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Genome-wide association studies (GWASs) have identified and replicated many genetic

variants that are associated with diseases and disease-related complex traits. However,

the biological mechanisms underlying these identified associations remain largely elusive.

Exploring the biological mechanisms underlying these associations requires identifying

trait-relevant tissues and cell types, as genetic variants likely influence complex traits in

a tissue- and cell type-specific manner. Recently, several statistical methods have been

developed to integrate genomic data with GWASs for identifying trait-relevant tissues and

cell types. These methods often rely on different genomic information and use different

statistical models for trait-tissue relevance inference. Here, we present a comprehensive

technical review to summarize ten existing methods for trait-tissue relevance inference.

These methods make use of different genomic information that include functional

annotation information, expression quantitative trait loci information, genetically regulated

gene expression information, as well as gene co-expression network information. These

methods also use different statistical models that range from linear mixed models to

covariance network models. We hope that this review can serve as a useful reference

both for methodologists who develop methods and for applied analysts who apply these

methods for identifying trait relevant tissues and cell types.

Keywords: trait-tissue relevance, epigenetic information, transcriptomic information, genetically regulated gene

expression, gene co-expression network, eQTL information

INTRODUCTION

Over the last one and half decades, genome-wide association studies (GWASs) have successfully
identified and replicated many trait-relevant genetic variants in terms of single nucleotide
polymorphisms (SNPs). However, most of these identified genetic variants reside outside protein-
coding regions, making it challenging to understand the biological mechanism underlying these
identified associations (Welter et al., 2014). Characterizing the biological mechanism underlying
SNP associations is further complicated by the fact that the genetic effects of SNPs on complex
traits are likely acted through a tissue-specific fashion. For example, many psychiatric disorders,
such as bipolar disorder and schizophrenia, are consequences of dysfunctions of various genes,
pathways, and regulatory elements in neuronal and glia cells, resulting from brain-specific genetic
effects of polymorphisms (Lang et al., 2007; Uhlhaas and Singer, 2010; Fornito et al., 2015;
Grunze, 2015; Xiao et al., 2017). Therefore, characterizing the function of variants in various brain
tissues can help elucidate etiology of psychiatric disorders. However, for most complex traits, their
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trait-relevant tissues and cell types are often unknown or
uncertain. As a result, identifying trait-relevant tissues and
cell types and characterizing the functions of genetic variants
within the relevant tissues and cell types hold the key for
better understanding of disease etiology and the genetic basis of
phenotypic variation (Trynka et al., 2013, 2015; Kichaev et al.,
2014; Pickrell, 2014; Farh et al., 2015; Finucane et al., 2015; Li and
Kellis, 2016).

Many genomic studies have been carried out in parallel to
GWASs to characterize the genetic and epigenetic landscape of
the human genome. These genomic studies often collect samples
from multiple different tissues or cell types and characterize
genomic information in a tissue- or cell type-specific fashion.
For example, the ENCODE (The ENCODE Project Consortium,
2012) and Roadmap (Kundaje et al., 2015) collect various
epigenetic annotation measurements in the form of open
chromatin accessibility, DNase I hypersensitive sites (DHSs), and
histone modifications (e.g., H3K27me3 and H3K36me3) on 16
cell lines and 111 tissues. The epigenetic information measured
from these projects allows for a functional characterization of
the human genome. As another example, the GTEx project
collects gene expression and genotype measurements from
54 human tissues on nearly 1,000 individuals using whole-
genome sequencing, whole-exome sequencing, and bulk RNA
sequencing (RNA-seq) (GTEx Consortium, 2015). By paring
gene expression information with genotype information, GTEx
allows for the study of tissue-specific gene expression and its
genetic basis in the form of expression quantitative trait loci
(eQTLs) mapping. Similarly, the CommonMind project collects
gene expression, open chromatin accessibility and genotype
information in the dorsolateral prefrontal cortex from up to
452 patients with schizophrenia and bipolar disorder as well as
healthy controls (Fromer et al., 2016). Characterizing the cortex-
specific transcriptomic and epigenetic profile in CommonMind
can facilitate the investigation of the molecular mechanism
underlying neuropsychiatric diseases. In addition, various single
cell RNA-seq (scRNA-seq) studies are being performed to collect
cell type-specific gene expression measurements on tens of
thousands of cells from various tissues and organs (Bacher and
Kendziorski, 2016). Such cell type-specific expression profiles
can be used to understand how specific cell types may underlie
complex traits (Watanabe et al., 2019). Finally, existing bulk
and single cell gene expression studies also facilitate the
characterization of gene co-expression pattern in a tissue- or
cell type-specific fashion (GTEx Consortium, 2015; Bacher and
Kendziorski, 2016; Shang et al., 2020b). Tissue- or cell type-
specific gene co-expression provides invaluable information on
the tissue or cell type basis of disease etiology (Shang et al.,
2020b). Overall, various genomic studies have provided tissue- or
cell type-specific information for inferring trait-relevant tissues
and cell types.

