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A review of some techniques 
for inclusion of domain‑knowledge 
into deep neural networks
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We present a survey of ways in which existing scientific knowledge are included when constructing 
models with neural networks. The inclusion of domain‑knowledge is of special interest not just 
to constructing scientific assistants, but also, many other areas that involve understanding data 
using human‑machine collaboration. In many such instances, machine‑based model construction 
may benefit significantly from being provided with human‑knowledge of the domain encoded in 
a sufficiently precise form. This paper examines the inclusion of domain‑knowledge by means of 
changes to: the input, the loss‑function, and the architecture of deep networks. The categorisation 
is for ease of exposition: in practice we expect a combination of such changes will be employed. 
In each category, we describe techniques that have been shown to yield significant changes in the 
performance of deep neural networks.

Science is a cumulative enterprise, with generations of scientists discovering, refining, correcting and ultimately 
increasing our knowledge of how things are. The accelerating pace of development in software and hardware 
for machine learning–in particular, the area of deep neural networks (DNNs)–inevitably raises the prospect of 
Artificial Intelligence for  Science1. That is, how can we best use AI methods to accelerate our understanding of 
the natural world? While ambitious plans exist for completely automated AI-based robot  scientists2, the imme-
diately useful prospect of using AI for Science remains semi-automated. An example of such a collaborative 
system is in Fig. 1. For such systems to work effectively, we need at least the following: (1) We have to be able to 
tell the machine what we know, in a suitably precise form; and (2) The machine has to be able to tell us what it 
has found, in a suitably understandable form. While the remarkable recent successes of deep neural networks on 
a wide variety of tasks makes a substantial case for their use in model construction, it is not immediately obvious 
how either (1) or (2) should be done with deep neural networks. In this paper, we examine ways of achieving (1), 
that is, the techniques for constructing deep neural networks from data and domain-knowledge concerning the 
problem. Understanding models constructed by deep neural networks is an area of intense research activity, and 
good summaries exist  elsewhere3,4. To motivate the utility of providing domain-knowledge to a deep network, 
we reproduce two results  from5 in Fig. 2, which shows that predictive performance can increase significantly, 
even with a simplified encoding of domain-knowledge (see Fig. 2a). 

It is unsurprising that a recent report on AI for  Science1 identifies the incorporation of domain-knowledge 
as one of the 3 Grand Challenges in developing AI systems:

“ML and AI are generally domain-agnostic...Off-the-shelf [ML and AI] practice treats [each of these] data-
sets in the same way and ignores domain knowledge that extends far beyond the raw data...Improving our 
ability to systematically incorporate diverse forms of domain knowledge can impact every aspect of AI.”

But it is not just the construction of scientific-assistants that can benefit from this form of man-machine col-
laboration, and “human-in-the-loop” AI systems are likely to play an increasingly important role in engineering, 
medicine, healthcare, agriculture, environment and so  on8. In this survey, we restrict the studies on incorporation 
of domain-knowledge into neural networks, with 1 or more hidden layers. If the domain-knowledge expressed 
in a symbolic form (for example, logical relations that are known to hold in the domain), then the broad area of 
hybrid neural-symbolic systems (see for example,9,10) is clearly relevant to the material in this paper. However, 
the motivation driving the development of hybrid systems is much broader than this paper, being concerned with 
general-purpose neural-based architectures for logical representation and inference. Here our goals are more 
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modest: we are looking at the inclusion of problem-specific information into machine-learning models of a kind 
that will be described shortly. We refer the reader  to11 for reviews of work in the broader area of neural-symbolic 
modelling. More directly related to this paper is the work on “informed machine learning”, reviewed  in12. We 
share with this work the interest in prior knowledge as an important source of information that can augment 
existing data. However, the goals of that paper are more ambitious than here. It aims to identify categories of 
prior knowledge, using as dimensions: the source of the knowledge, its representation, and its point of use in a 
machine-learning algorithm. In this survey, we are only concerned with some of these categories. Specifically, in 
terms of the categories  in12, we are interested in implicit or explicit sources of domain-knowledge, represented 
either as logical or numeric constraints, and used at the model-construction stage by DNNs. Informal examples 
of what we mean by logical and numerical constraints are shown in Fig. 3. In general, we will assume logical 
constraints can, in principle, be represented as statements in propositional logic or predicate logic. Numerical 
constraints will be representable, in principle, as terms in an objective function being minimised (or maximised), 
or prior distributions on models. We believe this covers a wide range of potential applications, including those 
concerned with scientific discovery.

Focus of the paper. We adhere to the following informal specification for constructing a deep neural net-
work: given some data D, a structure and parameters of a deep network (denoted by π and θ , respectively), a 
learner L attempts to construct a neural network model M that minimises some loss function L. Fig. 4 shows a 

Figure 1.  An example of AI for Science. The human-in-the-loop is a biologist. The biologist conducts 
experiments in a biological system, obtains experimental observations. The biologist then extracts data that 
can be used to construct machine learning model(s). Additionally, the machine learning system has access 
to domain knowledge that can be obtained from the biologist. The machine learning system then conveys its 
explanations to the biologist.
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Figure 2.  The plots  from6 showing gains in predictive accuracy of (a) multilayer perceptron (MLP), and (b) 
graph neural network (GNN) with the inclusion of domain-knowledge. The domain knowledge inclusion 
method in (a) is a simple technique known as ‘propositionalisation’ 7; and, the method in (b) is a general 
technique of incorporating domain-knowledge using bottom-graph construction. The results shown are over 70 
datasets. No importance to be given to the line joining two points; this is done for visualisation purpose only.

