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Intelligent sensors should be seamlessly, securely, and trustworthy interconnected to enable automated high-level smart
applications. Semantic metadata can provide contextual information to support the accessibility of these features, making it easier
for machines and humans to process the sensory data and achieve interoperability. The unique overview of sensor ontologies
according to the semantic needs of the layers of IoT solutions can serve a guideline of engineers and researchers interested in the
development of intelligent sensor-based solutions. The explored trends show that ontologies will play an evenmore essential role in
interlinked IoT systems as interoperability and the generation of controlled linkable data sources should be based on semantically
enriched sensory data.

1. Introduction

Internet of Things (IoT)-based systems are spreading at a
fast pace with the promise to improve the quality of our
lives [1, 2] and the efficiency of production systems [3].
Applications of IoT frequently performdata analysis and real-
time predictive analytics [4] that require informative auto-
mated measurements. IoT-based sensor solutions attempt
to support ubiquitous computing [5] and interoperability
[6–8] by transforming low-level sensor data into high-level
knowledge that is comprehensible to humans and machines
[9].

The enrichment of raw sensory data is becoming more
and more critical as rigorous management and stewardship
of digital resources are preconditions that support knowledge
discovery and innovation. Therefore, data-driven systems
should ensure the properties of the FAIR guiding principles
(Findability, Accessibility, Interoperability, and Reusability)
[10].

Semantic modelling produces an explicit description
of the meaning of data in a structured way by merging
domain knowledge and context-relevant information with
raw measured data [11]. Semantics includes ontologies, con-
texts, and structured metadata. As ontologies can describe

knowledge that is problem relevant [12–14] by answering
a 4W1H question (what, where, when, who, and how) [15,
16], ontological modelling provides a flexible framework
of knowledge management (Ontohub https://ontohub.org
and DAML http://www.daml.org/ list about 5536 and 282
ontologies, respectively.).

Ontologies can enrich sensory data [17] and ensure
interoperability by providing an abstraction layer [18].

Interoperability is one of the most significant challenges
in an IoT smart environment, where different products,
processes, and organizations are connected. The ontology-
based development of IoT solutions can enable developers to
obtain universal solutions which ensure the success of IoT.
The development of these semantic models should follow
the trends of IoT solutions. Collaborative IoT (C-IoT) is
gaining ground which also encourages interoperability [19].
By increasing the degree of interconnectedness, additional
functionalities can be developed that outsmart individual
applications; e.g., smart cars can react based on shared infor-
mation [20] and contextual information sharing significantly
enhances the performance of assisted/autonomous driving
algorithms [21]. With contextual information fusion, new
types of knowledge can be extracted [22]. Smart interconnec-
tion of sensors, actuators, and knowledge-elements enables
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the development of solutions that are required for smart
city- and Cyber-Physical Systems (CPS)-type solutions [23]
in addition to edge-computing-based real-time autonomous
decisions [24, 25]. As reasoning and decisions are based
on data, one of the key enablers of these technologies is
semantical models that support the management of sensory
measurements [26].

According to [27], three types of IoT ontologies can be
distinguished:

(i) Device ontology that describes actuators and sensors
based on their detailed characteristics.

(ii) Domain ontology that represents real-world physical
concepts, based on observations, measurements, and
their high-level relations to each other.

(iii) Estimation ontology which describes the Quality of
Service and provides the information needed for
service composition.

Although IoT technologies [28] and the related imple-
mentation/installation methodologies [29], databases [30],
requirements [31], and privacy as well as security aspects
[32], manufacturing-specific architecture [33], and commu-
nication standards [34] have already been overviewed and
the frameworks of sensory data access, service discovery,
architecture, and heterogeneity have also been presented [35],
the detailed discussion of semantic models of IoT solutions is
yet to be had.

Although some aspects of semantic sensor technologies
have been overviewed already, a systematic review that
follows the structure of IoT solutions is yet to be conducted.
A historical study of the evolution of ontologies up until
2014 is presented in [36]. The possible methods of semantic
annotation are overviewed in [37] which also compare high-
level application-oriented ontologies of context management.
The contribution of the Open Geospatial Consortium (OGC)
in semantic sensor networks is unquestionably significant as
most of the ontologies developed after 2012 are based on their
concept [38].

The review is structured similarly to the ITU-T Y.2060
standard [39] that describes the IoT reference model and
identifies the high-level requirements of IoT solutions. The
sensor, device, network (we refer as the gateway), service and
application support, and application layers of IoT systems are
shown in Figure 1. The enabling technologies of these layers
like communication standards [1, 40], protocols [40, 41],
high-level reasoning [42], and linked open data enrichment
possibilities [43] are developing at a fast pace and crying
out for semantic model-based standardization which will be
overviewed in this paper.

This work provides a unique overview of IoT semantics
both technologies, as well as models, to support sensor
network and IoT solution design. The review is structured
according to the transformed layers and presents their
functionalities and the details of related ontologies. This
structured breakdown provides an insight and starting point
for research and development projects considering semantic-
based applications at any point in the process.

This systematic review is based the on examination of
the literature in Google Scholar, Scopus and Web of Sci-
ence, following the PRISMA-P protocol [44]. The PRISMA-
P (Preferred Reporting Items for Systematic reviews and
Meta-Analyses for Protocols) workflow consists of a 17-
item checklist intended to facilitate the preparation and
reporting of a robust protocol for the systematic review. In
the following, only the main details of the process are given.
The information sources were last fully queried in October
2018. As the main research question was how ontologies and
semantic models can be utilized in the layers of IoT solutions,
(“semantic model” OR “sensor “ontology”) and (“Internet of
things” OR IoT) were the keywords of the search that resulted
in approximately 750 papers.

The inclusion and eligibility criteria were that how closely
the publications are connected to semantic models and
ontologies of sensors. As Figure 2 illustrates, the selection
process was supported by the network analysis of the key-
words. This meta-analysis was useful to combine data from
different works and to retrieve the most important topics and
their connections. Once a comprehensive list of abstracts has
been grouped and reviewed the papers appearing to meet
inclusion criteria were then be obtained and reviewed in full.
The evolution of the technologies was also tracked, so the
roots of semantic models and standards in addition to recent
trends are also presented.

