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Abstract

Background: Dietary pattern analysis is a promising approach to understanding the complex relationship between

diet and health. While many statistical methods exist, the literature predominantly focuses on classical methods

such as dietary quality scores, principal component analysis, factor analysis, clustering analysis, and reduced rank

regression. There are some emerging methods that have rarely or never been reviewed or discussed adequately.

Methods: This paper presents a landscape review of the existing statistical methods used to derive dietary patterns,

especially the finite mixture model, treelet transform, data mining, least absolute shrinkage and selection operator

and compositional data analysis, in terms of their underlying concepts, advantages and disadvantages, and available

software and packages for implementation.

Results: While all statistical methods for dietary pattern analysis have unique features and serve distinct purposes,

emerging methods warrant more attention. However, future research is needed to evaluate these emerging

methods’ performance in terms of reproducibility, validity, and ability to predict different outcomes.

Conclusion: Selection of the most appropriate method mainly depends on the research questions. As an evolving

subject, there is always scope for deriving dietary patterns through new analytic methodologies.

Keywords: Dietary patterns, Dietary quality scores, Principal component analysis, Factor analysis, Clustering analysis,

Treelet transform, Reduced rank regression, Data mining, Least absolute shrinkage and selection operator,

Compositional data analysis

Background
Dietary intake, one of the essential factors that influence

health, varies widely among individuals. The changes

from the first Dietary Guidelines for Americans in 1980

to those in 2015 show that the focus of nutritional epi-

demiology has gradually shifted from single nutrients to

dietary patterns, focusing on features of the entire diet

[1]. There are several reasons for this shift [2]. First, each

type of food contains multiple nutrients with complex

interactions and latent cumulative relationships [3, 4].

Hence, it is not feasible to isolate and examine their sep-

arate effects on diseases [2]. Additionally, it is difficult to

analyze the role of individual foods because a typical diet

is characterized by a mixture of different foods with sub-

stitution effects, where an increase in the consumption

of some foods will lead to a decrease in the consumption

of others [5]. If we include all collected food items in an

analytical model simultaneously, multicollinearity, due to

the complex interactions and relationships among them,

will make inferences about individual foods difficult [6].

Due to the growing recognition of the complexity of

dietary intake and its interactions with health outcomes,

research on the health effects of dietary patterns is ne-

cessary alongside that of individual nutrients [7]. Dietary
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patterns consider the complex interrelationships be-

tween different foods or nutrients as a whole, reflect in-

dividuals’ actual dietary habits, and provide more

information to indicate when many nutrients are associ-

ated with diseases [1, 4]. Additionally, dietary patterns

are more consistent over time and have a greater effect

on health outcomes than individual nutrients [6]. Hence,

dietary pattern analysis is considered a technology com-

plementary to the study of single nutrients or food.

In the past few decades, statistical methods have

emerged that make full use of dietary information col-

lected across populations to create dietary patterns [2, 4,

8]. In nutritional epidemiology studies, regardless of the

statistical method used for dietary pattern analysis, the

goal is to explore the relationship between dietary pat-

terns and health outcomes [2, 3]. From this perspective,

evaluating a method depends not only on whether the

dietary patterns derived by the method comprehensively

reflect the dietary preferences but also on whether these

patterns can predict diseases more accurately and pro-

mote health.

The majority of published reviews divide the statistical

methods for dietary pattern analysis into three categor-

ies: investigator-driven, data-driven, and hybrid methods

widely used in nutritional epidemiology [2, 3, 8–10].

Additionally, several emerging methods have been ap-

plied to dietary pattern analyses that are less often or

never reviewed adequately. To demonstrate these

methods more clearly, we classify the emerging methods

based on the existing categories and add a new category.

Since the finite mixture model (FMM) is a model-

based clustering method and treelet transform (TT)

combines principal component analysis (PCA) and clus-

tering algorithms in a one-step process, they are classi-

fied as data-driven methods. Data mining (DM) and

least absolute shrinkage and selection operator (LASSO)

consider health outcome in identifying dietary patterns

and are therefore classified as hybrid methods. Compos-

itional data analysis (CODA)—the latest addition in diet-

ary pattern research—identifies dietary patterns by

transforming dietary intake into log-ratios and is thus

categorized separately due to the particularity of suitable

data.

This paper provides an updated landscape review of

these methods based on the underlying concepts,

strengths, limitations, and software packages commonly

used while paying particular attention to emerging

methods. The subsequent content is introduced from

the following aspects: (1) investigator-driven methods,

containing various dietary scores and dietary indexes; (2)

data-driven methods, comprising PCA, factor analysis,

traditional cluster analysis (TCA), FMM, and TT; (3) hy-

brid methods, consisting of reduced rank regression

(RRR), DM, and LASSO; (4) compositional data analysis,

including compositional principal component coordi-

nates, balance coordinates and principal balances. To

conclude, we compare and evaluate these methods, iden-

tify the remaining methodological issues, and provide

suggestions for future research.

Investigator-driven methods
Investigator-driven methods are also called a priori ap-

proaches, and they include dietary scores and dietary in-

dexes (collectively called dietary quality scores). These

methods define dietary guidelines aligned with current

nutritional knowledge or dietary recommendations that

affect health as dietary patterns [9]. The foods or nutri-

ents consumed by a person are scored based on some

quality score (e.g., the Healthy Eating Index (HEI) shown

in Table 1), and the results are summarized to produce

dietary quality scores [12, 13]. Dietary quality scores

measure the extent to which individuals adhere to diet-

ary guidelines and recommendations to assess the popu-

lation’s overall dietary quality and predict diseases [9,

13]. The classification of these scores is shown in

Table 2.

