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A Review of State of Health
Estimation of Energy Storage
Systems: Challenges and
Possible Solutions for Futuristic
Applications of Li-Ion Battery
Packs in Electric Vehicles
Lithium-ion (Li-ion) battery pack is vital for storage of energy produced from different
sources and has been extensively used for various applications such as electric vehicles
(EVs), watches, cookers, etc. For an efficient real-time monitoring and fault diagnosis of
battery operated systems, it is important to have a quantified information on the state-of-
health (SoH) of batteries. This paper conducts comprehensive literature studies on advance-
ment, challenges, concerns, and futuristic aspects of models and methods for SoH
estimation of batteries. Based on the studies, the methods and models for SoH estimation
have been summarized systematically with their advantages and disadvantages in tabular
format. The prime emphasis of this review was attributed toward the development of a
hybridized method which computes SoH of batteries accurately in real-time and takes
self-discharge into its account. At the end, the summary of research findings and the
future directions of research such as nondestructive tests (NDT) for real-time estimation
of battery SoH, finding residual SoH for the recycled batteries from battery packs, integra-
tion of mechanical aspects of battery with temperature, easy assembling–dissembling of
battery packs, and hybridization of battery packs with photovoltaic and super capacitor
are discussed. [DOI: 10.1115/1.4042987]

Keywords: state-of-health, state of charge, lithium-ion battery, electric vehicle, energy
storage

1 Introduction
In the recent past, the demand for oil, coal, and gas is increasing

globally, mainly due to an increase in per capita energy consump-
tion and demand for electricity in all the sectors [1]. Because of
limited oil and coal reserve in the planet and stringent emission
norms, researchers are forced to think for alternative methods for
sustainable power generation and energy supply. In this aspect,
energy storage can play a weighty role in the field of power gener-
ation and energy supply [2,3].
In the transportation sector, electric vehicles (EVs) can play a

major role toward mitigating the environmental problems with
sustainability [4–6]. An EV may be powered through the collec-
tor system, battery, solar panels, an electric generator, etc. There
are mainly three types of electric vehicles such as hybrid electric
vehicle, plug-in hybrid electric vehicle (PHEV), and battery
electric vehicle (BEV) [7–9]. The main advantages of using
EV are

• Electric vehicles emit lower amount of toxic gases, smoke, and
other harmful particles during its operation; hence, EVs are
considered as ecofriendly vehicles [9].

• EVs are more efficient than internal combustion engine drive
trains, for example, the well-to-wheel efficiency of BEVs
and incremental capacity (IC) engine vehicles are about 28%
and 13%, respectively [10].

• Running cost of EV is less. The electricity to charge an EV is
almost one-third of a petrol vehicle per kilometer [11].

• EVs are capable of capturing some energy (nearly 20–25%)
that is normally lost in braking by regenerative braking [10].

• EVs have relatively negligible start up time and can achieve
required high speed and acceleration very easily [10].

• In the case of safety, it has been seen that EVs tend to have
lower center of gravity that makes them less likely to roll
over [12].

In the recent past, the growth of sales of all EVs is increasing sig-
nificantly [13]. Recently, the demand for BEV is increasing ever
more. Figure 1 shows the growing demand for BEV over PHEV
in recent years [14], and Fig. 2 shows the countries with most
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electric vehicles, where China is leading with approximately
579,000 vehicles in the year 2017 [15].
In battery powered EV, the battery packs are the heart of the

vehicle because it provides the primary energy to run the vehicle
efficiently. A host of literature and experiments are reported to
investigate the issues like safety, reliability, and viability in any
operating conditions of the electric vehicle [16–18]. In the recent
past, lithium-ion batteries are used as a major source of power
supply in the battery electric vehicle [19–21]. The use of different
kinds of batteries such as lithium cobalt oxide, lithium iron phos-
phate, lithium manganese oxide, lithium nickel–cobalt–aluminum
oxide, lithium nickel–manganese–cobalt oxide, etc. has been
reported by the researchers on their research work [22,23].
Table 1 compares these popularly used lithium-ion batteries that
are commonly accessible to the market [24].
Lithium-based batteries have the highest cell potential and the

lowest reduction potential compared to other elements. Lithiummol-
ecule is the third lightest element and has one of the smallest ionic
radii of any single charged ion. This allows Li-based batteries to
have high gravimetric and volumetric capacity and power density

[25]. The energy density of the lithium-ion battery is in the range
200–250 W h/kg. Its columbic efficiency is very high with nearly
100% [26], and it has no memory effect [25]. Due to its high
energy and power density, the lithium-ion battery becomes the
most preferable choice over lead acid, nickel cadmium battery, and
popularly used for various equipments such as portable electronics,
power tools, and EVs [27–29]. The research on the lithium-ion
battery is attributed to present trends to increase cycle life, safety
(both abusive and normal condition) [30], and other performance
characteristics. At the same time, researchers have utilized other
types of electrochemical energy storage systems with higher
energy density in EV. Some advantages of the lithium-sulfur
battery over Li-ion are higher energy density, improved safety, a
wider operating temperature range, and lower cost (because of the
much availability of sulfur), which makes it a promising technology
for EV application [31]. However, lithium-sulfur technology has not
been widely commercialized yet as it has some limitations such as
low columbic efficiency, poor cycle, self-discharge, and capacity
fade due to cycling, high discharge current, uncontrolled dendrite
formation, etc. [32]. As hybrid and electric vehicle technologies
are continuing to the field of advancement, most of the car manufac-
turers have begun to use lithium-ion batteries as the electrical device
of energy storage for existing and future vehicles. The use of the
lithium-ion battery in an electric vehicle has been progressing at a
high pace, and as such, it is important to provide current and
timely updates of this emerging technology. While reviewing the
papers, the following issues were discussed bymany of the research-
ers as far as the use of battery in an electric vehicle is concerned:
batterymanagement system (BMS) [5], battery thermalmanagement
system of the battery pack [33], design and manufacturing of batte-
ries, state of charge (SoC) estimation, SoH estimation, etc. [34].
Battery state-of-health (SoH) estimation is an extremely impor-

tant issue for the performance and cost-effectiveness of EVs. In
order to ensure efficient and safe operation, prevent the battery
from over-charging and over-discharging, increase the lifespan of
the lithium-ion battery system and forecast its end life, and it is nec-
essary and important to estimate the battery’s SoH [35]. Often, SoH
of batteries is monitored for an efficient battery management system
design [36]. But estimating the dynamic status parameters of a
battery, such as SoH and related issues, will be useful in obtaining
the best suitable method for battery health monitoring. Furthermore,
by summarizing the methods, its advantages and disadvantages,
there is a potential for developing a new method by hybridization
of various methods and integration of nondestructive methods for
battery condition monitoring.
In this paper, SoH and its estimation methods are discussed in

Sec. 2. Section 3 summarizes the various approaches for SoH esti-
mation adopted by researchers. The research drawbacks and their
scopes of research have been discussed in Sec. 4. Finally, the con-
clusion of the paper is summarized in Sec. 5.