To focus on the semantic context, only the most closely
related 162 publications are cited and discussed in this work.
With the aim of minimizing bias we included all the relevant
ontologies that were identified as general or widely applied
in a specific field. As a synthesis of results, the extracted
information was structured according to the layers of IoT
solutions which ensures the uniqueness and the applicability
of our work. The resultant overview can serve as a guideline
for engineers interested in the development of easily linkable
and compatible IoT solutions as well as for researchers inter-
ested in finding worthwhile areas of research. The limitations
of this review are coming from its focused viewpoint. The
categorization of the ontologies to the layers of IoT solutions
is subjective. The new algorithms that were developed to
support the extraction of information from semantic sensor
data are not discussed, as the results of the fast developing
fields of semantic data analysis, big, and linked data deserve
another review.

2. Semantic Representations of Sensory Data

As semantics plays a significant role in knowledge organi-
zation [45], it can support the enrichment of measurements
and gaining knowledge from IoT systems. Figure 3 shows
how semantic metadata like context, description of the
sensor, and its configuration (e.g., optimal range) improve
the understanding of a single measurement. The following
section provides an overview of how these ontologies have
evolved and are followed by how this approach should be
applied in terms of the design of the layers of IoT systems.

The evolution of sensor network ontologies is motivated
by the problem of giving context to the measurements.
The first pioneering applications of OWL encoded context
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Figure 1: Generic building blocks of IoT solutions and their semantic enrichments.The colors represent themain functionalities at the sensor,
device, network (we refer as gateway), service and application support, and application layers: measurement/calculation (green); operation
(gray); interoperability (blue); and configuration (yellow).

ontology (CONON) already demonstrated that ontologies
can support logic-based context reasoning [83] and can be
used to develop context-aware applications, like the iMuseum
[84]. Without enumerating these contextual ontologies, in
the following, we cover the evolution of the sensor network
ontologies developed to support sensor description, mea-
surement description, sensor state description, and sensor
discovery. These ontologies are summarized in Table 1 and
Figure 4. The most interesting properties of these base-level
ontologies are discussed as follows:

(i) Avancha et al. described one of the first ontologies
for sensors to define the conditions and expected
behaviour of the sensor network [46].

(ii) Pedigree Ontology handles service-level information
of different sensors (e.g., magnetic, acoustic, electro-
optical, etc.) [50].

(iii) Sensor Web for Autonomous Mission Operations
(SWAMO) enables the dynamic interoperability of
sensor webs and describes autonomous agents for
system-wide resource sharing, distributed decision-
making, and autonomous operations. NASA uses this
ontology during stellarmissions. SWAMO is based on
SensorModel Language (SensorML) [51] and uses the
Unified Code for Units of Measure (UCUM) [85] to
describe measurements.

(iv) WIreless Sensor Networks Ontology (WISNO) is a
very simple proof of concept of how to use the Web
Ontology Language (OWL) and the Semantic Web
Rule Language (SWRL) built upon IEEE 1454.1 and
SensorML [52].

(v) Device-Agent Based Middleware Approach for Mixed
Mode Environments (A3ME) describes environments
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Figure 2:Thenetwork of publication keywords defines thematic groups connected to the Internet ofThings and sensor ontologies.The plotted
network is based on the literature search for the (“semantic model” OR “sensor “ontology”) and (“Internet of things” OR IoT) keyword-set
in Web of Science database.

with different dimensions of heterogeneity based
on the Foundations for Intelligent Physical Agents
(FIPA) device ontology, OntoSensor, and SOPRANO
context ontology [53, 86].

(vi) SEEK (http://seek.ecoinformatics.org/)-Extensible Ob-
servation Ontology (OBOE) enables automated data
merging and discovery encoded using the Web On-
tology Language Description Logic (OWL-DL) [54].

(vii) ISTAR ontology describes tasks, sensors, and deploy-
ment platforms to support automated task allocation.
An interface to the physical sensor environment
allows instantaneous sensor configuration [55].

(viii) CSIRO-Sensor Ontology by the Commonwealth Sci-
entific and Industrial ResearchOrganisation (CSIRO)
published a number of ontologies that can be used in
data integration, search, and workflow management
[56, 57].

(ix) OntoSensor is based on Suggested Upper Merged
Ontology (SUMO) by the Institute of Electrical and
Electronics Engineers (IEEE), ISO 19115 by the Inter-
national Organization for Standardization (ISO) and
SensorML. Although the ontology is not updated, it
can serve as a good starting point of further devel-
opments as it supports data discovery, processing,
and analysis of sensor measurements; geolocation of
observed values and contains an explicit description

of the process by which an observation was obtained
[58–60].

(x) Ontonym-Sensor covers the core concepts of loca-
tion, people, time, event, and sensing. Ontonym-
Sensor contains eight classes to provide a high-level
description of a sensor and its capabilities (frequency,
coverage, accuracy, and precision pairs) in addition
to a description of sensor observations (observation-
specific information, metadata, sensor, timestamp,
and the time period over which the value is valid, the
rate of change) [61].

(xi) SENSEI O&M is the metadata annotation assigned
to a gateway which receives raw data and wraps the
value with annotations taken from a template (i.e., a
semantic model) as the annotated data can then be
transmitted to information subscribers [62].

(xii) W3CSemantic SensorNetwork (SSN)-Ontology (https://
w3c.github.io/sdw/ssn/) is the first W3C standard.
Semantic Sensor Networks Incubator Group (SSN-
XG) introduces the Stimulus-Sensor-Observation
(SSO) pattern [56]. The three parts of SSO are the
stimulus dealing with the observed property, sen-
sors that are transforming the incoming stimulus
into a digital representation, while the observation
connects the stimulus to the sensor which gives a
symbolic representation of the phenomena, yielding

http://seek.ecoinformatics.org/
https://w3c.github.io/sdw/ssn/
https://w3c.github.io/sdw/ssn/
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the beginning of contexts [65]. Ontology design
patterns are useful resources and design methods
for pattern-matching algorithms, visualizations, rea-
soning, and knowledge-based creation [87]. SSN
does not provide facilities for abstraction, categoriza-
tion or reasoning offered by semantic technologies
[56].

(xiii) WSSN ontology extends the SSN ontology by describ-
ing the context and communication policy of the
nodes. The need for this ontology emerged from the
low energy nodes and their unsolved data stream
management. WSSN solves the data stream man-
agement by implementing communication policies
directly into the ontology [70].

