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Abstract

Speaker diarization is a task to label audio or video recordings with classes that correspond to speaker identity, or in short, a task
to identify “who spoke when”. In the early years, speaker diarization algorithms were developed for speech recognition on mul-
tispeaker audio recordings to enable speaker adaptive processing. These algorithms also gained their own value as a standalone
application over time to provide speaker-specific metainformation for downstream tasks such as audio retrieval. More recently,
with the emergence of deep learning technology, which has driven revolutionary changes in research and practices across speech
application domains, rapid advancements have been made for speaker diarization. In this paper, we review not only the historical
development of speaker diarization technology but also the recent advancements in neural speaker diarization approaches. Further-
more, we discuss how speaker diarization systems have been integrated with speech recognition applications and how the recent
surge of deep learning is leading the way of jointly modeling these two components to be complementary to each other. By con-
sidering such exciting technical trends, we believe that this paper is a valuable contribution to the community to provide a survey
work by consolidating the recent developments with neural methods and thus facilitating further progress toward a more efficient
speaker diarization.
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1. Introduction

“Diarize” means making a note or keeping an event in a di-
ary. Speaker diarization, like keeping a record of events in such
a diary, addresses the question of “who spoke when” [1, 2, 3]
by logging speaker-specific salient events on multiparticipant
(or multispeaker) audio data. Throughout the diarization pro-
cess, the audio data would be divided and clustered into groups
of speech segments with the same speaker identity/label. As a
result, salient events, such as non-speech/speech transition or
speaker turn changes, are automatically detected. In general,
this process does not require any prior knowledge of the speak-
ers, such as their real identity or the number of participating
speakers in the audio data. Thanks to its feature of separat-
ing audio streams by these speaker-specific events, speaker di-
arization can be effectively employed for indexing or analyzing
various types of audio data, e.g., audio/video broadcasts from
media stations, conversations in conferences, personal videos
from online social media or hand-held devices, court proceed-
ings, business meetings, earnings reports in a financial sector,
just to name a few.

Traditionally speaker diarization systems consist of multi-
ple, independent sub-modules as presented in Fig. 1. To mit-
igate any artifacts in acoustic environments, various front-end
processing techniques, for example, speech enhancement, dere-
verberation, speech separation or target speaker extraction, are
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employed. Voice or speech activity detection (SAD) is then ap-
plied to separate speech from non-speech events. Raw speech
signals in the selected speech portion are transformed to acous-
tic features or embedding vectors. In the clustering stage,
the transformed speech portions are grouped and labeled by
speaker classes and in the post-processing stage, the cluster-
ing results are further refined. Each of these sub-modules is
optimized individually in general.

1.1. Historical Development of Speaker Diarization
During the early years of diarization technology (in the

1990s), the research objective was to benefit automatic speech
recognition (ASR) on air traffic control dialogues and broad-
cast news recordings, by separating each speaker’s speech seg-
ments and enabling speaker-adaptive training of acoustic mod-
els [4, 5, 6, 7, 8, 9, 10]. In this period some fundamental ap-
proaches for measuring the distance between speech segments
for speaker change detection and clustering, such as general-
ized likelihood ratio (GLR) [4] and Bayesian information crite-
rion (BIC) [11], were developed and quickly became the golden
standard. All these efforts collectively laid out paths to con-
solidate activities across research groups worldwide, leading to
several research consortia and challenges in the early 2000s,
among which there were the Augmented Multiparty Interaction
(AMI) Consortium [12] supported by the European Commis-
sion and the RT Evaluation [13] hosted by the National Insti-
tute of Standards and Technology (NIST). These organizations,
spanning over from a few years to a decade, fostered further
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Fig. 1: Traditional speaker diarization system.

advancements on speaker diarization technologies across dif-
ferent data domains from broadcast news [14, 15, 16, 17, 18]
and conversational telephone speech (CTS) [19, 20, 21, 22]
to meeting conversations [23, 24, 25, 26, 27]. The new ap-
proaches resulting from these advancements include, but not
limited to, beamforming [28], information bottleneck clustering
(IBC) [27], variational Bayesian (VB) approaches [29], joint
factor analysis (JFA) [22].

Speaker specific representation in a total variability space
derived from simplified JFA, known as i-vector [30], found
great success in speaker recognition and was quickly adopted
by speaker diarization systems as feature representation for
short speech segments, segmented in an unsupervised fash-
ion. i-Vector successfully replaced its predecessors such as
merely mel-frequency cepstral coefficient (MFCC) or speaker
factors (or eigenvoices) [31] to bolster clustering performance
in speaker diarization, being combined with principal compo-
nent analysis (PCA) [32, 33], variational Bayesian Gaussian
mixture model (VB-GMM) [34], mean shift [35] and proba-
bilistic linear discriminant analysis (PLDA) [36].

Since the advent of deep learning in the 2010s, there has been
a considerable amount of research to take advantage of pow-
erful modeling capabilities of the neural networks for speaker
diarization. One representative example is the extraction of
the speaker embeddings using neural networks, such as the
d-vectors [37, 38, 39] or the x-vectors [40], which most of-
ten are embedding vector representations based on the bottle-
neck layer output of a deep neural network (DNN) trained for
speaker recognition. The shift from i-vector to these neural em-
beddings contributed to enhanced performance, easier training
with more data [41], and robustness against speaker variabil-
ity and acoustic conditions. More recently, end-to-end neural
diarization (EEND) where individual sub-modules in the tradi-
tional speaker diarization systems (c.f., Fig. 1) can be replaced
by one neural network gets more attention with promising re-
sults [42, 43]. This research direction, although not fully ma-
tured yet, could open up unprecedented opportunities to address
challenges in the field of speaker diarization, such as, the joint
optimization with other speech applications, with overlapping
speech, if large-scale data is available for training such power-
ful neural network-based models.

1.2. Motivation

Till now, there are two well-rounded overview papers in
the area of speaker diarization that survey the development of
speaker diarization technology with different focuses. In [2],
various speaker diarization systems and their subtasks in the

context of broadcast news and CTS data are reviewed up to till
mid 2000s. Thus, the historical progress of speaker diariza-
tion technology development in the 1990s and early 2000s are
covered. Contrarily, the focus of [3] was put more on speaker
diarization for meeting speech and its respective challenges.
This paper thus weighs more in the corresponding technologies
to mitigate problems from the perspective of meeting environ-
ments, where there are usually more participants than broadcast
news or CTS data and multi-modal data is frequently available.
Since these two papers were published, speaker diarization sys-
tems have gone through a lot of notable changes, especially
from the leap-frog advancements in deep learning approaches
addressing technical challenges across multiple machine learn-
ing domains. We believe that this survey work is a valuable con-
tribution to the community to consolidate the recent develop-
ments with neural methods and thus facilitate further progress
toward a more efficient diarization.

1.3. Overview and Taxonomy of Speaker Diarization

Attempting to categorize the existing, most-diverse speaker
diarization technologies, both in the space of modularized
speaker diarization systems before the deep learning era and
those based on neural networks of recent years, a proper group-
ing would be helpful. The main categorization we adopt in this
paper is based on two criteria, resulting total of four categories,
as shown in Table 1. The first criterion is whether the model
is trained based on speaker diarization-oriented objective func-
tion or not. Any trainable approaches to optimize models in
a multispeaker situation and learn relations between speakers
are categorized into the “diarization objective” class. The sec-
ond criterion is whether multiple modules are jointly optimized
toward some objective function. If a single sub-module is re-
placed into a trainable one, such method is categorized into the
“Single-module optimization” class. Conversely, joint mod-
eling of segmentation and clustering [41], joint modeling of
speech separation and speaker diarization [64] or fully end-to-
end neural diarization system [42, 43] is categorized into the
“Joint optimization” class.

Note that our intention of this categorization is to help read-
ers to quickly overview the broad development in the field, and
it is not our intention to divide the categories into superior-
inferior. Also, while we are aware of many techniques that fall
into the category “Non-Diarization Objective” and “Joint Opti-
mization” (e.g., joint front-end and ASR [55, 56, 57, 58, 59, 60]
and joint speaker identification and speech separation [61, 62]),
we exclude them in the paper to focus on the review of speaker
diarization techniques.
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Table 1: Table of Taxonomy

Trained based on Trained based on
Non-diarization Objective Diarization Objective

Single-module
Optimization

Section 2.1–2.6
Front-end [44, 45, 46], speaker
embedding [47, 48, 40], SAD [49],
etc.

Section 3.1
Affinity matrix refinement [50],
IDEC [51], TS-VAD [52], etc.

Joint
Optimization

Section 2.7
VB-HMM [53], VBx [54]
Out of scope
Joint front-end & ASR
[55, 56, 57, 58, 59, 60], joint
speaker identification & speech
separation [61, 62], etc.

Section 3.2
UIS-RNN [41], RPN [63], online
RSAN [64], EEND [42, 43], etc.
Section 4
Joint ASR & speaker diarization.
[65, 66, 67, 68], etc.

1.4. Diarization Evaluation Metrics
1.4.1. Diarization Error Rate

The accuracy of speaker diarization system is measured us-
ing diarization error rate (DER) [69] where DER is the sum of
three different error types: False alarm (FA) of speech, missed
detection of speech and confusion between speaker labels.

DER =
FA + Missed + Speaker-Confusion

Total Duration of Time
. (1)

To establish a one-to-one mapping between the hypothesis out-
puts and the reference transcript, Hungarian algorithm [70] is
employed. In the 2006 RT evaluation [69], 0.25 s of “no score”
collar (also referred to as “score collar”) is set around every
boundary of reference segment to mitigate the effect of incon-
sistent notation and human errors in reference transcript and
this evaluation scheme has been most widely used in speaker
diarization studies.

1.4.2. Jaccard Error Rate
The Jaccard error rate (JER) was first introduced in the DI-

HARD II evaluation. The goal of JER is to evaluate each
speaker with equal weight. Unlike DER which is estimated for
the whole utterance altogether, per-speaker error rates are first
computed and then averaged to compute JER. Specifically, JER
is computed as follows.

JER =
1
N

Nre f∑
i

FAi + MISSi

TOTALi
. (2)

In Eq. (2), TOTALi is the union of the i-th speaker’s speaking
time in the reference transcript and the i-th speaker’s speaking
time in the hypotheses. Nre f is the number of speakers in the
reference script. Note that the Speaker-Confusion in DER is re-
flected in the part of FAi in the calculation of JER. Since JER
is using union operation between reference and the hypothe-
ses, JER never exceeds 100%, whereas DER can become much
larger than 100%. DER and JER are highly correlated but if a
subset of speakers are dominant in the given audio recording,
JER tends to be higher than the ordinary case.

1.4.3. Word-level Diarization Error Rate
While DER is based on the duration of the speaking time of

each speaker, word-level DER (WDER) is designed to measure
the error that is caused in the lexical (output transcription) side.
The motivation of WDER is the discrepancy between DER and
the accuracy of the final transcript output since DER relies on
the duration of the speaking time that is not always aligned with
the word boundaries. The concept of word-breakage ratio was
proposed in Silovsky et al. [71] where word-breakage shares
similar idea with WDER. Unlike WDER, word-breakage ra-
tio measures the number of speaker-change points occur inside
a word boundary. The work in Park and Georgiou [72] sug-
gested the term WDER, evaluating the diarization output with
ground-truth transcription. More recently, the joint ASR and
speaker diarization system was evaluated in the WDER format
in Shafey et al. [65]. Although the way of calculating WDER
would differ over the studies, but the underlying mechanism is
that the diarization error is calculated by counting the correctly
or incorrectly labeled words.

1.5. Paper Organization

The rest of the paper is organized as follows.

• In Section 2, we overview techniques belonging to the
“Non-diarization objective” class in the proposed taxon-
omy, mostly those used in the traditional, modular speaker
diarization systems. While there are some overlaps with
the counterpart sections of the aforementioned two survey
papers [2, 3] in terms of reviewing notable developments
in the past, this section would add more latest schemes in
the corresponding components of the speaker diarization
systems.

• In Section 3, we discuss advancements mostly leverag-
ing DNNs trained with the diarization objective where
single sub-modules are independently optimized (Subsec-
tion 3.1) or jointly optimized (Subsection 3.2) toward fully
end-to-end speaker diarization.
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• In Section 4, we present a perspective of how speaker di-
arization has been investigated in the context of ASR, re-
viewing historical interactions between these two domains
to peek into the past, present and future of speaker diariza-
tion applications.

• Section 5 provides information on speaker diarization
challenges and corpora to facilitate research activities and
anchor technology advances. We also discuss evaluation
metrics such as DER, JER and Word-level DER (WDER)
in this section.

• We share a few examples of how speaker diarization sys-
tems are employed in both research and industry practices
in Section 6 and conclude this work in Section 7, providing
summary and future challenges in speaker diarization.

2. Modular Speaker Diarization Systems

This section provides an overview of algorithms for speaker
diarization belonging to the “Non-diarization objective” class,
as shown in Table 1. Each subsection in this section corre-
sponds to the explanation of each module in the traditional
speaker diarization system, as shown in Figure 1. In addition to
the introductory explanation of each module, this section also
summarizes the recent techniques within the module.

2.1. Front-end Processing

This section describes mostly front-end techniques, used for
speech enhancement, dereverberation, speech separation, and
speech extraction as part of the speaker diarization pipeline. Let
si, f ,t ∈ C be the short-time Fourier Transform (STFT) represen-
tation of the source speaker i on the frequency bin f at frame t.
The observed noisy signal xt, f can be represented by a mixture
of the source signals, a room impulse response hi, f ,t ∈ C, and
additive noise nt, f ∈ C,

xt, f =

K∑
i=1

∑
τ

hi, f ,τsi, f ,t−τ + nt, f , (3)

where K denotes the number of speakers present in the audio
signal.