2 State-of-Health Estimation Methods
The SoH is a “measurement” that reflects the general condition of

a battery and its ability to deliver the specified performance com-
pared with an unused or fresh battery. It is defined as the ratio

Fig. 1 Growth of the battery electric vehicle

Fig. 2 Leading countries with electric vehicle adoption

Table 1 Most common Li-ion batteries available in the market

Name
Anode
material Cathode material

Nominal
voltage (V)

Energy
density

Cycle
life Safety Cost

Lithium cobalt oxide Graphite Lithium cobalt oxide 3.6 High Medium Highest safety concern Low
Lithium iron phosphate Graphite Lithium iron phosphate 3.2 Low High Safest lithium-ion cell

chemistry
High

Lithium manganese oxide Graphite Lithium manganese oxide 3.7 Low Low Good safety Medium
Lithium nickel manganese
cobalt oxide

Graphite Lithium nickel manganese
cobalt oxide

3.6 High Medium Good safety Medium

Lithium nickel cobalt
aluminum oxide

Graphite Lithium nickel cobalt
aluminum oxide

3.6 High Medium Safety concern
required

Medium
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between full charge capacity of a battery in the current state and the
full charge capacity of a battery when it is initially bought

SoH =
Current actual capacity

Nominal capacity

State of charge (SoC is a short-termpredictionwhile SoH is a long-
term prediction) can be determined by measuring the actual amount
of charge in the battery. SoH is a subjective measure in which differ-
ent researchers derive different definitions by using a variety of dif-
ferent measurable battery performance parameters (current,
voltage, resistance, temperature, self-discharge rate, stress, strain,
etc.). Though SoH is a function of such parameters (which all
affect the capability of the battery), for simplicity, it is generally
expressed in terms of capacity, considering other parameters constant
or keeping them unchanged during the moment [37]. An accurate
estimation of SoH is important to forecast batteries’ reliability, effi-
ciency, and power delivering capacity and proper operation of the
system [38,39].
It has been reported that capacity, internal resistance, power fade,

and cycle life change with battery’s age and hence these parameters
are useful in predicting the behavior of the cell or battery [40]. Aging
processes of a battery are irreversible changes in the characteristics
of the electrolyte, anode, and cathode and the alteration in the struc-
ture of the components used in the battery. Battery aging can be
divided into cycle aging and calendar one [41]. Cycle aging associ-
ates with the impact of battery utilization periods, and the calendar
aging associates with the consequences of battery storage. Aging
is considered for the estimation of SoH as it is highly related to
change in capacity, internal resistance, and power fade [42].
Changes of these parameters help the researchers to find out which
could be the best parameter for SoH estimation in accordance with
the situations. For example, changes in the performance of battery’s
external behavior due to loss of rated capacity or due to an increase in
temperature because of internal changes like corrosion.
Figure 3 shows the variation of cycle life with the cell operating

temperature. From Fig. 3, it is evident that cycle life is maximum
when the cell operating temperature is maintained between 10
and 50 °C. The cycle life gradually decreases if the cell operating
temperature reduces below 10 °C and increases above 50 °C. With
further increase of the cell operating temperature, the cycle life
decreases sharply due to thermal runaway [5,16].
Formulation of battery modeling is necessary to relate the battery

parameters such as charging and discharging voltage, cycle life, tem-
perature, etc. Battery modeling (Fig. 4) is classified into emperical
models, electrochemical models, and equivalent circuit models
(ECMs). In the empirical model, model formulation is based on
the data obtained from the experiments on the batteries where
inside information of the battery activity is not known completely.
In order to predict the unknown information of the battery, some
methods like genetic programing, fuzzy logic, Kalman filtering
(KF), neural networks (NNs), etc. are used to build the empirical
model. In the electrochemical model, the models are based on the
chemical processes that take place inside the battery. The electro-
chemical models are more accurate; however, these models are

complex to analyze. In order to reduce the comlexity of the model,
some reduction models such as single particle model are used
[43,44]. In the fusion model, the models are based on combination
of empirical and electrochemical models. Data are obtained from
the finite element simulation (electrochemical models) of the
battery phenomenon. The quantification of data is then obtained
by building empirical models using methods like fuzzy logic,
Kalman filtering, neural networks, etc.
Some researchers explain the battery helath monitoring models/

methods in different ways [45]. For example, Berecibar et al. [46]
divided the methods of SoH estimation into two parts: experimen-
tal technique and adaptive method. In experimental technique, pre-
vious data were taking into account, whereas in adaptive technique,
some parameters were introduced which had been sensitive to
degradation or aging of the battery.
However, within these derived models, uncertainties and realistic

conditions based on bumpy road, crash, and outside impact are not
taken into consideration while estimating SoH or SoC. Generally,
models work accurately when used as offline. But, the models do
not work accurately when used in real-time and online; in this
way, it is very difficult to model the SoH or SoC for the entire
battery pack when compared to a single battery or cell. Therefore,
designing of the best model considering all the necessary parame-
ters is very much essential.
Distinct focus is given to the SoH and SoC estimation, and the

methods or models were classified based on the given input condi-
tions or parameters (charge, current, capacity, self-discharge rate,
temperature, depth of discharge (DoD), time interval between full
charge cycles, etc.). There are number of methods or models
which are used by different researchers in different ways. Some
of them that were used mostly are listed below.

2.1 Coulomb Counting Method. The Coulomb counting
method is associated with monitoring the input and the output
current continuously. Since capacity is the integral of current with
respect to time, by measuring the input and the output current,
change in capacity or capacity degradation of a battery can be mea-
sured easily [47]. In this method, SoH is calculated by dividing mea-
sured capacity (after discharging the battery to 0% SoC value) to its
rated capacity. It is an extensively used method by researchers for its
simplicity [48–50]. But, the accuracy of this method is not very high.
Therefore, to improve its accuracy, for example, Ng et al. [50] pro-
posed a smart coulomb counting method to estimate both SoC and
SoH accurately. Similarly, an adaptive neurofuzzy inference
system (ANFIS) was modeled in the paper [51]. It considered the
cell’s nonlinear characteristics to get the relationship between SoC
and open circuit voltage (OCV) at different temperatures. During
the estimation of SoC, at some random OCV and temperature, mod-
eling of cell characteristics was done byANFIS. The assessment was
done on the cell level instead of the pack level for better precision.

2.2 Internal Resistance and Impedance Measurement
Method. The relationship of battery internal resistance and the
actual measured impedance with battery aging leads a way to
battery SoH estimation [52–55]. As the aging process occursFig. 3 Lithium-ion battery lifecycle versus temperature diagram

Fig. 4 Classification of battery modeling
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gradually, the impedance value of the battery under different fre-
quencies changes. Electrochemical impedance spectroscopy (EIS)
helps in this context by measuring the actual impedance of the
battery pack [56–61]. For example, Mu et al. [62] proposed a
novel fractional order impedance model for the lithium-ion battery.
EIS is a powerful technique which separates the electrochemical
reactions and tracks the variations of the performance under a differ-
ent SoH of a battery in a nondestructive manner. By combining elec-
trochemical impedance spectroscopy and hybrid pulse power
characteristic test (HPPT) data, a fractional order impedance model
can be derived. Measuring the increase of battery internal resistance
is also a direct tool for measuring the health of a battery [63]. Joule
effect, HPPT, and other resistance measuring models are available
for the measurement of internal resistance [46].