With the increasing availability of different tissue- and cell
type-specific genomic datasets, many statistical methods have
been recently developed to integrate these genomic data with
GWASs for identifying trait-relevant tissues and cell types. These
various integrative methods differ in terms of the underlying
statistical model and the particular genomic information they

make use of. For example, the sLDSC (stratified LD score
regression) converts tissue-specific epigenetic measurements
into tissue-specific SNP functional annotations and estimates
to what extent different tissue-specific functional annotations
explain trait heritability (Finucane et al., 2015). The inferred
SNP heritability due to tissue-specific annotation is treated as
a quantitative measurement for trait-tissue relevance. sLDSC
is a special case of MQS (minimal norm quadratic unbiased
estimation for summary statistics) and effectively relies on
a method of moments (MoM) to estimate SNP heritability
based on linear mixed models (Zhou, 2017). While sLDSC and
MQS were initially proposed to examine one SNP annotation
at a time in the presence of multiple epigenetic annotations,
SMART (scalable multiple annotation integration for trait-
relevant tissue identification) (Hao et al., 2018) extends these
methods to simultaneously incorporate multiple tissue-specific
binary and/or continuous functional annotations to facilitate
consistent trait-tissue inference (Liang and Zeger, 1986; Chen
et al., 2004). SMART uses the generalized estimating equation
(GEE) algorithm on the same linear mixed model to achieve such
inference goal. Different from using epigenetic measurements,
the LDSC-SEG (sLDSC applied to specifically expressed genes)
uses tissue-specific transcriptomic annotations, allowing for
the inference of trait-tissue relevance with transcriptomic data
(Finucane et al., 2018). Similarly, RolyPoly (a regression-based
polygenic model) relies on a similar linear mixed model as
used in sLDSC/MQS/SMART and creates cell type-specific
annotations based on scRNA-seq data (Calderon et al., 2017). In
contrast, while using the tissue-specific bulk RNA-seq expression
information, the deTS method (method of decoding tissue
specificity) directly examines whether the tissue-specifically
expressed genes tend to be trait-associated genes using standard
enrichment analysis such as the Fisher’s exact test to serve
as evidence of trait-tissue relevance (Pei et al., 2019). Some
methods can make use of the expression quantitative trait loci
(eQTLs) information in detecting trait-relevant tissues and cell
types. For example, NTCS (normalized tissue causality score)
uses eQTLs to assess the genetic causality behind GWASs
(Ongen et al., 2017) and eQTLEnrich tests whether eQTLs
from a given tissue and/or cell type are significantly enriched
for trait associations (Gamazon et al., 2018). Alternatively,
other methods measure the trait-tissue relevance by evaluating
the proportion of phenotypic variance explained by genetically
regulated expression levels (GReX) in different tissues. For
example, IGREX (impact of genetically regulated expression)
(Cai et al., 2020) and RhoGE (Mancuso et al., 2017) obtain
the predicted GReX in tissues and use the association evidence
of tissue-specific GReX with the trait for inferring trait-
relevant tissues. Finally, CoCoNet (composite likelihood-based
covariance regression network model) (Shang et al., 2020b)
integrates GWAS data with tissue- or cell type-specific gene
co-expression patterns obtained from bulk or single cell gene
expression studies based on a network model. In particular,
CoCoNet expresses gene-level effect sizes for the given GWAS
trait as a function of the tissue-/cell type-specific adjacency
matrix and infers how a tissue is relevant to the given trait by
examining how effective the tissue-specific gene co-expression
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network is for predicting gene-level association pattern with
the trait.

