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Abstract
Glucose performance is reviewed in the context of total error, which includes error from all sources, not just 
analytical. Many standards require less than 100% of results to be within specific tolerance limits. Analytical error  
represents the difference between tested glucose and reference method glucose. Medical errors include analytical 
errors whose magnitude is great enough to likely result in patient harm. The 95% requirements of International 
Organization for Standardization 15197 and others make little sense, as up to 5% of results can be medically 
unacceptable. The current American Diabetes Association standard lacks a specification for user error.  
Error grids can meaningfully specify allowable glucose error. Infrequently, glucose meters do not provide 
a glucose result; such an occurrence can be devastating when associated with a life-threatening event. 
Nonreporting failures are ignored by standards. Estimates of analytical error can be classified into the four 
following categories: imprecision, random patient interferences, protocol-independent bias, and protocol-dependent 
bias. Methods to estimate total error are parametric, nonparametric, modeling, or direct. The Westgard method 
underestimates total error by failing to account for random patient interferences. Lawton’s method is a more  
complete model. Bland–Altman, mountain plots, and error grids are direct methods and are easier to use as they do 
not require modeling. Three types of protocols can be used to estimate glucose errors: method comparison, 
special studies and risk management, and monitoring performance of meters in the field. Current standards for 
glucose meter performance are inadequate. The level of performance required in regulatory standards should 
be based on clinical needs but can only deal with currently achievable performance. Clinical standards state what is 
needed, whether it can be achieved or not. Rational regulatory decisions about glucose monitors should be 
based on robust statistical analyses of performance.
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SYMPOSIUM

Introduction

Glucose testing plays an important role in the diagnosis 
and treatment of patients with diabetes. Sadly, all laboratory 
tests, including glucose measurements, contain some 

error. This article largely describes the magnitudes and 
types of error that represent the analytical properties of 
the test. These analytical properties are important to 
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manufacturers and to clinical laboratories. The clinical 
properties of a test, diagnostic sensitivity and specificity, 
also known as diagnostic efficacy, will be impaired with 
large enough test errors, regardless of the error source. 
To the clinician, the only important error measure is the 
total error of the assay—the combination of all possible 
errors.1 In this review, patients who perform and 
interpret self-monitoring of blood glucose (SMBG) testing 
act as clinicians. This review focuses on SMBG and 
SMBG devices that are run in the point of care (POC) 
environment.

Total error is the difference between the observed value 
and true glucose value. This difference can be caused 
not just by analytical error, but also by pre- and 
postanalytical errors. Preanalytic errors are those errors 
that occur before the analytical measurement and 
include insufficient cleaning of the finger before capillary 
collection, collection of a nonrepresentative capillary 
blood specimen from a hypotensive patient, dilution of 
the capillary blood due to excess manipulation of the 
punctured digit, and so on. Postanalytical errors are 
those that occur after testing. In a clinical laboratory, they 
are usually represented by reporting delays or delivery 
of incorrect or garbled information to the clinician. 
Whereas postanalytical errors might seem unlikely for 
SMBG, they have been occurring too often, with SMBG 
systems displaying glucose results in millimoles per 
liter rather than milligrams per deciliter and vice versa  
(see the following recalls: http://www.accessdata.fda.gov/
scripts/cdrh/CFdocs/cfRES/res.cfm?ID=52985, http://
www.accessdata.fda.gov/scripts/cdrh/CFdocs/cfRES/res.
cfm?ID=41682 and http://www.accessdata.fda.gov/scripts/
cdrh/CFdocs/cfRES/res.cfm?ID=38282) and for one meter 
system displaying a misleading error message in which 
results over 500 mg/dl were called ER1 instead of HI  
(see http://www.devicelink.com/mddi/archive/01/03/008.html).

To frame the discussion about glucose performance 
standards and accuracy, it is helpful to classify medical 
errors into either discrete or continuous variables.2 
An error such as wrong site surgery can be thought of as 
a discrete error—it either occurs or does not. A glucose 
assay always has error, which can be measured on a 
continuous scale. Because small errors are unimportant 
clinically (e.g., reporting 91 mg/dl when truth is  
90 mg/dl), performance standards attempt to set limits to 
distinguish between unimportant and important errors.

There are two ways that diagnostic assays can harm 
patients: (1) assays that have too much error and  
(2) time critical assays that fail to provide a result.  
Most standards neglect the latter cause.