2.3 Neural Network. A neural network (NN) is a mathemati-
cal model whose parameters have no direct reflection of the physical
or chemical structures of the original model. Feed forward and
recurrent are the types of NN architecture design. They utilized a
time series prediction system. Yang et al. [64] used maximum avail-
able capacity to indicate the battery’s SoH based on a back propa-
gation neural network. A direct parameter extraction method was
employed to identify the parameters of the first-order ECM. Then,
a three-layer back propagation neural network was proposed to esti-
mate SoH, whose inputs were the parameters of the first-order ECM
and output was the current value of SoH. From the experiments, it
was found that when ohmic resistance increases SoH reduced and
when SoC ranges between 20% and 90% ohmic resistance increases
and SoC decreases. Artificial neural network (ANN) is known for
its simplicity. It can handle nonlinear data, and it is not necessary
to take all the details of the battery during modeling [65–68].

2.4 Support Vector Machine. This method depends on the
given environmental conditions and load conditions. It is a Kernel
function-based method, which uses regression algorithm to convert
the nonlinear model in lower dimension to the linear model in high
dimension [69]. To avoid degeneracy phenomenon in model build-
ing and keep the diversity of the particle, this method was used
[70]. Klass et al. [71] measured capacities and instantaneous resis-
tance over temperature and SoC range, and then, allow it for online
estimation of battery degradation. By using the support vector
machine (SVM) method, not only SoH but also many other useful
parameters like SoC, remaining useful life (RUL), etc. can be mea-
sured accurately [70–73]. Nuhic et al. [74] had developed a SVM
model to identify the SoH of battery for electric vehicles. Nuhic
had divided the available data into two-third of the data being for
training and one-third of the data being for testing and predicted
SoH with less than 0.0007 mean square error in real driving condi-
tions, considering temperature change, SoC, and C-rate.

2.5 Kalman Filter. Kalman filtering is a well-designed and
time-proven method to filter the measurements of system input
and output to produce an intelligent estimation of a dynamic
system’s state. In the KF method, both input and output data are
experimentally measured which help in obtaining the minimum
mean square error assessment of the true state [75]. In KF, linear
optimal filtering happens. If the system is nonlinear, extended
Kalman filter (EKF) is used. In this method, its nonlinearity is lin-
earized by using a linear time varying system [75–83]. Claude et al.
[82] presented mathematical equations to study the BMS of the
electric vehicle and developed a battery electrical model. Mastali
et al. [75] implemented both the extended Kalman filter and the
dual Kalman filter where they used both the prismatic and cylindri-
cal cell. Zheng and Fang [80] used relevance vector regression (a
nonlinear time series production model) to give a prediction of
the remaining useful life of a battery. Gholizadeh and Salmasi
[84] proposed an inclusive and unobservable model for the determi-
nation of SoH and SoC. They developed multiscale EKF and used
the macroscale to estimate the system parameter and the microscale
to estimate the system state. Reliability and accuracy of this method

were very high; also, this method largely reduced the computational
cost of the control system. Andre et al. [85] had compared both EKF
and NN to estimate the SoH of a battery. The comparison between
EKF and NN confirmed that EKF was simpler to apply, required
less input values, and required no functions of the dependencies
to the working environment. Actually, NN needs recognized corre-
lations among the input variables and internal states.
Similarly, Xiong et al. [79] proposed the multiscale extended

Kalman filter, in which computational efficiency was less but
they found higher estimation of accuracy. Thus, many researches
have been done on the Kalman filter and made a number of suitable
models for SoH and SoC estimation [75–83].

2.6 Sliding Mode Observer. In recent years, sliding mode
observer (SMO) is becoming a popular method for its flexibility to
adapt with system uncertainty and noise during the SoH estimation
process. Lin et al. [86] proposed the estimation of lithium-ion
battery SoC/SoHusingSMOfor the electric vehicle. A single particle
model was proposed for modeling the lithium-ion battery ignoring
the spatial distribution in homogeneity of local volumetric transfer
current density and the Li+ concentration in solid phase electrode
and electrolyte. SMO algorithm proposed the offline identification
of the model parameters. The offline model parameters were identi-
fied by the urban dynamometer driving schedule (UDDS) test. This
model showed good performance in estimating the terminal voltage
and themodel parameters. The SMOmethod is advantageous since it
can elude chattering effects [87]. Kim et al. [88] projected a dual
sliding mode observer model for estimating both SoH and SoC.

2.7 Fault Diagnostic Methods. The major faults such as over-
discharge and over charge causing large model parameter variation
are used to form a multiple nonlinear model for the detection of
faults. Identification of such failure aids in the evaluation of health
condition of the battery, as such failures are inversely proportional
to a good health condition of a battery. The equivalent circuit meth-
odology combined with impedance spectroscopy of lithium-ion bat-
teries was used in the formation of the nonlinear model for fault
detection of lithium-ion batteries in Ref. [89]. Estimation of the ter-
minal voltage for generation of residual signal was done using
Kalman filtering. Then, the probability of fault occurrence was pre-
dicted accurately from these residual signals using a multiple
model adaptive estimation technique. Similarly, a reduced order
electrochemical-thermal model of the lithium-ion cell was used
and the electrochemical faults were modeled as parametric/multipli-
cative faults in the system [90]. Sliding modemethodology was used
to design the observer and its convergence as well as design was ver-
ified via Lyapunov’s direct method. The effect of modeling uncer-
tainties may be considered to improve the fault diagnostic scheme.
However, Marcicki et al. [91] proposed a larger faults diagnostic
method which also helped in estimation of SoH in the lithium-ion
battery. A modified nonlinear parity equation was used for fault
detection on lithium-ion batteries in EVs. Input voltage to the
battery was estimated by sliding mode observer, and output
voltage estimation was done by the open loop model. Minimum
fault magnitude was accessed by estimation error of the observers
using real-world driving cycle data.Maximum allowable probability
of the error was taken into consideration by selection of optimal
threshold. Smaller faults are difficult to determine by the fault detec-
tion technique presented in this paper as these faults are smaller than
the normal estimation error of the observer. These faults could be cor-
rected by performing a constant diagnostic test.

2.8 Other Methods. Besides these discussed methods, fuzzy
logic [92–95], incremental capacity analysis (ICA) method
[96,97], Gaussian process regression method, Bayesian network,
particle filter method, Thevenin model, and many other methods
[98–111] are available which are used for estimation of battery
health conditions. Many researchers have attempted to combine
more than one method simultaneously for better result and accuracy
of the estimations [80,83].
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Fuzzy logic uses fuzzy logic theory (combination of true and
false statement) for complex and nonlinear models. The measured
data from the system is separated into crisp sets and fuzzy sets.
The fuzzy sets contain data with uncertainty. The members of the
fuzzy sets belong to a membership function, which determines
the accuracy of SoH estimation [112]. Schweiger et al. [113]
made an assembly of both fuzzy logic and EIS for estimation of
SoH of the lithium-ion battery.
Weng et al. [114] proposed state-of-health monitoring of

lithium-ion battery modules and packs by incremental capacity
peak tracking. ICA is a popularly used technique for lithium-ion
battery SoH estimation. Efficiency and effectiveness of this method
were greatly appreciated by many researchers. For example, in an
electric vehicle, the current capacity is directly related with the
driving range of the electric vehicle; on the other hand, power
output capability determines the dynamic property of the electric
vehicle. Capacity (Q) and the resistance (R) of the battery determine
the power output capability, so the main aim for the SoHmonitoring
is to estimate theQ andRonline. This paper reported the extension of
the IC peak tracking-based SoH monitoring framework from single
cells to multicell battery modules. At the first model, simulation
was done and then validated using experimental data. The experi-
ments consisted of 30 LiFePO4 cells with each cell having different
aging conditions, and these test cells were combined into battery
modules for estimation. Results obtained from it showed that the
total capacity loss could be linked with the IC curve peaks, and it
was for both single cell and pack of multiple cells.
Thevenin model was developed based on the Thevenin theory

