as fluid viscosity is not constant depending on the
shear gradient (shear-thinning) [112–114]. Despite the assumption that diluted samples are treated as
Newtonian fluids, the viscoelastic effects might still be always obvious and affect the performance of the
inertial microfluidics. On the other hand, by substituting the Newtonian fluid with the non-Newtonian
fluid (e.g., polyethylene oxide (PEO) solutions and DNA solutions), elastoinertial particle migration
can be achieved, taking advantage of both elasticity and inertia [115,116]. In the new regime of
non-Newtonian physics, besides inertial lift force and secondary flow drag force, elastic force should
also be considered. Furthermore, it is shown that, leveraging the extra introduction of elastic force,
particle viscoelastic migration could be further customized for more precise manipulations [19].

Moreover, hybrid microfluidic platforms which combine two or more principles are proposed to
bring more flexibility and functionality of microfluidic systems [117,118]. Inertial microfluidics have
been demonstrated to integrate with sheath flow optophoresis, dielectrophoresis, etc. to manipulate
target particles at high sensitivity [71,119–122]. Moreover, oscillatory inertial microfluidics can focus
smaller-size particles with a small footprint microchannel [123–126]. Compared with the inertial
microfluidics flowing in a constant direction along a pressure gradient, oscillatory flow can switch
the flow direction at the high frequency, resulting in the practical infinite microchannel effects.
The sufficiently long flowing distance enables a longer time of transverse inertial effects for functionality.
It is expected that this novel mechanism can be also implemented in curved microchannels or
microchannels with obstacles. The secondary flow direction can be switched with the mainstream
direction, this may lead to different particle-focusing patterns compared to that in a constant flow
direction, which needs a systematic study. Furthermore, for fluid mixing, switching flow direction



Micromachines 2020, 11, 461 18 of 23

alternatively using oscillatory flow, the fluid passing path increases and the stretching and folding
frequency is greatly enhanced, which could be beneficial for a better mixing performance.
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