For inhibiting this protein: The model should follow that:
The presence of a peroxide p(y = 1|x) ≥ 0.9
bridge is relevant. p(y = 0|x) ≤ 0.1
The target site is Initial weights should be
at most20Å. 3n− 2.3 [13]
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Figure 3.  Informal descriptions of (a) logical; and (b) numerical constraints.
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diagrammatic representation. Note that: (a) we do not describe how the learner L constructs a model M given 
the inputs. But, it would be normal for the learner to optimise the loss L by performing an iterative estimation 
of the parameters θ , given the model structure π ; and (b) we are not concerned with how the constructed deep 
model M will be used. However, it suffices to say that when used, the model M would be given one or more data-
instances encoded in the same way as was provided for model-construction.

In the literature, domain knowledge–also called background knowledge–does not appear to have an accepted 
definition, other than that, it refers to information about the problem. This information can be in the form of 
relevant features, concepts, taxonomies, rules-of-thumb, logical constraints, probability distributions, mathemati-
cal distributions, causal connections and so on. In this paper, we use the term “domain-knowledge” to refer to 
problem-specific information that can directly be translated into alterations to the principal inputs of Fig. 4. That 
is, by domain-knowledge we will mean problem-specific information that can change: (1) The input data to a 
deep network; (2) The loss-function used; and (3) The model (that is, the structure or parameters) of the deep 
network. In a sense, this progression reflects a graded increase in the complexity of changes involved. Figure 5 
tabulates the principal implications of this position for commonly-used deep learning architectures.

The rest of the paper is organised as follows: Section 2 describes inclusion of domain-knowledge by augment-
ing or transformation of inputs; Section 3 describes changes that have been employed to loss-functions; and 
Section 4 describes biases on parameters and changes to the structure of deep networks. Section 5 outlines some 
major challenges related to the inclusion of domain-knowledge in the ways we describe. In this section, we also 
present perspectives on the relevance of the use of domain-knowledge to aspects of Responsible AI, including 
ethics, fairness, and explainability of DNNs.

Transforming the input data. One of the prominent approaches to incorporate domain-knowledge into a 
deep network is by changing inputs to the network. Here, the domain-knowledge is primarily in symbolic form. 
The idea is simple: If a data instance could be described using a set of attributes that not only includes the raw 
feature-values but also includes more details from the domain, then a standard deep network could then be con-
structed from these new features. A simple block diagram in Fig. 6 shows how domain knowledge is introduced 
into the network via changes in inputs. In this survey, we discuss broadly two different ways of doing this: (a) 
using relational features, mostly constructed by a method called  propositionalisation7 using another machine 
learning system (for example, Inductive Logic Programming) that deals with data and background knowledge; 
(b) without propositionalisation.

Figure 4.  Construction of a deep model M from data (D) using a learner ( L ). We use π to denote the structure 
(organisation of various layers, their interconnections etc.) and θ to denote the parameters (synaptic weights) of 
the deep network. L denotes the loss function (for example, cross-entropy loss in case of classification).

Figure 5.  Some implications of using domain-knowledge for commonly-used deep network architectures. 
Although attention-mechanism has also been used recently in many deep network architectures, we mention it 
only for RNNs and transformers as it is more prominently being used for sequence learning.
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Propositionalisation. The pre-eminent form of symbolic machine learning based on the use of relations in 
first-order logic is Inductive Logic Programming (ILP)14, which has an explicit role for domain-knowledge being 
incorporated into learning. The simplest use of  ILP14 to incorporate n-ary relations in domain knowledge into 
a neural network relies on techniques that automatically “flatten” the domain-knowledge into a set of domain-
specific relational features. Although not all DNNs require data to be a set of feature-vectors, this form of data 
representation is long-standing and still sufficiently prevalent. In logical terms, we categorise feature-based rep-
resentations as being encodings in propositional logic. The reader would point out, correctly, that feature-values 
may not be Boolean. This is correct, but we can represent non-Boolean features by Boolean-valued propositions 
(for example, a real-valued feature f with value 4.2 would be represented by a corresponding Boolean feature f ′ 
that has the value 1 if f = 4.2 and 0 otherwise). With the caveat of this rephrasing, it has of course been pos-
sible to provide domain-knowledge to neural networks by employing domain-specific features devised by an 
expert. However, we focus here on ways in which domain-knowledge encoded as rules in propositional and first-
order logic has been used to construct the input features for a deep neural network. Techniques for automatic 
construction of Boolean-valued features from relational domain-knowledge have a long history in the field of 
 ILP15–17, originating from the  LINUS7. Often called propositionalisation, the approach involves the construction 
of features that identify the conditions under which they take on the value 1 (or 0). For example, given (amongst 
other things) the definition of benzene rings and of fused rings, an ILP-based propositionalisation may construct 
the Boolean-valued feature that has the value 1 if a molecule has 3 fused benzene rings, and 0 otherwise. The val-
ues of such Boolean-valued features allows us to represent a data instance (like a molecule) as a Boolean-valued 
feature-vector, which can then be provided to a neural network. There is a long history of propositionalisation: 
 see18 for a review of some of early use of this technique,  and19,20 who examine the links between propositionalisa-
tion and modern-day use of embeddings in deep neural networks. More clearly, the authors examine that both 
propositionalisation and embedding approaches aim at transforming data into tabular data format, while they 
are being used in different problem settings and contexts. One recent example of embedding is demonstrated 
 in21 where the authors use different text-embedding approaches such as sentence  encoder22 and  GPT223 to trans-
form textual domain-knowledge into embedding vectors.

A direct application of propositionalisation, demonstrating its utility for deep networks has been its use in 
Deep Relational Machines (DRMs)24. A DRM is a deep fully-connected neural network with Boolean-valued 
inputs obtained from propositionalisation by an ILP engine.  In25, Boolean-valued features from an ILP engine 
are sampled from a large space of possible relational features. The sampling technique is refined further  in26.