Performance standards are used commonly either as 
part of a regulatory process or for clinical acceptability.  
Within the regulatory process, there are two groups: 
regulatory providers and regulatory consumers. Providers 
are regulatory agencies who create and use performance 
standards as part of the approval process for new systems. 
Regulatory consumers are manufacturers who must  
meet standards to sell products and clinical laboratories  
that may use adaptations of these standards to evaluate 
newly manufactured reagents periodically before using 
them for regular analysis.

The level of performance required in regulatory standards 
should be based on clinical needs but can only deal with a 
currently achievable performance. Clinical standards state 
what is needed, whether it can be achieved or not.  
An example of a standard based on clinical needs 
and not achievable was the 1987 American Diabetes 
Association (ADA) glucose standard.3 Many standards 
for discrete events (e.g., wrong site surgery) are set for  
zero error rates, although they are not achieved when 
measured across all hospitals.

Published Glucose Standards
Standards can be characterized according to Table 1.

Table 1.
Published Glucose Standards

Percent of data specified

<100% 100%

One set of limits

ISO 15197
CLSI C30A

FDA (SMBG)
CLIA 88

ADA 1996

ADA 1987

Multiple limits — Error grid

Standards That Specify Less than 100% of 
Data
International Organization for Standardization (ISO) 151974 
and Clinical and Laboratory Standards Institute (CLSI) 
C30A5 have been written for SMBG and POC systems, 
respectively. C30A cites the ISO standard for acceptance 
criteria.

International Organization for Standardization 15197 
states that for minimum acceptable accuracy,

“Ninety-five percent (95%) of the individual glucose 
results shall fall within ± 0.83 mmol/liter (15 mg/dl) 
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of the results of the manufacturer’s measurement 
procedure at glucose concentrations ≤4.2 mmol/liter 
(75 mg/dl) and within ±20% at glucose concentrations 
>4.2 mmol/liter (75 mg/dl).” (The 95% limits are not 
confidence limits. They are percentiles. This means 
that the requirement is for the 95th percentile of the 
distribution of the differences to be less than the limit 
stated.)

Note 1 of ISO 151974 adds that this requirement is “based 
on the medical requirements for glucose monitoring.”

One must first understand what is meant by accuracy. 
ISO 15197 uses metrology terminology6 with accuracy 
meaning “closeness of agreement between a test result 
and the accepted reference value.” Per ISO 15197, accuracy 

“involves a combination of random error components and 
a common systematic error or bias component.” Hence, 
these are total error limits.

The problem with this standard is simple: up to 5% of 
the results can be medically unacceptable. Consider what 
this means for SMBG. If a subject tests his (her) blood 
glucose four times daily, then on average there could be a 
medically unacceptable result every 5 days (once per 20 
measurements). Another problem can be seen in Figure 1, 
which compares the Taguchi loss function to an attempt 
to dichotomize a continuous variable.7 Here, the ISO limits 
imply the dashed lines, whereby all values inside total 
error limits are considered acceptable and all values 
outside of limits are unacceptable. The problem with 
this specification can be deduced by comparing values 

“A” and “B,” which are just outside and just inside of 
the limit, respectively. These two values have about the 
same amount of error and should have about the same 
potential to either cause or not cause patient harm.  
A more realistic model is seen by the curved line in 
Figure 1 where the potential for patient harm increases 
with increasing error.

It is unrealistic to specify a single set of limits.  
A wide set of limits would prevent very large errors,  
but nevertheless would allow smaller magnitude but  
still too large errors. A much narrower set of limits,  
such as the ISO 95% standard, allows too many (up to 5%) 
large errors.

Another problem can be inferred from details in 
the ISO protocol, which suggest that the ISO total 
error specification is for the analytical subset of total 
error. ISO 15197 has a separate section called “User 
performance evaluation.” Here, a separate evaluation 

is to be carried out comparing results between a user and  
a trained health care professional, but the only analysis 
requirements are that “Results shall be documented in 
a report.” However, SMBG users experience pre- and 
postanalytical error in addition to analytical error alone.8,9 
With user errors unspecified (and not quantified), the 
ISO specification fails to inform clinicians of the true 
performance of SMBG.

Finally, there is the problem of glucose monitors that fail 
periodically to provide a result. Whereas this can merely be 
an inconvenience, it can occur during a situation when 
the glucose level is needed emergently. The ISO standard 
does not deal with this.