[115]. In this model, various electrical techniques were applied to
the batteries where the load is more dynamic; the internal resistance
model is not sufficient for making accurate estimation of the beha-
vior of batteries. For simulating the dynamic behavior of batteries,
the Thevenin model is used. This model can also be used with both
the Kalman filter and the sliding mode observer [116].
Wu and Jossen [117] described a novel SoH indicator based on

cell entropy and battery surface temperature at a constant current
charging process.
Measuring SoH with piezoelectric sensors is another method for

determining SoH and SoC of the lithium-ion battery. Time-of-flight
and signal amplitude of the guided wave are the main revealing
parameters for this estimation [118].
Marcicki et al. [119] proposed a reduced order electrochemical

model where a Pade approximation reduction process was used
for reducing model partial differential equations (PDEs) to lower
order ordinary differential equations. Moura et al. [43] used adap-
tive PDE techniques where Pade approximation was also done to
identify the diffusion coefficient. Adaptive output fraction inversion
technique was used to enable a linear state estimation design. Other
adaptive techniques like a nonlinear geometric approach are
grounded on nonlinear geometric models. Exponential stability of
state and parameter assessment are the main plus points of this
method [120], whereas electrochemical–thermal model-based non-
linear adaptive techniques are more beneficial in accuracy com-
pared to equivalent circuit models [121].
Retrospective-cost subsystem identification (RCSI) is another

method which was adopted by Zhou et al. [122] RCSI helps in iden-
tifying the film growth of the electrolyte. The relationship between
voltage change and film growth was studied accurately in this
method. Chaoui and Gualous [123] proposed a hybrid estimation
technique for lithium-ion batteries. This technique makes use of
state-space observer theory to decrease the complexity of the
design and the stability analysis. The hybrid estimation technique
consists of a state-space observer and an online parameter estimator
with temperature compensation. SoC estimation was achieved with
reduced order observer using OCV-SoC characterization. Similarly,
Lyapunov-based method is a hybrid estimation method, where
battery health and other internal parameters are measured with the
help of battery terminal voltage and noisy currents [124].
In the smart grid scenario, energy storage systems played a very

important role, which allowed decoupling production and usage

times. Landi and Gross [125] developed measurement techniques
for online battery SoH estimation in vehicle-to-grid applications.
They allowed for a full exploitation of renewable energy sources
that can be used to shape load curves and constitute the energy
reserve in the battery electric vehicles. Moreover, if such vehicles
were plugged into the power grid, they could act as the support
system for electricity storage and could also support the
vehicle-to-grid (V2G) system. That is why measurement techniques
to estimate the SoH of batteries were needed. The authors in this
paper stated techniques to determine SoH of a lithium-ion battery.
There are many papers available on offline methods for lithium-ion
batteries. Such offline methods were widely used for characteriza-
tion of aging of super capacitors [126] and fuel cells. Yuan and
Dung [126] had worked offline for the SoH estimation of high
power lithium-ion batteries by a three-point impedance extraction
method. As reported, this methodology was found to be computa-
tionally fast and efficient.
Thus, it can be seen that numerous research works have been

carried out for the estimation of SoH of the lithium-ion battery. In
Sec. 3, a qualitative and quantitative assessment of these methods
is tried to put forward by summarizing them in a tabular format.

3 Summarization of Past Studies
The findings of various researchers related to SoH estimation

methods and quantitative analysis with pros and cons of the
various methods are presented and compared in Table 2, Table 3
[112], and Table 4, respectively.

4 Research Gaps and Future Research Directions
This work discusses the following new directions (Fig. 5) of

research and extensions of the existing works on SoH of battery
packs for electric vehicles.

4.1 Nondestructive Methods for Battery Condition
Monitoring. Methods discussed in this paper have some shortcom-
ings. By eliminating ormodifying those shortcomings, the efficiency
of the methods can be increased. EIS determination method is appli-
cable for similar charging conditions only. Similarly, previous
values of SoH/SoC are required for estimation of SoH in the
Coulomb counting method. Fuzzy method is practically not suitable
for the electric vehicle. The cost of this method is very high, and the
battery parameters frequently change with battery lifetime. The
existing methods such as those based on sensors (stress and fre-
quency) may not be accurate enough because of sensors error and
micro monitoring is required to make sure the laboratory conditions
are uniform. In this context, the nondestructive test (NDT) methods
such as those based on laser or ultrasound/infrared approaches can be
used to investigate the temperature distribution, state of charge,
state-of-health, etc. of the battery pack. For example, a light
optical system can be used for determining the damage of separator;
X-ray computed tomography for analysing microstructural proper-
ties, short circuits, or even to analyze thermal runway; multidirec-
tional laser scanning for aging; etc. Multidirectional laser scanning
investigates local reversible and irreversible thickness change of
the cell and establishes corelation with capacity fade and impedance
[140]. Furthermore, the use of signal features made up the elements
of statistical analysis; pattern vectors can be inputted to pattern rec-
ognition paradigms (ANN, SVM, and K-nearest-neighbor) for deci-
sion making on battery damage characterization. Thus, the
integration of NDT methods with supervised learning-based regres-
sion methods shall pave the way for the design of an efficient battery
management system.

4.2 Comprehensive Design of the Battery Pack Considering
Uniformity, Equalization, and Reuse Criteria Simultaneously.
In this study, the uniformity criterion was considered for design of
battery packs. However, this criterion is useful before the manufac-
turing stage of the battery pack. There is no guarantee that the
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Table 2 Comparison of various models/methods for health estimation of the Li-ion battery

Authors Thrust of the study Model
Battery used and parameters/

conditions Description Results

Ng et al. [50] Offline, numerical SoH
estimation method

Coulomb counting method Li-ion battery. voltage,
current, and operating time

• Charging and discharging characteristics were
investigated

• DoD was used for SoH calculation
• For better accuracy, charging and operating

efficiencies were also considered

• The estimation error increased with charging
and discharging cycle life of the battery

Chiang et al.
[127]

Online estimation method of
SoH and SoC

Internal resistance method Lithium-ion battery • Two simulations were performed
• Two experiments were performed to facilitate

algorithm and to determine the compatibility of the
proposed method

• Internal resistance and OCV were accurately
determined from the estimated parameters

• For its simplicity, it is easily implemented by
electronic circuit design

Weng et al.
[128]

Offline estimation method of
SoH and SoC

OCV model Li-ion battery • A unified OCV model which effectively captures
aging information based on ICA was used for SoH
monitoring

• Parametric analysis and model complexity reduction
were stated and experimental data were used to
illustrate the effectiveness of the model

• The proposed parametric model was quite
efficient in the determination of the OCV
model parameters and establishing
relationship with battery degradation

• Electrochemical properties were clearly
shown by the model in different temperatures
and aging periods

Le and Tang
[129]

Estimation of SoH Ah–V characterization method Battery capacity is the
parameter

• Two models were established. One model was
established by using Richard’s equation and another
one was by using quadratic fit.