The idea of propositionalisation also forms the foundation for a method known as ‘Bottom Clause Proposi-
tionalisation (BCP)’ to propositionalise the literals of a most-specific clause, or “bottom-clause” in ILP. Given a 
data instance, the bottom-clause is the most-specific first-order clause that entails the data instance, given some 
domain-knowledge. Loosely speaking, the most-specific clause can be thought of “enriching” the data instance 
with all domain relations that are true, given the data instance. The construction of such most-specific clauses and 
their subsequent use in ILP was introduced  in27. CILP++28 uses bottom-clauses for data instances to construct 
feature-vectors for neural networks. This is an extension to CIL2 P in which the neural network uses recurrent 
connections to enforce the background-knowledge during the  training29.

Propositionalisation has conceptual and practical limitations. Conceptually, there is no variable-sharing 
between two or more first-order logic  features25. That is, all useful compositions have to be pre-specified. Prac-
tically, this makes the space of possible features extremely large: this has meant that the feature-selection has 
usually been done separately from the construction of the neural network. In this context, another work that 
does not employ either propositionalisation or network augmentation considers a combination of symbolic 
knowledge represented in first-order logic with matrix factorization  techniques30. This exploits dependencies 
between textual patterns to generalise to new relations.

Recent work on neural-guided program synthesis also explicitly includes domain-specific relations. Here 
programs attempt to construct automatically compositions of functional primitives. The primitives are rep-
resented as fragments of functional programs that are expected to be relevant. An example of neural-guided 
program synthesis that uses such domain-primitives is  DreamCoder31,32. DreamCoder receives as inputs, the 
partial specification of a function in the form of some inputs–output pairs, and a set of low-level primitives 

Figure 6.  Introducing background knowledge into deep network by transforming data. T  is a transformation 
block that takes input data D, background knowledge (BK) and outputs transformed data D′ that is then used to 
construct a deep model using a learner L.
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represented in a declarative language. Higher-level domain-concepts are then abduced as compositions of these 
primitives via a neurally-guided search procedure based on a version of the Bayesian “wake-sleep”  algorithm33. 
The deep networks use a (multi-hot) Boolean-vector encoding to represent functional compositions (a binary 
digit is associated with each primitive function, and takes the value 1 if and only if the primitive is used in the 
composite function).

There are methods that do not use an explicit propositionalisation step, but nevertheless amount to re-for-
mulating the input feature-representation. In the area of “domain-adaptation”34, “source” problems act as a proxy 
for domain-knowledge for a related “target” problem (Superficially, this is also the setting underlying transfer 
learning. However, the principal difference is that source and target problems are closely related in domain-
adaptation, but this need not be the case with transfer-learning. Transfer-learning also usually involves changes 
in both model-parameters and model-structure. Domain-adaptation does not change the model-structure: we 
consider these points in a later section). There is a form of domain-adaptation in which the target’s input rep-
resentation is changed based on the source model.  In35, for example, a feature-encoder ensures that the feature 
representation for the target domain that is the same as the one used for the source.

Binary and n‑ary relations. An influential form of representing relational domain-knowledge takes the 
form knowledge graph, which are labelled graphs, with vertices representing entities and edges representing 
binary relations between entities. A knowledge graph provides a structured representation for knowledge that 
is accessible to both humans and  machines36. Knowledge graphs have been used successfully in variety of prob-
lems arising in information processing domains such as search, recommendation,  summarisation37. Sometimes 
the formal semantics of knowledge graphs such as domain ontologies are used as sources for external domain-
knowledge38. We refer the reader  to39 to a comprehensive survey of this form of representation for domain-
knowledge.

Incorporation of the information in a knowledge-graph into deep neural models–termed “knowledge-infused 
learning”–is described  in40,41. This aims to incorporate binary relations contained in application-independent 
sources (like DBPedia, Yago, WikiData) and application-specific sources (like SNOMED-CT, DataMed). The 
work examines techniques for incorporating relations at various layers of deep-networks (the authors categorise 
these as “shallow”, “semi-deep” and “deep” infusion). In the case of shallow infusion, both the external knowledge 
and the method of knowledge infusion are shallow, utilising syntactic and lexical knowledge in word embed-
ding models. In semi-deep infusion, external knowledge is involved through attention mechanisms or learnable 
knowledge constraints acting as a sentinel to guide model learning. Deep infusion employs a stratified represen-
tation of knowledge representing different levels of abstractions in different layers of a deep learning model to 
transfer the knowledge that aligns with the corresponding layer in the learning process. Fusing the information 
in a knowledge-graph in this way into various level of hidden representations in a deep network could also 
allow quantitative and qualitative assessment of its functioning, leading to knowledge-infused  interpretability42.

There have been some recent advances in introducing external domain-knowledge into deep sequence models. 
For instance,  in38, the authors incorporate domain-specific knowledge into the popular deep learning frame-
work,  BERT43 via a declarative knowledge source like drug-abuse ontology. The model constructed here, called 
Gated-K-BERT, is used for jointly extracting entities and their relationships from tweets by introducing the 
domain-knowledge using an entity position-aware module into the primary BERT architecture. The experimental 
results demonstrate that incorporating domain-knowledge in this manner leads to better relation extraction as 
compared to the state-of-the-art. This work could fall within the category of semi-deep infusion as described 
 in40,44, in their study on learning from electronic health records show that the adjacency information in a medi-
cal knowledge graph can be used to model the attention mechanism in an LSTM-based RNN with attention. 
Whenever the RNN gets an entity (a medical event) as an input, the corresponding sub-graph in the medical 
knowledge graph (consisting of relations such as causes and is-caused-by) is then used to compute an attention 
score. This method of incorporating the medical relations into the RNN falls under the category of semi-deep 
knowledge infusion. While the above methods use the relational knowledge from a knowledge-graph by altering 
or adding an attention module within the deep sequence model, a recent method called  KRISP45 introduces such 
external knowledge at the output (prediction) layer of BERT. This work could be considered under the category 
of shallow infusion of domain-knowledge as characterised  by40.