One can ask, who wrote the ISO 15197 standard?  
One will not find a list of authors or committee members  
in this or any ISO standard. Through our presentations 
and correspondence with the ISO 15197 working group, 
we determined that the principal author of ISO 15197 
was a regulatory affairs person from industry.

The SMBG U.S. Food and Drug Administration (FDA)  
draft guidance (see http://www.fda.gov/downloads/
M e d i c a l D e v i c e s / D e v i c e R e g u l a t i o n a n d G u i d a n c e /
GuidanceDocuments/ucm071439.pdf) cites the ISO 15197 
standard for total error and user performance, but also 
suggests that linearity and interferences be assessed 
with CLSI standards.

The Clinical Laboratory Improvement Amendments 
of 1988 (CLIA 88) goal applies to all in vitro glucose 
testing performed in the United States with the 
exception of SMBG testing. CLIA 88 requires external 
proficiency testing results to be within 10% of target 
values or <0.3 mmol/liter (6 mg/dl), whichever is larger.  

Figure 1. The problem with dichotomous limits. Points A and B 
have about the same amount of error. Their potential for patient 
harm is better expressed on the solid rather than dashed line. This 
is a conceptual representation of error, as real error is unlikely to be 
symmetric or so smooth.
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CLIA values have to be met 80% of the time (see http://www
.cdc.gov/clia/regs/subpart_i.aspx#493.931). This standard applies 
to U.S. federally mandated proficiency surveys.

Standards That Specify 100% of Data
In 1987, the ADA recommended a goal for total error 
(user plus analytical) of <10% at glucose concentrations 
of 1.7–22.2 mmol/liter (30–400 mg/dl) 100% of the 
time.3 In addition, the ADA proposed that glucose 
measurements should not differ by more than 15% 
from those obtained by a laboratory reference method.  
The recommendation was modified in 1996, for the 
maximum analytical error to be <5%.10 This is confusing 
because by specifying a quantitative goal only for 
analytical error, in that case, user error and hence total 
error are unspecified. By using one set of limits, the 
ADA requirement has the problem shown in Figure 1. 
The much tighter ADA error limits can probably be 
partially attributed to the constituency of the advisory 
panels, being primarily clinicians and laboratorians.

Clarke and colleagues11 (Figure 2) and later Parkes and 
associates12 (Figure 3) presented error grids as a way 
of specifying glucose performance needed for clinical 
purposes. The error grid is well known for glucose but 
not for other assays. Although the error grid has not 
been adopted by either ADA or ISO 15197, it is often 
cited in studies and thus can be considered a standard. 
The FDA requires an error grid for any assay seeking 
waiver approval (see http://www.fda.gov/MedicalDevices/
DeviceRegulat ionandGuidance/GuidanceDocuments/
ucm079632.htm).

The value of an error grid is that it informs the clinician 
about the severity of errors. A problem with the 
Clarke grid (Figure 2) is that the “A” zone (acceptable 
result) is contiguous to a “D” zone (dangerous result).  
This means that the illogical situation in Figure 1 could 
occur whereby two results with almost the same amount 
of error could have very different clinical outcomes.  
The Parkes grid (Figure 3) avoids this by having an 
intervening “B” zone between the “A” and any higher 
zone. Whereas “B” zone results are still acceptable, their 
presence provides a warning.

Although error grids are appealing because they 
provide multiple limits based on the potential for wrong 
treatment decisions, care must be used in interpreting 
error grid studies. Most SMBG evaluations are conducted 
over relatively short periods; as such, infrequent events 
may not occur and yield significant grid outliers. Also, 
consider a case where one result had a large error 
but fell in the “B” zone and no results were in higher 
letter zones. It is possible that this large error was 
observed at a “benign” concentration by chance and 
that a future error of this percentage magnitude could 
place the result in a more dangerous zone. For example,  
for the Clarke grid, a 25% error can be both:  
Y = 500 mg/dl, X = 400 mg/dl zone = “B”; Y = 69 mg/dl,
X = 86 mg/dl zone = ”D.” For the Parkes grid, an 80% 
error can be both: Y = 450 mg/dl, X = 250 mg/dl 
zone = “B”; Y = 50 mg/dl, X = 90 mg/dl zone = “C.” 
Therefore, errors of a given percentage magnitude tend 
to be tolerated less in the lower physiologic range of 
glycemia and better tolerated in the high range.

