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Abstract—After more than 20 years of research, ADAS are common in modern vehicles available in the 

market. Automated Driving systems, still in research phase and limited in their capabilities, are starting 

early commercial tests in public roads. These systems rely on the information provided by on-board sen-

sors, which allow to describe the state of the vehicle, its environment and other actors. Selection and ar-

rangement of sensors represent a key factor in the design of the system. This survey reviews existing, novel 

and upcoming sensor technologies, applied to common perception tasks for ADAS and Automated Driving. 

They are put in context making a historical review of the most relevant demonstrations on Automated 

Driving, focused on their sensing setup. Finally, the article presents a snapshot of the future challenges 

for sensing technologies and perception, finishing with an overview of the commercial initiatives and 

manufacturers alliances that will show the intention of the market in sensors technologies for Automated 

Vehicles.
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I. Introduction

E
very year more than one million people die on road 

accidents and several million more get injured [1]. In 

addition to the social cost, it also has an important 

economic impact for nations worldwide. According to 

[2] the most frequent causes for car accidents in the Eu-

ropean Union are human related: speeding, driving under 

the effects of alcohol or drugs, reckless driving, distrac-

tions or just plain misjudgments.

Automated Driving systems aim to take the human 

driver out of the equation. This makes them a tool with the 

potential to reduce the number of traffic accidents. Based 

on recent developments and demonstrations around the 

world, there is a tendency to think that Automated Driving 

with a high level of automation will be available in a few 

years. This raises questions about its safety.

The architecture of Automated Vehicles is usually di-

vided into three categories: perception of the environment, 

behavior planning and motion execution [3]. Automated 

vehicles obtain information about their surroundings us-

ing different sensors, such as cameras, LiDARs and radars. 

Raw data is processed to extract relevant features which 

are the input to the following stages (behavior planning 

and motion execution), that will perform tasks such as 

path planning, collision avoidance or control of the vehicle 

among others.

Perception is a very challenging problem for several 

reasons. First, the environment is complex and highly dy-

namic, with some cases involving a large number of par-

ticipants (dense traffic, populated cities). Second, it needs 

to work reliably under a wide range of external conditions, 

including lighting and weather (rain, fog, snow, dust). Per-

ception errors are propagated and can be the cause of se-

vere accidents. Some real examples include the 2016 Tesla 

AutoPilot accident [4], where a man was killed after its car 

crashed a truck: the camera failed to detect the gray truck 

against a bright sky while radar detection was discarded 

as background noise by perception algorithms. Later in 

2018, a Tesla model X crashed a highway divider after the 

lane following system failed to detect faded lines and the 

concrete divider was not recognized, killing the driver [5]. 

Also in 2018, an experimental Uber vehicle killed a woman 

that was crossing the road [6] in the night, dressed in dark 

clothes. Only the LiDAR provided a positive detection, that 

was discarded as a false positive by perception algorithms.

Sensor technologies have been surveyed previously in 

the literature, but usually centered on ADAS implementa-

tion [7, 8] or at a general level within Automated Driving 

[9]. One of the main contributions of this work is its focus 

on the relation between sensors and perception, which 

provide an integral view of the process that leads from raw 

sensor data to meaningful information for the driving task.

The content of the article is organized as follows. Sec-

tion II reviews the sensor technologies commonly used 

for perception, its drawbacks and advantages, and related 

emerging technologies that can be used in the future. Sec-

tion III starts describing the most important competences 

in perception, to proceed with a state of the art of percep-

tion algorithms and techniques grouped by competences. 

Sensors used on each work are enumerated, and their ad-

vantages and disadvantages are discussed. Section IV gives 

a perspective of the evolution of perception in Automated 

Driving, presenting the most relevant works and demos in 

the history of the discipline with a focus in sensor technol-

ogies used for each one. Finally, section V contains a dis-

cussion of the current state of the discipline and the future 

challenges for sensors and perception in Automated Driv-

ing systems. It includes a review of the most relevant alli-

ances between OEMs (Original Equipment Manufacturers) 

and technological companies involved in Automated Driv-

ing projects at the time of writing the article.

II. Sensors and Technologies
This work is focused in exteroceptive sensors, leaving 

proprioceptive sensors and communications out of the 

scope of the review. Exteroception in Automated Driving 

is related with information in the surroundings of the ve-

hicle, as opposed to proprioception that is related with the 

state of the vehicle itself (speed, accelerations, component 

integrity).

Next subsections present the advantages, drawbacks 

and current challenges for the three principal sensor 

technologies for exteroceptive perception in Automated 

Driving: artificial vision, radar and LiDAR. Each one is fol-

lowed with a review of relevant emergent technologies in 

the field.

After that, a taxonomy of information domains is pre-

sented. It is useful for several purposes. First it allows to 

link sensors technologies with perception algorithms de-

scribed in section III, since the first provide the raw data 

needed by the second. Second, the categorization is used to 

structure a subsequent analysis about the suitability and 

adequacy of the presented sensing technologies for percep-

tion in Automated Driving. This last part includes also the 

expected performance under different environmental and 

weather conditions.

A. Artificial Vision
Artificial vision is a popular technology that has been used 

for decades in disciplines as mobile robotics, surveillance 

or industrial inspection. This technology offers interesting 

features, as the low cost of sensors –for most popular types– 

and providing range of information types including spatial 

(shape, size, distances), dynamic (motion of objects by ana-

lyzing their displacement between consecutive frames) 

and semantic (shape analysis).