Knowledge graphs can be used directly by specialised deep network models that can handle graph-based data 
as input (graph neural networks, or GNNs). The computational machinery available in GNN then aggregates and 
combines the information available in the knowledge graph (an example of this kind of aggregation and pool-
ing of relational information is  in46). The final collected information from this computation could be used for 
further predictions. Some recent works are  in47,48, where a GNN is used for estimation of node importance in a 
knowledge-graph. The intuition is that the nodes (in a problem involving recommender systems, as  in48, a node 
represents an entity) in the knowledge-graph can be represented with an aggregated neighbourhood information 
with bias while adopting the central idea of aggregate-and-combine in GNNs. The idea of encoding a knowledge 
graph directly for a GNN is also used in Knowledge-Based Recommender Dialog (KBRD) framework developed 
for recommender  systems49. In this work, the authors treat an external knowledge graph, such as  DBpedia50, 
as a source of domain-knowledge allowing entities to be enriched with this knowledge. The authors found that 
the introduction of such knowledge in the form of a knowledge-graph can strengthen the recommendation 
performance significantly and can enhance the consistency and diversity of the generated dialogues. In  KRISP45, 
a knowledge-graph is treated as input for a GNN where each node of the graph network corresponds to one 
specific domain-concept in the knowledge graph. This idea is a consequence of how a GNN operates: it can form 
more complex domain-concepts by propagating information of the basic domain-concepts along the edges in the 
knowledge-graph. Further, the authors allow the network parameters to be shared across the domain-concepts 
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with a hope to achieve better generalisation. We note that while knowledge-graph provide an explicit representa-
tion of domain-knowledge in the data, some problems contain domain-knowledge implicitly through an inher-
ent topological structure (like a communication network). Clearly, GNNs can accommodate such topological 
structure just in the same manner as any other form of graph-based relations (see for example:51).

Going beyond binary relations in knowledge-graphs and treating n-ary relations as hyperedges, a technique 
called vertex enrichment is proposed  in5. Vertex-enrichment is a simplified approach for the inclusion of domain-
knowledge into standard graph neural networks (GNNs). The approach incorporates first-order background 
relations by augmenting the features associated with the nodes of a graph provided to a GNN. The results 
reported  in5 show significant improvements in the predictive accuracy of GNNs across a large number datasets. 
The simplification used in vertex-enrichment has been made unnecessary in a recent proposal for transforming 
the most-specific clause constructed by ILP systems employing mode-directed inverse entailment  (MDIE27). 
The transformation converts this clause into a graph can be directly used by any standard  GNN6. Specifically, 
the transformation results in a labelled bipartite graph consisting of vertices representing predicates (including 
domain predicates) and ground terms. This approach reports better predictive performance than those reported 
 in5, and includes knowledge-graphs as a special case. Most recently, this method has been combined successfully 
with deep generative sequence models for generating target-specific molecules, which demonstrates yet another 
real-world use-case of incorporating domain knowledge into deep  networks52.

Transforming the loss function
One standard way of incorporating domain-knowledge into a deep network is by introducing “penalty” terms 
into the loss (or utility) function that reflect constraints imposed by domain-knowledge. The optimiser used for 
model-construction then minimises the overall loss that includes the penalty terms. Fig. 7 shows a simple block 
diagram where a new loss term is introduced based on the background knowledge. We distinguish two kinds of 
domain constraints–syntactic and semantic–and describe how these have been used to introduce penalty terms 
into the loss function.

Syntactic Loss. The usual mechanism for introducing syntactic constraints is to introduce one or more 
regularisation terms into the loss function. The most common form of regularisation introduces penalties based 
on model complexity (number of hidden layers, or number of parameters and so on: see, for example,53).

A more elaborate form of syntactic constraints involves the concept of embeddings. Embeddings refer to the 
relatively low-dimensional learned continuous vector representations of discrete variables. Penalty terms based 
on “regularising embeddings” are used to encode syntactic constraints on the complexity of embeddings.54 was 
an early work in this direction, in which the authors proposed a strategy to establish constraints by designating 
each node in a Hopfield Net to represent a concept and edges to represent their relationships and learn these 
nets by finding the solution which maximises the greatest number of these constraints.55 was perhaps the first 
method of regularising embeddings from declarative knowledge encoded in first-order logic. The proposal here 
is for mapping between logical statements and their embeddings, and logical inferences and matrix operations. 
That is, the model behaves as if it is following a complex first-order reasoning process, but operates at the level 
of simple vectors and matrix representations.30 extended this to regularisation by addition of differentiable loss 
terms to the objective-based on propositionalisation of each first-order predicate. Guo et al.56 proposed a joint 
model, called KALE, which embeds facts from knowledge-graphs and logical rules, simultaneously. Here, the 
facts are represented as ground atoms with a calculated truth value in [0, 1] suggesting how likely that the fact 
holds. Logical rules (in grounded form) are then interpreted as complex formulae constructed by combining 
ground atoms with logical connectives, which are then modelled by fuzzy t-norm  operators57. The truth value 
that results from this operation is nothing but a composition of the constituent ground atoms, allowing the facts 
from the knowledge graph to be incorporated into the model.