Recent studies on the relationship between dietary

quality scores and health indicate that scores such as the

HEI, Alternative Healthy Eating Index (AHEI) [15], Al-

ternative Mediterranean Diet [35], and Dietary Ap-

proaches to Stop Hypertension (DASH) diet scores [27]

are negatively correlated with the risk of death from car-

diovascular disease, cancer, and all-cause mortality [36–

40]. The last three dietary patterns were also recom-

mended as easy and practical dietary plans for the public

in the 2015 Dietary Guidelines for Americans [41]. Add-

itionally, plant-based diets are receiving increasing atten-

tion because of their benefits to human health and

environmental sustainability. Three plant-based diet in-

dexes have been established in recent years: the total

Plant-based Diet Index (PDI), Healthy Plant-based Diet

Index (hPDI), and Unhealthy Plant-based Diet Index

(uPDI) [42, 43]. Unlike other dietary quality scores, these

plant-based dietary indexes focus on the quality of plant

foods in the diet; all animal foods, including those ani-

mal foods known to promote health, are negatively

scored when calculating the plant-based dietary indexes

[44, 45]. Research has found that the higher the hPDI

score, the lower the risk of coronary heart disease, type

2 diabetes, and all-cause mortality, whereas the uPDI

shows the opposite trend [44–47].

Each component is individually scored and summed

into a total score in the different scoring systems, but

the total scores of different dietary quality scores vary

greatly. Additionally, the total score can also be dichoto-

mized but is less used [48, 49]. No research has been

done to establish the preferable scoring system for spe-

cific situations [12]. It is important to consider the
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research purpose when applying dietary quality scores

and that there is not necessarily a single diet plan to fol-

low to achieve a healthy dietary pattern [9, 41].

Advantages

The dietary guidelines and recommendations used to

construct dietary quality scores are primarily based on

scientific evidence from health and disease prevention

studies. These scores can be used to describe overall

dietary characteristics and repeat or compare results

across populations. Many dietary quality scores have sig-

nificant associations with disease and mortality

outcomes. The total score is easy to understand and use,

and the summing process is simpler than in other statis-

tical methods for dietary pattern analysis.

Disadvantages

The construction of the scores, the definition of dietary

diversity, and interpretation of the guidelines are gener-

ally determined subjectively by the researchers [2]. Add-

itionally, dietary scores cannot describe overall dietary

patterns because they focus only on selected aspects of

diet and do not consider the correlation of different diet-

ary components [2, 13]. Finally, since a diet is usually

Table 1 Components, point values, and standards for scoring of the Healthy Eating Index (HEI) [11]

Component Maximum points Standard for maximum score Standard for a minimum score of zero

Adequacy

Total Fruits 5 ≥0.8 c equivalents/1000 kcal No fruit

Whole Fruits 5 ≥0.4 c equivalents/1000 kcal No whole fruit

Total Vegetables 5 ≥1.1 c equivalents/1000 kcal No vegetables

Greens and Beans 5 ≥0.2 c equivalents/1000 kcal No dark green vegetables or beans and peas

Whole Grains 10 ≥1.5 oz. equivalents/1000 kcal No whole grains

Dairy 10 ≥1.3 c equivalents/1000 kcal No dairy

Total Protein Foods 5 ≥2.5 oz. equivalents/1000 kcal No protein foods

Seafood and Plant Proteins 5 ≥0.8 c equivalents/1000 kcal No seafood or plant proteins

Fatty Acids 10 (PUFAsa +MUFAsb)/SFAs c
≥ 2.5 (PUFAs + MUFAs) / SFAs ≤1.2

Moderation

Refined Grains 10 ≤1.8 oz. equivalents/1000 kcal ≥4.3 oz. equivalents/1000 kcal

Sodium 10 ≤1.1 g/1000 kcal ≥2.0 g/1000 kcal

Added Sugars 10 ≤6.5% of energy ≥26% of energy

Saturated Fats 10 ≤8% of energy ≥16% of energy

a
PUFAs polyunsaturated fatty acids
b
MUFAs monounsaturated fatty acids

c
SFAs saturated fatty acids

Table 2 The dietary quality scores based on different classification methods

Classification
Methods

Dietary Quality Scores

Based on dietary standards [8]

Dietary guidelines Healthy Eating Index (HEI) [11], Dietary Quality Index (DQI) [14], Alternative Healthy Eating Index (AHEI) [15], Dietary Lifestyle
Index (DLI) [16]

Dietary
recommendations

Recommended Food Score [17] and Composite Diet Score [18, 19]

Based on dietary composition [20]

Nutrients Dietary Quality (DQ) [21] and the Dietary Inflammatory Index (DII) [22]

Food or food group Mediterranean Diet Score (MDS) [23], Mediterranean Diet Serving Score (MDSS) [24], and Healthy Food Index (HFI) [25]

Foods and nutrients Diet Quality Index (DQI) [26], Healthy Eating Index (HEI) [11] and Dietary Approaches to Stop Hypertension (DASH) [27]

Based on populations
[12]

Chinese Healthy Eating Index (CHEI) [28], Modified Food-Based Diet Quality Score for Japanese [29], Minimum Dietary Diver-
sity for Women (MDD-W) [30], Mediterranean Diet Index for pregnant women (MDS-P) [31], Healthy Dietary Habits Score for
Adolescents (HDHS-A) [32], Infant and Young Child Feeding Index (IYCFI) [33], and the Bone Mineral Density (BMD) diet
score [34]
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multidimensional, the comprehensive dietary scores

do not provide specific information on multiple foods,

often leading to an unclear interpretation of inter-

mediate scores. Individuals with a middle-range score

likely have different nutritional compositions and diet-

ary patterns [2, 9].

Commonly available software and packages

No special program or package is required. Mainstream

statistical analysis software, such as SAS, R, and STATA,

are available.

Data-driven methods
In nutritional epidemiological studies, data-driven

methods refer to the dietary intake patterns derived from

population data through data dimensionality reduction

techniques. These methods use the existing data col-

lected from food frequency questionnaires, 24-h recall

questionnaires, or dietary records to obtain dietary pat-

terns instead of defined dietary guidelines [2, 3, 50].