The aim of the front-end techniques described in this section
is to estimate the original source signal x̂i,t given the observation
X = ({xt, f } f )t for the downstream diarization task,

x̂i,t = FrontEnd(X), i = 1, . . . ,K, (4)

where x̂i,t ∈ CD denotes the i-th speaker’s estimated STFT spec-
trum with D frequency bins at frame t.

Although there are numerous speech enhancement, derever-
beration, and separation algorithms, e.g., [73, 74, 75], herein
most of the recent techniques used in the DIHARD challenge
series [76, 77, 78], LibriCSS meeting recognition task [79, 80],
and the CHiME-6 challenge track 2 [81, 82, 83] are covered.

2.1.1. Speech Enhancement and Denoising
Speech enhancement techniques focus mainly on the sup-

pression of the noise component of the noisy speech, which
has shown a significant improvement thanks to deep learning.
For example, long short-term memory (LSTM)-based speech
enhancement [84, 85] is used as a front-end technique in the
DIHARD II baseline [77], i.e.,

x̂t = LSTM(X), (5)

where we only consider the single source example (i.e., K = 1)
and omit the source index i. This is a regression-based approach
by minimizing the objective function,

LMSE = ||st − x̂t ||
2. (6)

The log power spectrum or ideal ratio mask is often used as the
target domain of the output st. Also, the speech enhancement
used in [86] applies this objective function in each layer based
on a progressive manner.

The effectiveness of the speech enhancement techniques can
be enhanced via multichannel processing, including minimum
variance distortionless response (MVDR) beamforming [73].
[80] demonstrates the significant improvement of the DER from
18.3% to 13.9% in the LibriCSS meeting task based on mask-
based MVDR beamforming [87, 88].

2.1.2. Dereverberation
Compared with other front-end techniques, the major dere-

verberation techniques used in various tasks are based on sta-
tistical signal processing methods. One of the most widely used
techniques is the weighted prediction error (WPE) based dere-
verberation [89, 90, 91].

The basic idea of WPE, for the case of single source, i.e.,
K = 1, without noise, is to decompose the original signal model
Eq. (3) into the early reflection xearly

t, f and late reverberation xlate
t, f

as follows:

xt, f =
∑
τ

h f ,τs f ,t−τ = xearly
t, f + xlate

t, f . (7)

WPE tries to estimate filter coefficients ĥwpe
f ,t ∈ C, which main-

tain the early reflection while suppressing the late reverberation
based on the maximum likelihood estimation.

x̂early
t,, f = xt, f −

L∑
τ=∆

ĥwpe
f ,τ x f ,t−τ, (8)

where ∆ denotes the number of frames to split the early reflec-
tion and late reverberation, and L denotes the filter size.

WPE is widely used as one of the gold standard front-end
processing methods, e.g., it is part of the DIHARD and CHiME,
which are both the baseline and the top-performing systems
[76, 77, 78, 81, 82]. Although the performance improvement of
WPE-based dereverberation is not significant, it provides solid
performance improvement across almost all tasks. Moreover,
WPE is based on linear filtering and since it does not introduce
signal distortions, it can be safely combined with downstream
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front-end and back-end processing steps. Similar to the speech
enhancement techniques, WPE-based dereverberation demon-
strates additional performance improvements when applied on
multichannel signals.

2.1.3. Speech Separation
Speech separation is a promising family of techniques when

the overlapping speech regions are significant. The effective-
ness of multichannel speech separation based on beamforming
has been widely confirmed [28, 92, 93]. For example, in the
CHiME-6 challenge [81], guided source separation (GSS) [93]
based multichannel speech extraction techniques have been
used to achieve the top result. On the other hand, single-channel
speech separation techniques [44, 45, 46] do not often show
any significant effectiveness in realistic multispeaker scenarios,
such as the LibriCSS [79] or the CHiME-6 tasks [81], where
speech signals are continuous and contain both overlapping and
overlap-free speech regions. The single-channel speech sepa-
ration systems often produce a redundant non-speech or even
a duplicated speech signal for the non-overlap regions, and as
such the “leakage” of audio causes many false alarms of speech
activity. A leakage filtering method was proposed in [94] tackle
the problem, where a significant improvement in the diarization
performance was observed after including this processing step
in the top-ranked system on the VoxCeleb Speaker Recognition
Challenge 2020 [95].

2.2. Speech Activity Detection

SAD, also known as voice activity detection (VAD), dis-
tinguishes speech from non-speech such as background noise.
SAD plays a significant role not only in speaker diarization
but also in speaker recognition and speech recognition systems
since SAD is a pre-processing step that can create errors that
propagate through the whole pipeline. A SAD system consists
mostly of two major parts. The first one is a feature extraction
front-end, where acoustic features such as zero crossing rate
[96], pitch [97], signal energy [98], higher order statistics in the
linear predictive coding residual domain [99] or MFCCs are of-
ten used. The other part is a classifier, where a model predicts
and decides whether the input-frame contains speech or not. A
system based on statistical models on spectrum [100], Gaussian
mixture models (GMMs) [101] and on Hidden Markov Mod-
els (HMMs) [102, 103] has been traditionally used. After the
deep learning approaches gained popularity in the speech sig-
nal processing field, numerous DNN-based systems, such as the
ones based on MLP [104], convolutional neural network (CNN)
[105], LSTM [106], have been also proposed with superior per-
formance to the traditional methods.

The performance of SAD largely affects the overall perfor-
mance of the speaker diarization system as it can create a signif-
icant amount of false positive salient events or miss speech seg-
ments [107]. A common practice in speaker diarization tasks
is to report DER with “oracle SAD” setup which indicates that
the system output is using SAD output that is identical to the
ground truth. Conversely, the system output with an actual
speech activity detector is referred to as “system SAD” output.

2.3. Segmentation

In the context of speaker diarization, speech segmentation is
a process of breaking the input audio stream into multiple seg-
ments to obtain speaker-uniform segments. Therefore, the out-
put unit of the speaker diarization system is determined via a
segmentation process. In general, speech segmentation meth-
ods for speaker diarization are divided into two major cate-
gories: Segmentation by speaker-change point detection and
uniform segmentation.

Segmentation by the speaker-change point detection was the
gold standard of the earlier speaker diarization systems, where
speaker-change points are detected by comparing two hypothe-
ses: H0 assumes that both the left and right speech windows
are from the same speaker, whereas H1 assumes that the two
speech windows are from the different speakers. To test these
two hypotheses, metric-based approaches [108, 109] were most
widely applied. In metric-based approaches, the distribution of
the speech feature is assumed to follow a Gaussian distribution
N(µ,Σ) with mean µ and covariance Σ. The two hypotheses H0
and H1 can be then represented as follows:

H0 : x1 · · · xN ∼ N(µ,Σ),
H1 : x1 · · · xi ∼ N (µ1,Σ1) ,

xi+1 · · · xN ∼ N (µ2,Σ2) ,
(9)

where (xi|i = 1, · · · ,N) is a sequence of speech features in
the interest of the hypothesis testing. A slew of criteria for
the metric-based approach were proposed to quantify the like-
lihood of the two hypotheses. The examples include the Kull-
back Leibler (KL) distance [110], Generalized Likelihood Ratio
(GLR) [111, 112, 113] and BIC [108, 114]. Among these crite-
ria, BIC has been the most widely used method followed by nu-
merous variants [115, 116, 117, 118]. Thus, in this section, we
introduce BIC as a representative example for a metric-based
method. If we apply BIC and to the hypotheses described in
Eq. (9), a BIC value between two models from two hypotheses
is expressed as follows:

BIC(i) = N log |Σ| − N1 log |Σ1| − N2 log |Σ2| − λP, (10)

where the sample covariance Σ is from {x1, · · · , xN}, Σ1 is from
{x1, · · · , xi} and Σ2 is from {xi+1, · · · , xN} and P is the penalty
term [108] defined as

P =
1
2

(
d +

1
2

d(d + 1)
)

log N, (11)

where d denotes the dimension of the feature; N1 and N2 are
frame lengths of each window, respectively and N = N1 + N2.
The penalty weight λ is generally set to λ = 1. The change
point is set when the following equation becomes true:{

max
i

BIC(i)
}
> 0. (12)

In general, if speech segmentation is done using the speaker-
change point detection method, the length of each segment is
not consistent. Therefore, after the advent of the i-vector [30]
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and DNN-based embeddings [47, 40], the segmentation based
on speaker-change point detection was mostly replaced with
uniform segmentation [35, 119, 39], since varying lengths of
the segment created an additional variability into the speaker
representation and deteriorated the fidelity of the speaker repre-
sentations.

In uniform segmentation schemes, the given audio stream in-
put is segmented with a fixed window length and overlap length.
Thus, the unit duration of the speaker diarization output stays
constant. However, the process of uniform segmentation of
the input signals for diarization poses some potential problems
because it introduces a trade-off error related to the segment
length. The segments created from the uniform segmentation
need to be sufficiently short to safely assume that they do not
contain multiple speakers. However, at the same time it is im-
portant to capture sufficient acoustic information to extract re-
liable speaker representations.

2.4. Speaker Representations and Similarity Measure

Speaker representation plays a crucial role for speaker di-
arization systems to measure the similarity between speech seg-
ments. This section will cover such speaker representation and
also the similarity measure because they are tightly connected.
We first introduce metric-based approaches for similarity mea-
sures which were popular from the late 1990s to early 2000s
in Section 2.4.1. We then introduce widely used speaker rep-
resentations for speaker diarization systems that are usually
employed together with the uniform segmentation method de-
scribed in Section 2.4.2 and Section 2.4.3.

2.4.1. Metric Based Similarity Measure
From the late 1990s to early 2000s, metric-based approaches

were most commonly used for the similarity measurement be-
tween speech segments for speaker diarization systems. Meth-
ods used for speaker segmentation were also applied to measure
the similarity between segments, such as KL distance [110],
GLR [111, 112, 113], and BIC [108, 114]. As with the case of
the segmentation, the BIC-based method, where the similarity
between two segments are computed by Eq. (10), was one of
the most extensively used metrics due to its effectiveness and
ease of implementation. Metric-based approaches are usually
employed together with the segmentation approaches based on
a speaker-change point detection. The agglomerative hierarchi-
cal clustering (AHC) is often applied to obtain the diarization
result, which will be detailed in Section 2.5.1.

2.4.2. Joint Factor Analysis, i-vector and PLDA
Before the advent of speaker representations such as i-

vector [30] or x-vector [40], Gaussian Mixture Model-based
Universal Background Model (GMM-UBM) [120] applied to
acoustic features demonstrated success in speaker verifica-
tion tasks. A UBM consists of a large GMM (typically
with 512 to 2048 mixtures) trained to represent the speaker-
independent distribution of acoustic features. Thus, a GMM-
UBM model can be described with the following quantities:
mixture weights, mean values and covariance matrix of the

mixtures. The log-likelihood ratio between a speaker-adapted
GMM and the speaker-independent GMM-UBM is used for
speaker verification. Despite the success on modeling the
speaker identity, GMM-UBM based speaker verification sys-
tems have suffered from intersession variability [121], which is
the variability exhibited by a given speaker from one record-
ing session to another. Such difficulty occurs because the rele-
vance maximum a posteriori (MAP) adaptation step during the
speaker enrollment process in the GMM-UBM based speaker
verification systems not only captures the speaker-specific char-
acteristics of the speech, but also unwanted channel noise and
other nuisances from the acoustic environment.

Joint factor analysis (JFA) [121, 122] was proposed to com-
pensate for the variability issues by separately modeling the
inter-speaker variability and the channel or session variability.
The JFA approach employs a GMM supervector, which is a
concatenated mean of the adapted GMM. For example, suppose
a F by 1 speaker-independent GMM mean vector mc, where
c is the mixture component index and F is the dimension of
the feature. Then, a supervector M has dimension of CF by
1 by concatenating the F-dimensional mean vector for C mix-
ture components. Thus, the supervector M can be described as
follows:

M =
[
mt

1,m
t
2, . . . ,m

t
C

]t
. (13)

In the JFA approach, the given GMM supervector is decom-
posed into speaker independent, speaker dependent, channel
dependent, and residual components. Thus, the ideal speaker
supervector MJ can be decomposed as indicated in Eq. (14),
where mJ denotes a speaker independent supervector from the
UBM, V denotes a speaker dependent component matrix, U de-
notes a channel dependent component matrix, and D denotes
a speaker-dependent residual component matrix. Along with
these component matrices, vector y is for the speaker factors,
vector x is for the channel factors, and vector z is for the
speaker-specific residual factors. All of these vectors have a
prior distribution of N(0, 1).

MJ = mJ + Vy + Ux + Dz. (14)

The JFA approach was followed by the study in [30], in which
it was discovered that channel factors in the JFA also contain
information regarding the speakers. Thus, Dehak et al. [30]
proposed a new method combining the channel and speaker
spaces into a combined variability space through a total vari-
ability matrix. Thus, the total variability matrix T models both
the channel and the speaker variability, and the latent variable w
weights the column of the matrix T. The variable w is referred
to as the i-vector and is also considered a speaker representa-
tion vector. Each speaker and channel in a GMM supervector
MI can be modeled as follows:

MI = mI + Tw, (15)

where mI is a speaker-independent and channel-independent
supervector that can be taken as a UBM supervector. The
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process of extracting an i-vector w for the given recording is
formulated as a MAP estimation problem [123, 30] using the
Baum–Welch statistics extracted using the UBM, mean super-
vector mI , and total variability matrix T trained from the EM
algorithm as parameters. The idea behind a speaker representa-
tion was greatly popularized through the use of i-vectors, where
the speaker representation vector can contain a numerical fea-
ture characterizing the vocal tract of each speaker. The i-vector
speaker representations have been employed in not only speaker
recognition studies but also in numerous speaker diarization
studies [35, 36, 124] and have shown a superior performance
compared to metric-based methods such as BIC, GLR, and KL,
as mentioned in the previous subsection.