Figure 7.  Introducing background knowledge into deep network by transforming the loss function L. T  block 
takes an input loss L and outputs a new loss function L′ by transforming (augmenting or modifying) L based on 
background knowledge (BK). The learner L then constructs a deep model using the original data D and the new 
loss function L′.
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Li and  Srikumar58 develop a method to constraint individual neural layers using soft logic based on mas-
sively available declarative rules in ConceptNet.59 incorporates first-order logic into low dimensional spaces by 
embedding graphs nodes and represents logical operators as learned geometric relations in the space.60 proposed 
ordering of embedding space based on rules mined from WordNet and found it to better prior knowledge and 
generalisation capabilities using these relational embeddings.61 show that domain-based regularisation in loss 
function can also help in constructing deep networks with less amount of data in prediction problems concerned 
with cloud computing.  In62, a knowledge-based distant regularisation framework was proposed that utilises the 
distance information encoded in a knowledge-graph. It defines prior distributions of model parameters using 
knowledge-graph embeddings. They show that this results in an optimisation problem for a regularised factor 
analysis method.

Semantic loss. Penalty terms can also be introduced on the extent to which the model’s prediction satisfies 
semantic domain constraints. For example, the domain may impose specific restrictions on the prediction (“out-
put prediction must be in the range 3 . . . 6”). One way in which such information is provided is in the form of 
domain-constraints. Penalty terms are then introduced based on the number and importance of such constraints 
that are violated.

A recent work that is based on loss function is  in63. Here the authors propose a semantic loss that signifies 
how well the outputs of the deep network matches some given constraints encoded as propositional rules. The 
general intuition behind this idea is that the semantic loss is proportional to a negative logarithm of the prob-
ability of generating a state that satisfies the constraint when sampling values according to some probability 
distribution. This kind of loss function is particularly useful for semi-supervised learning as these losses behave 
like self-information and are not constructed using explicit labels and can thus utilize unlabelled data.

64 proposed a framework to incorporate first-order logic rules with the help of an iterative distillation proce-
dure that transfers the structured information of logic rules into the weights of neural networks. This is done via 
a modification to the knowledge-distillation loss proposed by Hinton et al.65. The authors show that taking this 
loss-based route of integrating rule-based domain-knowledge allows the flexibility of choosing a deep network 
architecture suitable for the intended task.

In66, authors construct a system for training a neural network with domain-knowledge encoded as logical 
constraints. Here the available constraints are transferred to a loss function. Specifically, each individual logic 
operation (such as negation, and, or, equality etc.) is translated to a loss term. The final formulation results in 
an optimisation problem. The authors extract constraints on inputs that capture certain kinds of convex sets 
and use them as optimisation constraints to make the optimisation tractable. In the developed system, it is also 
possible to pose queries on the model to find inputs that satisfy a set of constraints. In a similar line,67 proposed 
domain-adapted neural network (DANN) that works with a balanced loss function at the intersection of models 
based on purely domain-based loss or purely inductive loss. Specifically, they introduce a domain-loss term that 
requires a functional form of approximation and monotonicity constraints on the outputs of a deep network. 
Without detailing much on the underlying equations, it suffices to say that formulating the domain loss using 
these constraints enforces the model to learn not only from training data but also in accordance with certain 
accepted domain rules.

Another popular approach that treats domain knowledge as ‘domain constraints’ is semantic based 
 regularisation68,69. It builds standard multilayered neural networks (e.g. MLP) with kernel machines at the input 
layer that deal with continuous-valued features. The output of the kernel machines is input to the higher layers 
implementing a fuzzy generalisation of the domain constraints that are represented in first-order logic. The 
regularisation term, consisting of a sum of fuzzy generalisation of constraints using t-norm operations, in the 
cumulative loss then penalises each violation of the constraints during the training of the deep network.  In70 inject 
domain knowledge at training time via an approach that combines semantic based regularisation and constraint 
 programming71. This approach uses the concept of ‘propagators’, which is inherent in constraint programming to 
identify infeasible assignments of variables to values in the domain of the variables. The role of semantic-based 
regularisation is to then penalise these infeasible assignments weighted by a penalty parameter. This is an example 
of constraints on inputs. In a similar line,  In72 introduce domain-knowledge into a deep LSTM-based RNN at 
three different levels: constraining the inputs by designing a filtering module based on the domain-specific rules, 
constraining the output by enforcing an output range, and also by introducing a penalty term in the loss function.

A library for integrating symbolic domain-knowledge with deep neural networks was introduced recently 
 in73. It provides some effective ways of specifying domain-knowledge, albeit restricted to (binary) hierarchical 
concepts only, for problems arising in the domain of natural language processing and some subset of computer 
vision. The principle of integration involves constraint satisfaction using a primal-dual formulation of the optimi-
sation problem. That is: the goal is to satisfy the maximum number of domain constraints while also minimising 
the training loss, an approach similar to the idea proposed  in66,67,70.

While adding a domain-based constraint term to the loss function may seem appealing, there are a few 
challenges. One challenge that is pointed out in a recent  study74 is that incorporating domain-knowledge in this 
manner (that is: adding a domain-based loss to the standard problem-specific loss) may not always be suitable 
while dealing with safety-critical domains where 100% constraint satisfaction is desirable. One way to guaran-
tee 100% domain-constraint satisfaction is by directly augmenting the output layer with some transformations 
and then deriving a new loss function due to these transformations. These transformations are such that they 
guarantee the output of the network to satisfy the domain constraints. In this study, called  MultiplexNet74, the 
domain-knowledge is represented as a logical formula in disjunctive normal form (DNF) Here the output (or 
prediction) layer of a deep network is viewed as a multiplexor in a logical circuit that permits branching in logic. 
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That is, the output of the network always satisfies one of the constraints specified in the domain knowledge 
(disjunctive formula).