Principal component analysis (PCA) and exploratory

factor analysis (EFA)

PCA and EFA are the most commonly used methods in

research on dietary patterns and, since they are based on

similar mathematical concepts, they are discussed to-

gether in this section [3]. The PCA replaces a set of pos-

sibly correlating food groups with a new set of

comprehensive indexes (principal components) that are

uncorrelated and retain as much of the foods’ variance

as possible. When deriving dietary patterns, it is com-

mon practice to pre-group food items before calculating

principal components through the optimal weighted lin-

ear combination of food groups based on their correl-

ation. Among all principal components, only a few that

explain the most variation are retained for subsequent

analysis. However, when the relationship between dietary

patterns and demographic characteristics (e.g., age, in-

come) is the focus, a posteriori exploratory analysis

called Focused Principal Component Analysis (FPCA)

can be applied [51]. The dietary patterns derived by

FPCA are based on socioeconomic variables of interest

and presented as concentric circles, where the center of

the circle is a variable of interest. The distribution of dif-

ferent food group variables in the circle represents posi-

tive or negative correlations with the socioeconomic

variable of interest in different colors or patterns. The

smaller the radius, the stronger the correlation. The

FPCA visualizes not only the relationship between the

diet and a variable of interest but also the correlation be-

tween different food groups [51]. Like PCA, EFA reduces

the dimensionality of food groups to a few factors with

minimal loss of information. It decomposes each food

group into common factors and a special factor:

common factors are shared by all food groups, and spe-

cial factors are unique to each food group. Each com-

mon factor represents a dietary pattern.

When determining the number of principal compo-

nents or factors to be retained, the three selection cri-

teria that are typically used include 1) retaining factors

with an eigenvalue greater than one, 2) the scree plot,

and 3) the interpretable variance percentage [8]. The

correlation coefficients between the principal component

and the food groups are called factor loadings, and they

reflect the importance of the food groups. The greater

the absolute value of the factor loadings, the stronger is

the correlation between the corresponding food groups

and the principal components or factors. Therefore, the

principal components or factors are named primarily

based on the food groups retained by the selection cri-

teria applied to the factor loadings. Owing to the similar-

ity between PCA and EFA [10], only PCA is shown in

Fig. 1.

Unlike EFA, confirmatory factor analysis (CFA) is sel-

dom used in nutritional epidemiology [52]. However,

CFA can impose statistical tests on the factor structure

and factor loadings of food groups and determine the

number of factors and food groups contributing signifi-

cantly to those factors [2, 8]. In the past, CFA was ap-

plied as a second step to verify the goodness of fit and

reproducibility of the factor structure of dietary patterns

after PCA or EFA in the first step [9, 53, 54]. However,

it remains uncertain whether the results are better than

those obtained only with EFA [54]. Therefore, several

studies have used CFA as a one-step approach to replace

PCA or EFA [52, 55]. The advantage of CFA is that a la-

tent variable model can be specified and tested, and add-

itional priori knowledge can also be incorporated into

the model [55].

Advantages

These methods describe the population’s variation in

dietary intake and evaluate the overall quality of the diet.

The resulting unrelated patterns capture the different

dietary traits in the population and can be used directly

as covariates to construct statistical models with health

outcomes. Thus, they are more interpretable and mean-

ingful than traditional methods that use a single nutrient

or food. Moreover, some studies have found that several

major dietary patterns derived by these methods show

some reproducibility in different populations [56–59].

Disadvantages

These methods have subjectivity in selecting food

groups, determining the number of principal compo-

nents or factors, selecting which foods have large factor

loadings, and the patterns’ nomenclature. In classic PCA

and EFA, each principal component or factor is a linear
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combination of all the food groups, which creates inter-

pretive difficulties. The extracted dietary pattern can

only explain part of the total variance of the food

groups; therefore, it only represents the optimal model

related to the explainable variance. Although other pat-

terns may provide important information, they may not

be retained by the selection criteria, and thus this im-

portant information is ignored [60]. In response to the

question, “Which dietary patterns have the most predict-

ive capability of a disease?” both PCA and EFA are un-

able to give an accurate answer. Additionally, FPCA can

only determine the correlation between one lifestyle and

dietary patterns, but dietary patterns may have strong in-

teractions with many lifestyle characteristics simultan-

eously, and it is difficult to separate dietary pattern

effects from other lifestyle effects [61, 62].

Commonly available software and packages

The “proc princomp” and “proc factor” commands in

SAS. The “survival” and “psych” packages in R. The

“pca” and “factor” commands in STATA. SPSS.

Clustering methods

In PCA and EFA, the food items collected are pre-

grouped to the extent that they are correlated with one

another, and each person receives a score for each diet-

ary pattern. Therefore, these methods can help us

understand which foods are eaten simultaneously among

the population and the relationships between dietary

patterns and health outcomes. Both PCA and EFA are

considered methods for “clustering” the food groups

[10]. However, clustering methods can classify individ-

uals into different groups based on their characteristics

[63]. The dietary differences of individuals among differ-

ent groups can be compared, and the characteristics of

dietary patterns can be described by calculating the

average intake level of different food groups within each

group. Groups can also be compared with a specified

control group to explore the risk of disease outcomes in

different groups. In the study of dietary patterns, the

clustering methods are summarized in the following two

categories.

Traditional cluster analysis (TCA)

In nutrition research, TCA is based on the use of indi-

vidual dietary characteristics to separate people into mu-

tually exclusive clusters. One cluster represents a dietary

pattern, with the individuals only belonging to one clus-

ter [10], which is also called “hard” clustering. Before

clustering, all the selected dietary variables (nutrients,

food, or both) must be standardized to prevent variables

with large variances from disproportionately affecting

the clustering results [8]. The analyst needs to select the

measure of similarity in individual dietary intakes, such

as the Euclidean distance, Mahalanobis distance, and

similarity coefficient, of individual dietary intakes. Clus-

tering algorithms are then used to place similar individ-

uals into the same category, and dissimilar individuals

are dispersed as far as possible [10]. There are many

clustering algorithms in TCA; three are commonly ap-

plied in dietary pattern analysis: k-means clustering,

Ward’s minimum-variance method, and flexible-beta

clustering [2, 64]. Figure 2 shows the main principles of

TCA using k-means clustering as an example for com-

parison with FMM.

The k-means clustering algorithm is the most com-

monly used algorithm [65]. It has the advantages of low

computation complexity, fast calculation speeds, and

suitability for large samples. However, the k value often

needs to be pre-specified by the researcher. Ward’s

minimum-variance method is a hierarchical clustering

algorithm, and all of the calculations required for the

Fig. 1 The principal component analysis with D food group variables. Each PC is a linear combination of D food groups and corresponds to a

dietary pattern
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clustering process occur at once [10]. Even if the num-

ber of clusters changes, recalculation is not required.