Intersession variability in the i-vector approach has been fur-
ther compensated using backend procedures, such as a linear
discriminant analysis (LDA) [125, 126] and within-class co-
variance normalization (WCCN) [127, 128], followed by sim-
ple cosine similarity scoring. The cosine similarity scoring
was later replaced with a probabilistic LDA (PLDA) model in
[129]. In the following studies [130, 131], a method applying
a Gaussianization of the i-vectors and thus generating Gaussian
assumptions in the PLDA, referred to as G-PLDA or simpli-
fied PLDA, was proposed for speaker verification. In general,
PLDA employs the following modeling for the given speaker
representation φi j of the i-th speaker in the j-th session as indi-
cated below:

φi j = µ + Fhi + Gwi j + εi j. (16)

Here, µ is the mean vector, F is the speaker variability matrix,
G is the channel variability matrix, and εi j is a residual com-
ponent. In addition, hi and wi j are latent variables specific for
the speaker and session, respectively. In G-PLDA, both latent
variables, hi and wi j, are assumed to follow a standard Gaus-
sian prior. During the training process of the PLDA, µ, Σ, F,
and G are estimated using the expectation maximization (EM)
algorithm. Based on the estimated statistics, two hypotheses
are tested: hypothesis H0 for a case in which two samples are
from the same speaker, and hypothesis H1 for when two sam-
ples are from different speakers. Under the hypothesis H0, the
given speaker representations φ1 and φ2 are modeled as follows
with a common latent variable h12:

[
φ1
φ2

]
=

[
µ
µ

]
+

[
F G 0
F 0 G

]  h12
w1
w2

 +

[
ε1
ε2

]
. (17)

On the other hand, under the hypothesis H1, φ1 and φ2 are mod-
eled as follows with separate latent variable h1 and h2:

[
φ1
φ2

]
=

[
µ
µ

]
+

[
F G 0 0
0 0 F G

] 
h1
w1
h2
w2

 +

[
ε1
ε2

]
. (18)

In G-PLDA, it is assumed that φ is generated from a Gaussian
distribution, which results in the following conditional density

Fig. 2: Diagram of d-vector model.

Fig. 3: Diagram of x-vector model.

function [132].

p (φ | h,w) = N (φ | µ + Fh + Gw,Σ) . (19)

Using Eq. (16)-(18), the log likelihood ratio can be described
as follows:

s (φ1, φ2) = log p (φ1, φ2 | H0) − log p (φ1, φ2 | H1) . (20)

The log likelihood ratio s (φ1, φ2) in the above equation was
originally used for speaker verification to choose a hypothesis
between H0 and H1 by checking whether s (φ1, φ2) is positive or
negative. The PLDA for speaker representations also employed
in speaker diarization and the log likelihood s (φ1, φ2) is used
to check the similarity between clusters. Further details regard-
ing the clustering approach using PLDA is described in Section
2.5.1.

2.4.3. Neural Network Based Speaker Representations
Speaker representations for speaker diarization have also

been heavily affected by the rise of deep learning approaches.
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The idea behind DNN-based representation learning was first
introduced for face recognition tasks [133, 134]. As the fun-
damental idea of a neural network-based representation, we
can use the deep neural network architecture to map the in-
put signal source (an image or an audio clip) to a dense vec-
tor containing floating-point numbers. This is achieved by tak-
ing the values from a layer in the neural network model after
forward-propagating the input signal to the layer that we take
the values from. The mapping process from the input signal
to the speaker embedding is based on the nonlinear modeling
capability of multiple layers in the DNNs. In so doing, the
training process of the DNNs allows the neural networks to
learn the mapping without specifying any components or fac-
tors, which is in contrast to traditional factor analysis mod-
els based on decomposable components. In this sense, the
components in JFA are more explainable than the parameters
trained in DNN models trained for speaker embedding extrac-
tion. In addition, DNN-based speaker representation learning
does not involve predefined probabilistic models (e.g., GMM-
UBM) for the input acoustic features. In relation to this, DNN-
based speaker representation achieves an improved efficiency
during the inference phase because the solution used by factor-
analysis based methods involves a computationally intensive
matrix inversion operation [132], whereas DNN-based embed-
ding extractors involve fewer demanding operations, such as
multiple linear transformations, with non-linear function com-
putations for obtaining the speaker representation vector. Thus,
the representation learning process has become more straight-
forward and the inference speed has been improved compared
to the traditional factor-analysis based methods. Among many
of the neural-network based speaker representations, d-vector
[47] remains one of the most prominent speaker representa-
tion extraction frameworks. The stacked filter bank features,
which include context frames as an input feature, are employed,
and multiple fully connected layers are trained with cross en-
tropy loss. Speaker representation vectors, also referred to as
d-vectors, are obtained from the last fully connected layer, as
indicated in Fig. 2. The d-vector scheme appears in numerous
speaker diarization papers, e.g., in [39, 41].

DNN-based speaker representations are even more improved
when using an x-vector [48, 40], which demonstrates a supe-
rior performance, winning the NIST speaker recognition chal-
lenge 2018 [135] and the first DIHARD challenge [76]. Fig. 3
shows the structure of an x-vector extractor. The time-delay ar-
chitecture and statistics pooling layer differentiate the x-vector
architecture from that of a d-vector. The statistics pooling layer
aggregates the frame-level outputs from the previous layer and
computes its mean and standard deviation, passing them on
to the following layer. Thus, it can allow the extraction of
x-vectors from a variable length input. This is advantageous
not only for speaker verification but also for speaker diarization
because speaker diarization systems are bound to process seg-
ments that are shorter than the predetermined uniform segment
length when the segment should be truncated at the end of an
utterance.

2.5. Clustering

Fig. 4: Agglomerative Hierarchical Clustering.

A clustering algorithm is applied to make clusters of the
speech segments based on the speaker representation and sim-
ilarity measure explained in the previous section. Here, we
introduce the most commonly used clustering methods for
speaker diarization.

2.5.1. Agglomerative Hierarchical Clustering
AHC is a clustering method that has been constantly em-

ployed in many speaker diarization systems with different dis-
tance metrics such as BIC [108, 136], KL [137] and PLDA [76,
82, 138]. AHC is an iterative process of merging the exist-
ing clusters until the clustering process meets a criterion. The
AHC process starts with the calculation of the similarity be-
tween N singleton clusters. At each step, a pair of clusters that
has the highest similarity is merged. The iterative merging pro-
cess of AHC is illustrated in a dendrogram, which is presented
in Fig. 4.

One of the most important aspects of AHC is the stopping
criterion. For the speaker diarization task, the AHC process can
be stopped using either a similarity threshold or a target number
of clusters. Ideally, if PLDA is used as a distance metric, the
AHC process should be stopped at s (φ1, φ2) = 0 in Eq.(20).
However, the stopping metric is adjusted to obtain an accurate
number of clusters based on a development set. Conversely,
if the number of speakers is known or estimated using other
methods, the AHC process can be stopped when the clusters
created by the AHC process reaches the pre-determined number
of speakers k.

2.5.2. Spectral Clustering
Spectral clustering is a widely used clustering approach for

speaker diarization. While there are many variations, spectral
clustering involves the following steps.

i. Affinity matrix calculation: There are many ways to gen-
erate affinity matrix A depending on the way the affinity
value is processed. The raw affinity value d is processed
by kernels such as exp

(
−d2/σ2

)
, where σ is a scaling pa-

rameter. On the other hand, the raw affinity value d could
also be masked by zeroing the values below a threshold to
only keep the prominent values.

ii. Laplacian matrix calculation [139]: The graph Laplacian
can be calculated in two ways: normalized and unnor-
malized. The degree matrix D contains diagonal elements
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Fig. 5: General steps of spectral clustering.

di =
∑n

j=1 ai j where ai j is the element of the i-th row and
j-th column in an affinity matrix A.

(a) Normalized Graph Laplacian:

L = D−1/2AD−1/2. (21)

(b) Unnormalized Graph Laplacian:

L = D − A. (22)

iii. Eigen decomposition: The graph Laplacian matrix L is de-
composed into the eigenvector matrix X and the diagonal
matrix that contains eigenvalues. Thus, L = XΛX>.

iv. Re-normalization (optional): the rows of X is normalized
so that yi j = xi j/

(∑
j x2

i j

)1/2
where xi j and yi j are the ele-

ments of the i-th row and j-th column in matrices X and
Y, respectively.

v. Speaker counting: Speaker number is estimated by finding
the maximum eigengap [139, 140].

vi. Spectral embedding clustering: The k-smallest eigenval-
ues λ1, λ2,..., λn and the corresponding k eigenvectors v1,
v2,..., vk are stacked to construct a matrix U ∈ Rn×k. The
row vectors of U are referred to as k-dimensional spectral
embeddings. Finally, the spectral embeddings are clus-
tered using a clustering algorithm. In general k-means
clustering [141] is employed for clustering the spectral
embeddings.

Among many variations of spectral clustering algorithm, the
Ng-Jordan-Weiss (NJW) algorithm [142] is often employed for
the speaker diarization task with variation in the kernel for the
calculation of the affinity values [143, 144, 33]. Unlike the
AHC approach, spectral clustering is mostly used with cosine
distance [143, 144, 33, 39, 140]. In addition, the LSTM based
similarity measurement with spectral clustering [145] also ex-
hibited competitive performance. Depending on the datasets,
the spectral clustering approach with cosine distance measure-
ment outperforms AHC with PLDA [140, 83] while using the
same speaker representation for both clustering methods.

2.5.3. Other Clustering Algorithms
The k-means algorithm is often employed in studies on

speaker diarization [146, 147, 39, 41, 63] due to its simplic-
ity and ease of implementation. However, the k-means algo-
rithm generally underperforms [39, 41] the well-known cluster-
ing algorithms such as spectral clustering and AHC. In addition,
there are a few speaker diarization studies employed the mean-
shift [148] clustering algorithm, which assigns the given data
points to the clusters iteratively by finding the modes in a non-
parametric distribution. The Mean-shift clustering algorithm
was employed in the speaker diarization task with KL distance
in [149], i-vector and cosine distance in [35, 150], and i-vector
and PLDA in [151].

2.6. Post-processing

2.6.1. Resegmentation
Resegmentation is a process of refining the speaker bound-

ary that is roughly estimated using the clustering procedure. In
[152], the Viterbi resegmentation method based on the Baum-
Welch algorithm was introduced. In this method, the estima-
tion of Gaussian mixture model corresponding to each speaker
and Viterbi-algorithm-based resgmentation using the estimated
speaker GMM are alternately applied.

A method for representing the diarization process based on
the variational Bayeian hidden Markov model (VB-HMM) was
proposed, and was shown to be superior to Viterbi resegmenta-
tion [53, 153]. The VB-HMM-based diarization can be seen as
a joint optimization of segmentation and clustering, which will
be separately introduced in Section 2.7.

2.6.2. System Fusion
As another direction of post processing, there have been

a series of studies on the fusion method of multiple diariza-
tion results to improve the diarization accuracy. While it is
widely known that the system combination generally yields bet-
ter result for various systems (e.g., speech recognition [154] or
speaker recognition [155]), the combination of multiple diariza-
tion hypotheses poses several unique problems. First, speaker
labeling is not standardized among different diarization sys-
tems. Second, the estimated number of speakers may differ
among different diarization systems. Finally, the estimated time
boundaries may also be different among multiple diarization
systems. System combination methods for speaker diarization
systems need to handle these problems during the fusion pro-
cess of multiple hypotheses.

In [156], a method for selecting the best diarization result
among many diarization systems was proposed. In this method,
a whole sequence of diarization result for a recording from each
diarization system is treated as one object to be clustered. AHC
is applied to the set of diarization results, in which the distance
of two clusters is measured using the symmetric DER between
the diarization results belonging to the two clusters. The iter-
ative merging process of AHC is executed until the number of
clusters becomes two. Finally, in the bigger cluster among the
two final clusters according to the number of elements in each
cluster, the diarization result that has the smallest distance to all
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Fig. 6: Example of DOVER system.

other diarization results is selected as the final result. In [157],
two diarization systems are combined by finding the matching
between two speaker clusters, and then performing resegemen-
tation based on the matching result.

More recently, the diarization output voting error reduction
(DOVER) method [158] was proposed to combine multiple di-
arization results based on the voting scheme. In the DOVER
method, the speaker labels among different diarization systems
are aligned one by one to minimize the DER between the hy-
potheses (processes 2 and 3 of Fig. 6). After aligning all hy-
potheses, each system votes its speaker label to each segmented
region (each system may have different weights for voting), and
the speaker label that gains the highest voting weight is selected
for each segmented region (the process 4 of Fig. 6). In case
multiple speaker labels get the same voting weight, a heuristic
approach is employed to break the ties (such as selecting the
result from the first system) is used.