(xiv) Coastal Environmental Sensing Networks (CESN) are
built on Marine Metadata Interoperability (MMI),
SensorML, and CSIRO and provide sensor types, a
description logic (DL), and a rule-based reasoning

engine to make inferences about anomalies of mea-
surements [64].

(xv) DOLCE Ultra Light (DUL) is a descriptive ontology
for linguistic and cognitive engineering (DOLCE)
and distinguishes between physical, temporal, and
abstract qualities (http://www.loa.istc.cnr.it/ontolo-
gies/DUL.owl) [88]. DUL is built upon theW3C SSN-
XG ontology, so the Stimulus-Sensor-Observation
(SSO) ontology design pattern is also implemented
and followed. DOLCE Ultra Light is a stimulus-
centred extension of an ontology design pattern [65].
DUL can be either directly used, e.g., for Linked
Sensor Data, or integrated into more complex ontolo-
gies as a common ground for alignment, matching,
translation, or interoperability in general.

(xvi) Semantic Sensor Grids for Rapid Application Devel-
opment for Environmental Management (SemSor-
Grid4Env) was introduced for the prediction of

http://www.loa.istc.cnr.it/ontologies/DUL.owl
http://www.loa.istc.cnr.it/ontologies/DUL.owl
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Table 1: Comparison of sensor-level ontologies based on the sensor description (SENSOR), measurement description (MEASUREMENT),
sensor state (STATE), sensor discovery (DISCOVERY), the standard of W3C or other standards organizations (STANDARD), application
field (AF), and year of publication (YEAR). Check marks indicate that an ontology exhibits a given feature.

Ontology SENSOR MEASUREMENT STATE DISCOVERY STANDARD AF YEAR REF

Avancha et al. Yes No General 2004 [46]

GAS Yes Yes General 2005 [47]

MMI Yes Yes Military 2006 [48, 49]

Pedigree Ontology Yes Yes Military 2006 [50]

SWAMO Yes Yes NASA 2007 [51]

WISNO Yes General 2007 [52]

A3ME Yes No Yes Yes General 2008 [53]

SEEK-OBOE No Yes Coastal monitoring 2008 [54]

ISTAR Yes Military 2008 [55]

CSIRO Yes No No Yes General 2009 [56, 57]

OntoSensor Yes Yes No Yes General 2009 [58–60]

Ontonym-Sensor Yes Yes General 2009 [61]

Sensei O&M Yes Yes General 2009 [62]

W3C SSN-XG Yes Yes Yes General 2009 [56]

OOSTethys Yes Yes General 2009 [63]

CESN Yes Yes General 2010 [64]

DUL Yes Yes No General 2010 [65]

SemSorGrid4Env Yes Yes Flood emergency prediction 2011 [66]

SWROAO Yes Yes Atmospheric monitoring 2011 [67]

W3C SSN Yes No No Yes General 2012 [56]

SCoreO Yes Yes General 2012 [68]

SenMESO Yes Yes No No General 2013 [69]

W3CWSSN Yes Yes Yes Yes General 2013 [70]

NIST Yes Yes Manufacturing 2013 [71]

AEMET Yes Yes No No Weather forecast 2013 [72]

SCloudO Yes Yes Weather forecast 2013 [73]

IoT-Lite Yes Yes General 2015 [74, 75]

MyOntoSens Yes Yes Yes General 2015 [76]

oneM2M Yes Yes No No General 2015 [77]

Xue et al. Yes Yes General 2015 [78]

Hirmer et al. Yes No No Yes General 2016 [79]

Smart Onto Sensor Yes Yes Yes No General 2017 [80]

MSSN-Onto Yes Yes Yes Multimedia 2018 [81]

SOSA Yes Yes Yes General 2018 [82]

flood emergencies [66]. The ontology is divided into
four layers: ontology in specific fields, information
ontology, upper ontologies, and external ontologies.
The layers meet different requirements concerning
knowledge representation.

(xvii) Sensor Web Resources Ontology for Atmospheric Ob-
servation (SWROAO) ontology is with the addition of
location taxonomies to sensor data for atmospheric
observations [67].

(xviii) Sensor Core Ontology (SCoreO) extends the SSN
ontology bymodules such as the component module,
service module, and context module. In the context
module, three important classes are added: space,
time, and theme [68].

(xix) Sensor Measurement Ontology (SenMESO) automat-
ically converts heterogeneous sensor measurements
into semantic data [89].

(xx) Wireless Semantic Sensor Network (WSSN) ontol-
ogy is an extension of the SSN with sensor node
state descriptors. WSSN uses a Stimulus-WSNnode-
Communication (SWSNC) ontology design pattern
that treats the stimulus as the starting point of any
process and the trigger of sensor or communication
equipment [56].

(xxi) Sensor Data Ontology was created to the support
search of relevant sensor data in distributed and
heterogeneous sensor networks.The ontology utilizes
the Suggested Upper Merged Ontology (SUMO) and
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a sensor hierarchy subontology that describes sensors
and sensor data as well as a sensor data subontology
that describes the context of a sensory data with
respect to spatial and/or temporal observations [90].

(xxii) National Institute of Standards and Technology (NIST)
ontology is also based on SSN. NIST ontology
describes the detailed dimension, weights, and reso-
lution of the sensors; the abilities of the system; and
the sensor network in manufacturing environments
[71].

(xxiii) Agencia Estatal de Meteorologı́a (AEMET) ontology is
used for meteorological forecasting of the Spanish
Meteorological Office. As the ontology follows the
Linked Data concept, the measurements are easily
transformable to linked data [72].

(xxiv) Sensor Cloud Ontology (SCloudO) is another exten-
sion of SSN, with the aim of drawing up a semantic
description of the sensor data in the sensor cloud [73].

(xxv) IoT-Lite (https://www.w3.org/Submission/2015/SUBM
-iot-lite-20151126/) allows the representation and use
of IoT platforms without consuming an excessive
amount of processing time when querying the
ontology. IoT-Lite describes the IoT concepts in three
classes: objects, system, or resources and services.
IoT-Lite is focused on sensing and it is suitable for
dynamic environments thanks to its real-time sensor
discovery functionality [74, 75].

