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ABSTRACT
Astronomical images provide information about the great variety of celestial objects in
the Universe, the physical processes taking place in it, and the formation and evolution of
the cosmos. Great efforts are made to automatically detect stellar bodies in images due to the
large volumes of data and the fact that the intensity of many sources is at the detection level of
the instrument. In this paper, we review the main approaches to automated source detection.
The main features of the detection algorithms are analysed and the most important techniques
are classified into different strategies according to their type of image transformation and their
main detection principle; at the same time their strengths and weaknesses are highlighted. A
qualitative and quantitative evaluation of the results of the most representative approaches is
also presented.
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1 IN T RO D U C T I O N

The automatic detection of sources in astronomical images seems
to be quite a straight-forward task compared to other computer vi-
sion problems: the typical scenario is to deal with light-emitting
sources on dark backgrounds. Nevertheless, there are some diffi-
culties associated with astronomical image processing that make
this task complicated. On the one hand, many astronomical objects
do not show clear boundaries since their intensities are similar to
the detection levels and they are mixed with the noise component.
On the other hand, especially in the case of wide-field deep images
showing multiple sources, the sizes and intensities of the different
objects present in the images can vary considerably. Therefore the
images can have a large dynamic range (i.e. the ratio between the
highest and lowest intensity level) and a large spatial dynamic range
(i.e. the ratio between the largest and smallest detectable structure).
These facts may cause image display problems due to the limited
range of intensities perceptible by the human vision system.

Therefore, the main challenge in astronomical object detection
is to separate those pixels that belong to astronomical bodies from
those that belong to background or noise. Since the goal is to find
connected regions of pixels constituting objects, this task is also
referred to object segmentation in the computer vision community.
Nevertheless, in this document we will often refer to the localization
of the central coordinates of the sources as detection. Astronomical
detection is usually the first step in the process of building astro-
nomical catalogues. For this reason, after astronomical detection
two other processes are also performed: classification, which cate-
gorizes the objects into different types (e.g. stars, clusters, galaxies,
extended objects, etc.), and photometry, to account for the flux, mag-
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nitude or intensity of the objects. The whole process of building a
catalogue is also known as source extraction.

The development of automated algorithms for detecting astro-
nomical objects has become a research topic of interest for the
astronomical community. Even thought these algorithms perform
the same actions that an experienced astronomer can do with an
appropriate display system, their importance lies on the fact that the
algorithms can do these things quickly, repeatedly and always with
the maximum objectivity (properties that a human being cannot
guarantee). As stated by Goderya & Lolling (2002), their impor-
tance becomes apparent in wide fields or large surveys with thou-
sands of sources that can have intensities at detection levels. In these
cases a human search is inefficient, very slow and inaccurate, if not
almost impossible.

The first automated methods for astronomical object detection
had already been developed in the 1970s, and have evolved until
today, although at a relatively slow pace because simple image pro-
cessing techniques are already used to achieve better results than
those performed manually by experts. Nevertheless, more accurate
and reliable detection techniques are increasingly required by as-
tronomers, so more complex strategies have been implemented.

We are aware that astronomical imaging is a broad subject and
images acquired at different frequency bands present different fea-
tures and behaviours. However, in this paper we want to give an
overview of the most used techniques to find astronomical sources
regardless of the origin of the images employed. This does not mean
that we obviate the importance of the type of image. By doing this
general review we can see whether the techniques perform well with
different types of images or if there are more suitable techniques
for a specific frequency band.

Although the detection of cosmic bodies in astronomical images
has been thoroughly investigated, there are no recently updated sur-
veys covering the whole range of existing strategies. We have to
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go back several years to find a review of astronomical image de-
tection. This may be because in many cases the most important
step in astronomical detection is not the detection as such (which
can be performed for example with a thresholding process), but im-
age transformation1 steps such as filtering or deconvolution. These
steps are essential to account for or minimize by some percentage
unwanted effects (such as noise or interference patterns) introduced
by the acquisition sensors.

Bertin (2001) reviewed relevant papers on astronomical source
extraction and classification. Regarding the detection processes,
mainly focused on optical and near-infrared bands, the author di-
vided the algorithms into two main categories: basic detection al-
gorithms (such as local peak search, thresholding, segmentation,
background estimation and filtering) and multi-scale approaches
[mainly based on wavelet transforms (WTs)]. Later, Barreiro et al.
(2003) compared several filters (such as the Mexican hat wavelet,
the matched filter (MF) and the scale-adaptive filter) to optimize
source detection using a local peak search. More recently, Starck &
Murtagh (2006) devoted some chapters of their book to review some
filtering strategies (mainly multi-scale methods such as wavelet and
curvelet transforms), deconvolution (e.g. regularized linear meth-
ods, Bayesian methods, wavelet-based deconvolution, etc.) and de-
tection [basically a multi-scale vision model (MVM), which we will
see later]. Starck & Bobin (2010) also analysed and discussed multi-
scale methods based on wavelet, curvelet and ridgelet transforms in
astronomical data analysis.

More than 10 years have passed since Bertin (2001) published the
last exhaustive review of papers on astronomical image detection.
A large number of new strategies have appeared during this last
decade, making apparent the lack of an updated review analysing
the most recent techniques. Moreover, the innovative techniques
developed in fields such as computer vision or machine learning
provide more ways to automatically detect astronomical objects in
images.

In this paper we review the current state-of-the-art in astronomi-
cal source detection, including a detailed analysis of works of this
topic, their classification according to the methods used, the image
type and the evaluation of their results. We propose a new classifica-
tion based on two main steps: image transformation and detection
criterion. The first one consists in applying changes to the astro-
nomical images to prepare them for the further processing, whereas
the second one consists in classifying pixels that belong to sources
and separating them from the background pixels, or in finding those
pixels where the sources are centred. Moreover, we also analyse the
parameters of the strategies reviewed such as the type of images,
the reference catalogue, the evaluation measures used and their per-
formance. To the best of our knowledge, this is the first attempt to
provide a quantitative and qualitative comparison of the detection
approaches according to their reported results in the literature.

The rest of this paper is organized as follows. Section 2 reviews
and classifies the image transformation steps used by the analysed
approaches. Section 3 shows the classification of the astronomical
detection strategies. In Section 4, the measures used to evaluate the
results are presented and the performances of the works analysed are
compared. The results are discussed in Section 5, and conclusions
are drawn in Section 6.

1 In this paper, the term image transformation refers to all the image pro-
cesses applied before the actual source detection algorithm. In other fields
(e.g. in computer vision), this is also known as pre-processing.

2 IM AG E T R A N S F O R M AT I O N

In this section we review strategies and propose a classification of
them according to the type of image transformation they used. In
previous reviews there was not such a clear difference between im-
age transformation and detection steps, as the first were considered
part of the detection process. Nevertheless, the aims of these two
processes are clearly different, and we consider it more appropriate
to treat image transformation as a separate group. A summary of
the image transformation methods analysed is shown in Table 1.

2.1 Image transformation classification

Image transformation is a basic step used to prepare data to achieve
a better performance in posterior steps. Before putting into practice
some of the image processing steps, some operations may be applied
to them to suppress undesired distortions or enhance some features
for further processing. Image transformation steps transform raw
images in some way, creating new images with the same information
content as the original ones, but with better conditions. Thus, the
images are adapted to facilitate the posterior analysis, and to obtain
better results. In astronomical imaging, the objectives of image
transformation are, for instance, to filter the noise, to estimate the
background or to highlight the objects.

Within this image transformation group we find techniques such
as filtering, deconvolution, transforms or morphological operations.
We present a formal and more accurate classification by dividing
the image transformation steps into multi-scale strategies, basic
image transformations, Bayesian approaches and MF-based strate-
gies. More information is given in Table 1, which presents the image
transformation steps and the different works reviewed.

2.1.1 Basic image transformation

We begin the image transformation review with a range of tech-
niques that, although simple, offer good performance, and hence
are widely used throughout the computer vision field. They are
basically used to filter noise and to estimate background level.

Simple filtering techniques such as median or average are used by
many authors. They consist of a sliding window centred on a pixel
that computes one of the statistics mentioned for all the pixels in
the window, and finally replaces the central pixel by the computed
value (see the example diagram in Fig. 1). For instance, the median
filter was used by Damiani et al. (1997) and Makovoz & Marleau
(2006) to estimate the background level and to minimize the effect
of bright point source light, while Yang et al. (2008), Perret et al.
(2008) and Lang et al. (2010) used it to filter noise and smooth the
image. With these two aims Herzog & Illingworth (1977), Mighell
(1999) and Freeman et al. (2002) used the mean filter. Notice that
in some cases pixels in the window with high values are removed
to avoid biased values.