Figure 2. The Clarke error grid for glucose. Figure 3. The Parkes consensus error grid for glucose.
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Error Grid Details
Clarke and Parkes grids are used to assess the accuracy  
of glucose monitoring. Other error grids can be designed 
for use in diabetes screening, or diagnosis. In setting the 
zones, one must distinguish between medical need, 
which may be difficult to reach by consensus, and 
currently achievable performance. Misclassifications can 
have either a low or a high potential to cause incorrect  
treatment decisions. When the true glucose value is at a 
medical decision point, the misclassification rate will be 
50%. For example, if the true glucose value is 126 mg/dl, 
imprecision will cause half of the observed values to be 
lower and half higher than this medical decision point.

A common specification for the percentages allowed for 
each zone is:

• 95% for the innermost error zone (the “A” zone), also 
called allowable total error (ATE) in FDA guidance

• 0% for the outermost error zone (the “C” or higher 
letter zones), also called limits for erroneous results 
(LER) in FDA guidance

• 5% for the “B” zone, which is the error zone greater 
than the “A” zone but less than the “C” zone.

Although it can be demonstrated statistically that 95% of 
results are in the ATE zone, it can never be proven that 
0% of results are in the LER zone. For example, if one 
assays 10,000 specimens and observes 0 results in the 
LER zone, the 95% confidence limit for the number of 
possible results in the LER zone is 0.0369% or 369 results 
per million tries.13 In a simple method comparison 
or even in a multicenter comparison, an excessive 
(impractical) sample size would be needed to determine 
performance, where performance means not just values in 
zone A in an error grid but confidence in the number of 
observations (if any) in higher zones. Thus, in addition to 
method comparison, which provides information about 
data in zone A, risk management is required, including 
failure mode effects analysis (FMEA) and fault trees.  
As a result, the word protocol is used in a generic sense, 
e.g., FMEA is a protocol.

Analytical Error Sources
Analytical error sources that comprise total analytical 
error can be divided into four categories14: imprecision, 
random patient interferences, protocol-independent bias, 
and protocol-dependent bias.

Imprecision is the dispersion among replicates and is 
measured as short-term (within-run) imprecision and long-
term (total) imprecision. ISO calls short-term imprecision 
repeatability and long-term imprecision reproducibility. 
Imprecision is estimated by repeatedly analyzing aliquots 
of a blood specimen (real or artificial) and either calculating 
the standard deviation or using analysis of variance to 
determine the components of imprecision.

Random patient interferences are nonspecific reactions 
that add bias to results. There can be more than one 
interfering substance in a patient specimen, with the 
final bias equal to the combination of these nonspecific 
effects. Random patient interferences are estimated by 
either directly testing candidate interfering substances 
sequentially or indirectly with regression analysis to 
assess a global random patient interference effect.

Bias is the average difference between two assays, usually 
a candidate and comparative assay. A protocol-independent 
bias means that bias exists regardless of the order 
in which samples are run. Protocol-independent bias is 
usually estimated with regression for paired samples 
assayed by a candidate and comparative assay. For example,  
some prostate-specific antigen assays have demonstrated 
biases up to 20% as a result of standardization differences.15 
In a College of American Pathologists survey,16 suspected 
calibrator inaccuracy explained a 9.6% difference between 
glucose methods.

Protocol-dependent bias refers to bias that depends 
on the way the sample was assayed. For example, the 
amount of between-lot bias depends on the bias in each 
lot and the specific lot in use. Another example is a loss 
of high-end linearity toward the end of the shelf life 
of a reagent. The amount of bias depends on reagent 
degradation and the number of days remaining in the 
shelf life. Protocol-dependent bias can be estimated 
using multifactor protocols17 or by special studies that 
isolate each effect. For example, drift can be estimated by 
measuring the same sample repeatedly over the desired 
length of time and then regressing results vs time.

This taxonomy for analytical error helps one think 
about error sources. These sources may not be mutually 
independent. For example, imprecision is not always the 
same as random error. Thus, if an assay has linear drift, 
the apparent imprecision from calculating the standard 
deviation will be a combination of random error and 
bias due to drift.14 On a similar note, the bias estimated 
from regression is the combined average bias from 
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random patient interferences, protocol-independent bias, 
and protocol-dependent bias.