However, the calculation is complex and slow, making

this method unsuitable for large samples [66]. The

flexible-beta clustering algorithm is an agglomerative

hierarchical clustering algorithm with a specified param-

eter and robust results [64, 67]. This algorithm intro-

duces a new parameter β in the distance formula, for

which the selected values are usually − 0.25 and − 0.50

[67]. However, there are only a few examples applying

this method to the analysis of dietary patterns.

There is no singular method for identifying the num-

ber of clusters or an appropriate clustering algorithm

[68, 69]. One approach is to combine several methods,

that is, based on factor analysis, the appropriate k value

and a reasonable initial cluster center are identified by

hierarchical clustering to minimize the influence of sub-

jective judgment on the clustering results [68, 70]. The

other approach is the optimal clustering method, in

which several different k values are tried, and quantita-

tive indicators for these k values are compared to select

the optimal value of k [8, 71]. The selection of the clus-

tering algorithm mainly depends on the stability of the

clusters and their reproducibility, which are often evalu-

ated by the split-half cross-validation method or classi-

fier [64, 72]. The most appropriate clustering algorithm

is the one with the highest reproducibility and stability.

Advantages Distinct subgroups of individuals can be

identified according to their dietary characteristics, and

everyone belongs only to one specific dietary pattern

group. Thus, the relationship between dietary pattern

subgroups and health outcomes or other characteristics

can be examined, and the subgroup at nutritional risk

can also be identified. The results are also highly intui-

tive, and a dendrogram can be drawn to show the clus-

tering process and results visually.

Disadvantages There are, however, a few drawbacks:

first, each individual is assigned a cluster with a prob-

ability of 1 or 0, without considering the uncertainty of

individual classification [73]. Second, the researcher is

required to make several subjective decisions, such as

the selection of the food groupings, clustering algorithms

to determine the similarity of individuals, initial values,

and the number of clusters. Although some relatively

objective methods for selecting clustering algorithms

and the number of clusters exist, the reproducibility of

results cannot ensure their validity [64]. Third, there is

no convenient method for comparing different clustering

criteria [74]. Finally, the use of a control group and the

unequal sample size of different clusters will limit the

power of the statistical analysis [75].

Commonly available software and packages The “proc

cluster” command in SAS. The “psych” packages in R.

The “cluster”, “clustermat” and “cluster kmeans” com-

mands in STATA. SPSS.

The finite mixture model (FMM)

The FMM is a clustering method based on a latent vari-

able model [73, 76]. It measures classification uncer-

tainty by calculating a posterior probability of different

clusters based on given data; it is also called “soft” clus-

tering [73, 74]. The FMM assumes that the observed

dietary data will be decomposed into a mixture distribu-

tion representing a finite sum of different food con-

sumption probability distributions. Each distribution

represents an unobserved cluster corresponding to a

dietary pattern [73]. Through FMM, each individual’s

posterior probability is calculated for each cluster; the

individual is then assigned to the cluster with the highest

posterior probability (Fig. 3). The posterior probability

can measure the uncertainty of assigning individuals to

different clusters. The process is similar to a k-means al-

gorithm, but the probability of each individual assigned

to each cluster is used for classification.

Because FMM has many parameters, large samples are

required. Thus, a restricted mixture model is proposed

that reduces the number of parameters and is suitable

for small- to moderately-sized samples [77]. The FMM

method can also be used to classify the population ac-

cording to the factor scores from factor analysis, also

Fig. 2 The k-means clustering with n individuals and g clusters. The individuals with similar dietary characteristics are assigned to one cluster
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called a two-step classification, combining the advan-

tages of both [76]..

Advantages The choice of k values or models can be

transformed into a statistical model selection problem.

The final model is then identified according to the max-

imum Bayes Information Standard after the FMM is fit-

ted by setting different k values or imposing different

restrictions on covariance matrixes [78]. The FMM is

more flexible than TCA as it can account for the within-

class correlation between variables [63], allow the vari-

ances of food consumption frequencies to vary within

and between clusters, and enable covariate adjustment

for food intake (e.g., energy intake and age) simultan-

eously with the fitting process [74, 77].

Disadvantages The observed data may violate the distri-

bution hypothesis, especially when there are many zero

values so that the flexibility of the FMM cannot be fully

realized. Although there are some common methods for

dealing with zero values, the need to deal with zero

values increases the model’s complexity, as does the high

number of parameters to be estimated [63]. Its algorithm

for estimating parameters still has flaws such as sensitiv-

ity to the initial value, convergence to local extremum,

and slow convergence speed.

Commonly available software and packages The “flex-

mix” and “mclust” packages in R. The “proc fmm” and

“proc lca” commands in SAS. The “fmm” and “gllamm”

commands in STAT A. Latent GOLD. Mplus.

The Treelet transform (TT)

Both PCA and FA are the most popular methods for

identifying dietary patterns, but their qualitative inter-

pretation is difficult and requires subjective judgment

[79]. Additionally, cluster analysis fails to give numeric

summary variables like factors or components. To

overcome these limitations, the TT was developed to

simplify the explanation of the factors while at the same

time combining the advantages of PCA and the hier-

archical clustering algorithm [79, 80].

Like PCA, TT produces a set of factors based on

the food groups’ covariance or correlation matrix and

introduces the sparsity hypothesis into the factor

loadings. Consequently, only a few of the factor load-

ings of the food variable are non-zero, and others are

all zero [79, 80], simplifying the explanation of fac-

tors. In nutrition epidemiology, the sparsity hypoth-

esis holds if some foods are consumed independently

of the foods included in the dietary patterns, or there

is no variation in the population [81]. In the first

layer of the cluster tree, the method identifies the

two variables with the highest correlation among all

the food groups and performs a PCA to produce two

factors. The first factor is called the sum variable

representing the weighted average of the largest vari-

ance, and the second factor is called the difference

variable representing the orthogonal residual factor.