Background estimation is a common step in astronomical object
detection. A good way to carry it out is the one used in well-
known extraction packages such as DAOPHOT (Stetson 1987) and
SEXTRACTOR (Bertin & Arnouts 1996). Their local background es-
timation is performed by iteratively applying a thresholding based
on the mean and standard deviation to eliminate outliers. After-
wards, a value of the true background is calculated as a function of
these statistics (Stetson suggested 3 × median − 2 × mean, while
Bertin suggested 2.5×median−1.5×mean). Some authors refer to
this background estimation as σ -clipping. Others, such as Vikhlinin
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Table 1. Summary of the analysed astronomical object detection methods according to the image transformation
methods, the type of the images and the specified detection aim. The methods are grouped by its image transformation
strategy. The acronyms for the detection aim stand for (in alphabetical order): extended source detection (ESD), faint
source detection (FSD), point source detection (PSD) and source detection (SD). Notice that the different strategy
aims may not be exclusive, but it is just as how the authors referred to it. The term ‘N/A’ stands for not available
information.

Article Image transformation Image type Aim

Basic image transformations

Herzog & Illingworth (1977) Mean Optical SD
Le Fèvre et al. (1996) Bijaoui Multi-band SD

Stetson (1987) σ -clipping + Gaussian N/A SD
Slezak, Bijaoui & Mars (1988) Gaussian + Bijaoui Optical SD

Bertin & Arnouts (1996) σ -clipping N/A SD
Szalay, Connolly & Szokoly (1999) Gaussian Multi-band FSD

Mighell (1999) Mean N/A SD
Hopkins et al. (2002) Gaussian Radio SD

Aptoula, Lefèvre & Collet (2006) Morphological Multi-band SD
Yang, Li & Zhang (2008) Median + Morphological Optical SD

Perret, Lefèvre & Collet (2008) σ -clipping + Median + Morphological Multi-band SD
Haupt, Castro, & Nowak (2009) Distilled sensing Radio SD

Lang et al. (2010) Median Multi-band PSD

Bayesian approaches

Hobson & McLachlan (2003) Markov-chain N/A SD
Savage & Oliver (2007) Markov-chain Infrared SD
Feroz & Hobson (2008) Nested sampling N/A SD

Carvalho, Rocha & Hobson (2009) Multiple posterior maximization Optical SD
Guglielmetti, Fischer & Dose (2009) Mixture model X-ray SD

MF

Irwin (1985) Bijaoui + MF Optical SD
Vikhlinin et al. (1995) σ -clipping + MF X-ray SD

Makovoz & Marleau (2006) Median + MF Multi-band PSD
Melin, Bartlett & Delabrouille (2006) Matched multi-filters Radio and multi-band PSD

Herranz et al. (2009) Matched matrix filters Radio PSD
Torrent et al. (2010) Boosting Radio FSD

Multi-scale approaches

Bijaoui & Rué (1995) Wavelet Optical SD
Kaiser, Squires & Broadhurst (1995) Mexican Hat Multi-band SD

Damiani et al. (1997) Gaussian + Median + Mexican Hat X-ray SD
Starck et al. (1999) Wavelet Mid-infrared FSD
Lazzati et al. (1999) σ -clipping X-ray SD

Freeman et al. (2002) Mean + Mexican Hat X-ray SD
Starck (2002) Wavelet + Ridgelet Infrared SD

Starck, Donoho & Candès (2003) Wavelet + Curvelet Infrared SD
Vielva et al. (2003) Mexican Hat (spherical) Radio PSD

Belbachir & Goebel (2005) Contourlet + Wavelet Infrared FSD
Bijaoui et al. (2005) Wavelet + PSF smoothing Multi-band SD

González-Nuevo et al. (2006) Mexican Hat (family) Radio PSD
Starck et al. (2009) Multi-scale variance stabilization γ -ray SD

Peracaula et al. (2009b) Gaussian + Wavelet Radio PSD
Peracaula et al. (2011) Gaussian + Wavelet Radio and infrared ESD

Broos et al. (2010) Wavelet X-ray SD

et al. (1995), Lazzati et al. (1999) and Perret et al. (2008), also used
this method to deal with the background estimation.

Some authors (Irwin 1985; Slezak et al. 1988; Le Fèvre et al.
1996) mentioned that they used a method that Bijaoui (1980) pre-

sented more than 30 years ago. It was based on a Bayesian esti-
mation of the intensity at each point using the histogram of the
densities. A model of this histogram was then built, taking into ac-
count the granulation and the signal distribution, and obtaining the
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Figure 1. A simple diagram of how filtering works. A specific filter is
convolved to the image.

best threshold to separate the sky from the foreground. Although at
first it was a widely used background estimation strategy, it became
less common due to its high computational cost.

Sometimes, when the background presents large variations or
the noise level is high, a background subtraction is applied (Slezak
et al. 1988; Le Fèvre et al. 1996). After the subtraction, the source
detection process becomes easier. The background subtraction is
usually performed from the background estimation, removing those
pixels considered as background. Haupt et al. (2009) developed a
different method called distilled sensing, which was based on the
idea of ruling out the regions where the signal (sources) was not
present, and then focusing on the rest of regions. They perform
iterative thresholding to discard regions where the signal was absent,
and then the source detection was intensified in the regions not
discarded.

Another common image transformation step is to convolve the
image with a Gaussian profile. In optical imaging, this process
can be understood as an approximation to model the point spread
function (PSF; the response of the acquisition instrument to a point
source) to the image pixels, thereby obtaining a new map with the
probability that each pixel has to be part of an object. Gaussian fitting
can be computed by subtracting the mean of the sky and dividing it
by the Gaussian deviation. As Stetson (1987) mentioned, Gaussian
fitting is equivalent to going through each pixel and considering
the expected brightness each one should have when an object is
centred on it. A numerical answer to this question is estimated by
fitting a Gaussian profile: if a star is truly centred on that pixel, it
becomes a positive value proportional to the brightness of the object.
Otherwise, the pixel value becomes close to zero or negative. Szalay
et al. (1999) and Hopkins et al. (2002) also applied this strategy to
multi-band and radio frequency images. Moreover, Damiani et al.
(1997) in their multi-scale approach applied a Gaussian filter to the
image in order to smooth the spatial variations of the background.
Slezak et al. (1988) also applied this convolution to optical images
in order to enhance very faint objects.

Furthermore, Gaussian models may also be used to filter noise.
Modelling the intensity of the image pixels as a Gaussian, the bell-
shaped zone may be considered as noise, while the rest of the
distribution may represent background and objects. This noise fil-
tering by Gaussian fitting of the histogram was used by Slezak et al.
(1988), and more recently by Peracaula et al. (2009b, 2011). Fig. 2
shows a Gaussian fitting of a histogram.

Figure 2. An example of Gaussian fitting of an intensity histogram where
the two values marked with vertical lines represent noise and source intensity
levels.

Morphological operations are another typical image transforma-
tion step used in computer vision. A generalization to grey-scale
images allows the morphological image transformation step to be
applied in this type of images. The two main operations in mor-
phology are dilation and erosion. In binary images, white pixels are
considered foreground, and black pixels are considered background.
As its name suggests, dilation expands white pixels, replacing the
patch around the pixel with a given structural element (SE; a mask
with a specific shape), while erosion compresses the foreground by
replacing a patch that matches with the SE for a unique white pixel.
In other words, dilation adds pixels to the foreground edges, while
erosion removes pixels from the edges. The combination of dilation
and erosion (in this order) is called ‘close’ operation, whereas the in-
verse process is called ‘open’ operation. In grey-scale morphology,
SEs are defined as functions.

The works that have used morphological grey-scale image trans-
formation step include Aptoula et al. (2006) and Yang et al. (2008),
who filtered the noise and enhanced the image by computing open
and close operations. Another work based on morphology is Perret
et al. (2008). They proposed the use of the grey level hit-or-miss
transform (HMT). The HMT is a morphological operator dedicated
to template matching that uses an erosion and a pair of disjoint
structuring elements. In this transform, the image is convolved with
two different SE types: while the first one is used to match the ob-
ject shape (foreground), the second one is used to match the spatial
neighbourhood of this shape (background). In the approach of Perret
et al. (2008), the SE corresponding to foreground and background
are patches of objects with variations in orientation and elongation
convolved with a Gaussian filter to simulate the PSF. A different
grey level according to the background estimation is given to these
patches to get, on the one hand, the foreground SE, and, on the other
hand, the background SE. After background estimation and noise
filtering, the two SEs are convolved with the image and the output
score image can easily be thresholded.