(xxvi) MyOntoSens details the measurement process includ-
ing inputs, outputs, description, calibration, drift,
latency, the unit of measurement, and precision [76].

(xxvii) Sensor description in context awareness system: the
novelty of the ontology is that machines can identify
different sensors according to their process capabili-
ties marked in the ontology [78].

(xxviii) Dynamic ontology-based sensor binding: interestingly
all ontologies are extending and adding information
growing the availability of data, this ontology thinks
backwards; it subtracts from the ontologies; e.g.,
OntoSensor [79].

(xxix) Smart Onto Sensor. It is an ontology for smartphone
based sensors, based on SSN and SensorML [80].
Multimedia Semantic Sensor Network Ontology
(MSSN-Onto) can effectively model Multimedia
Sensor Networks (Stream of Audio; Video) and
multimedia data, define complex events, and also
provide an event querying engine for Multimedia
Sensor Network [81]

(xxx) Sensor, Observation, Sample, and Actuator Ontology
(SOSA). Lightweight event-centric ontology is built
on top of SSN [82].

Ontologies are continually evolving, compiling evermore
space for reasoning and simplification. Special, application-
oriented ontologies emerge and are integrated into stan-
dards. The lightweight and extremely extendable ontologies
also support the development of tailored applications and

convertibility between formats, in addition to information
transfer between applications.

The forerunner of this trend is the SOSA ontology thanks
to its linked data-like structure.

3. Layer-Wise Overview of Semantic Models of
Measurement Systems

3.1. The Sensor/Device Layer. The sensor layer is commonly
referred to as the observation and measurement (O&M) level
[56]. The World Wide Web Consortium Semantic Sensor
Network (W3C SSN) ontology contains most of the anno-
tations needed for describing sensors and observations. The
SOSA extended SSN ontology, which is the current version of
SSN, is visualized in Figure 5, which can be considered as one
of the most general frameworks of semantic sensor models.
Themost crucial functionalities of this layer are the following
[91, 92]:

(i) Description of the sensor enables remote configuration
and asset management as well as the discovery of
the sensor. A description of the sensors may contain
physical characteristics (e.g., interface, energy source,
etc.), hierarchy, deployment, and manufacturer infor-
mation.

(ii) Description of the measurement annotates and clar-
ifies the data of the measurement by defining its
unit, value, and the measurement process. The Uni-
fied Code for Units of Measure (UCUM) [85] is
widely used to describemeasurements (http://ontolog
.cim3.net/cgi-bin/wiki.pl?UoM).

(iii) Sensor discovery is challenging in dynamic IoT
systems [93]. Sensor discovery is standardized by
linked layer-level protocols, like the Link Layer
Discovery Protocol (LLDP) that corresponds to the
standard IEEE 802.1AB, Web Service Deployment
Descriptors (WSDD) (http://docs.oasis-open.org/ws-
dd/discovery/1.1/wsdd-discovery-1.1-spec.html), the
Bonjour configuration network (https://developer.ap-
ple.com/bonjour/), or Simple Service Discovery Pro-
tocol (SSDP) as part of the Universal Plug and Play
(UPnP) set of protocols (http://quimby.gnus.org/inter-
net-drafts/draft-cai-ssdp-v1-03.txt).

(iv) Sensor state description plays a key role in the opera-
tion, configuration, and maintenance of the device.

Communication technologies and strategies are hard to
place to a single layer. As the discussion would lead very
much away from semantic technologies, we stay very brief on
this topic. Semantic technologies are often tailored seamlessly
in other technologies; we have to mention the three main
communication strategies, the publish-subscribe MQTT, a
specific web transfer protocol CoAP, and streaming. The
tailoring of semantics to these technologies is in context-
based access control.

3.2. Infrastructure Layers. The infrastructure layers are used
to manage the complexity and heterogeneity of sensor
networks. These layers are separated into a gateway layer

https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/
https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/
http://ontolog.cim3.net/cgi-bin/wiki.pl?UoM
http://ontolog.cim3.net/cgi-bin/wiki.pl?UoM
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.html
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.html
https://developer.apple.com/bonjour/
https://developer.apple.com/bonjour/
http://quimby.gnus.org/internet-drafts/draft-cai-ssdp-v1-03.txt
http://quimby.gnus.org/internet-drafts/draft-cai-ssdp-v1-03.txt
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which enables the heterogeneous duplex communication and
a service and application support (middleware) layer that
serves as an interface towards the applications and enables
the following advanced functionalities:

(i) Context management corresponds to characterizing
and tagging situations, objects, places, or persons
which plays a key role in terms of authorization
and adapts the operation to suit the environment
[94]. The context may vary in different application
areas. However, the operation is the same in every
application, namely, context acquisition, modelling,
reasoning, and distribution [95].
Context acquisition is expressed in the form of five
factors: (1) the process of acquisition, (2) frequency,
(3) responsibility, (4) sensor type, and (5) source [96].
The five factors also correspond to the previously
described ontologies. An interesting factor, however,
namely, responsibility, was not taken into account
on the lower layer. The most applicable question is:
“What does a sensor measure?” Context modelling
is defined as the context representation that pro-
vides assistance in the understanding of properties,
relationships, and details of the measured objects.
High-level reasoning will be discussed in the appli-
cation layer. An emerging and important part of
interoperability are security and privacy measures,
which are often associated with huge bottlenecks
in information flow. However common technologies
like temporal-, spacial-, risk-based-, and event-based
roles are already involved [97].

(ii) Complex Event Processing (CEP) & Stream Reasoning
merge observations into complex events often deter-
mined by multiple data sources. CEP systems aim
to process data efficiently and immediately recognize
interesting situations when they occur. Context man-
agement and context handling are crucial with regard
toCEP [98]. CEPnot only provides information in the
form of events from providers to consumers but also
supports the detection of the relationships between
events and discovers temporal event correlation rules,
referred to as event patterns [99]. As IoT supports the
modular development of real-time solutions so does
CEP and Stream reasoning [100]. Current high-level
stream processors, with the capability of on arrival
or nonarrival of data, deriving information for the
system, are C-SPARQL, CQELS, and ACEIS [101].
With special architectures and techniques, machine
learning based solutions can also be implemented
[102].