Cameras available in the market offer a wide range of 

configurations in resolution (from less than 0.25 to more 
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than 40 Mpx), frame rate (up to thousands of frames per 

second (FPS)), sensor size, and optics parameters. Howev-

er, Automated Driving poses some particular challenges to 

camera sensors and artificial vision technology:

Varying light and visibility conditions. Driving hap-

pens at day, at night, indoors, or at dusk or dawn with the 

sun close to the horizon. Dark spots, shadows, glares, re-

flections and other effects complicate the implementation 

of reliable artificial visible algorithms. Extending the cap-

turing spectrum can solve some of these problems. Far 

infrared (FIR) cameras (wavelength 900-1400 nm) are ef-

fective for pedestrian and animal detection [10, 11], in the 

dark and through dust and smoke. Near Infrared (NIR)

(750-900 nm) complements visible spectrum with a better 

contrast in high dynamic range scenes, and better night 

visibility. In [12] authors compare visible light, NIR and FIR 

cameras under different light and atmospheric conditions.

Scenes with a High Dynamic Range (HDR) contain 

dark and strongly illuminated areas in the same frame, as 

entering or exiting a tunnel. Common sensor technologies 

have single shot dynamic range of 60-75 dB, which cause 

a loss of information in the extremes (under- or overexpo-

sure). In 2017 Sony launched a 120 dB automotive sensor 

and 2k resolution. An automotive grade sensor combining 

HDR capabilities and NIR light detection is analyzed in [13] 

and the work [14] presents a sensor with 130/170 dB range 

(global/rolling shutter configurations).

A more extensive review of camera and sensor prob-

lems can be found in [15], from the perspective of record-

ing scenes in sports.

1) 3D Technology
Traditional camera technology is essentially 2D, but there 

are some types of vision sensors that can perceive depth in-

formation. This section describes the three principal types 

that are already available as commercial devices, although 

not always targeting the automotive market.

Stereo vision. Depth is calculated [16] from the appar-

ent displacement of visual features in the images captured 

by two carefully calibrated monocular cameras pointing 

in the same direction and separated by some distance 

(known as baseline).

One of the greatest advantages of stereo vision systems 

is their capability to provide dense depth maps, as opposed 

to sparse sensors (e.g. LiDARs). Stereo vision drawbacks 

include issues with low-textured patterns (e.g. solid colors) 

that difficult establishing correspondences between frames.

Monocular SLAM (Simultaneous Location And Map-

ping) algorithms share some of the working principles of 

stereo system: the motion of a single monocular camera 

creates an artificial baseline between consecutive frames, 

from which depth and camera motion are estimated. Some 

works as [17, 18] represent a good alternative to stereo sen-

sors for location and mapping.

Structured light. A monocular camera coupled with a 

device that illuminates the scene with a known pattern of 

infrared light. Irregular surfaces produce an apparent dis-

tortion of the light pattern, that is captured by the camera 

and translated to a depth map.

Structured light devices overcome some limitations of 

stereoscopic systems: they do not depend on textured sur-

faces and have a lower computational cost. However, they 

require the same high-accuracy calibration [19] and its op-

erative range (usually below 20 meters) is limited by the 

power of the emitter and the intensity of ambient light. Re-

flections can affect its performance.

Time-of-flight. Is an active sensing technology [20] 

based in the same round-trip-time principle of LiDAR 

sensors (see II C): an emitter composed of infrared LEDs 

floods the scene with modulated light that is captured by 

the sensor after being reflected by elements in the environ-

ment. The round-trip-time can be calculated for each pixel 

based on the phase shift of incoming light, which is then 

translated to a distance.

Using a non-directed source of light (as opposed to the 

low divergence laser emitter in LiDAR) has advantages as 

the ability to create dense depth maps and a high refresh 

rate exceeding 50 Hz. However, its operative range is short 

for automotive applications (10-20 meters) and has prob-

lems working under intense ambient light. Some research 

lines as indirect time-of-flight [21], pulsed light time-of-

flight or avalanche photodiodes [22] could increase work-

ing range to 50-250 meters.

2) Emerging Vision Technologies
In event-based vision the elements of the sensor (pixels) 

are triggered asynchronously and independently when 

they detect a change on light intensity (an event). The sen-

sor produce a stream of events that can be grouped in time 

windows for getting a frame-like image. Independence of 

sensor elements raises the dynamic range of the sensor 

to 120 dB, allowing high speed applications in low light 

conditions. [23] shows tracking at 1000 FPS under regular 

indoor lightning conditions, although the sensor works in 

sub-microsecond time scales. Events can be the input to 

visual odometry [24] and SLAM [25] applications, relieving 

the CPU of time consuming operations on raw images.

There is an active line of research [26] around sensors 

capturing light polarization, which perform consistently 

under adverse meteorological conditions and provide ex-

otic types of information (e.g. materials, composition, water 

in the road).

B. Radar
Radar technology use high frequency electromagnetic waves 

to measure the distance to objects based on the round-trip 

time principle, which is the time it takes the wave to reach 

the object, bounce on it and travel back to the sensor.
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Most modern automotive radars are based on the Fre-

quency-Modulated Continuous Wave (FMCW) technology, 

and use digital beamforming [27] to control the direction 

of the emitted wave. FMCW consists on emitting a signal 

with a well known and stable frequency that is modulated 

with another continuous signal that varies its frequency up 

and down (typically using a triangular shape). Distance is 

determined using the frequency shift between the emitted 

and reflected signals. Radars also exploit Doppler effect to 

get a direct observation of the relative speed of the target 

with respect to the sensor.

One of the strongest arguments for including radar 

sensing in automated vehicles is its independence of light 

and weather conditions. It works in the dark, and detec-

tions are almost equally good with snow, rain, fog or dust 

[28]. Long range radars can see up to 250 m in very adverse 

conditions, where no other sensor works.

Radar sensors present some difficulties and drawbacks:

Sensible to target reflectivity. Processing radar data is 

a tricky task, due in part to the heterogeneous reflectivity 

of the different materials. Metals amplify radar signal, eas-

ing detection of vehicles but increasing the apparent size 

of small objects as discarded cans in the road, while other 

materials (e.g. wood) are virtually transparent. This can 

cause false positives (detect a non existing obstacle) and 

false negatives (not detecting an actual obstacle).