The other form of semantic loss could be one that involves a human for post-hoc evaluation of a deep model 
constructed from a set of first-order rules. In this line,  In75 proposed an analogical reasoning system intended for 
discovering rules by training a sequence-to-sequence model using a training set of rules represented in first-order 
logic. Here the role of domain-knowledge comes post training of the deep sequence model; that is, an evaluator 
(a human expert) tests each discovered rule from the model by unifying them against the (domain) knowledge 
base. The domain-knowledge here serves as some kind of a validation set where if the ratio of successful rule 
unification crosses a certain threshold, then the set of discovered rules are accepted.

Transforming the model
Over the years, many studies have shown that domain knowledge can be incorporated into a deep network by 
introducing constraints on the model parameters (weights) or by making a design choice of its structure. Figure 8 
shows a simple block diagram showing domain knowledge incorporation at the design stage of the deep network.

Constraints on parameters. In a Bayesian formulation, there is an explicit mechanism for the inclusion 
of domain-knowledge through the use of priors. The regularisation terms in loss-functions, for example, can be 
seen as an encoding of such prior information, usually on the network’s structure. Priors can also be introduced 
on the parameters (weights) of a network. Explicitly, these would take the form of a prior distribution over 
the values of the weights in the network. The priors on networks and network weights represent our expecta-
tions about networks before receiving any data, and correspond to penalty terms or regularisers. Buntine and 
 Weigend76 extensively study how Bayesian theory can be highly relevant to the problem of training feedforward 
neural networks. This work is explicitly concerned with choosing an appropriate network structure and size 
based on prior domain-knowledge and with selecting a prior for the weights.

The work  by77 on Bayesian learning for neural networks also showed how domain-knowledge could help build 
a prior probability distribution over neural network parameters. In this, the shown priors allow networks to be 
“self-regularised” to not over-fit even when the complexity of the neural network is increased. In a similar spirit,78 
showed how prior domain knowledge could be used to define ‘meta-features’ that can aid in defining the prior 
distribution of weights. These meta-features are additional information about each of the features in the available 
data. For instance, for an image recognition task, the meta-feature could be the relative position of a pixel (x, y) 
in the image. This meta information can be used to construct a prior over the weights for the original features.

Transfer learning. Transfer Learning is a mechanism to introduce priors on weights when data is scarce for a 
problem (usually called the “target” domain). Transfer learning relies on data availability for a problem simi-
lar to the target domain (usually called the “source” domain). From the position taken in this paper, domain-
knowledge for transfer learning is used to change the structure or the parameter values (or both) for a model for 
the target problem. The nature of this domain-knowledge can be seen prior distributions on the structure and/
or parameter-values (weights) of models for the target problem. The prior distributions for the target model are 
obtained from the models constructed for the source problem.

In practice, transfer learning from a source domain to a target domain usually involves a transfer of weights 
from models constructed for the source domain to the network in the target domain. This has been shown to 
boost performance significantly. From the Bayesian perspective, transfer learning allows the construction of 
the prior over the weights of a neural network for the target domain based on the posterior constructed in the 

Figure 8.  Introducing background knowledge into deep network by transforming the model (structure and 
parameter). In (a), the transformation block T  takes a input structure of a model π and outputs a transformed 
structure π ′ based on background knowledge (BK). In (b), the transformation block T  takes a set of parameters 
θ of a model and outputs a transformed set of parameters π ′ based on background knowledge (BK).
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source domain. Transfer learning is not limited by the kind of task (such as classification, regression, etc.) but 
rather by the availability of related problems. Language models are some of the very successful examples of the 
use of transfer learning, where the models are initially learnt on a huge corpus of data and fine-tuned for other 
more specialised tasks.  In79 provides an in-depth review of some of the mechanisms and the strategies of transfer 
learning. Transfer learning need not be restricted to deep networks only: in a recent study,80 proposes a model 
that transfers knowledge from a neural network to a decision tree using knowledge distillation framework. The 
symbolic knowledge encoded in the decision tree could further be utilised for a variety of tasks.

A subcategory of transfer learning is one in which the problem (or task) remains the same, but there is a 
change in the distribution over the input data from the source and the target. This form of learning is viewed 
as an instance of domain-adaptation34. Similar to transfer learning, the knowledge is transferred from a source 
domain to a target domain in the form of a prior distribution over the model parameters. This form of domain-
adaptation uses the same model structure as the source, along with an initial set of parameter values obtained 
from the source model. The parameter values are then fine-tuned using labelled and unlabelled data from the 
target  data81. An example of this kind of learning is  in82 where a BERT model is fine-tuned with data from mul-
tiple domains. There are some recent surveys along these lines:83,84.

Specialised structures. DNN based methods arguably work best if the domain-knowledge is used to 
inspire their architecture  choices85. There are reports on incorporating first-order logic constructs into the 
structure of the network. This allows neural-networks to operate directly on the logical sentences comprising 
domain-knowledge.

Domain-knowledge encoded as a set of propositional rules are used to constrain the structure of the neural 
network. Parameter-learning (updating of the network weights) then proceeds as normal, using the structure. 
The result could be thought of as learning weighted forms of the antecedents present in the rules. The most 
popular and oldest work along this line is Knowledge-Based Artificial Neural Network (KBANN)13 that incor-
porates knowledge into neural networks. In KBANN, the domain knowledge is represented as a set of hierarchi-
cally structured propositional rules that directly determines a fixed topological structure of a neural  network86. 
KBANN was successful in many real-world applications; but, its representational power was bounded by pre-
existing set of rules which restricted it to refine these existing rules rather than discovering new rules. A similar 
study is  KBCNN87, which first identifies and links domain attributes and concepts consistent with initial domain 
knowledge. Further, KBCNN introduces additional hidden units into the network and most importantly, it 
allowed decoding of the learned rules from the network in symbolic form. However, both KBANN and KBCNN 
were not appropriate for learning new rules because of the way the initial structure was constructed using the 
initial domain knowledge base.