Despite the abundance of integrative methods developed for
trait-tissue relevance inference, however, a comprehensive review
is currently lacking for summarizing the technical details and
benefits of each of the abovemethods. Previous reviews on tissue-
trait relevance inference often focus on a limited number of
methods that use only functional annotations (Cano-Gamez and
Trynka, 2020). To fill this critical knowledge gap, we provide a
systemic review on ten different integrative methods for trait-
tissue relevance inference. These methods are organized into four
main categories based on the tissue- or cell type-specific genomic
information they reply on. For each method in turn, we describe
the input genomic data types, the detailed statistical model and
computational algorithm, the output for evaluating trait-tissue
relevance, and the main results obtained in the original study. A
summary of these methods is provided in Table 1 and Figure 1,
with a brief schematic illustration of each type of methods
provided in Figure 2. We hope that this review can serve as a
useful reference for practitioners who are interested in identifying
the causal tissues/cell types of GWAS traits and understanding
the SNP association with complex traits in a tissue-specific
fashion, as well as formethodologists who develop computational
methods for quantifying trait-tissue relevance.

METHODS BASED ON TISSUE-SPECIFIC
SNP FUNCTIONAL ANNOTATIONS

Here, we describe the first category of methods for trait-tissue
relevance inference. The first category of methods makes use of
SNP functional annotations. Exemplary methods include sLDSC
(Finucane et al., 2015) and SMART (Hao et al., 2018) that make
use of epigenetic annotations; and LDSC-SEG (Finucane et al.,
2018), deTS (Pei et al., 2019), and RolyPoly (Calderon et al., 2017)
that make use of transcriptomic annotations. The key idea behind
these methods is to estimate the contribution of tissue-/cell type-
specific functional annotations to SNP heritability for the GWAS
trait of interest.

Methods That Use Epigenetic Annotations
In parallel to trait mapping efforts, large-scale functional genomic
studies have yielded a rich source of epigenetic annotations
(The ENCODE Project Consortium, 2012; Akbarian et al., 2015;
Kundaje et al., 2015; Stunnenberg et al., 2016). Various discrete
and continuous epigenetic annotations are being developed to
describe and characterize the biological function of genetic
variants (Kellis et al., 2014; Carithers and Moore, 2015; Dixon
et al., 2015). For example, we can now classify genetic variants
based on their biochemical function as measured by histone
modification, DNase I hypersensitive sites (DHSs), metabolomic
QTL evidence, and/or a combination of all these measurements
in the form of chromatin states (Pique-Regi et al., 2011; Ernst and
Kellis, 2012; McVicker et al., 2013). Often times, these epigenetic
annotations are tissue specific and/or cell type specific, allowing
characterizing SNP functions in a tissue- or cell type-specific
fashion. Paring such tissue-specific SNP epigenetic annotations

with SNP association evidence with the GWAS trait allows us
to infer trait-tissue relevance. Here, we introduce two methods,
sLDSC and SMART, that make use of epigenetic information
for trait-tissue relevance inference. In the present review, we
simply refer to each tissue-specific epigenetic annotation (e.g.,
H3K4me1, H3K4me3, and H3K9ac) as a functional category.