Resolution and accuracy. Radars are very accurate mea-

suring distance and speed along the line that connects the 

sensor with a target. However, horizontal resolution depends 

on the characteristics of the emitted beam. Raw angular 

resolution in digital beamforming systems falls between 2 

to 5 degrees [29], that can be improved to 0.1-1 degrees us-

ing advanced processing techniques [30]. With this angular 

resolution, it can be difficult to separate (detect as indepen-

dent targets) a pedestrian from a nearby car at 30 m distance. 

At 100 m distance it can be impossible to separate vehicles in 

neighbor lanes, determine if a vehicle is in our same lane, 

and even if a detection is a vehicle or a bridge over the road.

1) Emerging Radar Technologies
One of the most active research area is related with high 

resolution radar imaging for automobiles. Apart from ben-

efits in target tracking and object separation, a higher 

resolution can get richer semantic information and enable 

further applications as target classification and environ-

ment mapping. An example can be found in [28], where a 

90 GHz rotating radar in the roof of a car is used to map 

the environment, including vehicles, static objects and 

ground. The paper [31] demonstrates the feasibility of ra-

dars operating between 100 and 300 GHz, analyzing at-

mospheric absorption and reflectivity of materials usually 

found in driving scenarios.

One of the key technologies that can lead to high reso-

lution radar imaging are meta-material based antennas  

[32, 33] for efficient synthetic aperture radars. Some manu-

facturers as Metawave are starting to offer products ori-

ented to automotive sector based on the technology.

C. LiDAR
LiDAR (Light Detection And Ranging) is an active rang-

ing technology that calculates distance to objects by mea-

suring round-trip time of a laser light pulse. Sensors for 

robotic and automotive applications use a low power NIR 

laser (900-1050 nm) that is invisible and eye-safe. Laser 

beams have a low divergence for reducing power decay 

with distance, allowing to measure distances up to 200 m 

under direct sunlight. Typically, a rotating mirror is used 

to change the direction of the laser pulse, reaching 360 de-

gree horizontal coverage. Commercial solutions use an ar-

ray of emitters to produce several vertical layers (between 

4 and 128). This generates a 3D point cloud representing 

the environment. LiDAR sensors are a good choice for cre-

ating accurate digital maps, because of their high accuracy 

measuring distances which averages a few millimeters er-

ror in most cases and degrading to 0.1-0.5 meters in the 

worse [34]. However, they have several drawbacks to take 

into account.

Low vertical resolution. In low cost models, which usu-

ally feature less than 16 layers, vertical resolution (separa-

tion between consecutive layers) falls down to 2 degrees. At 

100 m distance, this is translated into a vertical distance of 

1.7 m. High end models reduce this to 0.2-0.4 degrees, but 

at a much higher cost.

Sparse measures (not dense). Commercial device Ve-

lodyne HDL64 has a 2 mrad divergence [35] (0.11 degrees) 

and a vertical resolution of 0.42 degrees. At 50 meters dis-

tance, the 0.3 degree gap between layers is equivalent to a 

blind strip 0.26 meters tall. In low end devices (Velodyne 

VLP16) this gap grows to 1.5 meters. Small targets can re-

main undetected, and structures based on wires and bars 

are virtually invisible.

Poor detection of dark and specular objects. Black cars 

can appear as invisible to the LiDAR, since they combine 

a color that absorbs most radiation with a non-Lambertian 

material that does not scatter radiation back to receiver.

Affected by weather conditions. NIR laser beams are 

affected by rain and fog because water droplets scatter the 

light [36], reducing its operative range and producing false 

measures in the front of the cloud. The effect of dust has 

been explored in [37]. LiDAR performance in these sce-

narios is worse than radar, but still better than cameras 

and human eye.

1) Emerging LiDAR Technologies
FMCW LiDAR [38] emits light continuously to measure ob-

jects speed based on Doppler effect. In the last years some 

research prototypes suitable for the automotive market 

start appearing [39]. Apart from improving target tracking 
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capabilities, observation of speed can be useful to enhance 

activity recognition and behavior prediction, for example 

by detecting the different speeds of limbs and body in cy-

clists and pedestrians.

Solid state LiDAR is an umbrella term that includes 

several technologies, two of which are oscillating micro-

mirrors and Optical Phased Array (OPA). The first tech-

nology directs laser beams using micro-mirrors that can 

rotate around two axes. Manufacturer LeddarTech com-

mercializes devices based on this technology [40]. Optical 

phased arrays [41] is a technology similar to that used for 

EBF radars that allows to control the direction of the beam 

with high accuracy and speed. Quanergy [42] is one of the 

few manufacturers commercializing devices based on this 

technology.

OPA technology can apply random-access scan patterns 

over the entire FoV (Field of View). This allows observing 

only specific regions of interest, and change beam density 

(resolution) dynamically. These features can be combined 

to do fast inspection of the full FoV with low resolution, and 

then tracking objects of interest with a higher resolution 

for enhanced shape recognition even at far distances.

D. Relevant Information Domains
The task of a perception system is to bridge the gap be-

tween sensors providing data and decision algorithms 

requiring information. A classical differentiation be-

tween both terms is the following: data is composed by 

raw, unorganized facts that need to be processed, while 

information is the name given to data that has been pro-

cessed, organized, structured and presented in a proper 

context.

Table 1 presents a taxonomy tightly related with the 

goals of perception stage (section III). It allows to present 

conclusions about the suitability of sensor technologies 

for different perception tasks in a clear and organized 

way. Elements marked with an asterisk are derived in-

formation that can be inferred from sensed data but not 

directly observed. It is mostly related with internal state 

of external entities, as the intentions of human beings and 

animals.

E. Using Sensors for Perception
Sensor selection and arrangement is one of the most im-

portant aspects in the design of a perception system for 

Automated Vehicles. It has a great impact in its cost, with 

some setups having several times the price of the rest of 

the vehicle. This epigraph summarizes two aspects of the 

uttermost importance: type of information acquired and 

impact of environmental factors. For an analysis of spatial 

coverage and range see [43].