The DOVER method has an implicit assumption that there
is no overlapping speech, i.e., at most only one speaker is as-
signed for each time index. To combine the diarization hy-
potheses with overlapping speakers, two methods were recently
proposed. In [94], the authors proposed the modified DOVER
method, in which the speaker labels in different diarization re-
sults are first aligned with a root hypothesis, and the speech ac-
tivity of each speaker is estimated based on the weighted voting
score for each speaker for each small segment. Raj et al. [159]
proposed a method called DOVER-Lap, in which the speak-
ers of multiple hypotheses are aligned via a weighted k-partite
graph matching, and the number of speakers K for each small
segment is estimated based on the weighted average of multiple
systems to select the top-K voted speaker labels. Both the mod-

ified DOVER and DOVER-Lap showed DER improvement for
the speaker diarization result with speaker overlaps.

2.7. Joint Optimization of Segmentation and Clustering

This subsection introduces a VB-HMM-based diarization
technique, which can be regarded as a joint optimization of
segmentation and clustering, and thus cannot be well cate-
gorized in Section 2.1–2.6. The VB-HMM framework was
proposed as an extension of the VB-based speaker clustering
[160, 161] by introducing HMM to constrain the speaker tran-
sitions. In the VB-HMM framework [53], the speech feature
X = (xt |t = 1, ...,T ) is assumed to be generated from HMM
where each HMM state corresponds to one of K possible speak-
ers. Suppose that we have M HMM states, M-dimensional vari-
able Z = (zt |t = 1, ...,T ) is introduced where k-th element of zt

is 1 if the k-th speaker is speaking at the time index t, and 0
otherwise. At the same time, the distribution of xt is modeled
based on a hidden variable Y = {yk |k = 1, ...,K}, where yk de-
notes a low dimensional vector for the k-th speaker. Given these
notations, the joint probability of X, Y, and Z is decomposed as
follows:

P(X,Z,Y) = P(X|Z,Y)P(Z)P(Y), (23)

where P(X|Z,Y) is the emission probability modeled by GMM
whose mean vector is represented by Y, P(Z) is the transition
probability of the HMM, and P(Y) is the prior distribution of Y.
Because Z represents the trajectory of speakers, the diarization
problem can be expressed as the inference problem of Z that
maximizes the posterior distribution P(Z|X) =

∫
P(Z,Y|X)dY.

Since it is intractable to directly solve this problem, the VB
method is used to estimate the model parameters that approxi-
mate P(Z,Y|X).

Recently, a simplified version of VB-HMM that works on
the x-vector, known as VBx, was proposed [54, 162]. In VBx,
P(X|Z,Y) is calculated using the x-vector based on the PLDA
model. While the original VB-HMM works on the granularity
of the frame-level feature, VBx works on the granularity of the
x-vector, and thus can be seen as a clustering method that jointly
models speaker turn and speaker duration.

The VB-HMM diarization was originally designed as a stan-
dalone diarization framework. However, it requires parameter
initialization to start the VB estimation, and the parameters are
usually initialized based on the result of another speaker clus-
tering. In that context, VB-HMM is widely employed as the
final step of speaker diarization (e.g., [163, 119, 164]). For ex-
ample in [164], AHC was first performed to under-cluster the
x-vector, and VBx was then applied to obtain a better cluster
given the AHC-based result as the initial parameter. Finally,
VB-HMM was further applied to refine the boundary obtained
by VBx.

3. Recent Advances in Speaker Diarization Using Deep
Learning

This section introduces various recent efforts toward deep
learning-based speaker diarization techniques. The methods
that incorporate deep learning into a single component of
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Table 2: Overview of speaker diarization techniques using deep learning. Note that there are also a lot of studies that use deep learning for front-end, SAD,
segmentation, and speaker embedding extraction, which are introduced in Section 2.

Section Front- SAD Seg. Speaker Clust. Post- Joint Speaker Overlap Inference Max # of References
end embed. proc. w/ ASR profile handling mode speakers

3.1.1 - - - -
√

- - - no offline Variable Affinity matrix [50, 165, 166], IDEC [51]
3.1.2 - - - -

√
- - required no online Fixed RRNN [167]

3.1.3 -? - - - -
√

- required yes offline Fixed TS-VAD† [83, 52]
3.1.3 -? - - - -

√
- - yes offline Variable EEND-based post-processing‡ [168]

3.2.1 - -
√

-
√

- - - no both Variable UIS-RNN [41]
3.2.2 -? -

√ √ √
- - yes offline Variable RPN [63]

3.2.3
√

-
√ √ √

- - - yes online Variable Online-RSAN [64, 169]
3.2.4 -?

√ √ √ √
- - - yes offline Fixed EEND [42, 43]

3.2.4 -?
√ √ √ √

- - - yes offline Variable EEND-EDA [170], SC-EEND [171]
3.2.4 -?

√ √ √ √
- - - yes online Fixed EEND with speaker tracing buffer [172]

3.2.4 -?
√ √ √ √

- - - yes online Variable BW-EDA-EEND [173]
3.2.4 -?

√ √ √
- - - - yes offline Variable EEND-vector clustering [174]

4.3 - -
√

-
√

-
√

- no offline Fixed Speaker-tag insertion [65, 66]
4.3 -? -

√
-

√
-

√
- yes offline Variable MAP-decoding [67]

4.3 -? -
√ √ √

-
√

required yes offline Variable End-to-end SA-ASR [175, 176]
4.3 -? -

√ √
- -

√
- yes offline Variable End-to-end SA-ASR+Clustering [68]

† TS-VAD can also be interpreted as a joint model of SAD, segmentation, and speaker identification.
‡ EEND [42, 43] itself is a joint model of SAD, segmentation, speaker embedding, and clustering.
? It can also be seen that a speech separation module is implicitly embedded in the model to cope with speaker overlaps.

speaker diarization, such as clustering or post-processing, are
introduced in Section 3.1. The methods that unify several com-
ponents of speaker diarization into a single neural network are
introduced in Section 3.2. For the overview of speaker diariza-
tion techniques using deep learning, refer to Table 2. It should
be noted that there are some works that take additional input of
speaker profiles. These methods may not be categorized as a di-
arization technique in a traditional definition. Nevertheless, we
introduce them as they are optimized in a multispeaker situation
to learn the relations between speakers and hence categorized as
“Trained Based on the Diarization Objective” in Table 1.

3.1. Single-module Optimization
3.1.1. Speaker clustering Enhanced by Deep Learning

Enhancing the clustering procedure based on the deep learn-
ing is an active research area and several methods have been
proposed for speaker diarization. This section will cover the
representative works in such a direction.

An approach based on the graph neural network (GNN) was
proposed in [50]. As shown in Fig. 7, this method aims at
purifying the similarity matrix used in the spectral clustering
(Section 2.5.2). Assuming a sequence of speaker embeddings
{e1, ...eN}, where N is the sequence length, the input x0

i to the
GNN is {x0

i = ei|i = 1, . . . ,N}. The output x(p)
i of the p-th layer

of the GNN is now:

x(p)
i = σ(W

∑
j

Li, jx
(p−1)
j ), (24)

where L is a normalized affinity matrix added by self-
connection, W is a trainable weight matrix for the p-th layer,
and σ(·) is a nonlinear function. The GNN is trained by min-
imizing the distance between the reference and the estimated

Fig. 7: Speaker diarization with graph neural network

affinity matrices. The distance is calculated using a combina-
tion of histogram loss [177] and nuclear norm [178]. The GNN-
based speaker diarization method was evaluated on the CALL-
HOME dataset and an in-house meeting dataset, and signifi-
cantly outperformed any of the conventional clustering meth-
ods.

Besides that, different approaches have been proposed to
generate the affinity matrix. In [165], a self-attention-based
neural network model was introduced to directly generate a
similarity matrix from a sequence of speaker embeddings. In
[166], several affinity matrices with different temporal resolu-
tions were fused into a single affinity matrix based on a neural
network.

A different approach aiming at improving clustering was pro-
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posed in [179], called deep embedded clustering (DEC). The
goal of DEC was to transform the input features (herein re-
ferred to as speaker embeddings) making them more separable
in a given number of clusters/speakers. In order to make cluster
differentiable, each embedding is provided with a probability
of “belonging” to each of the available speaker clusters, i.e. qi, j

can be interpreted as the probability of assigning sample i to
cluster j (i.e., a soft assignment):

qi j =

(
1 + ‖zi − µ j‖

2/a
)− a+1

a∑
l
(
1 + ‖zi − µl‖

2/a
)− a+1

a

, pi j =
q2

i j/ fi∑
l q2

il/ fl
, (25)

where zi is the bottleneck feature, a is the degree of freedom
of the Student’s t−distribution, µi is the centroid of i-th cluster
and fi is the soft cluster frequency with fi =

∑
qi j. The clusters

are iteratively refined based on the target distribution according
to the bottleneck features estimated using an autoencoder.

The initial version of DEC had some problems, and refined
algorithm called improved DEC (IDEC) was later proposed
with better accuracy on speaker diarization [180, 51]. Firstly,
there was a potential risk that the neural network is converged to
a trivial solution to generates corrupted embeddings. To avoid
this risk, Guo et al. [180] proposed to explicitly preserve the
local structure of the data by adding a reconstruction loss be-
tween the output of the autoencoder and the input feature. Dim-
itriadis [51] further addressed the issue by introducing the loss
function to enforce the distribution of speaker turns being uni-
form across all speakers, i.e., all speakers contribute equally to
the session. This assumption is not always valid for real record-
ings but it constrains the solution space enough to avoid the
empty clusters without affecting the overall performance. Fi-
nally, Dimitriadis [51] also proposed an additional loss term
that penalizes the distance from the centroid µi, bringing the
behavior of the algorithm closer to k-means.

Overall, the loss function of the IDEC consists of four loss
terms, i.e., Lc, the clustering error term that is originally pro-
posed in DEC; Lr, the reconstruction error term [180]; Lu is the
uniform “speaker airtime” distribution loss [51]; and LMS E , the
loss to measure the distance of the bottleneck features from the
centroids [51],

L = αLc + βLr + γLu + δLMS E , (26)

where α, β, γ, and δ are the weight on the loss functions that is
fine-tuned on some held-out data.

3.1.2. Learning the Distance Estimator
In this section a novel approach using a trainable distance

function is presented. The basic idea is based on the relational
recurrent neural networks (RRNNs). RRNNs were introduced
by [181, 182, 183] to address “relational information learning”
problems. Such models learn relations between a sequence of
input features like the notion of “closer” or “further”, e.g, two
points in space are closer than a third one, etc. Speaker diariza-
tion can be seen as part of this class of problems, since the final
decision depends on the distance between speech segments and
speaker profiles or centroids.

Fig. 8: Continuous speaker identification system based on RMC. The speech
signal is segmented uniformly and each segment xt is compared against all the
available speaker profiles according to a distance metric d(·, ·). A speaker label
st, j is assigned to each xt minimizing this metric.

There are several issues that potentially limits the accuracy
of speaker diarization systems. Firstly, as mentioned in Sec-
tion 2.3, the duration of segments when extracting speaker em-
beddings poses a trade-off between the time resolution and the
robustness of the extracted speaker representations. Secondly,
speaker embedding extractors are not explicitly trained to pro-
vide optimal representations for speaker diarization, despite the
fact these invariant, discriminative representations are used to
separate thousands of speakers [40]. Thirdly, the distance met-
ric is often based on a heuristic approach and/or dependent on
certain assumptions that do not necessarily hold, e.g., assum-
ing Gaussianity in the case of PLDA [130]. Finally, the au-
dio chunks are treated independently and any temporal con-
text is simply ignored in conventional clustering methods as de-
scribed in Section 2.5. These issues can be attributed to the dis-
tance metric function, and most of them can be addressed with
RRNNs, where a data-driven, memory-based approach bridges
the performance gap between the heuristic and the trainable dis-
tance estimation approaches.

In this context, an approach for learning the relationship be-
tween the speaker cluster centroids (or speaker profiles) and
the embeddings is proposed in [167] (Fig. 8). In this work,
the diarization process is considered to be a classification task
on an already segmented audio, as in Section 2.3, either uni-
formly [146] or based on estimated speaker-change salient
points [184]. The speaker embeddings x j for each segment,
which are assumed to be speaker-homogeneous, are extracted
and then compared with all the available speaker profiles or
speaker centroids. The most suitable speaker label is assigned
to each segment by minimizing the distance-based loss func-
tion, i.e., the relationship between embeddings and profiles. As
discussed in [167], the RRNN-based distance estimation ex-
hibits consistent improvements in its performance when com-
pared with the more traditional distance estimation approaches
such as the cosine distance [30] or the PLDA-based [130] dis-
tance. Note that although the task in [167] is speaker identifi-
cation, an extension to the speaker diarization is rather straight-
forward when the speaker profiles are pre-estimated, either as
centroids using any of the traditional clustering algorithm (Sec-
tion 2.5 and 3.1.1), or using prior knowledge.

3.1.3. Post Processing Based on Deep Learning
There are a few recent studies on the neural network-based

diarization method that is applied on top of the result from a
traditional clustering-based speaker diarization. These meth-
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Fig. 9: Target Speaker Voice Activity Detector

ods can be categorized as an extension of the post-processing.
Medennikov et al. [83, 52] proposed the target-speaker voice
activity detection (TS-VAD) to achieve accurate speaker di-
arization even under noisy conditions with many speaker over-
laps. TS-VAD assumes that a set of i-vectors E = {ek ∈ R f |k =

1, ...,K} are available for each speaker in the audio, where f
is the dimension of i-vector and K is the number of speakers.
As presented in Fig. 9, TS-VAD takes not only a sequence of
MFCC, X = (xt ∈ Rd |t = 1, ...,T ), where d is the dimension
of MFCC and T the length of the sequence, but also a set of
i-vectors E. Given X and E, the model outputs a sequence of
k-dimensional vector O = (ot ∈ RK |t = 1, ...,T ) where the k-th
element of ot represents the probability of the speech activity
of the speaker corresponding to ek at the time frame t. In other
words, the k-th element of ot is expected to be 1 if the speaker
of ek is speaking at time t, and 0 otherwise.