sLDSC
The sLDSC (Finucane et al., 2015) estimates how a tissue-/cell
type-specific functional annotation contributes to the SNP
heritability of the GWAS trait as evidence for trait-tissue
relevance inference. Specifically, for each examined tissue
in turn, sLDSC first partitions SNPs into C different non-
overlapping functional categories based on tissue-specific
epigenetic annotations. We use Hc (c = 1, . . . ,C) to denote
the set of SNPs that belong to the c-th category. For example,
C could be three, with H1 = H3K4me1 that consists of SNPs
that are inside or nearby H3K4me1 peaks in the examined
tissue, H2 = H3K4me3 that consists of SNPs that are inside or
nearby H3K4me3 peaks, andH3 =H3K9ac that consists of SNPs
that are inside or nearby H3K9ac peaks. We denote χ2

j as the
marginal chi-square statistics for the j-th SNP association with
the trait. sLDSC considers the following model on the marginal
chi-square statistic:

E
[
χ2
j

]
= 1+ N

C∑

c=1

τcℓ
(
j, c
)
, (1)

where ℓ
(
j, c
)
=
∑

j′∈Hc
r2jj′ is the LD score of the j-th SNP with

respect to category c, with r2
jj
′ being the R-squared value between

j-th SNP and j
′
-th SNP that is in the set Hc; and τc represents

the per-SNP heritability of categoryHc. The total SNP heritability
explained by the examined functional annotationHc is defined as
h2g (c) = pcτc with pc being the number of SNPs in category c. By

replacing E
[
χ2
j

]
with the observed GWAS marginal association

statistic χ2
j and solve Equation (1), sLDSC can obtain the

estimate of τc, τ̂c, and subsequently ĥ2g (c). With the standard

error of ĥ2g (c) estimated using a jackknife procedure (Quenouille,

1956), sLDSC can further compute a z-score ĥ2g (c) /se
(
ĥ2g (c)

)

and a subsequent p-value as a measurement of the tissue/cell type
relevance to the GWAS trait based on the functional annotation
c. In the original paper, the sLDSC method is applied to analyze
17 complex diseases and traits using one functional annotation
at a time. By analyzing cell type-specific functional annotations,
sLDSC identified many cell type relevance to traits. Examples
include the relevance of central nervous system cell types to
body mass index, age at menarche, year of education, and
smoking status.

SMART
sLDSC examines one functional annotation at a time. However,
analyzing one epigenetic annotation at a time fails to incorporate
the rich information contained in various other annotations
that likely characterize other functionality of variants (Lu et al.,
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TABLE 1 | A summary of statistical methods for trait-tissue relevance inference.

Genomic

information

Method GWAS inputs Measurements Strengths Limitations References

Epigenetic

annotations

sLDSC SNP-based

Summary statistics

p-values It extends the commonly

used LDSC approach by

partitioning SNPs into

different functional

categories and determining

the contribution of each

category to trait heritability;

can test one annotation

while controlling for other

annotations in the model.

Examines one annotation at

a time; relies on the

standard linear mixed model

that assumes a polygenic

genetic architecture; uses

method of moments for

model fitting.

Finucane

et al., 2015

SMART Either

individual-level

phenotype and

genotype data or

summary statistics

Posterior

probabilities

It handles multiple binary

and/or continuous

annotations simultaneously;

uses the computationally

efficient GEE method to

estimate and make

inference on annotation

coefficients.

Relies on the standard linear

mixed model that assumes

a polygenic genetic

architecture.

Hao et al.,

2018

Transcriptomic

annotations

LDSC-SEG SNP-based

summary statistics

p-values Same as the sLDSC model;

effectively creates a gene

level annotation by

annotating SNPs in genes

that are specifically

expressed in a tissue to one

and annotating the

remaining SNPs to zero.