The characteristics of a sensing technology determines 

its suitability for acquiring certain types of information, 

and restricts its range of operative conditions. Figure 1 re-

lates the principal sensing technologies currently used in 

the automotive market and Automated Driving initiatives 

with relevant types of information identified in Table 1. 

The adequacy of a sensor for acquiring a certain type of 

information (or equivalently, the expected quality of that 

type of information when captured by that sensing tech-Category # Information type 

Ego-vehicle 1 Kinematic/dynamic (includes position) 

2 Proprioceptive (components health/status) 

Occupants 3 Driver awareness/capacities 

4 *Driver intentions (mind model) 

5 Passenger status (needs, risk factors) 

Environment 6 Spatial features: location, size, shape, fine features 

7 Identification: class, type, identity 

8 Semantic features: signs, road marks, regulation 

9 Contextual factors: weather, driving situation (e.g. 

jam, off-road, emergency) 

External 

actors

10 Spatial features: location, size, shape, fine features 

11 Kinematic/dynamic: position, motion 

12 Identification: class, type, identity 

13 Semantic features: vehicle lights, pedestrian clothes, 

gestures 

14 * Situational engagement: collaborative/aware 

(adults, other vehicles) vs non-collaborative/

unaware (animals, children) 

Table 1. Information taxonomy in Automated Driving domain
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(6, 10)

Location B M

Size M

Shape B M

Fine Features B M

Kinematics (11) Velocity, Accelerations B M

Identification (7, 12) M B

Regulation/

Semantics

(8, 13)

Traffic Signs B

Road Marks M

Gestures (Humans) M

Clothes (Humans)

Vehicle Lights

Context (9)
Weather

Driving Situation M M M

FIG. 1 Sensor adequacy for relevant types of information
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nology) is classified in three levels: Good (green shading, 

tick), Medium (yellow shading, letter M) and Bad (red 

shading, letter B).

Sensors and perception are expected to work uninter-

ruptedly during vehicle operation. Weather and other en-

vironmental factor can degrade sensor performance, but 

each technology is affected in a different way. Figure 2 

summarizes the effect of common external factors in the 

performance of the analyzed sensing technologies, using 

the same notation as Figure 1.

III. Problems and Applications
This section analyzes the state of the art in perception 

systems for Automated Driving. A set of behavioral com-

petences is identified, followed by a systematic literature 

review that analyzes the solutions for each category, orga-

nized by sensor technology.

A. Behavioral Competencies
Behavioral competencies in Automated Driving “refers 

to the ability of an Automated Vehicle to operate in the 

traffic conditions that it will regularly encounter” [44]. 

The NHTSA defined a set of 28 core competencies for 

normal driving [45], that have been augmented to a to-

tal of 47 by Waymo [46] in their internal tests. Table 2 

selects a subset of those behavioral competencies and 

arranges them in categories that are used to structure 

the state of the art in perception algorithms in a purpose 

oriented approach.

This set of competences represents the link between 

perception and decision (planning), as a counterpart to the 

information taxonomy presented in the previous section 

(Table 1), which linked sensors and perception algorithms. 

Both tables can be combined to evaluate the suitability of 

sensor technologies for creating some set of Automated 

Driving capacities.

The next subsections describe the state of the art in per-

ception techniques for the three identified categories of 

behavioral competencies.

Technology L
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t 
(D
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rk

)

D
ir

e
c
t 

S
u

n
lig

h
t

R
a
in

D
u
s
t/
F

o
g

Vision (Mono, Visible Light) B M B

Vision (Stereo, Visible Light) B M B

Vision (Near IR) M M

Vision (Far IR) M M

Vision (ToF) M M

Radar

LiDAR 2D M M

LiDAR 3D M M

FIG. 2 Sensor robustness under atmospheric and environmental factors

Competence Information type Behavior 

Automatic Traffic Sign Detection and 

Recognition (TSDR)

8 Detect Speed Limit Changes, Speed Advisories, Traffic Signals and Stop/Yield Signs 

8 Detect Access Restrictions (One-Way, No Turn, Ramps, etc.) 

8 Detect Temporary Traffic Control Devices 

6, 8 Detect Passing and No Passing Zones 

Perception of the environment 8 Detect Lines 

6, 8 Detect Detours 

6 Detect faded/missing roadway markings, signs and other temporary changes in traffic patterns 

9 Perception under weather or lighting conditions outside vehicle’s capability (e.g. rainstorm) 

Vehicles, pedestrians and other 

obstacles detection 

10, 12, 13 Detect Non-Collision Safety Situations (e.g. vehicle doors ajar) 

10, 11, 12, 13 Detect Stopped Vehicles, Emergency Vehicles, Lead Vehicle, Motorcyclists, School Buses 

6 Detect Static Obstacles in the Path of the Ego-Vehicle 

6, 8, 9, 10, 11, 12 Detect Pedestrians and Bicyclists at Intersections, Crosswalks and in the Road. 

10, 11, 12 Detect Animals 

10, 12, 13 Detect instructions from Work Zones and People Directing Traffic in Unplanned or Planned Events, 

Police/First Responder Controlling Traffic, Construction Zone Workers Controlling, Citizens 

Directing Traffic After a Crash (Overriding or Acting as Traffic Control Device) 

Table 2. Behavioral competences and relation with information taxonomy (see Table 1)
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B. Automatic Traffic Sign Detection and Recognition (TSDR)
Traffic signs are visual devices with a well defined aspect, 

that transmit a clear and precise piece of information about 

traffic regulation, warnings about factors affecting driving 

and other informative statements. The spatial and tem-

poral scopes of applicability are also defined in the sign, 

either explicitly or implicitly. Acquiring information from 

road traffic signs involves two major tasks: Traffic Sign De-

tection (TSD) which consists on finding the location, orien-

tation and size of traffic signs in natural scene images, and 

Traffic Sign Recognition (TDR) or classifying the detected 

traffic signs into types and categories in order to extract 

the information that they are providing to drivers [47].