• Then, slope of the Ah–V curve was correlated with
battery capacity

• This relatively simple method describes the
relationship between the Ah–V slope and
battery capacity.

• Method was sensitive to minor errors and to
continue its accuracy, complete charge–
discharge cycle was required

Yang et al.
[105]

Online experimental SoH
estimation method

Constant voltage charging
current analysis method

• All experiments were
done at room
temperature

• Four lithium iron
phosphate (LiFePO4)
IFR26650PC batteries
were used

• Current time constant was found based on equivalent
circuit method

• A relationship between current time constant and
battery capacity was established to indicate battery
SoH

• By comparing all the battery’s SoH, it was
found that error was very less in spite of the
large size of the data

• Estimated absolute error is less than 2.5%

Zou et al. [42] Battery health monitoring First-order resistor capacitor
(RC) model and nominal model

• Capacity
• Internal ohmic

resistance
• LiMNC

• SoC dependent parameters were identified
• Using those parameters, first-order resistor capacitor

model was determined and the performance
degradation of the nominal battery model over battery
lifetime was found

• Two extended Kalman filter methods with different
time scales were used to combine SoC and SoH. SoC
was estimated in real time and SoH was estimated in
the offline mode.

• Use of extensive experimental data can give
best result in the determination of accurate
SoC and SoH estimation

• The model accuracy deterioted in accordance
with battery aging

Waag et al.
[130]

Dependency of impedance
characteristic on battery
parameters and their variations
over the battery lifetime

Electrochemical impedance
spectroscopy (EIS) and
current-pulse technique

Li-ion battery (40 Ah) • Current pulses were used for battery impedance
determination

• Dependency of the impedance-related battery model
parameters was checked by impedance spectrum

• Changes on the battery impedance characteristic over
the lifetime/time of the application were studied

• The SoC range during which the battery
operates with high efficiency decreases due to
significant aging

Yang et al.
[64]

Experimental Neural network Ten LiFePO4 batteries in
different aging degrees of
type IFP-1865140

• Used maximum available capacity as a parameter of
battery health estimation

• A back propagation neural network was used

• The method was accurate and suitable with
low computational cost
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Table 2 Continued

Authors Thrust of the study Model
Battery used and parameters/

conditions Description Results

Rufus et al.
[131]

Health monitoring SVM, dynamic neural network,
confidence Prediction neural
network and usage pattern
analysis

Space application batteries/
Li-ion battery (4 A h)

• Experiments were performed on the battery
parameters like voltage, current, temperature, etc.

• Online estimation of the SoH and RUL of Li-ion
batteries by using available data of parameters were
evaluated

• Health states, energy state, depth of
discharge, and RUL were obtained from this
method

Xiong et al.
[79]

Battery parameter and state
estimation

Extended Kalman filtering
method

Li-ion battery • Multiscale EKF approach was proposed and employed
to execute battery parameter and SoC estimation

• The accurate estimate of battery capacity and SoC was
obtained in real-time through a data-driven multiscale
extended Kalman filtering algorithm

• The proposed data-driven multiscale EKF
approach was quite efficient with minimum
errors and high precision

• Computational cost value was low

Lin et al. [86] Experimental SMO 2.3 A h high power LiFePO4/
graphite cells

(1) Constant current
charge or discharge

(2) UDDS

• Two separate SMO models combined with reduced
order electrochemical model were studied

• The maximum SoC and SoH estimation
errors were found less than 3% and 2%

Schwunk et al.
[132]

Online SoC and SoH estimation Stochastic modeling or particle
filter (PF) approach

Li-iron phosphate batteries • Monte Carlo sampling technique used particle filters
to determine the SoC and SoH

• High accuracy was observed

Weng et al.
[133]

Determination of capacity
fading as the loss of capacity
and aging of battery

ICA and support vector
regression (SVR)

Li-ion battery • ICA was used to correlate capacity fading with the IC
curve

• Using SVR, an SoH monitoring technique was
developed to provide a definite and quantitative link
between IC peaks and faded battery capacity

• Prediction of capacity fading of cells was
done accurately

Andre et al.
[107]

SoH and SoC estimation Advanced mathematical
methods

Li-ion battery • Minimum variance estimation and machine learning
were used to estimate the SoH and SoC of a Li-ion
battery

• Standard Kalman filter and an unscented Kalman filter
was used to predict internal states of battery

• SVM algorithm was implemented and coupled with
the dual filter

• The estimations results were found to be
satisfactory

Hu et al. [134] Health management of battery Enhanced sample entropy Li-ion battery • Sample entropy-based capacity estimator for
Prognostics and Health Management (PHM) of Li-ion
batteries in electric vehicles was described

• Hybrid pulse power characterization profile was
adopted as the input of the health estimator

• The calculated sample entropy and capacity of
multicells at three different ambient temperatures were
employed and validated

• The estimations results were satisfactory for
further application of the method

Liu et al. [135] SoH determination Gaussian process regression
(GPR) (data-driven approach)

Li-ion battery • A battery SoH estimation approach based on different
models of GPR algorithms was presented

• The prognostics were performed using offline data
• In order to improve the poor performance of

prognostics based on GPR, the Gaussian process
functional regression (GPFR) algorithm was applied.
Later a combination of covariance functions and mean
functions for GPFR was applied for improvement of
result

• The proposed method can be effectively used
for battery monitoring and prognostics by
quantitative comparison with the GPR and
GPFR models

Chen et al.
[136]

Online battery SoH estimation Genetic algorithm Li-ion battery • Genetic algorithm was employed to estimate the
battery model parameters including diffusion
capacitance of a two-order RC circuit model using
measurement of current and voltage of the battery

• Temperature influence was considered to improve the
robustness and precision of SoH estimation results

• SoH varies proportionally with the reciprocal
of diffusion capacitance of the battery
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Table 2 Continued

Authors Thrust of the study Model
Battery used and parameters/

conditions Description Results

Cannarella
and Arnold
[137]

SoH and SoC measurements Mechanical stress Li-ion battery • Mechanical stress was used to monitor SoH and SoC
• The linear stress-SoH relationship holds over a range

of cycling conditions
• Irreversible volumetric expansions of the electrodes

were observed which was responsible for the
stress-SoH relationship

• Mechanical measurements (stack stress or
strain) can be used to provide real-time
measurements of SoH and SoC in Li-ion cells
as stack stress is linearly related with SoH

Saha et al.
[138]

Battery health monitoring Bayesian framework
Relevance vector machine
(RVM), particle filter

All kinds • Inference and estimation techniques are applied to
determine RUL of a battery

• Bayesian statistical approach and models of
electrochemical processes in the form of equivalent
electric circuit parameters were combined with
statistical models

• RVM approach and different PFs or Rao–Blackwell
zed particle filter framework were used for battery
prognostics

• This method can be used explicitly to exploit
the uncertainty in battery aging

Landi and
Gross [125]

Online battery SoH estimation
in vehicle-to-grid applications

Fuzzy logic, neural network Li-ion • Two techniques to determine SoH of a Li-ion battery
with particular reference to vehicle-to-grid
applications were proposed

• The techniques were based on fuzzy logic and the
neural network method

• Li-ion batteries were suitable for grid support
services

• They can constitute the energy reserve in
BEVs and which after plugging into the
power grid can be used as a distributed
electricity reserve and to provide ancillary
services

Li et al. [44] SoH estimation critically Model is based on chemical
mechanical degradation
physics

• Voltage
• Current
• Temperature

• This model was formed by developing Solid
Electrolyte Interface (SEI) layer formation which was
coupled with crack propagation due to stress
generation in the active material

• Due to SEI formation, lithium-ions were lost for which
battery resistance increased

• For particle stress calculation, realistic boundaries
were considered. This was then linked with capacity
degradation.