Some of the limitations described above could be overcome with the proposal of a hybrid system by Fletcher 
and  Obradovic88. The system was able to learn a neural network structure that could construct new rules from 
an initial set of rules. Here, the domain knowledge is transformed into an initial network through an extended 
version of KBANN’s symbolic knowledge encoding. It performed incremental hidden unit generation thereby 
allowing construction or extension of initial rule-base. In a similar manner, there was a proposal for using Cas-
cade  ARTMAP89 which could not only construct a neural network structure from rules but also perform explicit 
cascading of rules and multistep inferencing. It was found that the rules extracted from Cascade ARTMAP are 
more accurate and much cleaner than the rules extracted from  KBANN90.

In the late 1990s, Garcez and Zaverucha proposed a massively parallel computational model called CIL2 P 
based on feedforward neural network that integrates inductive learning from examples and domain knowl-
edge, expressed as a propositional logic  program91. A translation algorithm generates a neural network. Unlike 
KBANN, the approach uses the notion of “bipolar semi-linear” neurons. This allows the proof of a form of 
correctness, showing the existence of a neural-network structure that can compute the logical consequences of 
the domain-knowledge. The output of such a network, when combined into subsequent processing naturally 
incorporates the intended interpretation of the domain predicates. The authors extend this to the use of first-
order logic programs: we have already considered this in Sect. 2.

A recent proposal focuses on embedding symbolic knowledge expressed as logical  rules91. It considers two 
languages of representations: Conjunctive Normal Form (CNF) and decision-Deterministic Decomposable Nega-
tion Normal form (d-DNNF), which can naturally be represented as graph structures. The graph structures 
can be provided to a graph neural network (GNN) to learn an embedding suitable for further task-specific 
implementations.

Somewhat in a similar vein to the work  by29, the work reported  in63 considers as a set of propositional state-
ments representing domain constraints. A deep network is then trained to find satisfying assignments for the con-
straints. Again, once such a network is constructed, it can clearly be used in subsequent processing, capturing the 
effect of the domain constraints. The network is trained using a semantic loss that we have described in Sect. 3.2.

In58 it is proposed to augment a language model that uses a deep net architecture with additional statements 
in first-order logic. Thus, given domain-knowledge encoded as first-order relations, connections are introduced 
into the network based on the logical constraints enforced by the domain-relations. The approach is related 
somewhat to the work  in92 that does not explicitly consider the incorporation of domain-knowledge but does 
constrain a deep neural network’s structure by first grounding a set of weighted first-order definite clauses and 
then turning them into propositional programs.

We note that newer areas are emerging that use representations for domain-knowledge that go beyond 
first-order logic relations. This includes probabilistic first-order logic, as a way of including uncertain domain-
knowledge93. One interesting way this is being used is to constrain the training of “neural predicates”, which 
represent probabilistic relations that are implemented by neural networks, and the framework can be trained in 
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an end-to-end  fashion93,94. In  DeepProbLog93, for example, high-level logical reasoning can be combined with 
the sub-symbolic discriminative power of deep networks. For instance, a logic program for adding two digits 
and producing the output sum is straightforward. However, what if the inputs are images of the corresponding 
digits? Here, a deep network is used to map an image to a digit, while a (weighted) logic program, written in 
 ProbLog95, for the addition operation is treated as the symbolic domain knowledge. The ProbLog program is 
extended with a set of ground neural predicates for which the weights correspond to the probability distribution 
of classes of digits (0 ...9). The parameters (weights of predicates and weights of neural network) are learned in 
an end-to-end fashion. A recent approach called  DeepStochLog94 is a framework that extends the idea of neural 
predicates in DeepProbLog to definite clause  grammars96. The reader may note that although DeepProbLog and 
DeepStochLog do not really transform the structure of the deep network, we are still considering these methods 
under the heading of specialised structures. This is because of the fact that the hybrid architecture is a tightly 
coupled approach combining probabilistic logic and deep neural networks.

One of the approaches involves transformation of a probabilistic logic program to graph-structured repre-
sentation. For instance, in  kLog97 the transformed representation is an undirected bipartite graph in the form of 
‘Probabilistic Entity-Relationship model’98 which allows the use of a graph-kernel99 for data classification purpose, 
where each data instance is represented as a logic program constructed from data and background-knowledge. 
Another approach uses weighted logic programs or templates with  GNNs100 demonstrating how simple relational 
logic programs can capture advanced graph convolution operations in a tightly integrated manner. However, it 
requires the use of a language of Lifted Relational Neural Networks (LRNNs)101.

An interesting proposal is to transform facts and rules, all represented in (weighted) first-order logic into 
matrix (or tensor) representations. Learning and inference can then be conducted on these matrices (or ten-
sors)102,103 allowing faster computation.  NeuralLog104, for example, extends this idea and constructs a multilayered 
neural network, to some extent, similar to the ones in LRNN consisting of fact layer, rule layer and literal layer 
etc. The learning here refers to the updates of the weights of the rules. Another work that translates domain-
knowledge in first-order logic into a deep neural network architecture consisting of the input layer (grounded 
atoms), propositional layer, quantifier layer and output layer  is68. Similar to LRNN, it uses the fuzzy t-norm 
operators for translating logical OR and AND operations.