Below are shown the most relevant solutions according 

to the type of sensor and the technology used.

1) Camera Based Solutions
Cameras are the most common sensor for TSDR. They can 

be used for TSR, TSD or both at the same time. As an exam-

ple of TSR, [48] proposes a method based on the Polar-Fou-

rier Grayscale Descriptor, and [49] a learning method based 

on a histogram intersection kernel. For TSD, [50] proposes 

a method based on a fast Convolutional Neural Network 

(CNN) inspired in the YOLOv2 network. This algorithm 

can detect the position of the traffic sign and classify it ac-

cording to its shape. [51] detects stop and yield signs with a 

statistical template built using color information in differ-

ent color spaces (YCbCR and ErEgEb). TSD techniques can 

also be applied to traffic light detection, as in [52], where 

a Bayesian inference framework to detect and map traffic 

lights is described. A different approach is proposed by [53] 

that uses a dual focal camera system composed of a wide 

angle camera and a telephoto camera which is moved by 

mirrors in order to get higher quality images of the traffic 

signs. Camera sensors can also perform TSD and TSR tasks 

as is shown in the following works where first the signals 

are detected attending to their color or shape, and then 

they are classified using machine learning techniques 

(CNN or SVM) [54–56]. In [57] a system composed by eight 

roof-mounted cameras which takes images every meter 

perform offline TDSR to create a database with more than 

13,000 traffic signs annotations

2) LiDAR Based Solutions
LiDAR sensors have been used for TSD. Their 3D percep-

tion capabilities are useful to determine the position of 

the sign and its shape, and can also use the intensity of 

reflected light to improve detection accuracy based on the 

high reflectivity of traffic signs. [58] performs detection in 

three steps: first the point cloud is filtered by laser reflec-

tion intensity, then a clustering algorithm is used to detect 

potential candidates, followed by a filtering step based on 

the lateral position, elevation and geometry that extracts 

the signs. [59] goes one step further and makes a primary 

classification attending to the sign shape (rectangular, tri-

angular and circular).

3) Sensors Fusion Solutions
A system that combines LiDAR and Cameras can improve 

the sign detection and recognition as it has the advantag-

es and the information of both sources. [60] trains a SVM 

with 10 variables: 9 of different color spaces provided by 

the camera (RGB, HSV, CIEL*a*b*) plus reflection inten-

sity observed by LiDAR. After verifying the 3D geometry 

of detected signs, a linear SVM classifier is applied to HOG 

features. [61] method detects traffic signs in LiDAR point 

clouds using prior knowledge of road width, pole height, 

and traffic sign reflectance, geometry and size. Traffic 

sign images are normalized to perform classification based 

on a supervised Gaussian-Bernoulli deep Boltzmann ma-

chine model.

C. Perception of the Environment
The purpose of this competence is to characterize and de-

scribe the road, which represents the most direct piece of 

environment of a vehicle. This involves two different as-

pects: characterize road surface geometry and detect road 

marks (lanes and complements traffic signs as stops, turns 

or stopping lines).

Road marks, as traffic signs, are designed to be detected 

and correctly interpreted by human drivers under a wide 

variety of external conditions. This is achieved using re-

flective painting and high contrast colors. Cameras and 

less frequently LiDARs have been used for detecting them. 

Road geometry description has been approached using 

cameras, LiDARs and radars.

In the following lines, the most relevant works about 

this topic are presented, organized by the type of sensor 

they use.

1) Camera Based Solutions
Can be grouped in three categories depending on the spe-

cific sensor configuration.

Single Monocular. Using only one camera looking at 

the road in front of the vehicle it is possible to estimate 

its shape and lanes, the position of the vehicle in the road 

and detect road marks. A survey of the most relevant algo-

rithms used for this purpose, mainly for camera sensors is 

presented in [62].

Multiple Monocular cameras. Some works [63, 64] ar-

range multiple cameras around the vehicle (typically four, 

one on each side) to get 360-degree visual coverage of the 

surroundings. A different configuration is used in [65], 

where two lateral cameras are used to localize the vehicle.

Binocular or Stereo. The main advantage of binocular 

cameras is their 3D perception capabilities. It makes pos-

sible to detect the ground plane and road boundaries [66, 

67], improving road mark detection.
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2) LiDAR Based Solutions
Main application of LiDARs in road perception is related 

with detecting the ground plane and road limits [68], as 

well as detecting obstacles that could occlude parts of the 

road. In recent works, LiDAR based solutions also take ad-

vantage of the higher reflectivity of road marks with re-

spect to the pavement (gray and black material) to detect 

lane [69, 70] and pavement markers [71]. Poor road mainte-

nance can affect markers reflectivity to the point of making 

them undetectable by LiDAR. This can be solved by fusing 

LiDAR data with cameras able to perceive non reflective 

lane marks [63]. Some works use a 2D LiDAR sensor to ex-

tract road geometry and road marks [72, 73].

3) Radar Based Solutions
Radars have been used to determine road geometry based 

on the principle that the road acts as a mirror for the sen-

sor, returning a very small amount of the emitted power, 

while the sides of the roads return a slightly higher amount 

of power. Road limits have been estimated with a maxi-

mum error of half a lane at zero distance from the host 

vehicle and less than one lane width at 50 meters distance. 

This information can be fused with camera images to im-

prove both detections [74–76].

D. Detection of Vehicles, Pedestrians and Other Obstacles
This competence involves moving elements that can be 

in the path of the vehicle, so it requires extracting more 

information. Apart from detection and classification, it is 

also important to determine the position of obstacles with 

respect to the vehicle, their motion direction, speed, and 

future intentions when possible. This information will be 

the input to other systems like path planners or collision 

avoidance systems (reviewed in [77]).