• In future, addition of lithium plating could
make the model foundation for important fast
charging protocol

Zhang et al.
[139]

SoH estimation Artificial intelligence
optimization algorithm

• Li (Ni1/3Co1/3Mn1/3)
O2 battery

• Nominal capacity
38 A h, nominal
voltage 3.7 V

• To predict battery SoH optimization, genetic
algorithm was applied

• A particle filter was employed to avoid the noise
occurring in battery terminal voltage estimation

• A recursive least-square method was used to update
cells’ capacity

• The proposed method was verified by the profiles of
New European Driving Cycle and dynamic test
profiles

• The experimental results indicate that the
proposed method could estimate the battery
states with high accuracy for actual operation
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designed battery packs can perform well during the operation.
During the operation of electric vehicles, the battery packs tend to
fail in the nonequilibrium stage. This problem is termed as an equal-
ization of cells in a battery pack [141,142]. After the life span of
battery packs, these packs are often lying idle because the recycling
and reuse methods are either ignored or the buyers are not aware of.
One possibility is to accumulate these battery packs and identify and
cluster the cells having life to form a new battery pack. Otherwise,
these unused batteries will lead to a serious disposal problem and
have bad impact on the environment [143]. Future work for
authors could be to work on the proposition of comprehensive
design methodology combining the uniformity criterion, equaliza-
tion criterion, and reuse criterion. This shall be useful for the devel-
opment of robust battery packs design being able to function
synchronically during the operation of vehicles.

4.3 Integration of Mechanical Aspects With Temperature-
Related Problems. It is also known that the temperature is the
main enemy of the battery. The temperature-related problems such
as thermal runaway, rupture, explosion, etc. can be well integrated
with the existing research on safety design of the battery/battery
pack. For example, the sensors (stress)-based monitoring of the
battery is performed at a given temperature. However, in very cold
or hot weather conditions, the results may not be applicable. Also,
the battery pack enclosure design incorporates only mechanical
aspects such as deformation, strength, frequency, etc. which can be
well integrated with another objective of uniform temperature distri-
bution (with maximum temperature below the threshold abnormal
temperature). This shall result in robust battery pack and its

components (enclosure) design, which can withstand impact from
both the mechanical and thermal unforeseen shocks/accidents.

4.4 Redesign, Installation, Placement of Battery Pack, and
Its Components. An important research direction could be to rede-
sign the battery packs and its components so that it can be easily
placed in the vehicle to optimize its space, have minimum impact
from crash, and can be easily dismantled, disassembled, and replaced
for user friendly and efficient recycling [144,145]. Topology design
optimization of the electric vehicle and its integrated components
including battery packs could be studied and explored in detail.
The other growing aspects are the integration of batteries with pho-
tovoltaic systems and super capacitors for improving the efficiency,
range of vehicle, and storage in the context of excess energy produc-
tion from the hybrid systems. For example, combinations of photo-
voltaic system, wind power, and lithium-ion battery storage into
microgrid EV charging station can offer backup power during loss
of grid connection and permits exporting power when generation
go beyond demand within the microgrid [146].

4.5 Minimization of Safety-Related Problems and Negative
Impact on the Environment. Major concern should be taken
toward safety-related problems such as cathode breakdown, electro-
lyte breakdown, over current, over voltage, low current, low voltage,
etc. so as to protect the cells from irrecoverable damage. To diminish
such problems, integration and improvization of pressure vent con-
troller, circuit interrupter, advance switching techniques, and a reli-
able thermal management module inside BMS will be helpful.
Also, materials (like cobalt, nickel, etc.) used in the lithium-ion

battery are not environmental friendly [112]. Extensive research
on it shows that it paves a way toward global warming and environ-
mental toxicity.

4.6 Process-Based Cost Modeling. For common public, price
always plays the main decider factor for buying an automobile.
Earlier, the price of the lithium-ion batteries, the main component
of the battery electric vehicle, was very high. But in the last few
years, its price has been dropping gradually. From studies, it is
known that its price has been decreasing almost 73% in the last
5–6 years and this percentage will be increasing in upcoming
years [112]. In this regard, process-based cost modeling helps in
predicting and calculating the cost and sales price of several
battery chemistries [147]. This cost is predicted on the basis of
battery-related processes. Combination of the learning and
dynamic curve model with process-based modeling leads to more
precise and efficient production planning and cost forecasting
[148]. But for this, exact processes and compositions of the

Table 3 Quantitative analysis of various methods for
state-of-health estimation of Li-ion battery

Method

True SoH
(experimental)

(%)

Estimated SoH
(approximately)

()%

Prediction error
(approximately)

(%)

Coulomb counting 63.85 69.78 <10
Electrochemical
impedance
spectroscopy

85 86.27 <2.1

Neural network 82 82.3 <0.5
Support vector
machine

60.35 59.19 <2

Kalman filter 84.36 86.57 ≤5
Sliding mode
observer

90.13 90.261 <2.5

Fuzzy logic 88 91.625 1.4–9.2

Table 4 Advantages and disadvantages of various methods for state-of-health estimation of Li-ion battery

Method/model Advantages Disadvantages

Coulomb counting • Less complex
• Easy implementation

• Time consuming

Electrochemical impedance
spectroscopy

• Lower computational cost • Applicable for specific charging conditions/current
pattern only

Neural network • Match with other techniques, suitable for different battery
applications

• Needs lot of training data as it depends on historic data
set

Support vector machine • This method is suitable in both nonlinear and high
dimensional model

• Fast and highly accurate method

• It a complex method in terms of computation

Kalman filter • Accurate estimation can be done
• No initial data of SoC/SoH is required
• Easy filter of data (noise, etc.)

• Method is complex as it requires large amount of
calculations

Thevenin model • Simple and easy to implement • Capacity fading cannot be predicted
Fractional order • Accurate in dynamic load condition • Weak in self-updating the model parameter
Sliding mode observe • Simple control structure and robust tracking performance,

under uncertain environments
• High accuracy can be achieved

• Slow time observer for SoH

Fuzzy logic • Applicable for complex and nonlinear system • High amount of computation is required
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battery chemistries should be known accurately. This can be over-
come by recently published patents and through literature survey
which describe the processes in detail.