2.1.2 Bayesian approaches

The goal of these approaches is to prepare the data in order to es-
tablish the probability that it is either object or background. In other
words, the objective is to provide a probability map with higher
values in the zones where an astronomical object is more likely to
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be located, and lower values in the zones that are more likely to be
sky. Bayesian approaches are based on the widely used Bayesian
inference, where a set of evidence or observations is used to update
the probability that a hypothesis is true. Bayesian inference tries
to estimate the values of a set of parameters O in some reasonable
model (or hypothesis) of the data (in our case, the image) I. For any
given model, an expression of the probability of obtaining the data
set given a particular set of values for the parameters (this is the
so-called likelihood) must be considered. Moreover, a prior proba-
bility of the parameters based on some knowledge regarding their
values before analysing the data must be imposed. The Bayesian ap-
proach consists in constructing the conditional probability density
relationship:

p(O|I ) = p(I |O)p(O)

p(I )
, (1)

which gives the posterior distribution p(O|I) in terms of the likeli-
hood p(I|O), the prior p(O) and the evidence p(I).

For the purpose of estimating parameters, the evidence is usually
set to a constant value, so it is usual to talk about un-normalized
posterior distribution. It is called maximum a posteriori (MAP)
solution, and we can see it as a maximization over O that involves
a maximum likelihood and a prior:

MAP(O) = max
O

p(I |O)p(O). (2)

If we are able to assess the likelihood, then (after applying a
prior) we will be able to have the posterior probability, which is
the final resulting image. It expresses the probability of the data I
given any particular set of parameters O. In practice, the likelihood
is often based on an exponential function that involves the data
(the different pixels), the signal contribution and the noise model
(Gaussian, Poisson, etc.).

Referring to the prior knowledge, noise characteristics and the
PSF can be used. Any other fit parameters can also be assumed.
For example, source position and amplitude may have already been
determined in another observing band. More information about
Bayesian methodology is available in Starck & Murtagh (2006) and
Hanson (1993).

Hobson & McLachlan (2003) studied two alternative strategies
to detect discrete objects: the simultaneous detection of all the dis-
crete objects in the image, and the iterative detection of objects one
by one. In both cases, the parameter characterization of the objects
of interest was carried out by means of Markov-chain Monte Carlo
sampling (MCMC) [see Hobson & McLachlan (2003), Savage &
Oliver (2007), and references therein to know more about MCMC].
Using MCMC they could sample numerically from an unnormal-
ized posterior distribution. They used as prior knowledge the mean
estimation of the number of objects per image (an empirical value).
For instance, in the iterative detection method proposed by Hobson
& McLachlan (2003), this value was set to 1, because it was the
number of objects to be found at each iteration. In a similar way,
Savage & Oliver (2007) developed a filter to source detection (and
a simultaneous background estimation) in infrared images. More-
over, using MCMC they tried to determine the related probability
at each pixel of being described by two different models: empty
sky and point source against a uniform background. Calculating the
maximum posterior value for each model (using the PSF as prior
knowledge), a map with the probability of where a point source was
more likely to be located was generated.

On the other hand, Feroz & Hobson (2008) followed the
Hobson & McLachlan (2003) approach, but they replaced the
MCMC by another Monte Carlo technique, nested sampling. They

used it to calculate the posterior distribution as a by-product. In a
similar way, and also following the Hobson & McLachlan (2003) ap-
proach, Carvalho et al. (2009) proposed an object detection method
called PowellSnakes, computationally faster than Bayesian meth-
ods based on MCMC. In their approach, sampling was skipped and
the detection method was directly applied to the posterior. An es-
timation of position, amplitude and spatial shape of sources was
estimated in order to be used as prior knowledge. Guglielmetti et al.
(2009) applied their Bayesian source detection method to X-ray
images. They used two different kinds of prior knowledge: expo-
nential and inverse-Gamma function as probability density func-
tions of sources, and two-dimensional thin plate splines (TPS; see
references in Guglielmetti et al. 2009) to represent the background.

2.1.3 Matched filtering

The purpose of applying a filtering step is to highlight objects and
reduce the background fluctuations. The most commonly used filter
to solve these two problems is the MF. This filter convolves the
image with the profile of the objects that are expected to be found
(e.g. PSF for point source detection or other patterns for extended
source detection). A simple example of how it works is shown in
Fig. 3. In addition, the MF may be used to subtract the background
locally, and it is also a filter to consider when the images present a
considerable amount of noise.

Many authors have proposed filtering raw images with an MF
before applying a method to detect the objects. In the 1980s, Irwin
(1985) suggested the use of the seeing function as an MF to detect
faint sources in a noisy background. The seeing function can be ob-
tained either by directly averaging suitable stellar profiles or by an
analytic model fit to these profiles. A background estimation [fol-
lowing the Bijaoui (1980) method] was also computed previously to
correct spurious values and to homogenize the sky. The MF allowed
the signal-to-noise ratio (SNR) to be increased, so the sources and
the background were easily separated by a thresholding.

Vikhlinin et al. (1995) proposed a similar strategy focused on
X-ray data that, first of all, generated a background map using a
sliding box thresholding that detected the brightest sources for re-
moval. Afterwards, an MF defined as a piecewise function was ap-
plied to the residual image. Depending on two thresholds (obtained
with the background estimation), the current pixel was convolved
with a different function branch in order to differentiate sources and

Figure 3. A simple diagram of the matched filtering. A profile of the ex-
pected sources to be found is convolved to the image.
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background. Pixels that were source candidates were convolved
with the instrument PSF, whereas pixels that were background can-
didates were convolved so that their values were zero or negative.
Thus, a detection method could be applied to the resulting image.
This process is repeated iteratively until a stop criterion is reached.

Another approach based on MF was developed by Makovoz &
Marleau (2006). It was included in the MOPEX package for astronom-
ical image processing. To detect point sources, first and foremost,
the background was subtracted from the image by locally calcu-
lating the median, and subtracting it from the current pixel. Then,
an MF based on point response function (PRF) was applied to
the background-subtracted image. With the background subtraction
step, some bright sources could be extracted, and using patches of
these sources, the PRF could be estimated. The detection process
was repeated iteratively, so the PRF could be refined with the new
sources extracted.

In the literature, some authors have also used MF with multi-band
images, the so-called matched multi-filters. For example, Melin
et al. (2006) used this extension of the MF to detect clusters. Each
band was convolved with the corresponding filter (they used the
knowledge of the cluster signal, such as its spatial and spectral
features at each band), and a unique filtered image was produced
by combining all filtered bands. In a similar way, Herranz et al.
(2009) introduced what they called matrix filters (or matched matrix
filters). The main difference was that they convolved each band with
its corresponding filter, but a filtered image per band was generated
so a final choice of which filtered bands were better to perform the
detection step was needed.

In a recent work, Torrent et al. (2010) detected faint compact
sources in radio frequency images using a machine-learning tech-
nique that follows the main principles of matched filtering. First of
all, a set of local features (patches of faint sources) was extracted
from different images convolved with a bank of filters, making
the so-called dictionary. Afterwards, the images were divided into
two sets: training and testing. The images of these two sets were
characterized by convolutions with the bank of filters and with
cross-correlations with the dictionary images, thereby obtaining
probability images with high values in the regions similar to the
patches. Finally, a boosting classifier (Freund & Schapire 1997;
this algorithm is based on the simple idea that the sum of weak clas-
sifiers can produce a strong classifier) was trained with the training
set and the detection was performed in the testing set images.

2.1.4 Multi-scale approaches

In computer vision, the concept of multi-scale (or multi-resolution)
is often used when the image to be segmented shows objects with
very different sizes or patterns organized in a hierarchical struc-
ture. In astronomical image processing, multi-scale approaches have
been extensively used during the last 15 years, mainly because in
many cases, they outperform other strategies based on more basic
techniques.

Astronomical data generally have a complex hierarchical struc-
ture, and for this reason a more suitable way to represent it is in
the multi-scale space. Thus, images are decomposed into compo-
nents at different scales (different spatial frequencies), and objects
become highlighted in some scales. Depending on the nature of the
objects, they may appear in more or less scales, and closer to low
or high frequency scales. Once the decomposition is complete, a
basic detection algorithm can be applied in different scales, as if
they were single-scale images.

In other words, multi-scale strategies optimize the analysis and
detection of astronomical objects, however complex they may be.
Among their applications, we find denoising, source deblending (an
astronomy technique to isolate overlapped sources) and inpainting
(the process of reconstructing missed or deteriorated parts of im-
ages), among others.

Several multi-scale decompositions are used in the literature, the
WT being the most used by far. This transform and other multi-
scale approaches focused on the detection of astronomical objects
are commented below. See Graps (1995) and Starck & Murtagh
(2006) for a more detailed description of wavelets and other multi-
scale transforms.

2.1.4.1 The wavelet transform If we deal with multi-scale astro-
nomical imaging, we cannot avoid mentioning the WT. It is the
common multi-scale technique used in the MVM (Bijaoui & Rué
1995) that we will see later. The most used transform is the station-
ary wavelet transform (SWT), more commonly known as ‘à trous’
algorithm (which is the French translation of holey, which means
that zeros are inserted in the filters), an extension of the discrete WT
designed to overcome the lack of shift-invariance. Since astronom-
ical sources are mostly isotropic (such as stars) or quasi-isotropic
(such as galaxies or clusters), the SWT does not favour any direction
in the image and maintains the sampling at each scale.