1) Camera Based Solutions
Different configurations have been used for camera based 

obstacle detection, including single monocular camera, 

multiple cameras, stereo cameras and infrared cameras.

Cameras can be placed in different locations. The front 

of the vehicle is the most common placement since the most 

critical obstacles will be in front of the vehicle, but many 

works explored other positions in order to increase the FoV. 

A camera placed on the side-view mirror, in the passengers 

window [78] or looking backwards [79] can prevent back-

ing crash and improve the decision of lane change maneu-

vers [80–82]. An omnidirectional camera mounted on the 

top of the vehicle has been used in [83] to detect obstacles 

and estimate ego-motion.

Stereo cameras are widely used for obstacle detection 

as they provide 3D information of the position of the ob-

stacles. A large review of the different algorithms used for 

this kind of cameras can be found in [84]. FIR cameras are 

independent of scene illumination and can spot obstacles 

at night [85]. Relevant moving elements (vehicles, pedestri-

ans, animals) are usually hot and, thus, easy to detect with 

FIR cameras. However, this sensor has to be complemented 

with other technologies as in [86], since cold obstacles like 

parked vehicles or trees can be not perceived. [87] presents 

and explains in detail several camera solutions and the al-

gorithms used for detection.

2) LiDAR Based Solutions
LiDAR technology allows to detect and classify surround-

ing elements, providing a very accurate 3D position and its 

shape. As it is an active sensor its performance is not af-

fected by the illumination of the scene, so it can work also 

at night. Several approaches for LiDAR obstacle detection 

are shown in [88].

3) Radar Based Solutions
The primary use of automotive radars is detection and 

tracking of other vehicles on the road, thanks to their 

high accuracy measuring target distances and relative 

speed, long range detection and performance in ad-

verse weather conditions [89]. Radars have low angular 

resolution, causing misplacement of detected elements 

and reporting targets that are close to each other as a 

single larger object. A common solution consists on fus-

ing radar detections with other sensors as cameras [90] 

or LiDARs [91].

4) Multiple Sensors Fusion Solutions
This competence requires estimating a large number of 

variables simultaneously, creating difficulties for any 

single sensor solution. This is a good scenario for sensor 

fusion systems, that can combine the strengths of each sen-

sor to improve the solution.

Radar and LiDAR fusion [91] increases the precision of 

the speed obtained only with LiDAR and keeps a good posi-

tion and speed estimation quality when radar is unavail-

able (especially in curvy roads). Radar and vision fusion 

techniques use radar information to locate areas of interest 

on the images, which are then processed to detect vehicles 

and improve their position estimation [92]. LiDAR and vi-

sion sensors are fused in [93, 94]. Obstacles are detected 

and tracked with the LiDAR, and the targets are classified 

using a combination of camera and LiDAR detections.

IV. Relevant Works and Demos
This section describes some of the most relevant tech-

nological demonstrations, competitions, challenges and 

commercial platforms related with Automated Driving, 

starting from pioneering works in late 1980s until present 

day. Figure 3 arranges them in a timeline, with the focus 

on the sensors equipped by each platform.

The timeline allows to discern different stages (“ages”) 

in the development of Automated Driving technology, and 
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to identify trends and approaches from the per-

ception point of view for Automated Vehicles.

A. Pioneer Works (1980–2000)
Pioneer works in Automated Driving starts 

around mid-1980s focused in vision based tech-

niques, which represented a huge computa-

tional burden for the embeddable computers of 

the time. Automated Vehicles VaMoRs [95] and 

VaMP [96] from Bundeswehr University of Mu-

nich used a saccadic vision system: cameras on 

a rotating platform that focus in relevant ele-

ments. The University of Parma started its proj-

ect ARGO in 1996. The vehicle completed over 

2000 km of autonomous driving in public roads 

[97], using a two camera system for road follow-

ing, platooning and obstacle avoidance.

The Cybercar concept is born in early 1990s 

[98] as an urban vehicle with no pedals or steer-

ing wheel. In 1997 a prototype is installed in 

Schippol airport to transport passengers be-

tween terminal and parking [99]. It used a Li-

DAR and vision system to drive automatically in 

a dedicated lane with semaphores and pedes-

trian crossings.

Also in 1997, the National Automated High-

way System Consortium presented a demon-

stration of Automated Driving functionalities 

[100], intended to be a proof of technical feasi-

bility. The demo showed road following func-

tionality based on vision sensors, distance 

maintenance based on LiDAR, vehicle follow-

ing based on Radar and other functionalities 

including cooperative maneuvers and mixed 

environments.

B. Proof of Feasibility (2000–2010)
In year 2004 DARPA started its Grand Challenge 

series to foster development of Automated Driv-

ing technologies. The achievements over those 

three years not only represented a huge leap 

forward, but also called the attention of pow-

erful agents. Two first challenges (2004 and 

2005) consisted in covering a route over dirt 

roads with off-road sections, with a strong fo-

cus in navigation and control. Stanford Univer-

sity won the 2005 edition, equipping its vehicle 

Stanley with 5 LiDAR units, a frontal camera, 

GPS sensors, an IMU, wheel odometry and 

two automotive radars [101]. The Urban Chal-

lenge (2007) changed the focus to interaction 

with other vehicles, pedestrians and obeying 

complex traffic regulations. Carnegie Mellon 

University team ended in first position with its 
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vehicle Boss [102, 103], featuring a perception system com-

posed by two video cameras, 5 radars and 13 LiDAR (in-

cluding a roof mounted unit of the novel Velodyne 64HDL).

These events triggered the attention of Google. The 

company hired around 15 scientists from the DARPA chal-

lenge, including the winners of 2005 and 2007 [104], [105]. 

Google’s (and Waymo’s) approach to self-driving vehicles 

is largely founded in LiDAR and 3D mapping technologies 

[106]. All their vehicles have had a roof-mounted spinning 

LiDAR: Toyota Prius (2009), the Firefly prototype (2014) 

and Chrysler Pacifica (2016-present).