Only the sum variable is retained in the cluster tree

to repeat the algorithm above until each food variable

is included in the cluster tree (Fig. 4).

After the cluster tree is built, it is “cut” at a given

level to produce a high variance factor describing the

relevant food groups. Unlike PCA, TT requires a re-

searcher to cut the cluster tree at a given level and

then extract the factors based on the factor variance

at that level. After the retained number of factor k is

determined, the optimal cut level is identified by 10

cross-validations [79, 80]. When the cutting level in-

creases, the optimal cutting level corresponds to the

inflection point when the cross-validation score (i.e.,

the mean of the k-factor variance sum) is no longer

increased [79, 80]. Additionally, the TT analysis is re-

peated at ±3 levels of optimal cut levels to evaluate

the sensitivity of different cut levels [80].

Fig. 3 The finite mixture model with n individuals and g clusters. Each individual is only assigned to the cluster with the highest probability
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Advantages

Like PCA, the TT produces a set of factors, but each fac-

tor involves only a small percentage of food groups that

simplify dietary patterns. When sample sizes are small,

and the data are sparse with unknown groupings of cor-

related or collinear variables, TT is remarkably suitable

for dimension reduction and feature selection before re-

gression and classification [80]. Moreover, TT visualizes

the results by constructing a hierarchical clustering tree

for all variables, making the final results easily

interpretable.

Disadvantages

Choosing the cutting level of the cluster tree before

extracting factors requires subjective judgment. When

the cutting level is close to the root, more variables are

contained in the factors, and the difficulty of interpret-

ation also increases. As the cutting level gradually moves

away from the root, the factor loadings become sparse,

and the factors become easily interpretable; however, the

diet’s complexity cannot be reflected by some food

groups [82]. If food groups are all associated in a mean-

ingful way, or the correlation of some foods is too

strong, then the sparsity hypothesis may not hold [81].

Additionally, it remains debatable whether TT is super-

ior to other methods in exploring the relationship be-

tween diet and health outcomes [79, 83].

Commonly available software and packages

The “treelet” package in R. The “tt” commands in STATA.

Hybrid methods

Investigator-driven methods are hypothesis-oriented ap-

proaches, which neither reflect the overall dietary pat-

terns nor consider the relevant relational structure of

nutrients. In addition, data-driven methods do not con-

sider any priori professional knowledge on health out-

comes; therefore, both methods are nonoptimal for

identifying which dietary patterns can best predict dis-

ease risk [84]. Hybrid methods combine these two clas-

ses of methods to identify dietary patterns.

Reduced rank regression (RRR)

The RRR method considers both the disease-relevant

variation in dietary intake and available dietary data in

deriving dietary patterns [85, 86]. Specifically, RRR se-

lects a set of disease-related variables, known as inter-

mediate response variables, based on priori knowledge,

then derives dietary patterns based on the existing diet-

ary data [85]. Its mathematical foundation and method

of deriving dietary patterns are similar to those of PCA.

However, unlike PCA, which explains as much variance

in food groups as possible, RRR identifies linear combi-

nations of food groups that can explain the maximum

variance in intermediate response variables (Fig. 5). Both

RRR and PCA produce components, which are based on

the number of food variables and response variables, re-

spectively. Therefore, RRR can be considered a PCA of

intermediate response variables. The key to RRR is the

choice of intermediate response variables, which should

be related to both the disease of interest and the diet.

The commonly used response variables include

Fig. 4 A cluster tree produced by the treelet transform with five food group variables. As the dashed line goes up, the cutting level moves away

from the root, so the factor loadings become more sparse
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nutrients, biomarkers, contaminants, and intermediate

phenotypes, or a combination of several kinds of them,

in which nutrients and biomarkers are the most widely

used [84].

A method similar to RRR is partial least squares (PLS),

a regression model of multiple predictor variables on

multiple response variables [85]. The PLS method uses

the covariance matrix of multiple intermediate response

variables and multiple food groups to produce the fac-

tors; it is regarded as a compromise between PCA and

RRR [85, 87, 88]. It not only contains information about

intermediate response variables but also enables the dis-

covery of important disease-related dietary intake, in

which some nutrients may not be included in the inter-

mediate response variables [87].

Advantages

RRR uses both priori information for defining appropri-

ate intermediate response variables and the existing data.

Thus, it combines the respective characteristics of inves-

tigator- and data-driven methods. This method includes

the pathophysiological pathway linking dietary patterns

with the disease [89]; therefore, the correlation between

dietary patterns and disease outcomes may be more ro-

bust in RRR than in other methods, and the importance

of dietary patterns in the etiology of diseases can be bet-

ter studied [9]. The effect of dietary patterns on disease

risk can be described and explained by changes in bio-

logically important intermediate variables [8]. The rela-

tionship between dietary patterns and diseases of

interest can be reproduced across studies [50, 84].

Disadvantages

The underlying disease development mechanisms need

to be identified, as they are the effective intermediate re-

sponse variables. If the information for disease develop-

ment is absent, then RRR cannot be used [9, 90].

Additionally, there is no best way to choose the most ap-

propriate intermediate response variables, and the com-

monly used method is based on priori information [8].

For many chronic diseases, complex interactions in

metabolic pathways can link dietary intake to disease,

but it is unclear whether the biomarkers of one meta-

bolic pathway used in RRR are more effective than other

potential metabolic pathways. Additionally, relying solely

on the information of selected intermediate response

variables to derive dietary patterns may lead to the omis-

sion of those dietary patterns related to nutrients in the

disease’s biological pathways but are not included in the

intermediate response variables [91].

Commonly available software and packages

The “proc pls” commands in SAS. The “rrr” and “rrpack”

packages in R. The “rrr” commands in STATA.

Fig. 5 The reduced rank regression with D food group variables and g intermediate response variables (M). Each PC corresponding to a dietary

pattern is a linear combination of D food groups which explaining as much variance (Vmax) in M as possible. D is larger than g
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Data mining (DM)

DM can extract hidden information from large data-

bases, allowing researchers to focus on the most import-

ant information in the data [92]. This method uses

various data analysis tools to derive dietary patterns and

help researchers make decisions [93, 94]. As one of the

most important classification tools in DM, decision tree

induction can be regarded as a clustering algorithm that

makes full use of interesting health outcome. There have

only been a few studies using this method in nutritional

epidemiology until now [9, 94–96].