Because TS-VAD requires the i-vectors of speakers, pre-
processing to obtain the i-vectors is necessary. The procedure
proposed in [83, 52] is as follows:

1. Apply clustering-based diarization.

2. Estimate i-vectors for each speaker given the diarization
result.

3. Repeat (a) and (b).

(a) Apply TS-VAD given the estimated i-vectors.

(b) Refine i-vectors given the TS-VAD result.

TS-VAD was proposed as a part of the winning system of
CHiME-6 Challenge [81], and showed a significantly better
DER compared with the conventional clustering based ap-
proach [83]. However, it has a drawback, i.e., the maximum
number of speakers that the model can handle is limited by the
dimension of the output vector.

As a different approach, Horiguchi et al. proposed the appli-
cation of the EEND model (detailed in Section 3.2.4) to refine

the result of a clustering-based speaker diarization [168]. A
clustering-based speaker diarization method can handle a large
number of speakers but unable to handle overlapped speech.
Conversly, EEND has opposite characteristics. To complemen-
tarily use the two methods, The authors in [83] first applied a
conventional clustering method. Then, the two-speaker EEND
model was iteratively applied for each pair of detected speakers
to refine the time boundary of overlapped regions.

3.2. Joint Optimization for Speaker Diarization

3.2.1. Joint Segmentation and Clustering
A model called unbounded interleaved-state recurrent neu-

ral networks (UIS-RNN) was proposed, which replaced the
segmentation and clustering methods with a trainable model
[41]. Given the input sequence of embeddings X = (xt ∈

Rd |t = 1, . . . ,T ), UIS-RNN generates the diarization result
Y = (yt ∈ N|t = 1, . . . ,T ) as a sequence of speaker index for
each time frame. The joint probability of X and Y can be de-
composed by the chain rule as follows.

P(X,Y) =P(x1, y1)
T∏

t=2

P(xt, yt |x1:t−1, y1:t−1). (27)

To model the distribution of the speaker change, UIS-RNN then
introduces a latent variable Z = (zt ∈ {0, 1}|t = 2, . . . ,T ), where
zt becomes 1 if the speaker indices at time t − 1 and t are differ-
ent, and 0 otherwise. The joint probability including Z is then
decomposed as follows.

P(X,Y,Z) =P(x1, y1)
T∏

t=2

P(xt, yt, zt |x1:t−1, y1:t−1, z1:t−1). (28)

Finally, the term P(xt, yt, zt |x1:t−1, y1:t−1, z1:t−1) is further decom-
posed into three components.

P(xt, yt, zt |x1:t−1, y1:t−1, z1:t−1) =P(xt |x1:t−1, y1:t)P(yt |zt, y1:t−1)P(zt |z1:t−1).
(29)

Here, P(xt |x1:t−1, y1:t) denotes the sequence generation proba-
bility, and modeled by gated recurrent unit (GRU)-based recur-
rent neural networks. P(yt |zt, y1:t−1) denotes the speaker assign-
ment probability and modeled by a distance-dependent Chinese
restaurant process [185], which can model the distribution of
unbounded number of speakers. Finally, P(zt |z1:t−1) represents
the speaker change probability and is modeled by the Bernoulli
distribution. Since all models are represented by trainable ones,
UIS-RNN can be trained in a supervised fashion by finding
the parameters that maximize log P(X,Y,Z) over training data.
The inference can be conducted by finding Y that maximizes
log P(X,Y) given X based on the beam search in an online
fashion. While UIS-RNN works in an online fashion, it demon-
strated better DER than that of the offline system based on spec-
tral clustering.

3.2.2. Joint Segmentation, Embedding Extraction, and Re-
segmentation
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Fig. 10: (a) RPN for speaker diarization, (b) diarization procedure based on
RPN.

A speaker diarization method based on the region proposal
networks (RPN) was proposed to jointly perform segmentation,
speaker embedding extraction, and resegmentation [63]. The
RPN was originally proposed to detect multiple objects from
a two-dimensional image [186], and one-dimensional variant
along with the time-axis is used for speaker diarization.

As can be seen from Fig. 10 (a), the STFT features with a
size of time and frequency bin is first converted to the feature
map with a size of time, frequency and channels using CNNs.
Then, other three types of neural networks are applied on vari-
ous sizes of sliding windows (named “anchor”) along with the
time axis. For each anchor, the three neural networks perform
SAD, speaker embedding extraction, and region refinement, re-
spectively. Here, SAD is the task to estimate the probability
of speech activity for the anchor region. Speaker embedding
extraction is the task to generate an embedding to represent the
speaker characteristics of the audio corresponding to the anchor
region. Finally, region refinement is the task to estimate the dif-
ference between the shape (i.e. duration and center position) of
the anchor and that of the corresponding reference region.

The inference procedure by RPN is presented in Fig. 10 (b).
RPN is first applied to list the anchors with speech activity prob-
ability higher than the pre-determined threshold. The anchors
are then clustered using a conventional clustering method (e.g.,
k-means) based on the speaker embeddings estimated for each
anchor. Finally, highly overlapped anchors after region refine-
ment are removed, a method known as the non-maximum sup-
pression.

The RPN-based speaker diarization system has the advan-
tage of handling overlapped speech with possibly any number
of speakers. Also, it is much simpler than the conventional
speaker diarization system. It was shown in multiple datasets
that this system achieved significantly better DER than the con-
ventional clustering-based speaker diarization system [63, 80].

3.2.3. Joint Speech Separation and Diarization
There are also recent researches on the joint modeling of

speech separation and speaker diarization. Kounades-Bastian
et al. [187, 188] proposed the incorporation of a speech activity

Neural Network

audio block 1

Neural Network

Neural Network

Neural Network

audio block 2

...

...

...

Neural Network ...

Fig. 11: Joint speech separation, speaker counting, and speaker diarization
model.

model into speech separation based on the spatial covariance
model with non-negative matrix factorization. They derived the
EM algorithm to estimate separated speech and the speech ac-
tivity of each speaker from the multichannel overlapped speech.
While their method jointly performs speaker diarization and
speech separation, it is based on a statistical modeling, and the
estimation was conducted solely based on the observation, i.e.
without any model training.

Neumann et al. [64, 169] later proposed a trainable model,
namely online Recurrent Selective Attention Network (online
RSAN), for joint speech separation, speaker counting, and
speaker diarization based on a single neural network (Fig. 11).
Their neural network takes the input of spectrogram Xb ∈ RT×F ,
a residual mask Rb,i−1 ∈ RT×F , and a speaker embedding
eb−1,i ∈ Rd, where b is the index of the audio block; i, the index
of the speaker; T , the length of the audio block; and F, the max-
imum frequency bin of the spectrogram. It outputs the speech
mask Mb,i ∈ RT×F and an updated speaker embedding for the
speaker corresponding to eb,i. The neural network is applied in
an iterative fashion for each audio block b, and for each speaker
i as follows:

1. Repeat (a) and (b) for b = 1, 2, ...

(a) Rb,0 = 1
(b) Repeat (i)-(iii) for i = 1, 2, ... until being stopped at

(iii).

i. Mb,i, eb,i = NN(Xb,Rb,i−1, eb−1,i)
(eb−1,i is set to 0 if it was not calculated previously)

ii. Rb,i = max(Rb,i−1 −Mb,i, 0)
iii. If 1

T F
∑

t, f Rb,i(t, f ) < threshold, stop iteration.
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Fig. 12: Two-speaker end-to-end neural diarization model

A separated speech for speaker i at audio block b can be ob-
tained by Mb,i � Xb where � is the element-wise multiplica-
tion. The speaker embedding eb,i is used to keep track of the
speaker of adjacent blocks. Thanks to the iterative approach,
this neural network can cope with the variable number of speak-
ers while jointly performing speech separation and speaker di-
arization. The online RSAN was evaluated by using real meet-
ing dataset with up to six speakers, and showed better results
than the clustering-based method [169].

3.2.4. Fully End-to-end Neural Diarization
Recently, the framework called EEND was proposed [42,

43], which performs all the speaker diarization procedures
based on a single neural network. The architecture of EEND
is shown in Fig. 12. An input to the EEND model is a T -
length sequence of acoustic features (e.g., log Mel-filterbank),
X = (xt ∈ RF |t = 1, . . . ,T ). A neural network then outputs the
corresponding speaker label sequence Y = (yt |t = 1, . . . ,T )
where yt = [yt,k ∈ {0, 1}|k = 1, . . . ,K]. Here, yt,k = 1
represents the speech activity of the speaker k at the time
frame t, and K is the maximum number of speakers that the
neural network can output. Importantly, yt,k and yt,k′ can be
both 1 for different speakers k and k′, indicating that these
two speakers k and k′ are speaking simultaneously (i.e. over-
lapping speech). The neural network is trained to maximize
log P(Y|X) ∼

∑
t
∑

k log P(yt,k |X) over the training data by as-
suming the conditional independence of the output yt,k. Be-
cause there can be multiple candidates of the reference label Y
by swapping the speaker index k, the loss function is calculated
for all possible reference labels and the reference label that has
the minimum loss is used for the error back-propagation, which
is inspired by the permutation free objective used in speech sep-
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Fig. 13: End-to-end neural diarization with encoder-decoder-based attractor
(EDA).

aration [45]. EEND was initially proposed using a bidirectional
long short-term memory (BLSTM) network [42], and was soon
extended to the self-attention-based network [43] by showing
the state-of-the-art DER for two-speaker data such as the two-
speaker excerpt from the CALLHOME dataset (LDC2001S97)
and the dialogue audio in the corpus of Spontaneous Japanese
[189].

EEND has multiple advantages. First, EEND can handle
overlapping speech in a sound way. Second, the network is di-
rectly optimized toward the maximization of diarization accu-
racy, by which we can expect a high accuracy. Third, it can be
retrained by a real data (i.e. not synthetic data) just by feeding
a reference diarization label while it is often not straitforward
for the prior works. However, EEND also has several limita-
tions. First, the model architecture limits the maximum number
of speakers that the model can cope with. Second, EEND con-
sists of BLSTM or self-attention based neural networks, mak-
ing it difficult to do online processing. Third, it was empirically
suggested that EEND tends to overfit to the distribution of the
training data [42].

To cope with an unbounded number of speakers, several
extensions of EEND have been investigated. Horiguchi et
al. [170] proposed an extension of EEND with the encoder-
decoder-based attractor (EDA) (Fig. 13). This method applies
an LSTM-based encoder-decoder on the output of EEND to
generate multiple attractors. Attractors are generated until the
attractor existing probability becomes less than the threshold.
Then, each attractor is multiplied by the embeddings generated
from EEND to calculate the speech activity for each speaker.
EEND-EDA was evaluated on CALLHOME (two to six speak-
ers) and DIHARD 2 (one to nine speakers) dataset and showed
better performance than the clustering-based baseline system.

On the other hand, Fujita et al. [171] proposed another
approach to output the speech activity one after another by
using a conditional speaker chain rule. In this method, a
neural network is trained to produce a posterior probability
P(yk |y1, . . . , yk−1,X), where yk = (yt,k ∈ {0, 1}|t = 1, . . . ,T ) is
the speech activity for the k-th speaker. Then, the joint speech
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activity probability of all speakers can be estimated from the
following speaker-wise conditional chain rule as:

P(y1, . . . , yK |X) =

K∏
k=1

P(yk |y1, . . . , yk−1,X). (30)

During inference, the neural network is repeatedly applied until
the speech activity yk for the last estimated speaker approaches
zero. Kinoshita et al. [174] proposed a different approach that
combines EEND and speaker clustering. In their method, a neu-
ral network is trained to generate speaker embeddings and the
speech activity probability. Speaker clustering constrained by
the estimated speech activity by EEND is applied to align the
estimated speakers among the different processing blocks.

There are also a few recent trials to extend the EEND for on-
line processing. Xue et al. [172] proposed a method using a
speaker tracing buffer to better align the speaker labels of adja-
cent processing blocks. Han et al. [173] proposed a block on-
line version of EEND-EDA [170] by carrying the hidden state
of the LSTM-encoder to generate the attractors block by block.

4. Speaker Diarization in the Context of ASR

From a conventional perspective, speaker diarization is con-
sidered a pre-processing step for ASR. In the traditional system
structures for speaker diarization, presented in Fig. 1, speech
inputs are processed sequentially across the diarization com-
ponents without considering the ASR performance, which is
usually measured using the word error rate (WER). WER is the
number of misrecognized words (substitution error, insertion
error, and deletion error) divided by the number of reference
words. One issue is that the tight boundaries of speech seg-
ments as the outcomes of speaker diarization have a high chance
of causing unexpected word truncation or deletion errors in
ASR decoding. In this section we discuss how the speaker di-
arization systems have been developed in the context of ASR,
not only resulting in better WER by preventing speaker diariza-
tion from affecting the ASR performance, but also benefiting
from ASR artifacts to enhance diarization performance. More
recently, there have been a few pioneering proposals made for
the joint modeling of speaker diarization and ASR, which will
also be introduced in this section.