5 Conclusions
This paper reviewed various approaches for SoH estimation of

lithium-ion batteries, with a focus on their use in the electric vehicles.
From this review, it is evident that among all the models, electro-
chemical and equivalent circuit models perform well but cannot be
directly applied to the other batteries. On the other hand, statistical
methods are easily adjustable to the different batteries. However,
obtaining the effective and accurate method for the estimation of
battery health in the real conditions is a challenging task. In order
to investigate the real-time SoH, a few attempts were made by
researchers. NDT methods can be considered as the solution for
overcoming the difficulties in real-time estimation of SoH of the
lithium-ion battery, since it has the capability of changing its param-
eters according to demand conditions. Furthermore, the commonly
used methods which have been reviewed are not favorable for
aged battery’s SoH estimation and it is found that their chemistry
is very difficult to understand; hence, there is a need to study the
battery chemistry so that it can correlate with SoH of the lithium-ion
battery. From the extensive literature review, it can be concluded that
in order to design and develop a new and efficient methodology for
estimation of SoH of the lithium-ion battery, major focus should be
given in all these issues like accuracy, easy assembling–disassembl-
ing of battery packs, end life forecast, suitability for realistic situa-
tions, and its effective implementation on BMS simultaneously.
Thus, exhaustive research on battery electrochemistry and appropri-
ate research based on realistic situations with its parameters will give
a new dimension toward great invention in battery research.

References
[1] Gulagi, A., Bogdanov, D., and Breyer, C., 2018, “The Role of Storage

Technologies in Energy Transition Pathways Towards Achieving a Fully
Sustainable Energy System for India,” J. Energy Storage, 17, pp. 525–539.

[2] Socolow, R., and Pacala, S., 2004, “(Talk) Stabilization Wedges: Solving the
Climate Problem for the Next Half-Century With Technologies Available
Today,” Science, 305(5686), pp. 968–972.

[3] Grün, T., Stella, K., andWollersheim, O., 2017, “Impacts on Load Distribution and
Ageing inLithium-IonHomeStorageSystems,”EnergyProcedia,135, pp. 236–248.

[4] Wang, Y., Zhang, C., and Chen, Z., 2016, “Model-Based State-of-Energy
Estimation of Lithium-Ion Batteries in Electric Vehicles,” Energy Procedia,
88, pp. 998–1004.

[5] Lu, L., Han, X., Li, J., Hua, J., and Ouyang, M., 2013, “A Review on the Key
Issues for Lithium-Ion Battery Management in Electric Vehicles,” J. Power
Sources, 226, pp. 272–288.

[6] Campestrini, C., Keil, P., Schuster, S. F., and Jossen, A., 2016, “Ageing of
Lithium-Ion Battery Modules With Dissipative Balancing Compared With
Single-Cell Ageing,” J. Energy Storage, 6, pp. 142–152.

[7] Bayat, P., Baghramian, A., and Bayat, P., 2018, “Implementation of Hybrid
Electric Vehicle Energy Management System for Two Input Power Sources,”
J. Energy Storage, 17, pp. 423–440.

[8] Bouchhima, N., Gossen, M., Schulte, S., and Birke, K. P., 2018, “Lifetime of
Self-Reconfigurable Batteries Compared With Conventional Batteries,”
J. Energy Storage, 15, pp. 400–407.

[9] Lane, B. W., Dumortier, J., Carley, S., Siddiki, S., Clark-Sutton, K., and
Graham, J. D., 2018, “All Plug-In Electric Vehicles Are Not the Same:
Predictors of Preference for a Plug-In Hybrid Versus a Battery-Electric
Vehicle,” Transp. Res. Part D Transp. Environ., 65, pp. 1–13.

[10] Moghbelli, H., Niasar, A. H., and Langari, R., 2006, “New Generation of
Passenger Vehicles: FCV or HEV?,” Proceedings of the IEEE International
Conference on Industrial Technology, pp. 452–459.

[11] Weldon, P., Morrissey, P., and O’Mahony, M., 2018, “Long-Term Cost of
Ownership Comparative Analysis Between Electric Vehicles and Internal
Combustion Engine Vehicles,” Sustain. Cities Soc., 39, pp. 578–591.

[12] Pomponi, C., Scalzi, S., Pasquale, L., Verrelli, C. M., and Marino, R., 2018,
“Automatic Motor Speed Reference Generators for Cruise and Lateral Control
ofElectricVehiclesWith In-WheelMotors,”ControlEng.Pract.,79, pp. 126–143.

[13] Breetz, H. L., and Salon, D., 2018, “Do Electric Vehicles Need Subsidies?
Ownership Costs for Conventional, Hybrid, and Electric Vehicles in 14
U.S. Cities,” Energy Policy, 120, pp. 238–249.

[14] McKerracher, C., 2018, www.bnef.com. Accessed October 11, 2018.
[15] The countries with the most electric cars, https://timesofindia.indiatimes.com/

business/the-countries-with-the-most-electric-cars/articleshow/63743395.cms.
Accessed September 7, 2018.

[16] Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., and He, X., 2018, “Thermal
Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A
Review,” Energy Storage Mater., 10, pp. 246–267.

[17] Foss, C. E. L., Svensson, A.M., Gullbrekken, Ø., Sunde, S., and Vullum-Bruer, F.,
2018, “Temperature Effects on Performance of Graphite Anodes in Carbonate
Based Electrolytes for Lithium Ion Batteries,” J. Energy Storage, 17, pp. 395–402.

[18] Vijayaraghavan, V., Garg, A., and Gao, L., 2018, “Fracture Mechanics
Modelling of Lithium-Ion Batteries Under Pinch Torsion Test,” Meas. J. Int.
Meas. Confed., 114, pp. 382–389.

[19] Di Domenico, D., Pognant-Gros, P., Petit, M., and Creff, Y., 2015, “State of
Health Estimation for NCA-C Lithium-Ion Cells,” IFAC-PapersOnLine,
28(15), pp. 376–382.

[20] Cen, J., Li, Z., and Jiang, F., 2018, “Experimental Investigation on Using the
Electric Vehicle Air Conditioning System for Lithium-Ion Battery Thermal
Management,” Energy Sustain. Dev., 45, pp. 88–95.

[21] Bobba, S., Mathieux, F., Ardente, F., Andrea Blengini, G., Anna Cusenza, M.,
Podias, A., and Pfrang, A., 2018, “Life Cycle Assessment of Repurposed
Electric Vehicles Batteries : An Adapted Method Based on Modelling of
Energy Flows,” J. Energy Storage, 19, pp. 213–225.

[22] Wegmann, R., Döge, V., and Sauer, D. U., 2018, “Assessing the Potential of an
Electric Vehicle Hybrid Battery System Comprising Solid-State Lithium Metal
Polymer High Energy and Lithium-Ion High Power Batteries,” J. Energy
Storage, 18, pp. 175–184.

[23] Mier, F. A., Morales, R., Coultas-McKenney, C. A., Hargather, M. J., and
Ostanek, J., 2017, “Overcharge and Thermal Destructive Testing of Lithium
Metal Oxide and Lithium Metal Phosphate Batteries Incorporating Optical
Diagnostics,” J. Energy Storage, 13, pp. 378–386.

[24] Ayub, Ilyas, 2017, https://www.edn.com/design/power-management/4458054/
Introduction-to-lithium-ion-rechargeable-battery-design.AccessedSeptember10, 2018.

[25] Wadman, M., 2018, “Watching the Teen Brain Grow,” Science, 359(6371),
pp. 13–14.