Decision tree induction is also known as a classifica-

tion and regression tree [9]. The main idea is to build a

decision tree through a set of known training data and

then use the established decision tree to predict new

data sets. Establishing a decision tree can be regarded as

the process of generating data rules, and the most classic

algorithm is C4.5 [97]. This algorithm first pre-processes

the selected food group variables by discretizing vari-

ables (e.g., expressing them as the frequency of food

consumption). The classification result of interest is the

health outcome. Then a “best” food group is selected as

the root node of the decision tree and split according to

its value to produce different subsets (“best” means that

as far as possible, all individuals in the subset have the

same outcome after splitting the data). The above proce-

dures are then repeated on the subsets until the out-

come of all individuals in each subset is the same. Each

subset is called a leaf node, which constitutes the final

decision tree (Fig. 6). A classification rule is a path from

the root node to a leaf node associated with health

outcomes. In the dietary study, the C4.5 algorithm needs

to be run for all the combinations of different numbers

of food groups to produce hundreds of classification

rules. Repetitive and meaningless rules are deleted. The

reserved rules correspond to dietary patterns. The inten-

sity and direction of a food group’s association with dis-

eases can be identified by comparing rules for which the

only difference is the food group. Additionally, some

other DM methods, such as random forest, artificial

neural networks, and Naïve Bayes Classifiers, have also

been used to analyze the relationship between dietary

patterns and diseases [94, 95, 98], but they are all be-

longs to clustering algorithms and less common in nutri-

tional epidemiology, so they are not introduced in more

detail.

Advantages

When there is obvious heterogeneity in the dietary be-

havior of a population, DM can be used to reveal such

heterogeneity and develop personalized preventive mea-

sures; the extent to which dietary components or pat-

terns affect the course of the disease can also be

identified [93]. It is also particularly useful in identifying

disease risk based on a combination of known food

groups and other non-dietary confounders [9]. Lastly,

decision tree analysis can generate new hypotheses with-

out priori assumptions or potential risk factors [99].

Disadvantages

If many classification rules are generated in the DM

process, the selection of meaningful rules will require

Fig. 6 The decision tree generated by the C4.5 algorithm
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considerable professional knowledge. Rules containing

many variables can be long and complex even if they

are meaningful, making it difficult to translate them

into simple health information. Additionally, one key

variable can dominate the model; therefore, misclassi-

fication is more likely to occur with DM than with

other methods [94].

Commonly available software and packages

The “proc split” and “proc hpsplit” commands in SAS

and SAS/EM module. The “RWeka” and “rpart” pack-

ages in R. The “chaid” and “crtrees” commands in STAT

A. WEKA. SPSS.

Least absolute shrinkage and selection operator (LASSO)

The LASSO model is a regression-based method that

penalizes the regression coefficients’ absolute value so

that the coefficients in the overall regression are shrunk

[100]. Under the constraint that the sum of the absolute

values of the regression coefficients is less than a con-

stant, the sum of the squares of the residuals is

minimized to obtain a sparse model in which some re-

gression coefficients are shrunk to 0 [100]. Lasso’s com-

plexity is controlled by the model tuning parameter λ;

the greater the λ, the greater is the penalization of the

model, resulting in a model with fewer variables. The

LASSO model is hence a form of automatic feature se-

lection. While identifying the dietary patterns, LASSO is

directly applied to the defined food groups to predict

health outcome [101]. Different λ results in different

numbers of food groups with a non-zero coefficient se-

lected into the model (Fig. 7). Cross-validation is used to

select λ, which forces some coefficients of the food

groups to zero and, hence, selecting food groups with

non-zero coefficients [101]. The λ parameter is deter-

mined by the rule of minimum mean cross-validation

error or one standard error. The selected food groups

are then regarded as the dietary pattern.

Advantages

LASSO considers the outcome variable when deriving

dietary patterns, thus achieving higher prediction

Fig. 7 The least absolute shrinkage and selection operator. The number of points at which the dashed line intersects the curve represents the

number of nonzero coefficients D. The smaller λ, the larger D
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accuracy. As a shrinkage method, the LASSO model se-

lects for a subset of food groups to predict outcome that

result in a more interpretable and relevant set of food

groups.

Disadvantages

LASSO is still less applied in dietary pattern analysis, so

its validity and reproducibility need to be confirmed in

future studies. In addition, whether LASSO is superior

to other dietary pattern methods in exploring the rela-

tionship between diet and health outcomes is yet to be

verified.

Commonly available software and packages

The “glmnet” package in R. The “lassopack” commands

in STATA.

Compositional data analysis (CODA)

Usually, changes in one dietary component are accom-

panied by compensatory changes in others if the total

energy intake is kept constant [5]. Therefore, dietary

data can be regarded as compositional, that is, the data

can also be referred to as compositional data [102, 103].

Compositional data can be used in analyzing the relative

importance of food consumption and have great poten-

tial in dietary pattern analysis [5].

In the case of compositional data, x is a positive vector

of D parts (x = [x1, x2,…xD]) and usually is a closed-form

expression (proportions or percentages). Every compos-

ition xi represents relative information that describes the

parts of the whole. The mathematical difficulties inher-

ent in compositional data have hampered their wider

use [104]. Therefore, a method called compositional data

analysis (CODA) [104] has been proposed; the method

uses log-ratio coordinates to transform compositional

data into a form that can be analyzed using standard

multivariate statistical analysis. Owing to the composi-

tions’ proportional nature, the only valid function of

compositional data is composed of the ratio of different

parts [102, 104]. There are three widely used transform-

ation methods for log-ratio coordinates: additive log-

ratio (alr), centered log-ratio (clr), and isometric log-

ratio (ilr) transformations. In alr, each of the first D-1

parts is divided by the final part, but the transformation

is not orthogonal; therefore, the rationality of statistical

analysis cannot be guaranteed. The clr method can solve

this limitation by dividing each part by the geometric

mean of the D parts [105]; however, the sum of those clr

variables is zero, meaning that perfect collinearity exists

[106], which can be solved by the ilr transformation

[107]. The ilr transformation preserves the original

mathematical properties and geometric features; there-

fore, the rationality of directly applying the classic statis-

tical method is ensured. Compositional data analysis has

been applied in health research only recently, and there

is less research on the relationship between dietary pat-

terns and health [5]. There are three approaches to

building the ilr transformational variables for dietary

pattern analysis: compositional principal component co-

ordinates, balance coordinates, and principal balances

(PBs).