4.1. Early Works

The lexical information from the ASR output has been em-
ployed for the speaker diarization system in a few different
ways. First, the earliest approach was the RT03 evaluation [1]
which used word boundary information for the purpose of seg-
mentation. In [1], a general ASR system for broadcast news
data was built, in which the basic components are segmentation,
speaker clustering, speaker adaptation and system combination
after ASR decoding from the two sub-systems with the differ-
ent adaptation methods. The authors used the word boundary
information from the ASR system for speech segmentation, and
compared it with the BIC-based speech segmentation. While

Fig. 14: Integration of lexical information and acoustic information.

the performance gain by the ASR-based segmentation was in-
significant, this was the first attempt to take advantage of ASR
output to enhance the diarization performance. In addition, the
ASR result was used to refine SAD in IBM’s submission [190]
for RT07 evaluation. The system that appeared in [190] in-
corporates word alignments from the speaker independent ASR
module and refines the SAD result to reduce false alarms so
that the speaker diarization system can have better clustering
quality. The segmentation system in [71] also takes advantage
of word alignments from ASR. The authors in [71] focused on
the word-breakage problem, in which the words from the ASR
output are truncated by segmentation results since the segmen-
tation results and the decoded word sequences are not aligned.
Therefore, word-breakage ratio was proposed to measure the
rate of change points detected inside intervals corresponding to
words. The DER and word-breakage ratio were used to mea-
sure the influence of the word truncation problem. While the
aforementioned early works of speaker diarization systems that
leverage the ASR output focus on the word alignment infor-
mation to refine the SAD or segmentation result, the speaker
diarization system in [191] created a dictionary for the phrases
commonly appearing in broadcast news. The phrases in this
dictionary provide the identity of who is speaking, who will
speak and who spoke in the broadcast news scenario. For ex-
ample, “This is [name]” indicates who was the speaker of the
broadcast news section. Although the early studies on speaker
diarization did not fully leverage the lexical information to dras-
tically improve the DER, the idea of integrating the information
from ASR output has been adopted by many studies to refine or
improve the speaker diarization output.

4.2. Using lexical information from ASR

The more recent speaker diarization systems that take advan-
tage of the ASR transcript have employed a DNN model to cap-
ture the linguistic pattern in the given ASR output to enhance
the speaker diarization result. The authors in [192] proposed a
way of using the linguistic information for the speaker diariza-
tion task where participants have distinct roles that are known to
the speaker diarization system. Fig. 14 shows the diagram of the
speaker diarization system discussed in [192]. In this system, a
neural text-based speaker change detector and a text-based role
recognizer are employed. By using both linguistic and acoustic
information, DER was significantly improved compared with
the acoustic only system.

Lexical information from the ASR output was also used
for speaker segmentation [72] by employing a sequence-to-
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Fig. 15: Integration of lexical information and acoustic information.

sequence model that outputs speaker turn tokens. Based on the
estimated speaker turn, the input utterance is segmented accord-
ingly. The experimental results in [72] indicate that using both
acoustic and lexical information can be exploited and an extra
advantage can be obtained owing to the word boundaries we get
from the ASR output.

The authors of [193] presented follow-up research within the
above thread. Unlike the system in [72], the lexical information
from the ASR module was integrated with the speech segment
clustering process by employing an integrated adjacency ma-
trix. The adjacency matrix is obtained from the max operation
between the acoustic information created from affinities among
audio segments and lexical information matrix created by seg-
menting the word sequence into word chunks that are likely to
be spoken by the same speaker. Fig. 15 presents a diagram that
explains how lexical information is integrated in an affinity ma-
trix with acoustic information. The integrated adjacency matrix
leads to an improved speaker diarization performance for the
CALLHOME American English dataset.

4.3. Joint ASR and Speaker Diarization with Deep Learning

Motivated by the recent success of deep learning and end-
to-end modeling, several models have been proposed to jointly
perform ASR and speaker diarization. As with the previous sec-
tion, the ASR results contain a strong cue to improve speaker
diarization. On the other hand, speaker diarization results can
be used to improve the accuracy of ASR, for example, by
adapting the ASR model toward each estimated speaker. Joint
modeling can leverage such inter-dependency to improve both
ASR and speaker diarization. In the evaluation, a WER met-
ric that counts word hypotheses with speaker-attribution errors
as misrecognized words, such as speaker-attributed WER [194]
or concatenated minimum-permutation WER (cpWER) [81], is
often used. ASR-specific metrics (e.g., speaker-agnostic WER)
or diarization-specific metrics (e.g., DER mentioned in Section
1.4.1) are also used complementarily.

audio input

word1 spk1 word2 word3 spk2 word4 spk1

End-to-End ASR
and Diarization

Fig. 16: Joint ASR and diarization by inserting a speaker tag in the transcrip-
tion.
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Fig. 17: Joint decoding framework for ASR and speaker diarization.

The first approach is the introduction of a speaker tag in the
transcription of end-to-end ASR models (Fig. 16). Shafey et
al. [65] proposed to insert a speaker role tag (e.g., 〈doctor〉
and 〈patient〉) into the output of a recurrent neural network-
transducer (RNN-T)-based ASR system. This method was eval-
uated by using doctor-patient conversation, and a significant re-
duction in WDER was reported with a marginal degradation
of WER. Similarly, Mao et al. [66] proposed the insertion
of a speaker identity tag into the output of an attention-based
encoder-decoder ASR system, and showed an improvement of
DER especially when the oracle utterance boundaries were not
given. The works by Shafey et al. and Mao et al. showed
that the insertion of speaker tags is a simple and promising way
to jointly perform ASR and speaker diarization. On the other
hand, the speaker roles or speaker identity tags need to be de-
termined and fixed during training. Thus, it is difficult to cope
with an arbitrary number of speakers using this approach.

The second approach is a MAP-based joint decoding frame-
work. Kanda et al. [67] formulated the joint decoding of ASR
and speaker diarization as follows (see also Fig. 17). As-
sume that a sequence of observations is represented by X =

{X1, . . . ,XU}, where U denotes the number of segments (e.g.,
generated by applying SAD on a long audio) and Xu denotes
the acoustic feature sequence of the u-th segment. Further as-
sume that word hypotheses with time boundary information are
represented by W = {W1, . . . ,WU} where Wu is the speech
recognition hypothesis corresponding to the segment u. Here,
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Fig. 18: End-to-end speaker-attributed ASR

Wu = (W1,u, ...,WK,u) contains all the speakers’ hypotheses in
the segment u where K denotes the number of speakers, and
Wk,u represents the speech recognition hypothesis of the k-th
speaker of the segment u. Finally, a tuple of speaker embed-
dings E = (e1, . . . , eK), where e j ∈ Rd is the d-dimensional
speaker embedding of the k-th speaker, is also assumed. With
all these notations, the joint decoding framework of multi-
speaker ASR and diarization can be formulated as a problem
to find most likely Ŵ as follows:

Ŵ = argmax
W

P(W|X) (31)

= argmax
W

{
∑
E

P(W,E|X)} (32)

≈ argmax
W

{max
E

P(W,E|X)}, (33)

where the Viterbi approximation is applied to obtain the final
equation. This maximization problem is further decomposed
into two iterative problems as follows:

Ŵ(i) = argmax
W

P(W|Ê(i−1),X), (34)

Ê(i) = argmax
E

P(E|Ŵ(i),X), (35)

where i is the iteration index of the procedure. In [67], Eq.
(34) is modeled by the target speaker ASR [195, 196, 197, 59]
and Eq. (35) is modeled by the overlap-aware speaker embed-
ding estimation. This method obtains a speaker-attributed WER
similar to that of the target-speaker ASR with oracle speaker
embeddings for two-speaker conversation data of the Corpus
of Spontaneous Japanese [189]. On the other hand, it requires
an iterative application of the target-speaker ASR and a speaker
embedding extraction scheme, which make it challenging to ap-
ply the method in online mode.

As a third line of approaches, end-to-end speaker-attributed
ASR (SA-ASR) model was recently proposed to jointly per-
form speaker counting, multi-talker ASR, and speaker identi-
fication [175, 176]. Contrary to the first two approaches, the

end-to-end SA-ASR model takes the additional input of speaker
profiles and identifies the index of speaker profiles based on the
attention mechanism (Fig. 18). Thanks to the attention mech-
anism for the speaker identification and multi-talker ASR ca-
pability based on serialized output training [198], there is no
limitation in the number of speakers that the model can cope
with. In case relevant speaker profiles are supplied in the in-
ference, the end-to-end SA-ASR model can automatically tran-
scribe the utterance while identifying the speaker of each utter-
ance based on the supplied speaker profiles. On the other hand,
in case of the relevant speaker profiles cannot be used prior to
the inference, the end-to-end SA-ASR model can still be ap-
plied using dummy profiles, and the speaker clustering on the
internal speaker embeddings of the end-to-end SA-ASR model
(“speaker query” in Fig. 18) is used to diarize the speaker [68].
The end-to-end SA-ASR model was evaluated by using the Lib-
riCSS dataset [79], and exhibited significantly better cpWER
than the combination of multitalker ASR and speaker diariza-
tion [199].

5. Diarization Evaluation Series and Datasets

This section describes the evaluation series and the com-
monly used datasets for speaker diarization evaluations. The
summary of the most commonly used datasets that include En-
glish is shown in Table 3.

• CALLHOME: NIST SRE 2000 (LDC2001S97)
NIST SRE 2000 (Disk-8), often referred to as the CALL-
HOME dataset, is the most widely used dataset for speaker
diarization in recent papers. This dataset contains 500 ses-
sions of multilingual telephonic speech. Each session has
two to seven speakers with two dominant speakers in each
conversation.

• AMI Corpus
The AMI database [200] includes 100 h of meeting record-
ings from multiple sites in 171 meeting sessions. The AMI
database provides an audio source recorded using lapel
microphones that are separately recorded and amplified
for each speaker. Another audio source is recorded us-
ing omnidirectional microphone arrays mounted on the ta-
ble while meeting. The AMI database is a suitable dataset
for the evaluation of speaker diarization systems integrated
with the ASR module since AMI provides forced align-
ment data that contains word and phoneme level timings
along with the transcript and speaker label. Each meeting
session has three to five speakers.

• ICSI Meeting Corpus
The ICSI meeting corpus [201] contains 75 meeting cor-
pus with four meeting types. The ICSI meeting cor-
pus provides word level timing along with the transcript
and speaker label. The audio source is recorded using
close-talking individual microphone and six tabletop mi-
crophones to provide speaker-specific channel and multi-
channel recording. Each meeting has 3 to 10 participants.
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Table 3: Diarization Evaluation Datasets

Language Size (hr) Style # Spkr.
CALLHOME Multilingual 20 Conversation 2–7

AMI English 100 Meeting 3–5
ICSI meeting English 72 Meeting 3–10

CHiME-5/6 English 50 Conversation 4
VoxConverse Multilingual† 74 YouTube video 1–21

LibriCSS English 10 Read speech 8
DH I Tr.1,2 Multilingual 19(dev), 21(eval) Miscellaneous 1–7

DH II Tr.1,2 Multilingual 24(dev), 22(eval) Miscellaneous 1–8
DH II Tr.3,4 Multilingual 262(dev), 31(eval) Miscellaneous 4

DH III Tr.1,2 Multilingual 34(dev), 33(eval) Miscellaneous 1–7
† Most of the contents are English while there are few non-English contents.

• CHiME-5/6 challenge and its dataset
The CHiME-5 challenge [202] and CHiME-6 challenge
[81] were designed as series of ASR competitions for the
daily conversation of multiple speakers. The dataset was
provided at the CHiME-5 challenge, and it contains 50
h of multiparty real conversations in the everyday home
environment. It contains speaker labels, segmentation,
and corresponding transcriptions. The audio source
is recorded using six four-channel microphone arrays
located in the kitchen and dining/living rooms in a house
and also binaural microphones worn by participants. The
number of participants is fixed at four. While the oracle
diarization results were allowed to be used for the ASR
task in the CHiME-5 challenge, CHiME-6 challenge track
2 requires the result of both ASR and diarization. The
primary evaluation metric for such a track was cpWER,
which counts both the speaker-attributed errors and word
recognition errors in the WER calculation. DER and JER
were also evaluated as secondary metrics without “score
collar” and with overlapped regions. The CHiME-5/6
corpus was also used as one track in the DIHARD 2
challenge.

• VoxSRC Challenge and VoxConverse corpus
The VoxCeleb Speaker Recognition Challenge (VoxSRC)
is the recent evaluation series for speaker recognition sys-
tems [203, 95]. The goal of VoxSRC is to test how well the
current technology can cope with the speech “in the wild”.
This evaluation series initially started with a pure speaker
verification task [203], and the diarization task was added
as track 4 at the latest evaluation at the VoxCeleb Speaker
Recognition Challenge 2020 (VoxSRC-20) [95]. The Vox-
Converse dataset [204] was used for the speaker diariza-
tion task with DER as the primary metric, and JER as the
secondary metric. The VoxConverse dataset contains 74
h of human conversation extracted from YouTube videos.
The dataset is divided into development set (20.3 h, 216
recordings), and test set (53.5 h, 310 recordings). The
number of speakers in each recording has a wide range of
variety from 1 speaker to 21 speakers. The audio includes
various types of noises such as background music, laugh-

ter, etc. It also contains a significant portion of overlap-
ping speech from 0% to 30.1% depending on the record-
ing. While the dataset contains the visual information as
well as audio, as of June 2021, only the audio of the devel-
opment set was released under a Creative Commons At-
tribution 4.0 International License for research purposes.
The audio of the evaluation set was used as a blind test set.