Methods Used to Estimate Total Error
Methods for estimating total error can be classified as 
shown in Table 2. In modeling methods, total error 
components are estimated and combined in a model. 
Parametric analyses require that data follow known 
distributions (usually a normal distribution). Compared to  
nonparametric methods (no assumptions are made 
about the distribution of data), the confidence intervals  
for parametric methods are smaller for the same sample 
size. However, if the assumption about the distribution 
is incorrect, the confidence interval will be incorrect. 
Modeling is appealing because it often simplifies the 
estimation of performance. For example, it is relatively 
easy to estimate glucose average bias and imprecision. 
Using these estimates, one can construct total error 
requirements and simulate combinations of average bias  
and imprecision that satisfy requirements. However, if 
the model is incorrect, such simulations can be misleading.

Westgard

The LDL–cholesterol example was particularly revealing 
because the National Cholesterol Education Program20 
uses a similar standard to the ISO 15197 glucose standard 
(95% of values must have <12% error) with limits based 
on the Westgard model. Miller and colleagues19 showed 
that three of four commercial LDL–cholesterol assays 
achieved the National Cholesterol Education Program 
guidelines when data were analyzed according to the 
Westgard model, but all four assays failed these limits 
when data were analyzed by Lawton’s method, which is 
discussed in the next section.

Boyd and Bruns21 used the Westgard model to propose 
glucose requirements for average bias and imprecision. 
Krouwer22 pointed out that their model was inadequate, 
which was acknowledged by Boyd and Bruns.23 
The Westgard model has been used by an expert 
committee24 with a 1.65 (one-sided) multiplier in 
Equation (1). The Westgard model continues to be 
popular as it is intuitively appealing, simple, and used 
by influential researchers and consultants.

Lawton
The model of Lawton and colleagues25 is more complete 
in that it accounts for nonspecificity [Equation (2)]:

%TE = %Bias + 1.96(CVT) + 1.96(CVRI),         (2)

where CVRI is the total coefficient of variation due to 
random interferences.

Table 2.
Methods Used to Estimate Total Error

Method Parametric Nonparametric

Modeling
Westgard  
Lawton

—

Direct Bland–Altman
Mountain plot

Error grid

Westgard and colleagues proposed a model18 widely used 
and shown in Equation (1).

%TE = %Bias + 1.96(CVT),                  (1)

where %TE is percent total error, %Bias is percent 
average bias, and CVT is total coefficient of variation due 
to imprecision.

This model is incomplete and underestimates total error 
because it fails to account for nonspecificity in patient 
samples. Figure 4 illustrates the problem. Sample A 
has a positive bias and sample B has a negative bias, 
both caused by interferences. The average bias is zero 
but these individual patients will have large glucose 
errors. Krouwer17 and Miller and associates19 showed 
that the Westgard model underestimates total error for 
total and low-density lipoprotein (LDL)–cholesterol.  

Figure 4. Replicating sample A gives a distribution of values due to 
assay imprecision, all with positive bias. Sample B results all have 
negative bias. Regression estimates no average bias.
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The calculations are more complicated because the CVRI 
term is estimated indirectly. Although the term CVRI 
is attributed to interferences in patient samples, it will 
reflect any error that occurs for one sample. For example,  
a defective reagent strip can result in a large error for a 
patient sample that does not have interferences.

Bland–Altman
Bland and Altman used a more direct approach26 and 
graphed the differences between a candidate and a 
comparative method, where a candidate method is 
the method under test and the comparative method is 
the existing method. “Comparative” is preferred over 

“reference” because “reference” also means a specific 
procedure (such as isotope dilution mass spectrometry). 
The Bland–Altman plot is useful by itself. To estimate 
the limits containing 95% of data, normally distributed 
differences are needed.

In this method and all direct methods, the imprecision 
of the comparative method contributes to the difference. 
This effect can be minimized by repeating the comparative 
method and using its average. The reduction in imprecision 
equals one over the square root of the number of 
replicates.

Mountain Plots
A mountain plot27,28 is a nonparametric method that simply 
orders differences between a candidate and comparative 
method to arrive at the 2.5th and 97.5th percentiles 
(limits that contain 95% of data). Separate mountain 
plots are sometimes used for low concentrations (using 
absolute differences) and higher concentrations (using 
percentage differences). The mountain plot can handle 
large amounts of data and demonstrate large errors.  
It is less useful for small data sets (<40 points).

Error Grids
Error grids, discussed previously, are a simple way of 
estimating total error—one just tallies the number of 
observations into each zone. Confidence limits can be 
calculated for each percentage. An important feature of 
an error grid (and also a mountain plot) is that one can 
estimate the location of 100% of data.