Model performance highly

depends on the gene

expression data, which is

used to determine tissue

specificity of gene

expression and

subsequently tissue specific

SNP annotations; sensitive

to gene expression

correlation across cell and

tissue types.

Finucane

et al., 2018

RolyPoly SNP-based

summary statistics

p-values Similar to the sLDSC model;

integrates scRNA-seq data

with GWAS; jointly analyzes

gene expression from

multiple tissues or cell types;

prioritizes trait-relevant cell

types and genes.

Model performance highly

depends on the gene

expression data used;

sensitive to gene expression

correlation across cell and

tissue types.

Calderon

et al., 2017

deTS A list of

trait-associated

genes

p-values Applicable when only a list

of GWAS significant genes

are available.

Model performance highly

depends on the gene

expression data; there is not

a commonly accepted

threshold for defining

trait-associated genes, and

different thresholds may

result in different sets of

genes and thus different

enrichment results.

Pei et al.,

2019

eQTL

information

NTCS A list of

trait-associated

and null SNPs

Ranking of

tissues based

on adjusted

fold-

enrichment

Rank genes in terms of their

contribution to trait-tissue

relevance.

No publicly available tools;

model implementation is

redundant and difficult to

replicate.

Ongen et al.,

2017

eQTLEnrich GWAS summary

statistics

p-values Both tissue-shared and

tissue-specific regulatory

effects of eQTLs are

analyzed.

The adjusted

fold-enrichment used for

ranking tissues in

eQTLEnrich is correlated

with GWAS sample size.

Gamazon

et al., 2018

Genetically

regulated

expression

(GReX)

IGREX Either

individual-level

phenotype and

genotype data or

summary statistics

p-values Measures the phenotypic

variance explained by

GReX; can analyze both

GWAS individual-level and

summary data.

Uses REML for inference,

which can be time

consuming.

Cai et al.,

2020

(Continued)
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TABLE 1 | Continued

Genomic

information

Method GWAS inputs Measurements Strengths Limitations References

RhoGE SNP-based

summary statistics

p-values Measures the phenotypic

variance explained by

GReX.

Uses a two-stage regression

for inference, which may fail

to account for estimation

uncertainty in the first stage.

Mancuso

et al., 2017

Gene

co-expression

network

CoCoNet Either

individual-level

phenotype and

genotype data or

summary statistics

Ranking of

tissues based

on

log-likelihood

Incorporates tissue-specific

gene co-expression

networks constructed from

either bulk or single cell

RNA sequencing (RNAseq)

studies with GWAS data; is

scalable to tens of

thousands of genes.

Currently only focuses on

ranking tissues for a given

disease.

Shang et al.,

2020b

These methods make use of different genomic information (1st column), GWAS inputs (3rd column), and different measurements (4th column) for trait-tissue relevance inference,

strengths (5th column), and limitations (6th column) of each method.

2016, 2017; He et al., 2017). For example, some annotations are
designed to evaluate the function of a variant in determining the
protein structure, while some other annotations are designed to
quantify its ability to regulate gene expression. Even categories
that belong to the same epigenetic annotation may characterize
substantially different functions of a variant. For example,
H3K4me1 is used to annotate enhancers while H3K4me3 is
used to annotate promoters. Therefore, it is desirable to make
use of multiple epigenetic annotations to obtain consistent and
robust trait-tissue relevance inference results. A key step that
facilitates the incorporation of multiple epigenetic annotations
is the discovery that the data generating model underlying
sLDSC is a standard linear mixed model and that sLDSC
fits the linear mixed model using the method of moments
(MoM) (Zhou, 2017). Indeed, sLDSC is practically a special
case of MQS, which provides a unified framework for variance
component estimation in linear mixed models (Zhou, 2017).
Building upon the same linear mixed model that sLDSC and
MQS use, SMART (Hao et al., 2018) was developed to incorporate
multiple tissue-/cell type-specific epigenetic annotations for trait
tissue/cell type inference. In particular, SMART allows for the
incorporation of multiple tissue-specific binary and continuous
epigenetic annotations. For example, a tissue-specific binary
histone annotation can be an indicator that indicates whether the
SNP resides inside the peak regions of the histone mark, while a
tissue-specific continuous histone annotation can be an average
of counts in the histone peak region. Importantly, because of its
reliance on a data generative linear mixed model, SMART can be
applied to handle either individual-level GWAS data or summary
statistics. For individual-level GWAS data, SMART models the
phenotype as