[26] Linden, D., and Reddy, T. B., 2004, Handbook of Batteries, McGraw-Hill, New
York.

[27] Zhang, H., Miao, Q., Zhang, X., and Liu, Z., 2018, “An Improved Unscented
Particle Filter Approach for Lithium-Ion Battery Remaining Useful Life
Prediction,” Microelectron. Reliab., 81(24), pp. 288–298.

[28] Feng, X., Li, J., Ouyang, M., Lu, L., Li, J., and He, X., 2013, “Using Probability
Density Function to Evaluate the State of Health of Lithium-Ion Batteries,”
J. Power Sources, 232, pp. 209–218.

[29] Nitta, N., Wu, F., Lee, J. T., and Yushin, G., 2015, “Li-Ion Battery Materials:
Present and Future,” Mater. Today, 18(5), pp. 252–264.

[30] Selman, J. R., Al Hallaj, S., Uchida, I., and Hirano, Y., 2001, “Cooperative
Research on Safety Fundamentals of Lithium Batteries,” J. Power Sources,
97–98, pp. 726–732.

[31] Vikström, H., Davidsson, S., and Höök, M., 2013, “Lithium Availability and
Future Production Outlooks,” Appl. Energy, 110, pp. 252–266.

[32] Xu, X. L., Wang, S. J., Wang, H., Xu, B., Hu, C., Jin, Y., Liu, J. B., and Yan, H.,
2017, “The Suppression of Lithium Dendrite Growth in Lithium Sulfur
Batteries: A Review,” J. Energy Storage, 13, pp. 387–400.

[33] Al-Zareer, M., Dincer, I., and Rosen, M. A., 2018, “A Review of Novel Thermal
Management Systems for Batteries,” Int. J. Energy Res., 42, pp. 1–24.

[34] Rajan, A., Vijayaraghavan, V., Ooi, M. P. L., Garg, A., and Kuang, Y. C., 2018,
“A Simulation-Based Probabilistic Framework for Lithium-Ion Battery
Modelling,” Meas. J. Int. Meas. Confed., 115, pp. 87–94.

[35] Garg, A., Peng, X., Le, M. L. P., Pareek, K., and Chin, C. M. M., 2018, “Design
and Analysis of Capacity Models for Lithium-Ion Battery,” Meas. J. Int. Meas.
Confed., 120, pp. 114–120.

[36] Patil,M.A., Tagade, P.,Hariharan,K.S., Kolake, S.M., Song, T., Yeo,T., andDoo,
S., 2015, “A Novel Multistage Support Vector Machine Based Approach for Li
Ion Battery Remaining Useful Life Estimation,” Appl. Energy, 159, pp. 285–297.

[37] Weicker, Phillip, 2014, A Systems Approach to Lithium Ion Battery
Management, Artech House Publisher, Boston.

[38] Qing, D., Huang, J., and Sun, W., 2014, “SOH Estimation of Lithium-Ion
Batteries for Electric Vehicles,” 31st ISARC, ISARC, pp. 2–5.

Fig. 5 Scope of research directions in the future

040801-10 / Vol. 16, NOVEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/electrochem

ical/article-pdf/16/4/040801/6036074/jeecs_16_4_040801.pdf by guest on 09 August 2022

http://dx.doi.org/10.1016/j.est.2017.11.012
http://dx.doi.org/10.1126/science.1100103
http://dx.doi.org/10.1016/j.egypro.2017.09.508
http://dx.doi.org/10.1016/j.egypro.2016.06.125
http://dx.doi.org/10.1016/j.jpowsour.2012.10.060
http://dx.doi.org/10.1016/j.jpowsour.2012.10.060
http://dx.doi.org/10.1016/j.est.2016.03.004
http://dx.doi.org/10.1016/j.est.2018.03.019
http://dx.doi.org/10.1016/j.est.2017.11.014
http://dx.doi.org/10.1016/j.trd.2018.07.019
http://dx.doi.org/10.1016/j.scs.2018.02.024
http://dx.doi.org/10.1016/j.conengprac.2018.07.008
http://dx.doi.org/10.1016/j.enpol.2018.05.038
http://www.bnef.com.
https://timesofindia.indiatimes.com/business/the-countries-with-the-most-electric-cars/articleshow/63743395.cms
https://timesofindia.indiatimes.com/business/the-countries-with-the-most-electric-cars/articleshow/63743395.cms
http://dx.doi.org/10.1016/j.ensm.2017.05.013
http://dx.doi.org/10.1016/j.est.2018.04.001
http://dx.doi.org/10.1016/j.measurement.2017.10.008
http://dx.doi.org/10.1016/j.measurement.2017.10.008
http://dx.doi.org/10.1016/j.ifacol.2015.10.054
http://dx.doi.org/10.1016/j.ifacol.2015.10.054
http://dx.doi.org/10.1016/j.esd.2018.05.005
http://dx.doi.org/10.1016/j.est.2018.07.008
http://dx.doi.org/10.1016/j.est.2018.05.001
http://dx.doi.org/10.1016/j.est.2018.05.001
http://dx.doi.org/10.1016/j.est.2017.08.003
https://www.edn.com/design/power-management/4458054/Introduction-to-lithium-ion-rechargeable-battery-design
https://www.edn.com/design/power-management/4458054/Introduction-to-lithium-ion-rechargeable-battery-design
http://dx.doi.org/10.1126/science.359.6371.13
http://dx.doi.org/10.1016/j.microrel.2017.12.036
http://dx.doi.org/10.1016/j.jpowsour.2013.01.018
http://dx.doi.org/10.1016/j.mattod.2014.10.040
http://dx.doi.org/10.1016/S0378-7753(01)00732-7
http://dx.doi.org/10.1016/j.apenergy.2013.04.005
http://dx.doi.org/10.1016/j.est.2017.07.031
http://dx.doi.org/10.1002/er.3868
http://dx.doi.org/10.1016/j.measurement.2017.10.033
http://dx.doi.org/10.1016/j.measurement.2018.02.003
http://dx.doi.org/10.1016/j.measurement.2018.02.003
http://dx.doi.org/10.1016/j.apenergy.2015.08.119


[39] Wei, J.,Dong,G., andChen,Z.,2018,“RemainingUsefulLifePredictionandState
of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support
Vector Regression,” IEEE Trans. Ind. Electron., 65(7), pp. 5634–5643.

[40] Ibolya, Anna, I., Magyar, Attila, and Hangos, Katalim, M., 2017, “Model iden-
tification and parameter estimation of lithium ion batteries for diagnostic pur-
poses,” 2017 International Symposium on Power Electronics (Ee), Novi Sad,
October 19-21, 2017.

[41] Lin, C., Tang, A., and Wang, W., 2015, “A Review of SOH Estimation Methods
in Lithium-Ion Batteries for Electric Vehicle Applications,” Energy Procedia,
75, pp. 1920–1925.

[42] Zou, Y., Hu, X., Ma, H., and Li, S. E., 2015, “Combined State of Charge and
State of Health Estimation Over Lithium-Ion Battery Cell Cycle Lifespan for
Electric Vehicles,” J. Power Sources, 273, pp. 793–803.

[43] Moura, S. J., Chaturvedi, N. A., and Krstić, M., 2014, “Adaptive PDE Observer
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