The SWT of a signal produces N scales Wn, and each scale is
composed of a set of zero-mean coefficients. Moreover, a smoothed
array is generated using a smoothing filter h (associated with the
wavelet scaling function) in the following way:

I (i, j ) = FN (i, j ) +
N∑

n=1

Wn(i, j ), (3)

where I(i, j) refers to the intensity of the pixel in the raw i and
column j of the image I. FN(i, j) and Wn(i, j) are calculated through
the following iterative process:

F0(i, j ) = I (i, j )

Fn(i, j ) = 〈Hn, Fn−1〉(i, j )

Wn(i, j ) = Fn−1(i, j ) − Fn(i, j ) (4)

with n = 1, ..., N and

〈Hn, Fn−1〉(i, j ) ≡
∑
k,l

h(k, l)Fn−1(i + 2n−1k, j + 2n−1l). (5)

The set W1, W2,..., WN together with FN represents the WT of the
image as can be seen in Fig. 4.

The discrete filter h is derived from the scaling function and, as
suggested by Starck & Murtagh (2006), a good choice for h is to
use a spline of degree 3, and therefore, the mask associated with the
filter takes the following form:

h ≡ 1

256

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

There are many extensions of the WT that are more suitable de-
pending on the detection goal. For example, Damiani et al. (1997)
proposed a method based on the Mexican hat wavelet transform
(MHWT – a special case of the family of continuous wavelets
obtained by applying the Laplacian operator to the 2D Gaussian;
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Figure 4. A six-scale wavelet decomposition.

for more information about it see Kaiser et al. (1995); Carvalho
et al. (2009); Freeman et al. (2002) and references therein) to detect
sources in X-ray images. Moreover, this kind of WT was used by
other authors, such as Vielva et al. (2003), who used the spheri-
cal MHWT (an MHWT extension for spherical functions) to de-
tect point sources in all-sky radio frequency maps. More recently,
Starck et al. (2009) proposed a source detection approach based on
the multi-scale variance stabilization transform (MSVST; based on
differences of two consecutive WT scales) applied to gamma-ray
images. Kaiser et al. (1995) pioneered the use of WT for astro-
nomical object detection. Specifically, they used the MHWT in
multi-band images to highlight faint objects.

As the image transformation and the detection in multi-scale
approaches are closely linked, and sometimes one step overlaps the
other, more information about these methods can be obtained in
Section 3.1.3.

2.1.4.2 Multi-scale decomposition for anisotropic data While
wavelets have good performance with isotropic features, they are
far from optimal with anisotropic objects. Because of this, the as-
tronomical community has had to find alternatives. Some multi-
scale methods that represent the anisotropic features well have been
demonstrated.

To overcome the weakness of wavelets in anisotropic data,
Candès & Donoho (1999, 2000) proposed two new methods of
multi-scale representation: curvelet and ridgelet transforms, which
are very different from wavelet-like systems. Curvelets and ridgelets
take the form of basic elements that exhibit high directional sensi-
tivity and are highly anisotropic. For instance, in two dimensions,
curvelets are localized along curves, in three dimensions, along
sheets, etc. The ridgelet transform can effectively deal with line-
like phenomena in two dimensions, plane-like phenomena in three
dimensions, and so on. More details on these two techniques are
provided in Starck & Murtagh (2006).

In practice, the continuous ridgelet transform (CRT) is used. The
idea is to apply the Radon transform (see Candès & Donoho 1999,
and references therein) and perform a wavelet analysis in the Radon
domain. Thus, the image is represented as functions with simple
elements that are in some way related to ridge functions. CRT is
therefore optimal to detect lines and segments in images.

Curvelets are also an extension of the wavelet concept. The idea
of the curvelet transform is to first decompose the image in differ-
ent scales, and then analyse each scale by means of a local ridgelet
transform. They have strong directional character in those elements
that are highly anisotropic at fine scales. Hence, for specific as-
tronomical data containing edges (planet surfaces, for example),
curvelets are the best choice because they provide a mathemati-
cal representation that is ideally adapted to represent objects with
curved shapes.

As sometimes both isotropic and anisotropic data are present
in images, combined approaches may be the best solution. Hence,
a perfect multi-scale decomposition should benefit from both the

wavelet advantages and the ridgelet or curvelet transforms (or
maybe others) as well. In practice, these combined approaches are
actually used, instead of curvelets or ridgelets alone. For instance,
Starck (2002) and Starck et al. (2003) proposed, on the one hand,
combinations of wavelets and ridgelets and, on the other hand,
combinations of wavelets and curvelets to detect objects in infrared
data. In an another work, Belbachir & Goebel (2005) suggested the
combined use of WT and contourlet [see the Belbachir & Goebel
(2005) paper and references therein] for faint source detection also
in infrared images. Contourlet is a filter bank transform that can
deal with smooth images with smooth contours, so it is similar to
the curvelet transform.

2.2 Image transformation for anomalous data correction

Besides noise, there are other harmful effects directly related to the
acquisition instruments which may complicate the detection pro-
cess. For example, pixels in astronomical images are sometimes
missing or corrupt (also known as dead pixels), causing some diffi-
culties. Hence, the automated detection approaches should be robust
to them in the sense that the detection performance should not differ
dramatically in the presence of anomalous image data.

Basic image transformation techniques such as simple filtering
are used to reduce the impact of outliers. For instance, average de-
viation and median filtering are used for this purpose (Starck &
Murtagh 2006). σ -clipping is another robust basic image transfor-
mation used with anomalous data as shown by Zhang (1995).

Zhang, Luo & Zhao (2004) reviewed several methods to de-
tect outliers in astronomical images. They classified these meth-
ods into different categories: distribution-based, where a standard
distribution is fit to the data and pixels that are far from the me-
dian are considered outliers; depth-based, where pixels that are out
from different convex hulls are considered as outliers; distance-
based, where pixels that are away from a certain specified dis-
tance are considered as outliers; density-based, where outliers are
identified as those pixels that are significantly different from their
neighbours; or clustering-based, where outliers are grouped ac-
cording to a certain criterion. They highlighted some advantages
and drawbacks of the different categories. For example, they men-
tioned that distance-based methods are efficient finding outliers,
while distribution-based and depth-based have a high computa-
tional cost. Moreover, they stated that density-based methods are
more appropriate when images present different types of outliers,
and clustering-based methods do not perform well with noisy
images.

Other common practices used to deal with missing and corrupted
data are based on image reconstruction or deconvolution. For exam-
ple, Haindl & Šimberová (1996) mentioned several ways to recon-
struct corrupted image data such as replacing them by adjacent data,
interpolating among the surrounding data, using template replace-
ment (replacing the corrupted data by data from a similar available
band) or applying regressions. These techniques have been used
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in the astronomical imaging field but have also gained importance
during the last years in other domains of the image processing
and computer vision, being referred often as image inpainting
(Bertalmio et al. 2000; Criminisi, Pérez & Toyama 2004). As stated
by Starck & Bobin (2010) the application of multi-scale methodolo-
gies such as the WT may be seen also as an inpainting technique.

3 D E T E C T I O N C R I T E R I A

After presenting the image transformation techniques, in this
section we analyse the different strategies used to detect
sources. We propose a classification of them as can be seen
in Table 2.

Table 2. Summary of the analysed astronomical object detection approach according to the
detection methods, the type of the images and the specified detection aim. The methods are
grouped by the way they perform the detection. The acronyms for the detection aim stand for (in
alphabetical order): extended source detection (ESD), faint source detection (FSD), point source
detection (PSD), and source detection (SD). Notice that the different strategy aims may not be
exclusive, but it is just as how the authors referred to it. The term ’N/A’ stands for not available
information.