y = G̃γ + εy, (2)

where y is a vector of phenotypes for N GWAS samples; G̃ is an
N × p genotype matrix measured from the same N samples and
p genome-wide SNPs; γ is a p-vector of effect sizes; and εy ∼

N
(
0N , σ 2

y IN

)
is theN-vector error term, where 0N represents an

N-vector of zeros and IN represents an N-dimensional identity
matrix. The phenotype y and each column of the genotype
matrix G̃ are standardized to have zero mean and unit standard
deviation, allowing us to ignore the intercept in Equation (2).
SMART assumes that all SNPs are characterized by a set of
s functional annotations. For the j-th SNP, we use a (s+ 1)-

vector Fj =
(
1, Fj1, . . . , Fjs

)T
to denote its annotation values

across s functional epigenetic annotations, where the first value
1 corresponds to the intercept. Here, each of Fj1, . . . , Fjs can
either be a binary value or a continuous value. With the SNP
annotations, SMART assumes that the SNP effect size γj follows
a normal distribution with zero mean and SNP-specific variance
that is a function of the annotation vector,

γj ∼ N

(
0,

σ 2
j

p

)
, σ 2

j = Fjα
∗, (3)

where α∗ =

(
α0

α

)
is a (s+ 1)-vector of coefficients that include

an intercept α0 and a s-vector of annotation coefficients α. To
evaluate the joint contribution of multiple annotations to genetic
effect sizes, SMART performs parameter inference using the
generalized estimation equation (GEE) (Liang and Zeger, 1986).
Use of GEE not only enables scalable computation, but also allows
for the use of GWAS summary statistics based on the samemodel
characterized by Equations (2) and (3). By applying GEE, SMART
obtains point estimates α̂ and their covariance matrix Var

(
α̂
)
,

which allow for the computation of the multivariate Wald
statistic, α̂

TVar
(
α̂
)−1

α̂. The Wald statistic is further modeled
as a mixture of two non-central chi-squared distributions for
classifying tissues into trait-relevant and trait-irrelevant groups.
An expectation-maximum (EM) algorithm is then applied to the
chi-squared mixture to infer the posterior probability of a tissue
being a trait-relevant tissue.

In the original paper, SMART analyzed 43 traits from
29 GWAS studies and obtained many trait-relevant tissues
and cell types. For example, SMART identified the central
nervous system (CNS) tissues to be the most trait-relevant for
psychiatric disorders (e.g., schizophonia, Alzheimer’s disease)
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FIGURE 1 | A decision tree on which method to use for identifying trait-relevant tissues/cell types based on the availability of data types.

and neurological related traits (e.g., years of education, childhood
BMI). These results are consistent with existing literature. For
example, searching the trait-tissue pair schizophrenia-CNS on
PubMed yielded 17,720 hits while searching for the trait-tissue
pair Alzheimer-CNS yielded 34,395 hits, supporting their clear
relevance. As another example, SMART identified the bone and
connective tissues to be related to height and femur neck bone
mineral density, and the blood/immune tissues to be related to
immune diseases (e.g., Rheumatoid Arthritis, type 1 diabetes).
These results are also in line with literature: PubMed search

for height-BoneConnective yielded 13,644 hits and search for
RA-BloodImmune yielded 6,868 hits, supporting their relevance.