Further emerging areas look forward to providing domain-knowledge as higher-order logic templates (or 
“meta-rules”:  see17 for pointers to this area). To the best of our knowledge, there are, as yet, no reports in the 
literature on how such higher-order statements can be incorporated into deep networks.

Challenges and concluding remarks
We summarise our discussion on domain-knowledge as constraints in Table 1. We now outline some challenges 
in incorporating domain-knowledge encoded as logical or numerical constraints into a deep network. We first 
outline some immediate practical challenges concerning the logical constraints:

• There is no standard framework for translating logical constraints to neural networks. While there are simpli-
fication methods which first construct a representation of the logical constraint that a standard deep network 
can consume, this process has its limitations as described in the relevant section above.

• Logic is not differentiable. This does not allow using standard training of deep network using gradient-based 
methods in an end-to-end fashion. Propagating gradients via logic has now been looked at  in105, but the 
solution is intractable and does not allow day-to-day use.

• Many neural network structures are directed acyclic graphs (DAGs). However, transforming logical formulae 
directly into neural network structures in the manner described in some of the discussed works can introduce 
cyclic dependencies, which may need a separate form of translations.

There are also practical challenges concerning the numerical constraints:

• We have seen that the numerical constraints are often provided with the help of modification to a loss func-
tion. Given some domain-knowledge in a logical representation, constructing a term in loss function is not 
straightforward.

• Incorporating domain-knowledge via domain-based loss may not be suitable for some safety-critical applica-
tions.

• The process of introducing a loss term often results in a difficult optimisation problem (sometimes con-
strained) to be solved. This may require additional mathematical tools for a solution that can be implemented 
practically.

• Deep network structures constrained via logical domain-knowledge may not always be scalable to large 
datasets.

It is possible to consider representing domain-knowledge not as logical or numeric constraints, but through state-
ments in natural language. Recent rapid progress in the area of language models, for example, the models based 
on  attention106,107 raises the possibility of incorporating domain-knowledge through conversations. While the 
precision of these formal representations may continue to be needed for the construction of scientific assistants, 
the flexibility of natural language may be especially useful in communicating commonsense knowledge to day-
to-day machine assistants that need to an informal knowledge of the  world108,109. Progress in this is being made 
(see, for example, https:// allen ai. org/ aristo), but there is much more that needs to be done to make the language 
models required accessible to everyday machinery.

https://allenai.org/aristo
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More broadly, incorporating domain-knowledge into learning is highlighted  in1 as one of the Grand Chal-
lenges facing the foundations of AI and ML. Addressing this challenge effectively is seen as being relevant to 
issues arising in automated model-construction like data-efficiency and constraint-satisfaction. Additionally, 
it is suggested that developing a mapping of internal representations of the model to domain-concepts maybe 
necessary for acceptable explanations for the model’s predictions and for developing trust in the model.

It is now accepted that trust comes through understanding of how decisions are made by the machine-
constructed  models110, and what are the determining factors in these decisions. One important requirement of 
machine-constructed models in workflows with humans-in-the-loop is that the models are human-understanda-
ble. Domain-knowledge can be used in two different ways to assist this. First, it can constrain the kinds of models 
that are deemed understandable. Secondly, it can provide concepts that are meaningful for use in a model. Most 
of the work in this review has been focused on improving predictive performance. However, the role of domain-
knowledge in constructing explanations for deep network models is also being explored (see, for example,111). 
However, that work only generates post hoc explanations that are locally consistent. Explanatory deep network 
models that identify true causal connections based on concepts provided as domain-knowledge remain elusive.

Domain-knowledge can also be used to correct  biases112 built into a deep network either declaratively, through 
the use of constraints, or through the use of loss functions that include “ethical penalty” terms. Demonstrations 

Table 1.  Some selected works, in no particular order, showing the principal approach of domain knowledge 
inclusion into deep neural networks. For each work referred here, we show the type of learner with following 
acronyms: Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network 
(RNN), Graph Neural Network (GNN), Adaptive Resonance Theory-based Network Map (ARTMAP), DNN∗ 
refers to a DNN structure dependent on intended task. We use ‘MLP’ here to represent any neural network, 
that conforms to a layered-structure that may or maynot be fully-connected. RNN also refers to sequence 
models constructed using Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells.

Principal approach Work (reference) Type of learner

Transforming Data

DRM24,25 MLP

CILP++28 MLP

R-GCN46 GNN

KGCN61 GNN

KBRD49 GNN

DG-RNN44 RNN

DreamCoder32 DNN∗

Gated-K-BERT38 Transformer

VEGNN5 GNN

BotGNN6 GNN

KRISP45 GNN, Transformer

Transforming Loss

IPKFL78 CNN

ILBKRME30 MLP

HDNNLR64 CNN, RNN

SBR68 MLP

SBR69 CNN

DL266 CNN

Semantic  Loss63 CNN

LENSR91 GNN

DANN67 MLP

PC-LSTM72 RNN

DomiKnowS73 DNN*

MultiplexNet74 MLP, CNN

Analogy  Model75 RNN

Transforming Model

KBANN86 MLP

Cascade-ARTMAP89 ARTMAP

CIL2P29 RNN

DeepProbLog93 CNN

LRNN101 MLP

TensorLog103 MLP

Domain-Aware  BERT82 Transformer

NeuralLog104 MLP

DeepStochLog94 DNN*
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of the use of domain-knowledge driven, ethics-sensitive machine learning have been available in the literature for 
some  time113. Can these carry over to the construction of deep network models? This remains to be investigated.

The issues raised above all go beyond just the “how” questions related to the incorporation of domain-
knowledge into deep neural networks. They provide pointers to why the use of domain-knowledge may extend 
beyond its utility for prediction.

Received: 5 August 2021; Accepted: 20 December 2021
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