(iii) Service configuration is the key in the vision of
autonomic computing [103, 104]. IBM stated that
systems have to be self-managed, which means self-
configuration, self-optimization, self-protection, and
self-healing. The vision is far from, but remote con-
figuration, and remote access are already in place as
a Connected Device Platform (CDP) which ensures
that the devices and sensors can be easily connected
and remotely managed [105].

(iv) Interoperability allows automated detection services
and devices using novel tools like Semantic Markup
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for Web Services (OWL-Siot) [106] and Multistage
Semantic Service Matching [107], hiding the details of
diversity and channeling services by providing a sim-
ple, single application programming interface (API)
layer, and ensuring security & privacy functionalities
[108].

(v) Device management functionalities are like device
provisioning, device configuration, software module
management, lifecycle management operations (e.g.,
install, update, and uninstall), and fault management
[109].

(vi) Software-defined networking (SDN) enables the man-
agement of networked assets through an integrated
interface.

(vii) Data storage mostly relies on graph databases, par-
allel databases, key-value stores, wide-column stores,
document stores, etc. The key is always speed and
scalability; thus IoT ecosystems tend to always add up
sensors and more and more end nodes. The proper
data storagemanages and handles the singlemeasure-
ment points as well as the semantical descriptions.
A taxonomy about metadata stores is presented in
Figure 7.

(viii) Notification SWE-Sensor Alert Service (SAS) is a
standard web service interface for publishing and
subscribing to alerts from sensors [91].

3.2.1. The Gateway/Network Layer. The gateway shares ser-
vices [110] and serves as the bridge between sensor networks
and conventional communication networks [109], so the
gateway layer possesses the following functionalities:

(i) Provision of positional information needs higher po-
tential so gateways as merging points have informa-
tion about the peripheral nodes can apply to posi-
tioning, based on Global Positioning System (GPS)
sensors, IP geolocation [111], or indoor positioning
systems [112, 113].

(ii) The provision of temporal attributes is not trivial
as passive and very low energy devices by them-
selves cannot provide temporal attributes so this task
should be performed at the gateway layer, based
on ISO 8601, and is a standard for representations
of date and time, in a time model [114] which
describes and defines seven relationships between
intervals (duration, starts, finishes, before, after,
meets, and equals) or the OWL time vocabulary
(https://www.w3.org/TR/owl-time/) used to express
relations between instants and intervals together with
information about durations, date, and time informa-
tion.

(iii) Low-level ontology alignment is the first step towards
domain knowledge as it means a merging point
towards an upper level or domain ontologies. Gate-
ways have much more energy than devices. Therefore
the first energy demanding to process in the face of
semantics can take place at that this point.

3.2.2. Service and Application Support Layer (Middleware).
From architecture design pattern point of view, service and
application support layer a middleware, seen as the core part
of the backend also referred to as data-handler, can be also
imagined as the classic Extract-Transform-Load (ETL) ware.
Middleware operationally has some interesting ideas to keep
up with scalability, as-is data handling, interoperability, data
propagation, etc. Semantics is often criticized as it can be a
severe performance bottleneck [115]. The patterns, which we
present in this section, however, will gain speed, security, and
confidence from semantics.

The middleware layer aggregates heterogeneous sensory
data for the application layer [121]. Figure 6 illustrates that
design patterns can be based on context-, device-, data-,
and application-oriented approaches. Table 2 summarizes
these approaches based on their semantical, computational,
and storage demands. Event-based in addition to service-
and database-oriented approaches are founded on specific
semantic models as shown below:

(i) Event-based middleware should handle event specifi-
cation metadata and event processing rules [122].The
SenaaS ontology [116] supports the creation of events
from observations.

(ii) Service-oriented design approach facilitates dynamic
component-based application development [123].
Therefore, service-oriented ontologies should handle
service properties to measurements in the same way
that the Distributed Internet-like Architecture for
Things (DIAT) supports autonomous data collection
and processing and has contextual inferences for
common device management, as well as situational
awareness for minimal human intervention and zero-
configuration [124].

(iii) Database-oriented middleware architectures utilize
distributed databases [120] and standardized query
languages (e.g., SPARQL, Structured Query Language
(SQL), Cypher, etc.). The straightforward approach is
to collect the data in a standardized way and imme-
diately store it in its raw form. An important thing
to consider is that most sensors transmit continuous
data, also referred to as streaming data. Two primary
solutions are available to store streaming data:

(1) Hardcoded method: where the correspon-
dence between streaming data and ontology
is defined in programs. The different fields
and formats of streaming data require different
types of coding. The streaming data will be
continuously written in RDF files according to
the program code. The hardcoded method is
lightning fast if it is written, but every single
entity must be coded by hand which makes it
very rigid and fast, on the other hand, extending
the flow or applying another ontology causes
the mapping to be created from the beginning.
The object-oriented method involves the use of
an object-relational-mapper (ORM) (e.g., Entity

https://www.w3.org/TR/owl-time/
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Table 2: Comparison of middleware technologies based on semantic (SEM), computational (COMP), and storage demands (STORAGE) and
how they support the development of distributed (DIST) and universal (UNIVERSAL) applications and how they are widespread (SPREAD).

Technology SEM COMP STORAGE DIST UNIVERSAL SPREAD REF

Event-based high high low yes Yes widely [116]

Service-oriented low low high yes Yes widely [117]

Agent-based low high low yes Yes sparse [118]

Tuple-spaces high low high yes Yes sparse [119]

Database-oriented high low high yes Yes widely [120]

Application specific very low low low not likely No widely [121]

SENSOR

Context oriented Device oriented Data oriented Application specific

Event based Service based Agent based VM based Tuple based Database oriented

Figure 6: Middleware layer development approaches.

Framework by Microsoft [125] and Hibernate
for Java [126]).

(2) Mapping language method: mapping lan-
guages (e.g., D2RQ [73, 127], R2O [128], R2RML
[128–130] and On top [131]) provide a set of
well-defined semantic primitives to describe
the mapping relationships. The mapping of
streaming data and the ontology can be added
manually or automatically by programming.

Alternative approaches exist to reduce coding vol-
ume. An example of mapping messages from the
widely used publish/subscribe messaging protocol
Message Queuing Telemetry Transport (MQTT)
directly into JavaScript Object Notation for Linked
Data (JSON-LD) (https://github.com/w3c/json-ld-
syntax) with Grok patterns through the Logstash
processing pipeline (https://www.elastic.co/products/
logstash) is shown in [132].