The University of Parma created the spin-off VisLab 

in 2009. They are strong supporters of artificial vision as 

the main component of perception systems for AD. In 2010 

they completed the VisLab Intercontinental Autonomous 

Challenge (VIAC): four automated vans drove from Italy to 

China over public roads that included degraded dirt roads 

and unmapped areas [107]. The leading vehicle did percep-

tion (with cameras and LiDARs), decision and control, with 

some human intervention for selecting the route and man-

aging critical situations [108]. In 2013 the PROUD test put a 

vehicle with no driver behind the wheel in Parma roads for 

doing urban driving in real traffic [109].

C. Race to Commercial Products (2010-Present)
In the last decade the landscape of Automated Driving 

has been dominated by private initiatives that foresee the 

coming of Level 4 and 5 systems in a few years. This vision 

gave birth to several companies devoted to this end, most 

of which were founded by people coming from the DARPA 

experience, or hired them to lead the project [106].

Examples include the nuTonomy (co-founded by the 

leader of the MIT team in 2007 Challenge), Cruise (found-

ed by a member of the same team), Otto (founded by a par-

ticipant in 2004 and 2005 Challenges), Uber (hired up to 50 

people from the CMU Robotics Lab), Zoox robotaxi com-

pany (co-founded by a member of the Stanford Autonomous 

Driving team) [110], and Aurora (similar story with people 

from Uber, MIT and Waymo [111]).

Car manufacturers reacted a bit slower. Some of them 

started independent research lines, for example BMW has 

been testing automation prototypes in roads since 2011 

[112] and Mercedes-Benz Bertha project [113] drove in 2013 

a 103 km route in automated mode using close-to-market 

sensors (8 radars and 3 video cameras), but in the end most 

manufacturers have created coalitions with technological 

startups as enumerated in section V B 1.

Mobileye started working in a vision-only approach to 

Automated Driving a few years ago. After testing in real 

conditions [114], they presented a demo with an automated 

Ford equipped just with 12 small monocular cameras for 

fully Automated Driving in 2018 [115].

Tesla entered the Automated Driving scene in 2014. All 

their vehicles were equipped with a monocular camera 

(based on Mobileye system) and an automotive radar that 

enabled the Level 2-3 AutoPilot functionality. Starting 2017 

new Tesla vehicles include the “version 2” hardware, com-

posed by a frontal radar, 12 sonars, and 8 cameras. This 

sensor set is claimed to be enough for full Level 5 Auto-

mated Driving [116], which will be available for a fee (when 

ready) through a software update.

In 2015 VisLab was acquired by Ambarella, a company 

working on low power chips able to process high resolution 

dense disparity maps from stereo cameras [117]. Its latest 

demo [118] fused data from 10 stereo pairs into an ultra-

high resolution 3D scene delivering 900 million points per 

second. Long range vision mix a forward facing 4k stereo 

pair with a radar for better performance under low light or 

adverse weather conditions.

Delphi Automotive completed in 2015 an automated 

trip between San Francisco and New York city using a 

custom Audi Q5 with 10 radars, 6 LiDARs and 3 camer-

as onboard. In 2017 they acquired nuTonomy (the first 

company to deliver a robotaxi service in public roads) 

and created Aptiv. Aptiv presented an automated taxi for 

CES conference in January 2018, as part of a 20 vehicle 

f leet that has been serving a set of routes in Las Vegas 

for some months. The taxis have an extensive set of 10 

radars and 9 LiDARs embedded in the bodywork, plus 

one camera.

Meanwhile, Waymo has grown a fleet of Chrysler Pa-

cifica minivans that has self-driven 10 million miles by 

October 2018. Their efforts have reportedly cut prices of 

LiDAR sensors to less than one tenth in a few years. They 

claim to have created two “new categories of LiDAR” [119] 

in the way, one for close range perception including below 

the car, and the other for long range. The long-range Li-

DAR can reportedly zoom dynamically into objects on the 

road, letting the vehicle see small objects up to 200 m away. 

This reminds the features of OPA solid state LiDARs (see 

section II C 1): random sampling across the scanning area 

and adaptive resolution.

V. Discussion
The last section of this article presents a discussion of the 

future challenges for sensors and perception systems in 

new Automated Vehicles, both from the technical and im-

plantation point of view. A description of the next commer-

cial initiatives and OEMs forecasts is shown followed by 

the final conclusions.

A. Future Challenges
Sections II and III show many works that solve the most im-

portant perception competences, based on different types 

of sensors and with a large variety of algorithms. Trans-

lating these solutions into a functional, safe and secure 

commercial Automated Vehicle requires overcoming ad-

ditional difficulties.
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1) Technical Challenges
Sensor setups in Automated Driving are usually focused on 

the areas relevant for the usual driving tasks (covered in 

section III). But for a commercial system expected to work 

in the real world there are still some specific challenges 

that do not have a proper solution yet.

Very short distance, including close to or below the car. 

A person, animal or object right below the vehicle or in-

tersecting the path of the wheels represents a safety issue. 

While most situations can be anticipated when the element 

approaches the vehicle from the distance, it is not the case 

right before starting the vehicle, while executing high ac-

curacy maneuvers in certain conditions (close to people or 

other moving elements). This problem can be tackled by 

adding redundant sensors like [83] which uses a 360-de-

gree-view parking system or a special LiDAR monitoring 

this area used by Waymo. In the future there will be a need 

of specific devices for this task.

Very long distance. Detection and classification above 

200 meters is an open issue. Among current approaches, 

Ambarella integrates an Ultra High Resolution camera (cit-

ed in IV) that is claimed to be enough for discerning small 

objects at that target distance, subject to the limitations of 

visible light cameras. Solutions based on saliency (a com-

mon term in artificial vision [120–122] to name relevancy 

or importance) can be an alternative to the high resolution 

and computational cost associated to brute force approach-

es. Solid state LiDAR capable of random and adaptive sam-

pling is a potential candidate solution for such technology, 

achieving something similar to Waymo’s claims about 

their custom built LiDARs.