The CLSI guideline EP21A29 uses Bland–Altman and 
mountain plots, and the CLSI guideline EP27P30 uses 
error grids.

Methods That Estimate Total Error 
Components
Clinical and Laboratory Standards Institute protocols 
have been developed to estimate various analytical 
performance parameters relevant to glucose and include 
imprecision EP5A2,31 linearity EP6A,32 interferences 
EP7A2,33 average bias EP9A2,34 and reagent stability 
EP25P.35

Correlation Coefficient
The correlation coefficient is a measure of the linear 
association between the candidate and the comparative 
method.36 The problem with this measure is that a high 
degree of linear association is expected, but it is not 
easy to describe differences in correlation coefficients 
in meaningful terms. For example, if method A has a 
correlation coefficient of 0.932 and method B has a 
correlation coefficient of 0.865, it is hard to know what this 
means. Compare this with a statement such as method A 
has an average bias of 11% and method B has 2%.

Locally Smoothed Median Absolute 
Differences (LS MAD)
The goals of LS MAD curves are to demonstrate continuous 
regions of the entire glucose range where performance, 
by any standard, is unacceptable. These curves have been 
used to relate poor performance and high risk to tight 
glucose control intervals.37

Total Error Evaluation Protocol
The purpose of estimating total error is to predict glucose 
performance in routine use, whether for SMBG or POC. 
The “total” in total error can be thought of as referring 
to the protocol, i.e., the set of conditions under which 
the evaluation is carried out determines which error 
sources can be observed. This creates complications as 
the following types of performance must be assessed: 
(1) throughout the range of the assay, especially in the 
hypoglycemic and hyperglycemic ranges; (2) under 
representative assay conditions, which can include rare 
combinations; and (3) obtained by actual users.

Generally, three types of protocols are employed:  
(1) assaying consecutive samples by a candidate and 
comparative method with actual users, (2) conducting 
special studies as part of risk management, and  
(3) monitoring performance of existing meters.
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The goal in any assay evaluation is to estimate (all) 
error that will be observed by clinicians in routine 
use. Because of the usual brevity of protocol 1 (method 
comparison), rare conditions are unlikely to be sampled. 
By assessing performance with actual users, preanalytical 
errors such as accessing capillary blood from poorly 
cleaned finger will be sampled. If glucose is present on 
the site, this glucose will contaminate the blood sample.  
The reported result is the combination of all errors 
regardless of their source. A simple analysis of the first 
protocol is to graph the results in an error grid and 
calculate the percentage of results in each zone. The rate 
that no result is obtained should also be determined. 
As stated previously, enormous sample sizes would 
be required to prove that the number of large-sized 
errors is below a specified low limit. However, method 
comparison studies provide useful information about 
the location of most differences. Comparing one meter 
to another yields differences not errors, as error can 
only be estimated by comparing a meter to a glucose 
reference procedure.

In addition to estimating all analytical properties, 
performance must be assessed with combinations of factors 
such as abnormal glucose concentrations, different reagents 
lots, temperature variation, extremes of hematocrit, and 
so on. It is possible to expedite this type of testing 
through the use of factorial designs (protocol 2).38 
A factorial design is used to evaluate two or more factors 
simultaneously. The advantages of factorial designs over 
one-factor-at-a-time experiments are that they are more 
efficient and they allow interactions between factors to 
be detected.

Risk management (also protocol 2) means enumerating all 
possible failure modes during the measurement process 
that could lead to errors or failure to obtain a result 
and assessing their risk.39 Protocol 2 is performed by 
manufacturers, although risk management can also be 
performed by clinical laboratories.

Protocols 1 and 2 are performed before meters are released. 
Recall data show that errors still occur for meters that  
have been released to customers (see http://www.accessdata.
fda.gov/scripts/cdrh/CFdocs/cfRES/res.cfm). Protocol 3 is a 
suitable monitoring method used to assess performance 
after release.

Conclusions
An adequate glucose specification for either POC or 
SMBG needs to state quantitative limits for total 

error for 100% of data. Neither the ADA nor the ISO 
specifications do this. Ideally, a glucose specification 
should also include a protocol, which prevents exclusion 
of typically encountered conditions that could cause 
errors. Manufacturers can test combinations of potential 
error causes through factorial studies and also by using 
risk management. The opportunity exists to leverage 
data from SMBG and POC monitors in general use.  
A good understanding of the statistics used to describe 
the performance of SMBG monitors is necessary for the 
development of sound performances standards.
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