As it has been presented, well designed infrastructure
layers should focus on interoperability. For this purpose,mul-
tiple semantic techniques, e.g., ontology alignment, multiple
merging points, gateways, special architectures, can be used.

3.3. The Application Layer. Successful applications require
that all the needed atomic data fragments are at hand, seman-
tically described, as well as all rules to make conclusions
from the data. Therefore, the challenges of ontologies in
the application layer are reusing the domain knowledge,
cross-domain knowledge interlinking, and reasoning. That
is why managing domain knowledge, however, is still very
significant. The following tools have been used in the past for
the domain knowledge referencing:

(i) Ontology extension is a commonly used technique
at building new ontologies, starting from a fixed,

often standard base ontology [133]. In Section 2 we
presented how ontologies are deriving mostly from
W3C standards.

(ii) High-level ontology alignments the goal of the tech-
nique is to find correspondence between two or more
ontologies [134]. It has a lot of tools and ready-to-
use frameworks as presented in ontology mapping
reviews [134, 135].

(iii) Ontology merging where the goal is to combine
two or more ontologies into one [134]. This process
requires an in-depth knowledge of both ontologies
to avoid duplication of stored data and create deep
interconnections between logical elements.

(iv) Ontology catalogue, dataset catalogue supported by
semantic search engines is one group of the tools for
mapping data and its meaning frommultiple sources.

(v) Manual referencing is the most tiering tool in this list,
where every matching of ontology is described and
matched against by hand [136].

(vi) Knowledge graphs are unstructured or semistructured
linked data to handle the whole domain and interdo-
main knowledge [137].

As information provided by semantic enrichment of
sensor data can be processed without requiring any knowl-
edge of the sensor system [91], the application layer can
process efficiently interpretable, contextualized high-level
abstractions of sensory data [138] to generate situation-based
notifications and decisions [38]. Based on this concept, the
ontologies of the application layer should handle information
that is related to the following functionalities:

(i) Situation Awareness fuses information to make bet-
ter decisions. Event prediction and Human Activity
Recognition (HAR) are special types of situation

https://github.com/w3c/json-ld-syntax
https://github.com/w3c/json-ld-syntax
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
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Figure 7: Taxonomy of RDF-based solutions of storing sensor measurements and meta-data.

awareness [139, 140]. The basic ontologies which
support situation awareness are Semantic Web Rule
Language Temporal Ontology (SWRLTO) [141] and
Temporal Abstractions Ontology (TAO) [142]. TAO
is designed to capture semantic temporal abstractions
while SWRLTO provides temporal modelling and
reasoning. The most well-known built-upon ontolo-
gies that support situation awareness are the follow-
ing:

(a) Situation Awareness Core (SAW-CORE) ontol-
ogy formalizes the knowledge representation of
objects, relations and their temporal evolutions
which leads to good performance. The basic
elements of SAW-CORE are: SituationObjects
and Relations. Every SituationObject consists of
Attributes which participate in Relations, the
attribute triggers the Relations to be true or false
[143].

(b) Standard Ontology for Ubiquitous and Per-
vasive Applications (SOUPA) provides spatial-
temporal representation to cover concepts like
time instant (TimeInstant), intervals (TimeIn-
terval), movable spatial things (SpecialTempo-
ralThing) and geographical entities [144].

(c) Event-Model-F supports the participation of
objects in events, temporal duration of events as
well as relations between events in mereological
(events are based upon each other), causal and
correlational forms [145].

(d) SNAP/SPAN where SNAP and SPAN handles
relations between spatial and temporary events,
respectively [146].

(ii) Tracking is a frequent IoT application problem.
Besides status information, the I2oTonology ontology
also handles accessibility and compatibility issues of
the objects [147].

(iii) High-level queries enrich query results from cloud
sources like the Linked OpenData cloud (https://lod-
cloud.net/) resulting in the Semantic Web of Things

(SWoT) [42]. The two main technologies of the high-
level queries are the semantic queries based on the
variants of the SPARQL [36] and Ontology-Based
Data Access (OBDA) [148].
Access control technologies will be more important
in the future [149]. Contextual conditions bring new
challenges to context-sensitive access control as con-
text information will play a crucial role in dynam-
ically changing environments [150]. As a promising
example, recently an ontology-based approach that
captures such contextual conditions and incorporates
them into the policies, utilizing the ontology lan-
guages and the fuzzy logic-based reasoning has been
presented [151].

(iv) IoT streaming data integration and analysis by
machine learning techniques are gaining more interest
as most streaming decision models should run in
resource-aware environments and detect and react to
changes in the environment and many organizations
need to deal with massive datasets in different
formats coming from multiple sources. The best
practice for the performance assessment of how
machine learning models is given in [152] while
the challenges of IoT streaming data integration are
summarized in [153].

The development of cloud computing platforms should
focus on ensuring scalability and reliability [154, 155], device
and data management, monitoring [156, 157], information
arrival rate, and flexibility [158]. General IoT platforms, like
Google Cloud IoT (https://cloud.google.com/solutions/iot/),
Microsoft Azure IoT Suite (https://azure.microsoft.com/en-
us/services/iot-hub/), and Siemens-MindSphere (https://
www.siemens.com/global/en/home/products/software/mind-
sphere.html), do not natively support semantic descriptions;
instead, they use extendable internal data models and
functions to implement the previouslymentioned functional-
ities. Orion Context Broker, OCB (https://fiware-orion
.readthedocs.io/en/master/), is an outlier in this Platform-as-
a-Service (PaaS) market as it natively supports semantics by
the NGSI-LD description that is based on JSON-LD (JSON

https://lod-cloud.net/
https://lod-cloud.net/
https://cloud.google.com/solutions/iot/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://www.siemens.com/global/en/home/products/software/mindsphere.html
https://www.siemens.com/global/en/home/products/software/mindsphere.html
https://www.siemens.com/global/en/home/products/software/mindsphere.html
https://fiware-orion.readthedocs.io/en/master/
https://fiware-orion.readthedocs.io/en/master/
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for Linking Data) designed to represent knowledge in RDF
triplets of entities, properties and relationships.