Compositional principal component coordinates

Due to the constant sum and possible nonlinearity in

compositional data, directly applying the traditional PCA

will likely result in many problems [5]. Thus, Aitchison

extended standard PCA to compositional data [105].

The main idea is that the standard PCA is applied to the

clr transformed covariance matrix to extract the princi-

pal components called PC coordinates. It can be proved

that PC coordinates satisfy all the ilr transformation con-

ditions and are equivalent to ilr coordinates. The first

few PC coordinates explaining the most variance in diet-

ary intake can be used for studying the relationship be-

tween dietary patterns and health outcomes.

Balance coordinates

The use of PC coordinates can be regarded as a data-

driven ilr transformation, but it can also be a priori-

driven based on the researcher’s questions or interests.

In epidemiology, a priori-driven ilr transformation is cal-

culated mainly by easily explainable balance coordinates

[103, 108] representing the relationship between differ-

ent groups of parts. To build balance coordinates, se-

quential binary partition (SBP) is used to divide the

complete composition of D parts into two groups of

parts successively in a hierarchical manner: one part for

the numerator and the other for the denominator. Simi-

larly, each of the two groups is again split into two new

groups to create the new balance coordinate and so on

until step D-1, when only a single part is left in each

group. Then, D-1 different ilr balance coordinates are

produced [108]. Each set of balance coordinates corre-

sponds to a dietary pattern. Positive coordinates indicate

that the numerator has a relatively high weight, and

negative coordinates indicate that the denominator has a

higher weight.

To enhance the interpretation of the analysis, SBP can

be constructed based on the purpose of the study [102,

109]. For example, if the research aims to extract dietary

patterns, ilr balance coordinates can be constructed ac-

cording to natural or artificial clustering of different

foods or nutrients in groups. Thus, balance coordinates

are not data-driven and mainly focus on the research

questions, unlike hierarchical clustering analysis. Since

the total variance of the complete composition is

decomposed into D-1 parts and the balance coordinates

are independent of each other, all D-1 balance
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coordinates must be included as explanatory variables in

the model simultaneously [5]. Balance coordinates can

be visualized through a tree diagram, called the CoDa-

dendrogram or the balance dendrogram, which is also a

tool for describing the whole process of SBP [5, 110].

Principal balances

Principal balances are data-driven balance coordinates

that can not only concentrate a large proportion of

the total variance in a few coordinates but are also

convenient for comparing groups of parts in the nu-

merator and the denominator [109]. The first PB is

the balance coordinate that maximizes the explained

variance. The kth PB maximizes the remaining vari-

ance and is orthogonal to the previous k-1 PBs. All

the PBs or the PBs with the highest variance can be

used for subsequent analysis. In the CoDa-

dendrogram, PBs are ordered by the variance of the

balance, which are different from balance coordinates

ordered by the sequence of the partitions [109]. A

CoDa-dendrogram of PBs is shown in Fig. 8.

The optimal algorithm of PBs is an exhaustive

search of all possible SBPs [109]. If data are highly di-

mensional, the computer space and time required will

be large and long, respectively, so that using PBs on a

personal computer becomes difficult. At present, sub-

optimal but faster algorithms have been proposed to

search for PBs, such as the new constrained PCs algo-

rithm and Ward’s cluster method; the proposed

methods produce PBs whose variances are slightly

lower than those obtained by optimization algorithms

and are more applicable for high-dimensional com-

positional data [109].

Advantages

These three coordinates—compositional principal

component coordinates, balance coordinates, and

PBs—can extract compositional information in dietary

patterns for further direct application of classic multi-

variate statistical methods. The results emphasize that

any dietary pattern is a balance between different in-

takes of food. When the relationship between dietary

patterns and health outcomes is studied, the results

can be interpreted as the effects of increasing the in-

take of some foods and reducing the intake of other

foods proportionally on health outcomes. Therefore,

considering food intake as compositional data is more

consistent with the intuitive concept of dietary pat-

terns and the practice of dietary recommendations.

The first few PC coordinates and PBs can explain a

Fig. 8 CoDa-dendrogram of PBs with six food group variables. Each PB corresponds to a dietary pattern. The closer the contact point is to a food,

the more of that food is relatively more abundant
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large proportion of dietary intake variation. Addition-

ally, balance coordinates and PBs are more easily ex-

plainable than PC coordinates, and they can be

depicted as a CoDa-dendrogram.

Disadvantages

Like PCA, each PC coordinate contains all the food

groups, which complicates the explanation of the results,

and factor loadings need to be recalculated for each ap-

plication to different data sets [5, 105]. The balance co-

ordinates are an investigator-driven method requiring

sufficient priori knowledge to provide SBP, meaning that

the subjectivity of SBP is inevitable. Especially when D is

large enough, the selection of SBP will become difficult,

or there will be more than one SBP. Additionally, most

of the total variation cannot be explained by a few bal-

ance coordinates [5]. Finally, for a large number of zero

values in the compositional data, especially absolute zero

values, no method works well [111].

Commonly available software and packages

The “coda.base,” “compositions,” “robCompositions,”

and “zCompositions” packages in R. Stand-alone pro-

grams such as “SparCC” and “CoDaPack.”

Conclusion

With the development of nutritional epidemiology over

the past decades, there is extensive research on dietary

patterns describing the features of dietary behavior or

habits and explaining the relationship between diet and

diseases [2]. Moreover, there is growing evidence that

food-based dietary patterns are a better way of reducing

cardiovascular disease, diabetes, and obesity than single

dietary components, total fat, and calories [112]. Previ-

ous reviews have already introduced several classic

methods of deriving dietary patterns, mainly focusing on

dietary quality scores, PCA, FA, TCA, and RRR. How-

ever, other methods of identifying dietary patterns are

rarely or never reviewed [2, 3, 7, 9, 10]. This paper pro-

vides an updated overview of the methodological aspects

of various methods and briefly introduces their under-

lying concepts, advantages and disadvantages, and the

software available for their implementation. These

methods describe and explain potential complex eating

behaviors from different perspectives. They aid re-

searchers in studying the relationship between diet and

diseases more comprehensively.