Methods That Use Transcriptomic
Annotations
Besides epigenomic studies, many gene expression studies have
been carried out to characterize the transcriptomic landscape of
various tissues and cell types (The ENCODE Project Consortium,
2012; GTEx Consortium, 2015; Kundaje et al., 2015). These
tissue- and cell type-specific gene expression information can be
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FIGURE 2 | The schematic illustration of methods in the five different categories. (A) The general schema of methods that make use of epigenetic annotation

information; sLDSC is shown as the detailed example. (B) The general schema of methods that use tissue-specific transcriptomic annotation information; these

(Continued)
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FIGURE 2 | methods first define specifically expressed genes (SEGs) based on differential expression analysis, then construct genomic annotations from the SEGs,

and finally use sLDSC to perform trait-tissue relevance inference. (C) The schema of methods that test for enrichment of trait associations among eQTLs in each

tissue. (D) The general schema of methods that obtain the estimated genetically regulated expression (GReX) and use the proportion of phenotypic variance explained

by GReX (PVEGReX ) to measure the trait-tissue relevance. (E) The schema of methods that make use of tissue-specific gene co-expression networks; CoCoNet is

shown as the detailed example.

invaluable for inferring trait-tissue relevance (Hu et al., 2011;
Slowikowski et al., 2014; Pers et al., 2015; Gormley et al., 2016).
In this section, we introduce three methods that make use of gene
expression data in the form of transcriptomic annotations. These
methods include LDSC-SEG (Finucane et al., 2018) and deTS
(Pei et al., 2019) that make use of bulk RNA-seq expression data,
and RolyPoly (Calderon et al., 2017) that makes use of single-cell
RNA-seq expression data.

LDSC-SEG
LDSC-SEG consists of two separate steps. The first step of LDSC-
SEG is a differential expression analysis on the gene expression
data to identify a set of genes that are specifically expressed
in certain tissues. These tissue specific genes are referred
to either as specifically/differentially expressed genes (SEGs)
or tissue-specific genes (TSGs). In the differential expression
analysis, LDSC-SEG examines one gene at a time. For the
given gene, LDSC-SEG contrasts the gene expression level of
samples collected in a focal tissue (e.g., brain-cortex) with those
of samples collected in all other tissues that are not in the
same tissue category as the focal tissue (i.e., non-brain tissues).
Because tissues within each tissue category tend to share similarly
expressed genes, excluding the tissues in the same tissue category
in the differential expression analysis step becomes the key
to ensure robust detection of SEGs. Indeed, such differential
expression analysis allows for the inclusion of as many genes
as possible that are highly expressed in the focal tissues but not
in tissues from other tissue categories. The SEG evidence for
a gene is typically characterized by a t-statistic, with a higher
value indicating that the gene is more specifically/differentially
expressed in the focal tissue. With the differential expression
analysis results, LDSC-SEG ranks all genes in a descending
order based on their t-statistics. LDSC-SEG then defines SEGs
as the top 10 percentage of all genes. The identification of SEGs
allows LDSC-SEG to create a binary SNP annotation in a tissue
specific fashion. In particular, for each tissue at a time, LDSC-
SEG annotates the SNP to be one if the SNP resides within 100 kb
of the transcription start site of any SEG and annotates it to
be zero otherwise. With the tissue-specific binary annotation,
LDSC-SEG then performs the second step of applying the
sLDSC method described in the previous section to estimate
the proportion of SNP heritability explained by each tissue-
specific binary SNP annotation. The resulting test statistic from
sLDSC is then served as a relevance evidence between the tissue
and trait.