The extension of data models to information models
ensures interoperability and the useful for the evaluation of
Quality of Service (QoS) [159, 160] and Quality of Infor-
mation (QoI) [161]. The LOV4IoT ontology catalogue in
the Linked Open Vocabularies (LOV) (https://lov.linked-
data.es/) references 510 ontology-based research projects for
IoT and its applicative domains (https://lov4iot.appspot.com/
?p=ontologies) related toHealthcare (159), Environment, e.g.,
smart energy, weather, etc. (95), Generic IoT (86), Smart
Cities (24), Smart Homes (59), Robotics (28), Agriculture
(24), Tourism (31), Transportation (58), others, e.g., secu-
rity, measurements, etc. (49). The LOV4IoT catalogue is a
comprehensive source for the application-oriented ontology
selection, so in the remaining part of this section focuses
on how semantic technologies are used in some of the most
frequently applied solutions.

Generic IoT semantic technologies are mostly used to
ensure interconnection between platforms and operation
domains:

(i) Hypercat is both a format and an API ecosystem
developed for interacting, fetching and searching
IoT catalogues [162]. Hypercat has been developed
to resolve the differences of IoT-based applications
by defining a universal adapter language. Hypercat
describes the API functionalities and usage that no
newnor universal API has to be built for existing ones.
Hypercat can point to at any resource with a URL
or URI; common resource types in Hypercat in IoT
applications are SenML objects to representing time
series [163].

(ii) OpenIoT (http://www.openiot.eu/) is a W3C SSN
based platform that focuses on connecting sensor
devices to software by enabling context and semantic
discovery and sensor management. OpenIoT uses
Hypercat for high-level API interoperability. The
visual monitoring and configuration possibilities of
sensor metadata offered by the Integrated Devel-
opment Environment (OpenIoT IDE) enable zero-
programming application development [164]. Ope-
nIoT is also a good example for Sensing-as-a-Service
(SaaS) [165] paradigm [166].

(iii) FIESTA-IoT addresses semantic interoperability at
all levels of IoT. FIESTA-IoT uses the previously
described OpenIoT framework to manage hardware
level interoperability at the sensor level. The ontology
ensures data-level interoperability at the device layer
by semantic annotations of the raw data, model
level interoperability at the gateway layer by ontology
alignments to existing IoT ontologies, query level
interoperability at the service and application support
layer by querying unified knowledge bases, reason-
ing level interoperability based on the deduction of
meaningful information, and applicative domain level
interoperability at service/application level to support
Linked Open Services and cross-domain applications
[167].

(iv) Inter-IoT framework is based on open source hard-
ware and software tools granting multilayer inter-
operability among IoT system layers (devices, net-
works, middleware, application services, and data/
semantics).The interoperability of data and semantics
is solved by the introduction of a new ontology,
GOIoTP (Generic Ontology of IoT Platform) [168].
The interoperability between ontologies is solved by
ontology matching and merging routines of the Inter-
Platform Semantic Mediator (IPSM) tool [169].

IoT-based healthcare applications are very diverse, cover-
ing cognition monitoring (dementia care, assistive living), to
electrocardiography, through comprehensive personal health
monitoring with wearables. Unique factors of healthcare
ontologies are how theymanagemedical sensors andmeasur-
ing equipment, handle diagnosis and pathways, and ensure
interconnection the hospital information systems. In the
following, we discuss the role of the ontologies through the
presentation of the details of some of these solutions.

(i) Smart Appliances REFerence for Health (SA-
REF4Health) was developed for handling real-
time electrocardiography (ECG) with a focus on
wearable devices. The ontology is based on the Smart
Appliances REFerence (SAREF) (http://ontology.tno
.nl) that also includes extensions to smart energy,
environment, and buildings. In this extension the
ontology is designed to serialize SAREF4Health
messages as JSON-LD to represent the time series of
ECG signals and ensure compatibility with the HL7
Fast Healthcare Interoperability Resources (FHIR)
[170].

(ii) Health and alarm ontology is an ontology-based
context management system developed to support
home-based care. The utilized rule-based reasoning
evaluates risks based on environmental conditions,
alarms, and social contexts, to notify relatives and
caretakers about the occurred risks on multiple levels
[171].

(iii) Technology Integrated Health Management (TIHM)
(http://iot.ee.surrey.ac.uk/tihm/models/fhir4tihm) ap-
plication was developed to support home-based
dementia care by machine learning based informa-
tion extraction from aggregated environmental and
physiological data [172].

Internet of Robotic Things (IoRT) related ontologies play
an essential role in the handling of information about posi-
tions, controls, commands, and observations for enabling the
necessary robotic abilities, i.e., perception, motion, manip-
ulation, autonomous decision, and interaction [173]. In the
following, some examples will be given to describe how
semantic technologies are used in this field.

(i) RoboEarth is a knowledge-based system designed to
enhance robot intelligence by cloud services. The
ontology includes action receipts and reduces the
learning curve of the robots by sharing contex-
tual data such as pictures and object descriptions

https://lov.linkeddata.es/
https://lov.linkeddata.es/
https://lov4iot.appspot.com/?p=ontologies
https://lov4iot.appspot.com/?p=ontologies
http://www.openiot.eu/
http://ontology.tno.nl
http://ontology.tno.nl
http://iot.ee.surrey.ac.uk/tihm/models/fhir4tihm
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(e.g., weight, surface friction, etc.) [174, 175]. The
semantic mapping system of RoboEarth is based on
SLAM (Simultaneous Localization And Map build-
ing) which provides the scene geometries and the
object locations. The semantic reasoning and contex-
tual shared data boosts the mapping, aids robot in
operation, e.g., object recognition and learning [176].

(ii) Smart and Networking Underwater Robots in Coop-
eration Meshes (SWARM) ontology increases safety
and reduces the operation cost of the offshore oper-
ations by cooperative autonomous underwater vehi-
cles (AUV) [177]. The SWARM platform consists of
several domain-specific ontologies related to mission
and planning, robotic vehicles, environment recogni-
tion and sensing, and communication and network
domains [178] and has a publish/subscribe based
semantic middleware designed for device and ser-
vice registration, semantic enhancement, and context
awareness [179].