Article Strategy Image type Aim

Thresholding

Jarvis & Tyson (1981) Local Optical FSD
Irwin (1985) Global Optical SD

Le Fèvre et al. (1996) Local Multi-band SD
Slezak et al. (1988) Global Optical SD

Bijaoui & Rué (1995) Global Optical SD
Bertin & Arnouts (1996) Global N/A SD

Szalay et al. (1999) Global Multi-band FSD
Starck et al. (1999) Global Mid-infrared FSD
Lazzati et al. (1999) Global X-ray SD
Hopkins et al. (2002) Global X-ray SD
Freeman et al. (2002) Global X-ray SD

Makovoz & Marleau (2006) Global Multi-band PSD
Melin et al. (2006) Local Radio and multi-band PSD
Yang et al. (2008) Local Optical SD

Herranz et al. (2009) Global Radio PSD
Starck et al. (2009) Global Gamma-ray SD

Peracaula et al. (2009b) Local Radio PSD
Haupt et al. (2009) Global Radio SD

Peracaula et al. (2011) Local Radio and infrared ESD
Torrent et al. (2010) Local Radio FSD
Lang et al. (2010) Global Multi-band PSD

Local peak search

Herzog & Illingworth (1977) Detection threshold Optical SD
Newell & O’Neil (1977) Detection threshold Optical SD

Kron (1980) Profile fitting Multi-band FSD
Buonanno et al. (1983) Detection threshold Multi-band SD

Stetson (1987) Profile fitting N/A SD
Vikhlinin et al. (1995) Detection threshold X-ray SD

Kaiser et al. (1995) N/A Multi-band SD
Damiani et al. (1997) Detection threshold X-ray SD

Mighell (1999) Profile fitting N/A SD
Vielva et al. (2003) N/A Radio PSD

Hobson & McLachlan (2003) Profile fitting N/A SD
López-Caniego et al. (2005) Profile fitting N/A PSD

González-Nuevo et al. (2006) N/A Radio PSD
Savage & Oliver (2007) Profile fitting Infrared SD
Feroz & Hobson (2008) Profile fitting N/A SD
Carvalho et al. (2009) Profile fitting Optical SD

Broos et al. (2010) N/A X-ray SD

Other methods

Andreon et al. (2000) Neural networks Multi-band SD
Liu, Chiu & Xu (2003) Neural networks Multi-band SD
Aptoula et al. (2006) Watershed transform Multi-band SD

Peracaula et al. (2009a) Contrast radial function Radio FSD
Perret, Lefèvre & Collet (2010) Connected component trees Multi-band SD
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3.1 Detection criteria classification

Image transformation techniques provide a new image or map ready
to be processed. At this point, a detection method is ready to be ap-
plied to the images. The goal of detection is to locate the astronom-
ical objects and separate them from the background (the sky). Two
detection strategies stand out among the rest: thresholding and local
peak search. Thresholding considers that connected pixel regions
above a certain threshold belong to an object, whereas local peak
search finds those pixels that are maximums in a pixel neighbour-
hood and, from this point, tries to find all the object pixels. Even
though these two methods are the most common, we also analyse
other strategies that try to solve the detection problem in different
ways (most of these strategies are relatively recent). More informa-
tion is available in Table 2, which shows the detection strategies
used in the various works analysed.

3.1.1 Thresholding

In computer vision, thresholding is a simple method for image
segmentation. Using this method, a grey-scale image is converted
to a binary one where the pixels have only two possible values:
0 or 1. These two values are assigned to pixels whose intensities
are below (0) or above (1) a specified threshold. In astronomical
images (and in many other fields), thresholding is used to decide
which regions (connected pixels) are considered as objects and
which are considered as background. In a more formal way, the
binarized image Ith is the result of applying the following function
to all the pixels of the original image I:

Ith(i, j ) =
⎧⎨
⎩

1 if I (i, j ) > th

0 otherwise,
(7)

where Ith(i, j) and I(i, j) is the intensity of the pixels in row i and
column j of the binarized and original images, respectively, and th
is the established threshold.

Defining an appropriate threshold is not easy due to several fac-
tors like noise, background variations or diffuse edges of the objects.
Any chosen threshold may result in some true objects being over-
looked (false negatives) and some spurious objects being considered
as real (false positives). Varying the threshold to the extremes mini-
mizes one of these types of errors, but maximizes the other. Hence,
the difficulty lies in setting the threshold to get the two errors as
small as possible.

In the reviewed papers, the authors have set the threshold fol-
lowing several strategies. For example, Irwin (1985) and Freeman
et al. (2002) set it depending on the sky estimation computed, while
Starck et al. (1999, 2009) and Lang et al. (2010) set it depending on
the noise (as a multiple of the noise estimation). Szalay et al. (1999)
modelled the sky as a χ2 distribution, and got the threshold value
in the intersection point between the theoretical distribution and the
real data distribution. In a different way, Slezak et al. (1988) and
Herranz et al. (2009) determined the threshold by the distribution
of the peaks previously found. They set the threshold at 3.8 and 5
times the deviation of the peak distribution, respectively. Hopkins
et al. (2002), moreover, used the false discovery rate (FDR) method
to select a threshold that controls the fraction of false detections
(see the Hopkins paper for more information). Haupt et al. (2009)
also used a threshold obtained through FDR after ruling out regions
without sources with their distilled sensing method. In a similar
way, Lazzati et al. (1999) obtained the threshold as a function of

the number of pixels, the background estimation and the maximum
number of spurious sources expected.

However, not all the methods are fully automated. Source extrac-
tion packages such as SEXTRACTOR (Bertin & Arnouts 1996) and
MOPEX (Makovoz & Marleau 2006) used user-specified thresholds
(e.g. SEXTRACTOR gives the possibility of setting the threshold to an
absolute value or as a multiple of the background level). In these
tools, when a source is considered too large, it may be assumed
to be a cluster of sources, and the threshold is raised to detect the
sources independently.

Mainly due to the background variations, a common practice in
astronomical image detection is local or adaptive thresholding: a
different threshold is used for different regions in the image. It can
typically be computed using a sliding window. For example, Jarvis
& Tyson (1981) adapted the threshold as the window progresses.
Starting with a specific threshold, if pixels in the window were lower
than the threshold (and so were considered as sky), the threshold
value was updated with the sky value of these pixels. Another way
to fix the threshold locally was the way Le Fèvre et al. (1996) did it.
They computed the histogram of pixel intensities at each window,
and set the threshold at 1.5 times the deviation distribution. Other
approaches have recently been proposed by Peracaula et al. (2009b,
2011) and Torrent et al. (2010), who defined the local threshold by
means of the local noise determined by the pixel intensity histogram,
or by Melin et al. (2006), who used a multiple value of the SNR.
Yang et al. (2008) used a method to automate threshold calculation
called the Otsu method (Otsu 1979), where the intra-class variance
is minimized to get a good threshold.

3.1.2 Local peak search

The main principle of the local peak (or maxima) search method
consists in searching those pixels that are considered peaks or, in
other words, that are a local maximum in a neighbourhood. In
most cases, to avoid the unnecessary analysis of all the pixels, only
those peaks that are above a given threshold are considered. When
this detection method is used, it is often accompanied by an image
transformation step that enhances the peaks to be found, and another
step computed after the peak search that establishes or corrects the
pixels around the peak that belong to the object. Many times, this
last step is a fitting process, which is possible because the nature of
the objects is well known. So the local peak search as such provides
a list of candidates that can be the central points of an object. For
this reason, this method is typically used as the step previous to
photometry calculation. The local peak search is more appropriate
to detect stars and other point sources, and is not well suited to
detect complex objects (like galaxies and other extended sources).
A formal representation of this method is as follows:

Ilps(i, j ) =
⎧⎨
⎩

1 I (i, j ) ≥ I (k, l)

0 otherwise,
(8)

where I(i, j) is the intensity of the pixels in row i and column j, and
I(k, l) is the intensity of a neighbour pixel of I(i, j). For example,
considering an eight-connectivity (described below), k takes values
from i − 1 to i + 1, and l takes values from j − 1 to j + 1.

This method was already used in the late 70s by Herzog & Illing-
worth (1977) and Newell & O’Neil (1977). They defined a peak as
a pixel with an intensity greater than or equal to their eight adjacent
pixels (eight-connectivity) and over a threshold based on the sky
level computed. Therefore, the objects were the connected regions
centred on a peak. They conducted some tests to deblend objects
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(connected regions with more than one peak), such as data over gra-
dient (DOG) test (see Herzog & Illingworth 1977; Newell & O’Neil
1977 and references therein for more information about this test).
Moreover, Buonanno et al. (1983) searched peaks over the sky level
(in windows of N × N), and all the pixels connected to the peaks
above a certain threshold were added to make the corresponding
objects. Vikhlinin et al. (1995), in X-ray images, considered a pixel
as maximum if it was greater than its 25 neighbours and also above
a threshold (based on the background).

In several approaches, once the peaks were found, a known dis-
tribution around them was fit. In this sense, Kron (1980) opened
windows of 50 × 50 around the maximums found, computed the
histograms and selected the distribution (between two different light
distributions that model faint and bright sources) that best fits the
histograms. In a similar way, Savage & Oliver (2007) opened a
window for each peak in infrared images and selected the distribu-
tion (among sky, point-shaped source or extended source) that best
fits. López-Caniego et al. (2005) searched for local maximums and
distinguished the ones caused by the presence of sources. This dis-
tinction was achieved by a constrained optimization problem that
considered peak densities leading to an optimal distribution that
fits the source in amplitude and curvature. Other works used sharp-
ness and roundness statistics and PSF fitting (Stetson 1987 in its
DAOPHOT software), or analysed the annulus surrounding the peaks
to determine what was background and what was source (Mighell
1999).