• LibriCSS
The LibriCSS corpus [79] contains 10 h of multichannel
recordings and was designed for the research of speech
separation, speech recognition, and speaker diarization. It
was created by playing the audio in the LibriSpeech cor-
pus [205] in a real meeting room, and recorded using a
7-channel microphone array. It consists of 10 sessions,
each of which is further decomposed to six 10-min mini-
sessions. Each mini-session was made by audio of eight
speakers and designed to have different overlap ratios from
0% to 40%. To facilitate the research, the baseline system
for speech separation and ASR [79] and the baseline sys-
tem that integrates speech separation, speaker diarization
and ASR [80] have been developed and released.

• DIHARD Challenge and its dataset
DIHARD evaluation [206, 77] focuses on the performance
gap of state-of-the-art diarization systems on challeng-
ing domains. The first DIHARD challenge, DIHARD 1,
started with track 1 (oracle SAD) and track 2 (system
SAD). The evaluation data was a collection of various cor-
pus. It includes very challenging datasets such as clini-
cal interviews, web videos, and speech in the wild (e.g.,
recordings in restaurants), as well as relatively less chal-
lenging datasets, such as CTS and audio books to diver-
sify the domains. DIHARD 2 additionally included mul-
tichannel speaker diarization task in track 3 (oracle SAD)
and track 4 (system SAD) using the recordings from the
CHiME-5 corpus [202]. In the latest DIHARD challenge,
DIHARD 3, the CTS dataset was added, whereas mul-
tichannel tracks 3 and 4 were excluded. The DIHARD
challenge employs DER and JER for the evaluation metric
without “score collar” and with overlap region.
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• Rich Transcription Evaluation Series
The RT Evaluation [13] is the pioneering evaluation se-
ries of initiating deeper investigation on speaker diariza-
tion in relation to ASR. The main purpose of this effort
was to create ASR technologies that would produce tran-
scriptions with descriptive metadata, like who said when,
where speaker diarization plays in. Thus, the main tasks in
the evaluation were ASR and speaker diarization. The do-
mains of the data of interest were broadcast news, CTS and
meeting recordings with multiple participants. Through-
out the period of 2002-2009, the RT evaluation series pro-
moted and gauged advances in speaker diarization and
ASR technology. The evaluations among this period are
named as RT evaluations (RT-02, RT-03S, RT-03F, and
RT-05F) and RT Meeting Recognition (RT-06S, RT-07S
and RT-09). These evaluations and their datasets include
speaker diarization evaluation as a part of automatic meta-
data extraction (MDE).

• Other datasets

There are also several corpora that have been used for the
diarization research but not covered in the list above. The
Corpus of Spontaneous Japanese [189] contains about 12
h of two-speaker dialogue recorded using headset micro-
phones. AISHELL-4 [207] is a relatively new Mandarin
Chinese dataset containing 118 h of four to eight speak-
ers in a conference scenario. It is recorded by 8-ch circu-
lar microphone array as well as headset microphones for
each participant. The ESTER-1 [208] and ESTER-2 [209]
evaluation campaign datasets are a set of French record-
ings designed for three task category: Segmentation (S),
Transcription (T) and Information Extraction (E). In the
ESTER-1 and ESTER-2 evaluation campaign, speaker di-
arization was evaluated as one of the core tasks among
other tasks including speaker tracking, sound event track-
ing, and transcriptions. The datasets for ESTER-1 and
ESTER-2 include 100 h and 150 h of manually transcribed
French radio broadcast news, respectively. ETAPE [210]
is also a French speech processing evaluation dataset that
contains 36 h of TV and radio shows with both prepared
and spontaneous speech. Unlike the ESTER evaluation se-
ries, ETAPE targets cross-show speaker diarization.

6. Applications

6.1. Meeting Transcription

The goal of meeting transcription is to automatically generate
speaker-attributed transcripts during real-life meetings based on
their audio and optional video recordings. Accurate meeting
transcription is among the processing steps in a pipeline for sev-
eral tasks, such as, summarization and topic extraction. Simi-
larly, the same transcription system can be used in other do-
mains such as healthcare [211].

Although this task was introduced by NIST in the RT eval-
uation series back in 2003 [194, 201, 212], the initial systems

had very poor performance, and consequently commercializa-
tion of the technology was not possible. However, recent ad-
vances in the areas of speech recognition [213, 214], far-field
speech processing [215, 216, 217], speaker ID and diariza-
tion [218, 41, 76], have greatly improved the speaker-attributed
transcription accuracy, enabling such commercialization. Bi-
modal processing combining cameras with microphone arrays
has further improved the overall performance [219, 220].

The variety of application scenarios, customer needs, and
business scope, different constraints may be imposed on meet-
ing transcription systems. For example, it is most often required
to provide the resulting transcriptions in low latency, making
the diarization and recognition even more challenging. How-
ever, the architecture of the transcription system can substan-
tially improve the overall performance, e.g., by using micro-
phone arrays of known geometry as the input device. Also, in
the case where the expected meeting attendees are known be-
forehand, the transcription system can further improve speaker
attribution, all while providing the exact name of the speaker,
instead of randomly generated discrete speaker labels.

Two different scenarios in this space are presented: first,
a fixed-geometry microphone array combined with a fish-eye
camera system. Second, an ad-hoc geometry microphone array
system without a camera. In both scenarios, a “non-binding”
list of participants and their corresponding speaker profiles are
considered to be known. In particular, the transcription system
has access to the invitees’ names and profiles; however, the ac-
tual attendees may not accurately match those invited. As such,
there is an option to include “unannounced” participants. In ad-
dition, some of the invitees may not have profiles. In both sce-
narios, there is a constraint of low-latency transcriptions, where
initial results need to be shown with low latency. The finalized
results can be updated later in an offline mode. Some of the
technical challenges to overcome are [221]:

1. Although ASR on overlapping speech is one of the main
challenges in meeting transcription, limited progress has
been made over the years. Numerous multichannel speech
separation methods have been proposed based on in-
dependent component analysis (ICA) or spatial cluster-
ing [222, 223, 224, 225, 226, 227], but their application
to a meeting setup had limited success. In addition, neu-
ral network-based separation methods such as permutation
invariant training (PIT) [45] or deep clustering (DC) [44]
cannot adequately address reverberation and background
noise [228].

2. Flexible framework: It is desirable that the transcription
system is capable of processing all the available informa-
tion, such as the multichannel audio and visual cues. The
system needs to process a dynamically changing number
of audio channels without loss of performance. As such,
the architecture needs to be modular enough to encompass
the different settings.

3. The speaker-attributed ASR of natural meetings requires
online or streaming ASR, audio pre-processing such as
dereverberation, and accurate diarization and speaker
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identification. These multiple processing steps are usually
optimized separately and thus, the overall pipeline is most
frequently inefficient.

4. The use of multiple, unsynchronized audio streams, e.g.,
audio capturing using mobile devices, adds complexity to
the meeting setup and processing. In return, we gain a po-
tentially better spatial coverage since the devices are usu-
ally distributed around the room and near the speakers. As
part of the application scenario, the meeting participants
bring their personal devices, which can be repurposed to
improve the overall quality of meeting transcription qual-
ity. On the other hand, while there are several pioneering
studies [229], it is unclear what the best strategies are for
consolidating multiple asynchronous audio streams and to
what extent they work for natural meetings in online and
offline setups.

Based on these considerations, an architecture of a meeting
transcription system with asynchronous distant microphones
has been proposed in [184]. In this work, various fusion strate-
gies have been investigated: from early fusion beamforming
of the audio signals, to mid-fusion combination of senones per
channel, to late fusion combination of the diarization and ASR
results [158]. The resulting system performance was bench-
marked on real-world meeting recordings against fixed geom-
etry systems. As aforementioned, the requirement of speaker-
attributed transcriptions with low latency was also adhered to.
In addition to the end-to-end system analysis, the paper [184]
proposed the idea of “leave-one-out beamforming” in the asyn-
chronous multi-microphone setup, enriching the “diversity” of
the resulting signals, as proposed in [230]. Finally, it is de-
scribed how an online, incremental version of recognizer out-
put voting error reduction (ROVER) [154] can process both the
ASR and diarization outputs, enhancing the overall speaker-
attributed ASR performance.

6.2. Conversational Interaction Analysis and Behavioral Mod-
eling

Speech and spoken language are central to conversational in-
teractions. They carry crucial information about a speaker’s
intent, emotions, identity, age and other individual and interper-
sonal traits and state variables including health state. Compu-
tational advances are increasingly allowing access to such rich
information [231, 232]. For example, knowing how much, and
how, a child speaks in an interaction contains critical informa-
tion about the child’s developmental state, and offers clues to
clinicians in diagnosing disorders such as autism [233]. Such
analyses are made possible by capturing and processing the au-
dio recordings of the interactions, which often involve two or
more people. An important foundational step is the identifica-
tion and association of the speech portions belonging to spe-
cific individuals involved in the conversation. The technologies
providing these capabilities are SAD and speaker diarization.
Speech portions segmented with speaker-specific information
provided by speaker diarization, by itself without any explicit
lexical transcription, can offer important information to domain

experts who can take advantage of speaker diarization results
for quantitative turn-taking analysis.

A domain that is the most relevant in such analyses of spoken
conversational interactions relates to behavioral signal process-
ing (BSP) [234, 231], which refers to the technology and algo-
rithms for modeling and understanding human communicative,
affective and social behaviors. For example, these may include
analyzing how positive or negative a person is, how empathic
an individual is toward another, what the behavior patterns re-
veal about the relationship status, and the health condition of
an individual [232]. BSP involves addressing all the complexi-
ties of spontaneous interactions in conversations with additional
challenges involved in handling and understanding emotional,
social and interpersonal behavioral dynamics revealed through
verbal and nonverbal cues of the interaction participants. There-
fore, the knowledge of speaker specific vocal information plays
a significant role in BSP, requiring highly accurate speaker di-
arization performance. For example, the speaker diarization
module is employed as a pre-processing module for analyzing
psychotherapy mechanisms and quality [235] and suicide risk
assessment [236].

Another popular application of speaker diarization for con-
versation interaction analysis is the medical doctor-patient in-
teractions. In the system described in [237], the nature of mem-
ory problems of a patient is detected from the conversations
between neurologists and patients. The speech and language
features extracted from the ASR transcripts combined with the
speaker diarization results are used to predict the type of dis-
order. An automated assistant system for medical domain tran-
scription is proposed in [238], which includes the speaker di-
arization module, ASR module and natural language genera-
tion module. The automated assistant module accepts the audio
clip and outputs grammatically correct sentences describing the
topic of the conversation, subject and subject’s symptom.

6.3. Audio Indexing

Content-based audio indexing is a well known application
domain for speaker diarization. It can provide metainformation
such as the content or data type of a given audio data to make
information retrieval efficient since search query by machines
would be limited by such metadata. The more diverse infor-
mation was available, the better efficiency could be achieved in
retrieving audio contents from a database.

One useful piece of information for the audio indexing would
be ASR transcripts to understand the content of speech portions
in the audio data. Speaker diarization can augment those tran-
scripts in terms of “who spoke when”, which was the main pur-
pose of the RT evaluation series [13], as discussed in Sections
4.1 and 5.3. The aggregated spoken utterances from speakers by
a speaker diarization system also enable per-speaker summary
or keyword list-up, which can be used for other query values to
retrieve relevant contents from the database. In [239], we can
get a view of how speaker diarization outputs can be linked for
information searching in consumer-facing applications.
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6.4. Conversational AI

Thanks to the advances of ASR technology, the applications
of ASR have evolved from simple voice command recognition
systems to conversational AI systems. Conversational AI sys-
tems, as opposed to voice command recognition systems, have
features that are lacking in voice command recognition systems.
The fundamental idea of conversational AI is to build a ma-
chine that humans can talk to and interact with. In this sense,
focusing on an interested speaker in a multiparty setting is one
of the most important features of conversational AI. Moreover,
speaker diarization becomes an essential feature for conversa-
tional AI. For example, conversational AI equipped in a car can
pay attention to a specific speaker that is demanding a piece
of information from the navigation system by applying speaker
diarization along with ASR.

Smart speakers and voice assistants are the most popular
products in which speaker diarization plays a significant role
for conversational AI. Since the response time and online pro-
cessing are the crucial factors in real-life settings, the demand
for end-to-end speaker diarization systems integrated into the
ASR pipeline is growing. The performance of incremental (on-
line) ASR and speaker diarization of the commercial ASR ser-
vices are evaluated and compared in [240]. It is expected that
the real-time and low latency aspect of speaker diarization will
be more emphasized in the speaker diarization systems in the
future since the performance of online diarization and online
ASR still have much room for improvement.

7. Challenges and the Future of Speaker Diarization

This paper has provided a comprehensive overview of
speaker diarization techniques, highlighting the recent devel-
opment of deep learning-based diarization approaches. In the
early days, a speaker diarization system was developed as a
pipeline of sub-modules including front-end processing, SAD,
segmentation, speaker embedding extraction, clustering, and
post-processing, leading to a standalone system without much
connection to other components in a given speech applica-
tion. With the emergence of the deep learning technology,
more and more advancements have been made for speaker di-
arization, from a method that replaces a single module into a
deep-learning-based method, to a fully EEND. Furthermore, as
the speech recognition technology becomes more accessible, a
trend to tightly integrate speaker diarization into the ASR sys-
tems has emerged, such as benefiting from the ASR output to
improve the accuracy of speaker diarization. Recently, joint
modeling for speaker diarization and speech recognition is in-
vestigated in an attempt to enhance the overall performance
of speaker diarization. Thanks to these great achievements,
speaker diarization systems have already been used in many ap-
plications, including meeting transcription, conversational in-
teraction analysis, audio indexing, and conversational AI sys-
tems.