Environmental and weather conditions. Section II 

summarizes the suitability of common technologies under 

different conditions, some of which surpass human capaci-

ties. This is an always active field of research, following 

the road when most marks are covered by snow, improv-

ing detection under heavy rain or dense fog are examples 

of problems that can be solved at sensing level without re-

quiring further efforts on processing algorithms.

2) Implantation Challenges
The final goal of research in automated driving is to bring 

technologies to market, either for private customers or for 

shared applications (automated fleets). Commercialization 

and implantation is feasible only if products fulfill certain 

scalability, costs, and durability requirements. Some sen-

sors are among the most expensive and fragile components 

of a vehicle, so their implantation is a key factor in the de-

velopment of automated driving vehicles.

Production scalability and costs. Mature technologies 

as visible light cameras and radars have already scaled up 

their production and reduced costs so that every vehicle 

can equip them without a significant impact on its price. 

This remains a challenge for LiDAR devices and other 

OEM Test site Technologies Since Collaborations Forecast Test fleet 

Ford Detroit, Arizona & 

California (USA) 

LiDAR, and mapping ~2016 Argo, Velodyne, 

SAIPS, civilmaps.

Level 4 (2021) Fusion Hybrid ( 

~100 by 2018)

GM Detroit, S. Francisco 

& Scottsdale (USA) 

LiDAR, HD map, radar, camera ~2016 Waymo and Jaguar-

Land Rover 

2020 (Fortune) ~50 vehicles (2017) 

Renault-Nissan Japan, USA & China Front radar, LiDAR. Speed/

steering control 

~2017 Transdev, Microsoft. < 2030 (Level 5)

2020 (Level 3)

— 

Daimler Germany Vision, data fusion, radar. 2015 Bosch 2020 Commercial cars 

(Level 2) 

Volkswagen-

Audi Group

Germany LiDAR, data fusion, adaptive 

cruise control, Trafic Jam 

Assist, self-parking

2015 Delphi (2015) 

Aurora (2017) 

2025 (Level 4) Commercial cars 

(Level 3, Traffic 

Jams) 

BMW Germany, China Vision, LiDAR, DGPS 2011 Intel, Baidu, HERE 2022 (Level 5) Commercial cars 

(Level 2) 

Waymo California (USA) LiDAR, vision system, radar, 

data fusion, RT Path plan.. 

2010 Fiat-Chrysler, 

Velodyne. 

— 100 autonomous 

Pacifica minivans 

Volvo Sweden. & Uber: San 

Francisco, Pittsburgh

Vision, LiDAR, GPS, V2I 2011 Uber (U.S), Autoliv 

(Sweden) 

~2020 Commercial cars 

(Level 2) 

Tesla USA Camera, radar, AI ~2015 Apple, Mobileye and 

Nvidia 

~2020 Level 5) Commercial cars 

(Level 2) 

Hyundai South Korea AI, LiDAR, Camera 2014 KIA, Aurora AD Level 3. 2020 

(Highways). 2030 

(city streets) 

— 

Table 3. OEM projects and alliances in Automated Driving
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breakthrough technologies. It is difficult to get an exact 

estimation of an acceptable cost, it depends on the use of 

the vehicle (private or commercial fleet) in between many 

other factors. For a discussion on costs and impact of Auto-

mated Mobility services, see [123].

Durability and tolerance to failure. The perception 

system of an Automated Vehicle must work for long peri-

ods under harsh conditions, as the rest of critical compo-

nents in a vehicle. Low mean-time between-failures (as 

for mechanical LiDARs), external factors (a stone chip at 

high speeds can damage a sensor) or intentional attacks 

[124] are important factors to consider in the future sensors 

technologies.

B. Commercial Initiatives
In the last decade the automotive market has grown the 

offer and complexity of ADAS [125]. The most requested 

ADAS in 2009 [126] were Anti-lock braking system and 

Parking Assistance by Warning (SAE Level 0). Today most 

advanced cars equip an ensemble of ADAS that place them 

between SAE Levels 2 and 3.

1) OEMs in Automated Driving
Around 2015 most important OEMs decided to take seri-

ous initiatives towards bringing high and fully Automat-

ed Driving (SAE Levels 4 and 5) to the market. In order 

to accelerate their roadmaps, they established alliances 

with technological companies startups and technology/

research centers that can hint about their approach to Au-

tomated Driving.

Table 3 shows a resume of the most promising research 

and collaboration for Automated Driving with OEMs in-

volved. The most relevant works are leaded by Ford, GM 

and Daimler. However, the influences of Waymo and Tes-

la, and the alliances with other actors (NVIDIA, Apple or 

Intel-Mobileye) plays an important role in this automated 

race. Another important consideration is that most of the 

OEMs started their Automated program just two years ago.

C. Conclusions
Choosing the sensors configuration of an automated vehi-

cle can be challenging. Each sensor has different strengths 

and weaknesses regarding the type of information ac-

quired, overall accuracy and quality and working condi-

tions. This survey has reviewed the most popular sensors 

technologies, describing their characteristics and how 

they are applied to get useful information to solve the main 

perception competences. The relevant works and demos 

section provide a good perspective of how different man-

ufacturers and research groups do perception tasks and 

which kind of sensors they use for that purpose. Finally, 

the section V B 1 can form an intuition about how manu-

facturers are approaching the development of Autonomous 

Vehicles and how are they planning to get there.
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Index Terms—Automated Driving, LiDAR, Radar, Arti-

ficial Vision, Perception.
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Exteroception in Automated Driving is related with information in 

the surroundings of the vehicle, as opposed to proprioception that 

is related with the state of the vehicle itself (speed, accelerations, 

component integrity).

Behavioral competencies in Automated Driving “refers to the 

ability of an Automated Vehicle to operate in the traffic conditions 

that it will regularly encounter”