3.1.3 Multi-scale vision model

The multi-scale transform by the ‘à trous’ algorithm decomposes
an image I(i, j) in N scales or wavelet planes wn(i, j). Thus, a
detection method can be independently applied to each of these
images representing a scale. Each scale has the same number of
pixels as the image. As we have already mentioned, the original
image can be expressed as the sum of all the wavelet scales and the
smoothed array FN :

I (i, j ) = FN (i, j ) +
N∑

n=1

Wn(i, j ). (9)

A further step is to consider a multi-scale object representation,
which associates an object contained in the data with a volume in the
multi-scale transform. This representation requires the application
of a segmentation method scale by scale. A general idea for object
definition lies in the connectivity property. An object is located in a
physical region, and the pixels of its region are connected to other
significant adjacent pixels. This connectivity is present both in the
same scale and in the contiguous scales. This is exactly what the
MVM (Bijaoui & Rué 1995) does.

These are the steps that the MVM follows.

(i) The WT with the ‘à trous’ algorithm is applied to an image.
(ii) A scale-by-scale thresholding procedure is performed, ob-

taining the object segmentation at each scale.
(iii) In order to define the object structure, an inter-scale connec-

tivity graph is established.
(iv) An object identification procedure extracts each connected

sub-graph and considers them as objects.
(v) Finally, from each set of pixels an image of the object can be

reconstructed using some reconstruction algorithms.

So, at each scale the so-called significant wavelet coefficients
(values in a wavelet scale above a given detection limit usually de-

Figure 5. An example of the connectivity in the wavelet scales. Adjacent
significant coefficients in a scale and between contiguous scales are consid-
ered part of the same object.

pendent on the noise model) are searched. At each scale we have
a Boolean image with pixel intensity equal to 1 when a signif-
icant coefficient has been detected, and 0 otherwise. Afterwards
the segmentation is applied by labelling the Boolean values (each
group of connected significant coefficients gets a different label).
An inter-scale relation between two labelled zones in two adjacent
scales exists if the maximum significant coefficient of the first one
lies into the region of the second one in the next scale. Therefore,
an object is defined as a set of inter-scale relations having a graph
structure. A representation of this inter-scale connectivity graph is
shown in Fig. 5.

This pipeline and similar ones based on WT have been used
as reference work in a lot of subsequent multi-scale approaches.
For example, after applying a Gaussian fitting and a median filter
Damiani et al. (1997) applied the MHWT to the image and local
peaks over a significant threshold were considered as sources if their
amplitude was significant with respect to the expected fluctuations
of the local background. Very similar to this approach is the one
by Freeman et al. (2002). It differs in the background estimation,
since they carried this step out at each wavelet scale by an average
filter and weighting the resulting values with the negative wings of
the MHWT. In addition, they proposed a post-processing step that
analysed some properties of the detected sources and rejected the
ones that were considered as spurious.

Like Bijaoui and Rué, Starck et al. (1999) used the MVM to
decompose the signal into its main components. Moreover, Broos
et al. (2010) recently developed a wavelet-based strategy to find
sources in X-ray images from the Chandra telescope. The image was
deconvolved using the WT and reconstructed again to smooth the
PSF effects [using a reconstruction algorithm called Richardson–
Lucy (Richardson 1972; Lucy 1974) which is explained in detail
in Broos et al. (2010)]. A candidate list of sources was created
by locating peaks in the reconstructed image, and if those peaks
fulfilled a number of properties, they were considered as sources;
otherwise they were rejected.

Nevertheless, the whole MVM process is not required. Executing
the detection process in only a few scales instead of in all may often
be enough. In the work of Kaiser et al. (1995), the source positions
and sizes were simply identified by locating peaks at their scales
of maximum significance. Vielva et al. (2003) deconvolved all-
sky surveys with the spherical Mexican hat wavelet transform and
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proposed to divide the image in different regions, estimating the
optimal scale at each region. González-Nuevo et al. (2006) also
decided to apply some extensions of the MHWT to radio maps.
They proposed using the Mexican hat wavelet family (MHWF; a
range of MHWT obtained by applying another Laplacian operator
to the MHWT, and repeating this process iteratively) to detect point
sources by selecting the optimal scales of different MHWT of the
family (they tested the first four members of the family.). They
finally applied a local peak detection. In a similar way, Starck et al.
(2009) used the MSVST and a thresholding was computed in those
scales with significant wavelet coefficients to finally reconstruct
the image. Lazzati et al. (1999) used only a few predefined scales
where a thresholding was applied, and afterwards, the detection at
different scales was correlated to remove multiple detections of the
same sources and to determine which nearby sources were extended
ones.

Another way to deal with WT is detecting the objects in specific
scales according to the detection purpose. During the last few years,
Peracaula et al. (2009b, 2011) have selected different scales depend-
ing on whether the sources to search were extended or point-shaped.
As we already mentioned, depending on the type of sources, they ap-
pear in lower or higher scales. First, Peracaula et al. (2009b, 2011)
computed a thresholding to the raw image to detect the brighter
point sources, and they generated two images: a residual image in
which bright sources were substituted by local noise, and a bina-
rized image with the bright sources. A WT was then applied to the
residual image and different strategies were followed according to
the sources to be found. On the one hand, Peracaula et al. (2009b)
tried to identify faint point sources, and decided to use the first three
wavelet scales (the higher spatial frequency scales). On the other
hand, Peracaula et al. (2011) tried to find extended structures, so
they focused on the detection in the last wavelet scales (the lower
spatial frequency scales). In both cases, the selected scales were
thresholded, and a binary image was reconstructed from the addi-
tion of the binarized scales (in the first case the binary image with
the extracted bright sources was also added with the purpose of
detecting both bright and faint sources).

3.1.4 Other detection criteria

Although most of the classical approaches are based on threshold-
ing and local peak search, other strategies have also been used to
detect astronomical objects. In many cases these approaches have
been developed during the last few years and are more focused on
techniques from the computer vision and machine learning fields.

For example, Andreon et al. (2000) turned the object detection
problem into a classification one. They classified the pixels as if they
belonged to the class object or to the class background. This task was
achieved using a kind of neural network (so they named this package
NExt, from NEural Extractor): principal component analysis neural
networks (PCA-NN) to reduce the dimensionality of the input data
by eigenanalysis (basically selecting the principal vectors). They
trained a PCA-NN with patches of the representative zones of the
image, and a vector with less features than the input one returned.
Afterwards, this output became the input of an unsupervised neural
network, which was responsible for classifying the pixels between
the object and the background. Based on this detection approach,
Liu et al. (2003) proposed to change the PCA-NN used by Andreon
et al. (2000) to local principal component analysis (a kind of PCA
that clusters the input data and finds the principal vectors for each
cluster). They used local PCA to automatically extract features of

the image. A clustering process was then computed, and the pixels
were classified from these clusters.

Aptoula et al. (2006), after the application of morphological op-
erations, segmented the image with the ‘watershed transform’. Note
that in this case the images contained only one object to segment,
mainly galaxies. This unsupervised segmentation acts as a drop of
water falling on a topographic relief corresponding to the image
(every grey level may be considered as a height in the relief). Plac-
ing a water source in each regional minimum, the relief is flooded
from sources, and barriers are built when different sources are go-
ing to merge. To avoid over-segmentation, they only considered a
few marked minimums as water sources. Specifically, two markers
were used: one in the centre of the object and another in a minimum
external region (these two markers were found by thresholding and
morphological techniques). Hence, a good segmentation between
object and background was computed.

Peracaula et al. (2009a) recently defined a contrast radial func-
tion (that relates the central pixel intensity with the mean of its
neighbour’s intensity in a given radius) in different radial distances.
First, a low local thresholding was computed to the raw image and
a first degree polynomial of the contrast radial function was fit to
each pixel with intensities over the threshold. The goodness of the
fit was given by the slope of the polynomial. Groups of at least four
connected pixels with a slope larger than a certain threshold were
considered as objects.

In a different way, Perret et al. (2010) recently used connected
component trees (CC-trees) to detect sources in multi-band images.
CC-trees have become popular models for the analysis of grey-scale
images (the authors used an extension for multi-band images.) since
they provide a hierarchical representation of images that can be used
for segmentation and object detection, among others. The represen-
tation of a grey-scale image is based on the thresholding between
its minimum and maximum grey levels (thresholding the image at
different levels starting from the minimum value and increasing
it until the maximum value is reached). There is a relationship of
the inclusion between components at sequential grey levels in the
image. The root is the whole image and at every level of the tree,
the different foreground regions are decomposed in some regions
obtained with a higher threshold. Perret et al. equipped the nodes
with some attributes (multi-spectral information of the thresholded
region), and then pruned the ones considered as irrelevant, to finally
reconstruct the image. Therefore, the remaining nodes at significant
levels were considered as sources.