As we have seen, tremendous progress has been made for
speaker diarization systems. Nevertheless, there is still much
room for improvement. As the final remark, we conclude this

paper by listing the remaining challenges for speaker diariza-
tion toward future research and development.

Online processing of speaker diarization. Most speaker di-
arization methods assume that an entire recording can be ob-
served to execute speaker diarization. However, numerous ap-
plications such as meeting transcription systems or smart agents
require very short latency for assigning the speaker. While there
have been several attempts to make online speaker diarization
system both for clustering-based systems (e.g., [218]) and neu-
ral network-based diarization systems (e.g., [41, 172, 173]), it
still remains as a challenging problem.

Domain mismatch. A model that is trained on a data in a spe-
cific domain often works poorly on data in another domain.
For example, it is experimentally known that the EEND model
tends to overfit to the distribution of the speaker overlaps of the
training data [42]. Such a domain mismatch issue is universal
for any training-based method. Given the growing interest for
trainable speaker diarization systems, it will become more im-
portant to evaluate the ability for handling the variety of inputs.
The international evaluation efforts for speaker diarization such
as the DIHARD challenge [206, 77, 241] or VoxSRC [203, 95]
also have great importance in this direction.

Speaker overlap. Overlap of multitalker speech is the in-
evitable nature of conversation. For example, an average
of 12% to 15% of speaker overlap was observed in meeting
recordings [242, 92], and it could even increase in daily conver-
sations [243, 202, 81]. Nevertheless, many traditional speaker
diarization systems, especially clustering-based systems, have
only focused on non-overlapping regions and even the overlap-
ping regions are excluded in the evaluation metric [244]. While
the topic has been studied for long years (e.g. early works
[245, 246]), there is a growing interest for handling the speaker
overlaps toward better speaker diarization, including the appli-
cation of speech separation [94], post-processing [247, 168],
and joint modeling of speech separation and speaker diariza-
tion [64, 175].

Integration with ASR. Many applications require ASR results
along with speaker diarization results. In the modular combi-
nation of speaker diarization and ASR, some systems locate a
speaker diarization system before ASR [83] while some sys-
tems locate a speaker diarization system after ASR [221, 193].
Both types of systems showed a strong performance for a spe-
cific task, and determining the best kind of system architec-
ture for the speaker diarization and ASR tasks is still an open
problem [80]. Furthermore, there is another line of research to
jointly perform speaker diarization and ASR [65, 66, 67, 175],
which was introduced in Section 4. The joint modeling ap-
proach could leverage the inter-dependency between speaker
diarization and ASR to better perform both tasks. However, it
has not yet been fully investigated whether such joint frame-
works perform better than the well-tuned modular systems.
Overall, the integration of speaker diarization and ASR is one
of the hottest topics that is still being investigated by many re-
searchers.
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Audiovisual modeling. Visual information contains a strong
clue for the identification of speakers. For example, the video
captured by a fish-eye camera was used to improve the accu-
racy of speaker diarization in a meeting transcription task [221].
The visual information was also used to significantly improve
the accuracy of speaker diarization. for speaker diarization on
YouTube video [204]. While these studies showed the effec-
tiveness of visual information, the audiovisual speaker diariza-
tion has yet been rarely investigated compared with audio-only
speaker diarization, and there will be many rooms for improve-
ment.
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ing Bayesian HMM based x-vector clustering for the second DIHARD
speech diarization challenge, in: Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE, 2020,
pp. 6519–6523.

[165] Q. Lin, Y. Hou, M. Li, Self-attentive similarity measurement strategies
in speaker diarization, in: Proceedings of the Annual Conference of the
International Speech Communication Association, 2020, pp. 284–288.

[166] T. J. Park, M. Kumar, S. Narayanan, Multi-scale speaker diarization with
neural affinity score fusion, in: Proceedings of IEEE International Con-
ference on Acoustics, Speech and Signal Processing, 2021, pp. 7173–
7177.

[167] N. Flemotomos, D. Dimitriadis, A memory augmented architecture for
continuous speaker identification in meetings, in: Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing,
2020, pp. 6524–6528.

[168] S. Horiguchi, P. Garcia, Y. Fujita, S. Watanabe, K. Nagamatsu,
End-to-end speaker diarization as post-processing, arXiv preprint
arXiv:2012.10055 (2020).

[169] K. Kinoshita, M. Delcroix, S. Araki, T. Nakatani, Tackling real noisy
reverberant meetings with all-neural source separation, counting, and
diarization system, in: Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing, IEEE, 2020, pp. 381–385.

[170] S. Horiguchi, Y. Fujita, S. Watanabe, Y. Xue, K. Nagamatsu, End-to-end
speaker diarization for an unknown number of speakers with encoder-
decoder based attractors, in: Proceedings of the Annual Conference of
the International Speech Communication Association, 2020, pp. 269–
273.

[171] Y. Fujita, S. Watanabe, S. Horiguchi, Y. Xue, J. Shi, K. Nagamatsu,
Neural speaker diarization with speaker-wise chain rule, arXiv preprint
arXiv:2006.01796 (2020).

[172] Y. Xue, S. Horiguchi, Y. Fujita, S. Watanabe, K. Nagamatsu, Online
end-to-end neural diarization with speaker-tracing buffer, arXiv preprint

arXiv:2006.02616 (2020).
[173] E. Han, C. Lee, A. Stolcke, BW-EDA-EEND: Streaming end-to-end

neural speaker diarization for a variable number of speakers, in: Pro-
ceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, 2021, pp. 7193–7197.

[174] K. Kinoshita, M. Delcroix, N. Tawara, Integrating end-to-end neural
and clustering-based diarization: Getting the best of both worlds, in:
Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, 2021, pp. 7198–7202.

[175] N. Kanda, Y. Gaur, X. Wang, Z. Meng, Z. Chen, T. Zhou, T. Yoshioka,
Joint speaker counting, speech recognition, and speaker identification
for overlapped speech of any number of speakers, in: Proceedings of the
Annual Conference of the International Speech Communication Associ-
ation, 2020, pp. 36–40.

[176] N. Kanda, Z. Meng, L. Lu, Y. Gaur, X. Wang, Z. Chen, T. Yoshioka,
Minimum Bayes risk training for end-to-end speaker-attributed ASR,
in: Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, 2021, pp. 6503–6507.

[177] E. Ustinova, V. Lempitsky, Learning deep embeddings with histogram
loss, Proceedings of Advances in Neural Information Processing Sys-
tems 29 (2016) 4170–4178.

[178] B. Recht, M. Fazel, P. A. Parrilo, Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization, SIAM review
52 (2010) 471–501.

[179] J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clus-
tering analysis, in: Proceedings of International Conference on Machine
Learning, 2016, pp. 478–487.

[180] X. Guo, L. Gao, X. Liu, J. Yin, Improved deep embedded clustering
with local structure preservation, in: Proceedings of International Joint
Conference on Artificial Intelligence, 2017, pp. 1753–1759.

[181] A. Santoro, R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski, T. Weber,
D. Wierstra, O. Vinyals, R. Pascanu, T. Lillicrap, Relational Recurrent
Neural Networks, in: Proceedings of Advances in Neural Information
Processing Systems, 2018, pp. 7299–7310.

[182] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, T. Lillicrap, Meta-
learning with Memory-Augmented Neural Networks, in: Proceedings of
International Conference on Machine Learning, 2016, pp. 1842—-1850.

[183] S. Sukhbaatar, J. Weston, R. Fergus, et al., End-to-End Memory Net-
works, in: Proceedings of Advances in Neural Information Processing
Systems, 2015, pp. 2440–2448.

[184] T. Yoshioka, D. Dimitriadis, A. Stolcke, W. Hinthorn, Z. Chen, M. Zeng,
H. Xuedong, Meeting Transcription Using Asynchronous Distant Mi-
crophones, in: Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association, 2019, pp. 2968–2972.

[185] D. M. Blei, P. I. Frazier, Distance dependent chinese restaurant pro-
cesses., Journal of Machine Learning Research 12 (2011).

[186] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time
object detection with region proposal networks, IEEE Transactions on
Pattern Analysis and Machine Intelligence 39 (2016) 1137–1149.

[187] D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, R. Ho-
raud, An EM algorithm for joint source separation and diarisation of
multichannel convolutive speech mixtures, in: Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing,
IEEE, 2017, pp. 16–20.

[188] D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, R. Horaud, S. Gan-
not, Exploiting the intermittency of speech for joint separation and di-
arization, in: Proceedings of IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, IEEE, 2017, pp. 41–45.

[189] K. Maekawa, Corpus of spontaneous japanese: Its design and evalua-
tion, in: ISCA & IEEE Workshop on Spontaneous Speech Processing
and Recognition, 2003, pp. 7–12.

[190] J. Huang, E. Marcheret, K. Visweswariah, G. Potamianos, The ibm
rt07 evaluation systems for speaker diarization on lecture meetings, in:
Multimodal Technologies for Perception of Humans, Springer, 2007, pp.
497–508.

[191] L. Canseco-Rodriguez, L. Lamel, J.-L. Gauvain, Speaker diarization
from speech transcripts, in: Proceedings of the International Conference
on Spoken Language Processing, volume 4, 2004, pp. 3–7.

[192] N. Flemotomos, P. Georgiou, S. Narayanan, Linguistically aided speaker
diarization using speaker role information, in: Odyssey, 2020, pp. 117–
124.

27



[193] T. J. Park, K. J. Han, J. Huang, X. He, B. Zhou, P. Georgiou,
S. Narayanan, Speaker diarization with lexical information, in: Pro-
ceedings of the Annual Conference of the International Speech Commu-
nication Association, 2019, pp. 391–395.

[194] J. Fiscus, J. Ajot, J. Garofolo, The Rich Transcription 2007 meeting
recognition evaluation, 2007, pp. 373–389.

[195] K. Zmolikova, M. Delcroix, K. Kinoshita, T. Higuchi, A. Ogawa,
T. Nakatani, Speaker-aware neural network based beamformer for
speaker extraction in speech mixtures., in: Proceedings of the An-
nual Conference of the International Speech Communication Associa-
tion, 2017, pp. 2655–2659.

[196] M. Delcroix, K. Zmolikova, K. Kinoshita, A. Ogawa, T. Nakatani, Sin-
gle channel target speaker extraction and recognition with speaker beam,
in: Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, IEEE, 2018, pp. 5554–5558.

[197] M. Delcroix, S. Watanabe, T. Ochiai, K. Kinoshita, S. Karita, A. Ogawa,
T. Nakatani, End-to-end SpeakerBeam for single channel target speech
recognition., in: Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association, 2019, pp. 451–455.

[198] N. Kanda, Y. Gaur, X. Wang, Z. Meng, T. Yoshioka, Serialized output
training for end-to-end overlapped speech recognition, in: Proceedings
of the Annual Conference of the International Speech Communication
Association, 2020, pp. 2797–2801.

[199] N. Kanda, G. Ye, Y. Gaur, X. Wang, Z. Meng, Z. Chen, T. Yosh-
ioka, End-to-end speaker-attributed asr with transformer, arXiv preprint
arXiv:2104.02128 (2021).

[200] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot, T. Hain,
J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal, et al., The ami
meeting corpus: A pre-announcement, in: International workshop on
machine learning for multimodal interaction, Springer, 2005, pp. 28–39.

[201] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan, B. Pe-
skin, T. Pfau, E. Shriberg, A. Stolcke, C. Wooters, The ICSI meeting
corpus, in: Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, 2003, pp. I–364–I–367.

[202] J. Barker, S. Watanabe, E. Vincent, J. Trmal, The fifth ’chime’ speech
separation and recognition challenge: Dataset, task and baselines, in:
Proceedings of the Annual Conference of the International Speech Com-
munication Association, 2018, pp. 1561–1565.

[203] J. S. Chung, A. Nagrani, E. Coto, W. Xie, M. McLaren, D. A. Reynolds,
A. Zisserman, VoxSRC 2019: The first VoxCeleb speaker recognition
challenge, arXiv preprint arXiv:1912.02522 (2019).

[204] J. S. Chung, J. Huh, A. Nagrani, T. Afouras, A. Zisserman, Spot the
conversation: Speaker diarisation in the wild, in: Proceedings of the
Annual Conference of the International Speech Communication Associ-
ation, 2020, pp. 299–303.

[205] V. Panayotov, G. Chen, D. Povey, S. Khudanpur, LibriSpeech: an ASR
corpus based on public domain audio books, in: Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing,
IEEE, 2015, pp. 5206–5210.

[206] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, M. Liber-
man, The first dihard speech diarization challenge, in: Proceedings of
the Annual Conference of the International Speech Communication As-
sociation, 2018.

[207] Y. Fu, L. Cheng, S. Lv, Y. Jv, Y. Kong, Z. Chen, Y. Hu, L. Xie, J. Wu,
H. Bu, et al., Aishell-4: An open source dataset for speech enhancement,
separation, recognition and speaker diarization in conference scenario,
arXiv preprint arXiv:2104.03603 (2021).

[208] G. Gravier, J.-F. Bonastre, E. Geoffrois, S. Galliano, K. McTait,
K. Choukri, The ester evaluation campaign for the rich transcription
of french broadcast news., in: LREC, 2004.

[209] S. Galliano, G. Gravier, L. Chaubard, The ester 2 evaluation campaign
for the rich transcription of french radio broadcasts, in: Tenth An-
nual Conference of the International Speech Communication Associa-
tion, 2009.

[210] G. Gravier, G. Adda, N. Paulson, M. Carré, A. Giraudel, O. Galibert,
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