(iii) Core Ontology for Robotics and Automation (CORA)
(https://raw.githubusercontent.com/srfiorini/IEEE1872
-owl/master/cora.owl) was developed by the IEEE
Ontologies for Robotics and Automation Working
Group (ORA).Themain role of CORA is to maintain
the consistency among the different subontologies
in the standard, serving mediator of interactions
among heterogeneous agents, with different sensors
and different capabilities [180]. CORA covers the
most general concepts, relations, and axioms of
robotics and automation and serves as a reference
for knowledge representation and reasoning in
robotics as well as a formal reference vocabulary
for communicating knowledge about robotics and
automation between robots and humans [181], which
has significant benefits in human-robot interaction
[182].

Smart city is a vision of IoT data-driven efficient asset
and resource management in urban areas. The concept
interconnects transportation (smart transportation), energy
management (smart energy), public administration (smart
administration), industries (smart industries), and security
management (smart security) as well as healthcare (smart
health). The primary information sources of smart city solu-
tions are wireless sensor networks, and the interconnection
of heterogeneous data related to multiple domains repre-
sents the main challenge of the developments, so this field
of application motivates the development of multidomain
sensor fusion [183] and semantic technologies as it will be
demonstrated in the following:

(i) READY4SmartCities is a project to obtain a reduction
of energy consumption and CO2 emission at smart
cities communities level. The ecosystem contains an
ontology collection containing the descriptions to
handle issues related to energy (e.g., energy type,
demand, etc.); climate (e.g., rainfall, sunshine hours,
etc.); weather (e.g., temperature and wind speed);

environment (e.g., pollution); and buildings (e.g.,
building characteristics, owner, manager, etc.) [184].

(ii) KnowledgeModel for city (Km4City) (http://www.disit
.org/km4city/schema) was developed to manage
complex data sources of smart cities. The model
contains six macroclasses: general public administra-
tion, street types, points of interests (e.g., services,
activities), information about local public transports
(e.g., schedule times, rail graph, etc.), sensors (e.g.,
traffic flow, pollution, and weather), and temporal
attributes (e.g., time intervals) [185].

(iii) SCRIBED is a semantic model created by IBM
for large-scale data gathering from cities world-
wide. It introduces four semantic technologies: Com-
mon Alerting Protocol (CAP), National Information
Exchange Model (NIEM), UCore, a simple OWL
implementation, and Municipal Reference Model
(MRM). The technologies address problems like
interagency data exchange. The SCRIBED ontology
is a robust upper ontology describing high-level
entities of geospatial (e.g., roads, landmarks, etc.) and
temporal objects (e.g., road work), as well as Key
Performance Indicators (KPIs) of the cities [186].

This overview illustrated that the goal of the IoT research
is to enable ubiquitous access to information in high-level
applications that need context awareness for decision-making
[187].

3.4. Discussion and Future Trends. Based on the previously
presented overview of the layers it can be concluded that in
every layer the application of the ontologies aims to enrich the
data to obtain more system-independent and contextualized
information from the rowmeasurements. The contextualized
information improves the compatibility, flexibility, and con-
nectivity of IoT in terms of the applications which lead to
linked (open) data-based systems. Some illustrative solutions
that are related to this trend have already been implemented.
Sensor-based Linked Open Rules (S-LOR) [188], linked
sensor middleware [189], and publishing style systems [190,
191] are good examples of this approach.

Privacy and security will be the cornerstones of sensor
network-based applications. The access control of linkable
data is becoming ever more critical since users will enrich
the data with sensitive contextual information, like location
[192]. The analysis of these privacy issues like identification,
tracking, and profiling is presented in [193]. These issues
require research on how the availability of this information
should be controlled [194].The development of threat model-
based taxonomies is one of the promising approaches in a
combination of contextual security and access management
[195]. Promising steps on delivery security are the blockchain
technology. The description of sensors and sensor states can
ensure monitoring and reasoning which information should
be securely provided to the application layer. Motivated
by this requirement the interest in the development of
trust ontologies are also arising. We should also mention
that security mechanisms often increase latency which is
very crucial at real-time applications and also often forms

https://raw.githubusercontent.com/srfiorini/IEEE1872-owl/master/cora.owl
https://raw.githubusercontent.com/srfiorini/IEEE1872-owl/master/cora.owl
http://www.disit.org/km4city/schema
http://www.disit.org/km4city/schema
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bottlenecks in the processing pipelines. The services of the
infrastructure layers (see Section 3.2) are also crying out
for the development of solutions that improve security,
scalability, and reliability [194] without sever bottlenecks.

Future research and developments should focus on open
and modular platforms that utilize easy-to-extend semantic
technologies. Cloud-based systems will also emerge, and
unique structures will be developed. Among these, it is worth
mentioning dew server-based solutions, where dew servers
will collect and process streaming data from the IoT sensors
and devices andwill ensure communication with higher-level
servers in the cloud [196].

An availability statistic of the LOV4IoT collection illus-
trates that the majority of the published ontologies are not
freely available or not widely applicable (lost or confidential
(27), not freely available (203), ongoing work (46), published
but not following the LOV best practices, so hard to inter-
connect (198), published, and in LOV (31)). This statistics
shows that future research and development should much
more focus on standardization and ensuring open source
availability.

As ever more intelligence should be embedded in sensors
and IoT systems, the semantic models should support the
self-awareness/self-monitoring/device lifecycle management
of intelligent sensors systems. Edge-computing based tech-
niques are in the focus of this research and development
[197], so one of the most interesting problems of the future
is how semantic and machine learning models should be
integrated.

4. Conclusions

As the Internet of Things-based products and processes are
rapidly developing, there is a need for tools that can support
their fast and cost-effective implementation. Ontologies in
sensor technology have led to an incredible advance in
the development of these techniques by standardizing the
manipulation, share, reuse, and integration of sensory mea-
surements.

This article showed these semantic technologies by fol-
lowing the layers of IoT solutions. Based on the analysis
of the presented approaches, we can conclude that there is
a need for further standardization to achieve more flexible
connectivity, interoperability, and fast application-oriented
development.

Real-time applications request a better understanding
of the data especially in the on-site processing of complex
events and multivariate time series what is the promise of fog
and edge-computing solutions. Therefore, further research
and development should focus on automated information
enrichment, data fusion, and processing of complex event
series. Enriched sensor descriptions also aid to create more
detailed contexts that can serve as real-time information for
the linked (open) data based solutions.
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