4 R ESULTS

Since many papers are not exclusively focused on astronomical
object detection (such as the ones that just make catalogues of new
sources found, or the ones that are more focused on computing the
photometry of the found sources), in this section we present only
the results of those papers that have source detection as their main
objective. We describe the measures computed in these works and
evaluate their performance, and we compare and discuss the results
presented, pointing out the most interesting aspects. Finally, we
highlight the techniques that are more appropriate for each type of
astronomical image.

4.1 Evaluation measures

In the different papers, results have been evaluated in several ways.
Nevertheless, most of them are measured to know which of the
detected objects are truly objects. This validation is usually done
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Figure 6. A simple example to explain TP, FP, FN and TN measures. It
symbolizes the resulting image of an automated detection method. The
sources detected by the method are underlined with circles.

using published catalogues or data obtained from an astronomical
package used as reference (e.g. SEXTRACTOR and SAD). In some cases,
the validation of the real objects is done with the assistance of an
astronomical expert, who considers the detections as either true or
spurious. Moreover, simulated images are widely used, since the
simulated sources are placed in known positions, and therefore, it is
easy to evaluate the goodness of the results by checking the detected
sources that match with the previously simulated.

Whether using a reference catalogue or simulated data as ground
truth, the performance of the detection (and segmentation) methods
is evaluated by computing true positives (TP), false positives (FP),
false negatives (FN) and true negatives (TN). TP are detections that
are true sources; FP are detections that are not true sources (so they
are spurious detections); FN are true sources that have not been
detected (they are missed by the method, and therefore considered
as background) and TN are background zones correctly considered

as such. Fig. 6 shows a simple example of these different measures.
Obviously, the objective is to obtain the maximum number of TP
and TN, and at the same time the minimum number of FP and FN.
However, in practice, increasing the number of TP usually increases
the number of FP, while reducing the number of FN also reduces
the number of TN. Therefore, an effort must be made to set the
parameters of the detection method to maximize TP and TN and to
minimize FP and FN.

Reference catalogues may also be used to directly compare the
performance of the methods. As the catalogues used as references
tend to be published in international journals, they have a reliable
list of sources and can therefore be used to extract some measures
between the reference sources and the detected ones. The two cat-
alogues can be compared, for example, based on the sources that
coincide in both catalogues or the sources that only appear in one.
If in addition more reference catalogues are available, cross com-
parisons may be performed and the goodness of the method can be
estimated by computing the number of missed sources (sources not
being part of a catalogue but appearing in the rest of the catalogues).

4.2 Analysis of the results

We provide a qualitative comparison of the results obtained from
the approaches analysed. Table 3 summarizes the evaluation mea-
sures and the catalogues or tools used as references. A qualitative
evaluation of these approaches is difficult to carry out because the
work has been done on different types of images and with different
purposes.

Several works used TP and FP rates to evaluate the performance of
their approaches. For instance, Slezak et al. (1988) first estimated by
eye the different sources present in a wide field from Schmidt plates,
and afterwards applied the detection method with different detection
thresholds (expressed in terms of magnitude). As the magnitude
threshold was decreased, the number of detected sources decreased,

Table 3. Summary of the results presented in the analysed articles. We show the source catalogues or the source detection packages used as
reference (second column), the type of the used images and if they have real or simulated (sim) origin (third column), the number of detected
objects (forth column), the measures used to evaluate the results (fifth column), and the performance (last column). Notice that forth and sixth
columns may have more than one value. Slashes (‘/’) separate different experiments (as different parameter setting or different test images), while
values in parentheses refer to the reference catalogues (in the same order that in second column). Value ‘N/A’ means ‘not available’.

Article Reference Image type Detections Measures Performance

Slezak et al. (1988) Manually Optical (real) 363 TP 353
FP 10

Damiani et al. (1997) MPE and WGA catalogues X-ray (real) 453 Missed 10 (75,47)
Starck et al. (1999) N/A Mid-infrared (sim) 46 TP 45

FP 1
Andreon et al. (2000) SEXTRACTOR Multi-band (real) 2742/3776 TP 2059/2310 (2388)

FP 683/1466 (1866)
Freeman et al. (2002) MPE and WGA catalogues X-ray (real) 148 Coincidences 81 (12,27)

Perret et al. (2008) Manually Multi-band (real) 17 Recall (per cent) 82/87 per cent
Peracaula et al. (2009a) Reference catalogue (SAD) Radio (real) 83 TP 70 (68)

FP 13 (33)
Peracaula et al. (2009b) Reference catalogue (SAD) Radio (real) 86 TP 71 (68)

FP 15 (33)
Guglielmetti et al. (2009) Wavdetect X-ray (sim) 100 TP 64/41/25 (56/37/23)

FP 8/9/0 (4/1/1)
Carvalho et al. (2009) N/A Optical (sim) N/A TP (per cent) 67.41/56.41/82.95 per cent

FP (per cent) 9.6/8.62/8.19 per cent
Torrent et al. (2010) Reference catalogue Radio (real) 601 TP 505 (455,473)

(SAD and SEXTRACTOR) FP 96 (474,N/A)
Broos et al. (2010) Reference catalogue X-ray (real) 100 TP 89

FP 11
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but the percentage of well-detected sources increased. The best
results were obtained with a low threshold: from the 363 sources
detected, 353 were TP and 10 FP. Starck et al. (1999) developed an
approach for Infrared Space Observatory Camera (ISOCAM; one of
the four instruments on board the ISO – Infrared Space Observatory)
mosaics that applied to a simulation of the ISOCAM-Hubble Deep
Field-North, detecting 45 sources from the 46 generated (which
means TP = 45 and FN = 1). Andreon et al. (2000) tested several
types of neural networks to a field from the Canadian Astronomy
Data Centre. This field has been widely studied, so as a reference
they take a specific published catalogue that consists of 4819 objects
(with ∼2400 too faint to be visible). The best tests found 2742 and
3776 sources in the field, among which 2059 and 2310 were TP
and 683 and 1466 were FP, respectively. Moreover, they applied
the detection tool of the SEXTRACTOR package to the same field,
obtaining a catalogue with 4254 sources, with 2388 TP and 1866 FP.
Although SEXTRACTOR detected more sources (a number of sources
similar to the one found by the reference catalogue), the absolute
number of TP computed by Andreon et al. was slightly lower than
SEXTRACTOR TP, and in the FP case, they were substantially lower.

More recently, Peracaula et al. (2009a, 2011) tested their ap-
proaches on a deep radio map obtained by the Giant Metrewave
Radio Telescope (GMRT). They compared their results with a ref-
erence catalogue that detected 101 sources (68 TP and 33 FP).
These approaches presented similar results, and both outperformed
the reference values (especially in terms of FP). In Peracaula et al.
(2009a) they found 70 TP and 13 FP, whereas in Peracaula et al.
(2011) they found 71 TP and 15 FP. Torrent et al. (2010) also used
a radio map of the GMRT, but one covering a more extended region
of the sky. They applied their method and the SAD and SEXTRACTOR

detection tools to the image, and compared the sources detected to
a reference catalogue. Their approach achieved better results than
SAD and SEXTRACTOR. While SAD obtained 455 TP and 474 FP, and
SEXTRACTOR 473 TP (the number of FP was not available), they
found 505 TP and 96 FP.

Guglielmetti et al. (2009) performed experiments using simu-
lated images with 100 sources and repeated them adding different
levels of noise: 0.1 per cent, 1 per cent and 10 per cent of the counts,
respectively. The obtained results were 64, 41 and 25 TP, and 8, 9,
and 0 FP, respectively, showing that increasing the level of noise,
the number of detections became lower, although all the detections
were TP (these results illustrate the importance of defining if the
priority of the detection strategy is to find the maximum number
of true sources regardless of the number of spurious detections, or
otherwise is to guarantee that most of the detections are true regard-
less of missing true sources). Therefore, in terms of TP, Gugliel-
metti et al. obtained better results than Wavdetect, but not with FP.
Carvalho et al. (2009) also used three simulated images (the first two
with 16 objects and the last one with eight objects). Their method
was able to detect (in percentages) 67.41 per cent, 56.41 per cent
and 82.95 per cent of the simulated sources (TP), and obtained 9.6
per cent, 8.62 per cent and 8.19 per cent of spurious detections (FP).
They also estimated the performance of their method by an error
computed by adding the number of FP and FN (42.19 per cent, 52.2
per cent and 25.15 per cent, respectively).