Dietary quality scores mainly aim to evaluate the qual-

ity of the overall diet and test the validity of dietary

guidelines or recommendations [9, 13]. While MDS,

HEI, AHEI, and DASH are especially recommended to

predict disease risk, only the Mediterranean diet has

been proven to reduce disease risk in both observational

studies and randomized controlled trials [6, 41]. Data-

driven methods are especially important for identifying

the priorities of nutritional interventions and exploring

the health effects of different dietary habits [9]. However,

they are often criticized for not considering priori know-

ledge about diseases, so they are preferred methods for

performing an explorative analysis [87]. Both PCA and

FA capture the interrelation between dietary compo-

nents by creating principal components or factors, but

they are not easy to explain. The TT can be regarded as

a complementary method to PCA because it produces

similar scores, which are easily interpretable as the pat-

terns have no contributions from some foods or food

groups. Nevertheless, the assumption of such scenarios

is often hard to verify, and sometimes the relationship

between TT-derived dietary patterns and the disease is

different from that of previous results [83], probably be-

cause not all foods are included in the score calculation,

and the patterns fail to reflect the real complexity of diet

intake. The main advantage of TCA is that it assigns

each individual a specific dietary pattern subgroup,

which is difficult for PCA, FA, and TT; thus, individual-

ized dietary advice can be provided.

Another clustering method is FMM, which can cal-

culate the probability of each individual assigned to

each category, and the covariate adjustment is consid-

ered in the fitting process. However, it is still not as

widely used as TCA, probably because of the require-

ments for distribution, the model’s complexity, and

the need for more statistical expertise. Furthermore,

FMM does not consistently give much better cluster-

ing results than the k-means algorithm at the cost of

increasing model complexity [63]. None of these data-

driven methods consider the health outcome when

deriving dietary patterns and they are data- and

population-specific; therefore, the results do not ad-

equately explain the relationship between diet and

diseases and have limited reproducibility.

The RRR method makes full use of a priori knowledge

of biological relations to identify the dietary patterns

with significant influence in the etiology of disease [85,

113] and is particularly useful in deriving dietary pat-

terns related to given diseases and is reproducible across

populations [50]. However, its application is limited to

only diseases with adequate priori knowledge of inter-

mediate response variables. Unlike RRR, the DM and

LASSO methods use only one outcome variable at a

time to identify dietary patterns. However, DM divides

individuals into distinct subgroups similar to clustering

algorithms to predict outcomes. It can identify which

subgroups are at risk of the disease and explore new pat-

terns of various diet and non-diet combinations. The

LASSO model uses food groups to predict outcomes dir-

ectly instead of constructing new underlying variables or

dividing individuals into mutually exclusive subgroups.
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It performs prediction and variable selection simultan-

eously to build a sparse model.

Dietary intake data can also be regarded as compos-

itional data with varying total diet intake among indi-

viduals [5, 114, 115]. Additionally, metabolic

dysfunction can be caused not only by a lack of nutri-

ents but often by an imbalance between nutrients [114].

Although compositional data are not a new concept,

they have only recently been applied to nutritional epi-

demiology [5, 102, 103, 114]. In addition to being ap-

plied for dietary patterns, the CODA methods can also

separate the specific effects of macronutrients from the

generic effects of total calorie intake simultaneously

[103]. Several new algorithms applying clustering

methods (e.g., FMM and k-means clustering) or hybrid

methods (e.g., RRR) to compositional data and compos-

itional substitution models which will be possible to in-

vestigate specific food substitution have been proposed.

However, they have not yet been applied in dietary pat-

tern analysis [116–118].

Classical methods are useful in nutritional epidemi-

ology, but we should not limit ourselves to them since

emerging methods can provide improved results and

new ideas to overcome the shortcomings and inapplic-

able problems of the classic methods under suitable sce-

narios. Therefore, emerging methods deserve more

attention. Among them, CODA methods especially seem

to hold great potential and promise for deriving dietary

patterns and studying the relationship between diet in-

take and health outcomes differently. However, future

research is needed to evaluate these emerging methods’

performance in terms of reproducibility, validity, and

predicting different outcomes.

In summary, all methods of deriving dietary patterns

can be used to answer different research questions.

Hence, when conducting dietary pattern analysis, the

first step is determining the problems to be solved and

then selecting the appropriate method. If it is unclear

which method is most suitable, combining multiple

methods in the same study to produce complementary

results and explanations is a good choice. However,

there are many other problems that these methods can-

not solve well, such as measurement errors (including

large proportions of zeros), the interactions between

dietary patterns and other non-dietary confounders, and

the predictive effect of changes in dietary patterns on

disease over time.

Some efforts have been made to address these prob-

lems. For example, some measurement error correction

methods and new biomarkers of food intake have been

developed for the measurement error [119, 120]; EPCA,

DM, and LASSO can be used to explore the correlations

between different diet and any other non-dietary con-

founders [51, 93]; and repeated measures of food intake

in cohort studies can assess the changes in dietary pat-

terns and provide stronger causality between food intake

and disease [6, 41]. Additionally, we may also need to

learn methods from other disciplines, including substitu-

tion models in behavioral epidemiology, pattern recogni-

tion methods in mathematics and computer science, and

decision-making and optimization methods in opera-

tions research [2, 117]. Although increasing attention

has been paid to dietary pattern research, it should be

noted that dietary pattern research is not meant to re-

place single-nutrient research; the two types of research

should coexist and complement each other.

We hope that this landscape review will help re-

searchers in this field to understand and apply various

methods effectively in practice and familiarize interested

researchers outside the field with these methods. We

also hope that methodological limitations will gain more

attention and be improved to simulate new study ideas

that may more accurately disclose the relationship be-

tween diet and health.
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