Other works have used different ways to estimate their results. For
instance, Damiani et al. (1997), in order to compare the performance
of their method on seven images of the ROSAT satellite, used two
published catalogues called MPE (286 sources in total) and WGA
(389 sources in total) as reference, and counted the number of
sources detected by two catalogues and missed by the other one.
Their method detected 453 sources (244 coincidence with MPE, 272

coincidence with WGA and 197 sources present in all catalogues).
They found that their method missed 10 sources, less than MPE
and WGA, which missed 75 and 47 sources, respectively. Freeman
et al. (2002) also used crossed comparisons between the sources
found with their method in a ROSAT image and the ones found
by MPE (100 sources found) and WGA (127 sources found). They
found 148 sources, of which 81 appear in all three catalogues.
The coincidences between their work and MPE were 97, while the
coincidences with WGA were 108 (the coincidences between MPE
and WGA were 84). Broos et al. (2010) tested their local peak
method in combination with Wavdetect to find 100 sources (50
with Wavdetect and 50 with their source detection method) in a map
from the Chandra X-ray Observatory. They compared these sources
with a reference catalogue and found 89 coincidences. Perret et al.
(2008) had a reference catalogue with nine galaxies detected. To
validate the good performance of their galaxy-finding method, first,
they tested their method on two images, and found 17 objects:
six galaxies of the reference catalogue, eight new sources that an
expert also considered to be galaxies and three FP. It means a recall
(percentage of true detected galaxies) of 82 per cent. Testing the
method on 16 images they found a recall of 87 per cent.

In some works, the performance depends on the selected param-
eter setting. For instance, Vielva et al. (2003) and González-Nuevo
et al. (2006) repeated several experiments with different thresholds
until they got a rate of spurious sources lower than the 5 per cent
of the total number of sources detected. Moreover, these two ap-
proaches worked with images with several frequency channels, and
therefore, a different threshold was needed at each channel. Vielva
et al. used all-sky maps with 10 channels, and for example, in the
three lower channels they obtained 27257, 5201 and 4195 sources,
respectively. González-Nuevo et al. also performed this strategy in
an image with three frequency channels, and for each channel they
applied the first four transforms of the MHWF. For example for the
channel with lower frequency the sources detected were 543, 639,
583 and 418, respectively.

5 D I SCUSSI ON

As we have seen, several strategies are used to deal with the as-
tronomical source detection problem. Most of them coincide in
focusing the detection criteria on the intensity of the image pixels,
whether in the image transformation steps in order to enhance the
sources with respect to the background, or in the detection process,
choosing those pixels with an intensity value suggesting they are
likely to be part of an object. We have seen that all the different
image transformation and detection steps are used indistinctly in all
types (all frequency bands) of astronomical images, although there
are techniques that are more commonly used in some particular
bands. An overview of the different techniques reviewed with their
strengths and weaknesses is presented in Table 4.

Regarding the astronomical images, two main drawbacks caused
by the acquisition process hinder detection: the variable background
and the noise. Hence, image transformation steps have taken a fun-
damental role in astronomical image processing. Therefore, some
image transformation steps must be applied depending on whether
the images have background variations, noise or both. Background
inhomogeneity can be corrected by applying a smoothing with fil-
ters or by removing the background. In many cases background
subtraction is preferable to filtering, because implicitly it is already
detecting sources by discarding those regions that with high proba-
bility are not sources. Furthermore, although filtering decreases the
impact of background variations (and also noise), it may blur the
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Table 4. Overview of the different techniques reviewed with their advantages and drawbacks.

Step Description Strengths Weaknesses

Image transformation

Basic image transformations Basic transformation Intuitive, fast and easy Limited
steps such as filtering, Slightly emphasize sources May blur and twinkle the image
profile fitting or Correct background variations Often needs more transformation steps
morphological operators Filter noise

Bayesian approaches Methodologies based on Emphasize sources Computational cost
Bayesian inference Good results with source variability Need prior knowledge

Reduce background variability and filter noise
Matched filtering Methods based on filters Rather emphasize sources Need prior knowledge

with the profile of the Reduce background variability and filter noise Different filters required for different sources
objects to find

Multi-scale approaches Approaches that Filter noise and delete background (same time) Quite slow
decompose the image Good results with source variability Often needs combinations of transforms
in several scales Allow working with different scales

Implicitly performs source detection
Can deblend sources

Detection criterion

Thresholding Pixels above a certain Good results with all sources Difficult to select the optimal threshold
threshold are considered Good results with inhomogeneous background Not suitable for faint sources
as part of the object Good results with significant contrast and high SNR

Local peak search Search pixels that are Good results with point sources Need an additional detection process
maximums in a Good results with noisy images Not suitable for extended sources
neighbourhood

Other methods Other innovative Similar results than the other two methods Still not have enough acceptance
detection methods

sources. In the case of noise, filtering seems to be the most widely
used technique (Mighell 1999; Makovoz & Marleau 2006; Perret
et al. 2008; Yang et al. 2008).

Multi-scale approaches are also gaining popularity because they
allow background to be removed and noise to be filtered at the same
time (more advantages are shown in Table 4). Since they extract the
signal at different scales, they are suitable when the images have
sources with different sizes and complex shapes. Furthermore, being
able to work with multiple scales (and therefore multiple images),
this technique offers the possibility of extracting the best of each
one, or selecting the better suited scales to perform the detection.
Most multi-scale analyses are based on the WT or variants of it
(Damiani et al. 1997; Starck et al. 1999; Freeman et al. 2002; Vielva
et al. 2003; González-Nuevo et al. 2006; Peracaula et al. 2009b).

Analysing more particularly the use of the image transformation
methods at the different frequency bands, we observe that basic im-
age transformation is commonly applied to optical and multi-band
images, which means that this kind of method has a good perfor-
mance in the visible band and its close frequencies (although we
also find basic techniques combined with the other frequency bands,
even though to a lesser extent). In contrast, approaches that work
with optical and multi-band images are not based on a multi-scale
decomposition. The multi-scale strategies are widely applied to ra-
dio, infrared and X-ray images. We have also noticed that matched
filtering is especially used in the radio band, while Bayesian ap-
proaches are equally applied to different bands.

Regarding the detection criteria, the vast majority of works re-
viewed used thresholding and local peak search, and both methods
seem to have a similar performance. We have seen that after any
kind of image transformation, both methods are used interchange-

ably and equally for all types of images. However, the choice may
depend on some characteristics as can be seen in Table 4. Local
peak search is not suitable for detecting extended sources, and it is
preferable when images are noisy and have point sources, since it is
a neighbourhood-based algorithm and easily discards noise pixels
(avoiding confusion with source pixels). When an image has an in-
homogeneity background, the best choice is to tackle the detection
with local thresholding, whereas global thresholding is preferable
when an image has significant contrast with objects and background
or a high SNR. The rest of the approaches that do not use either
thresholding or local peak search have in common that they are
relatively recent (most of them developed in the last years), they are
all innovative and they perform object detections on a par with the
two typical methods.

Analysing the results, we noticed that the best performances in
terms of TP were obtained by Slezak et al. (1988), Starck et al.
(1999), Peracaula et al. (2009a, 2011) and Torrent et al. (2010).
Moreover, Damiani et al. (1997) and Freeman et al. (2002) also ob-
tained satisfactory results in terms of coincidences with published
catalogues. Some other works obtained good results, but we con-
sider that the selected ones are more significant because they dealt
with considerable amounts of sources (in most cases hundreds of
them) and did not use additional resources as astronomical detec-
tion packages. We want to stress, on the one hand, that most of the
approaches that apply any kind of image transformation used multi-
scale strategies, specifically the WT (Damiani et al. 1997; Peracaula
et al. 2009b; Starck et al. 1999; Freeman et al. 2002). On the other
hand, the detection step used is mostly thresholding (Slezak et al.
1988; Peracaula et al. 2009b; Starck et al. 1999; Freeman et al.
2002) [the other detection criteria used were innovative methods
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such as contrast radial function and boosting in the approaches of
Peracaula et al. (2009a) and Torrent et al. (2010), and a local peak
search in the Damiani et al. (1997) approach].

6 C O N C L U S I O N S

This paper has reviewed automated approaches to source detection
in astronomical images, classifying them according to the type of
image transformation and the detection criterion used. In addition,
the results obtained by these approaches have been summarized and
compared, and the most frequently used evaluation measures in this
field have been reviewed. We observed that the automated detection
of objects in astronomical images is a challenging task due to the
huge amount of objects in the sky and the limitations of the capture
devices.

The different methods reviewed have advantages and disadvan-
tages and using either one or another will depend on the features
of the images and the aim. There are several factors to take into
account such as noise, dynamic range, interferences, variable back-
ground, source shapes, etc. Moreover, the different methods need
to be tuned to provide optimum results.

Astronomical source detection is a broad topic, and each type of
astronomical image could be analysed separately. For this reason, in
future work, we want to perform an analysis for the different image
types, highlighting the main features that make some strategies more
suitable at each frequency band.
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