In real data applications, LDSC-SEG analyzed GWAS
summary statistics for 48 diseases and traits and found
significant tissue-/cell type-specific enrichments for 34 traits.
Several of these findings recapitulate known biology. For

example, immunological traits exhibit immune tissue-type
enrichments; psychiatric traits exhibit strong brain-related tissue
enrichments; and type II diabetes exhibits enrichments in
the pancreas. LDSC-SEG also validated several recent genetic
analyses results, including robust brain-specific enrichments for
smoking status, years of education, body mass index, and age
at menarche.

deTS
deTS also consists of two-steps. The first step of deTS also
consists of a differential expression analysis as in the first
step of LDSC-SEG. The only minor difference there is the
definition of SEGs: while LDSC-SEG defines top 10% as SEGs,
deTS defines top 5% as SEGs. However, the second step of
deTS relies on an enrichment analysis rather than sLDSC.
Specifically, deTS implements Fisher’s exact approach to test
whether the SEGs are enriched in the focal tissue or not. The
Fisher’s exact test builds upon a two-by-two contingency table,
where the two rows represent the number of SEGs vs. the
number of non-SEGs in the tissue, while the two columns
represent the number of trait-associated genes vs. the number
of non-trait-associated genes. Here, the trait-associated gene
is defined based on a gene-level p-value threshold of 5 ×

10−3, where the p-value is calculated from a gene-based test
(Lamparter et al., 2016). In the original study, deTS is applied
to analyze GWAS summary statistics for 26 traits. deTS found
that artery tissues were primarily associated with anthropometric
trait, liver was primarily associated with metabolic traits,
blood and spleen were primarily associated with immune-
related traits, and brain tissues were primarily associated with
neurodegenerative/neuropsychiatric diseases.

RolyPoly
RolyPoly (Calderon et al., 2017) is specifically developed
for single cell expression studies. It consists of the same
two steps as LDSC-SEG. In the first step, RolyPoly uses a
slightly different approach than LDSC-SEG to define the SEGs.
Specifically, for each tissue, RolyPoly ranks all genes in a
descending order based on the normalized expression values
and define the top 20% of genes as SEGs. Afterwards, RolyPoly
creates a binary SNP annotation based on whether a SNP
resides within a 10 kb window nearby the transcription start
site of any SEGs. In the second step, RolyPoly applies the
same linear mixed model as used in sLDSC for inference
(Finucane et al., 2015). In real data analysis, RolyPoly identified
significant relevance of oligodendrocytes and fetal replicating
cells with schizophrenia.

Frontiers in Genetics | www.frontiersin.org 8 January 2021 | Volume 11 | Article 587887

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhu et al. Trait-Tissue Relevance Inference

METHODS BASED ON EXPRESSION
QUANTITATIVE TRAIT LOCI INFORMATION

In recent years, expression mapping studies have succeeded
in identifying many cis-acting genetic variants known as cis-
eQTLs that are associated with gene expression levels (Schadt
et al., 2003; Morley et al., 2004; Lappalainen et al., 2013;
Battle et al., 2014). The identified eQTLs can help elucidate the
molecular mechanisms underlying human disease associations
and facilitate the identification of biological pathways underlying
disease etiology. For example, it has been shown that the GWAS
variants frequently colocalize and likely share functional effects
with eQTLs (Nica et al., 2010; Nicolae et al., 2010; Grundberg
et al., 2012; Shang et al., 2020a). Thus, at least some of these
variants influence traits through regulatory effects. In addition,
the identified eQTLs in multiple tissues and/or cell types can help
interpret the GWAS results through linking non-coding genomic
regions to gene functions and identifying causal tissues/cell types
behind the genetic associations (Nica and Dermitzakis, 2008;
Montgomery and Dermitzakis, 2011; Grundberg et al., 2012). In
this section, we will introduce two methods, NTCS (Ongen et al.,
2017) and eQTLEnrich (Gamazon et al., 2018), that make use of
tissue- and cell type-specific eQTL information to infer the trait-
relevant tissues and cell types that are behind genetic causality.

NTCS
For a given tissue, NTCS makes use of a list of significant eQTLs
that are not in linkage disequilibrium (LD) with each other along
with their colocalized GWAS variants. These eQTLs are obtained
from a conditional eQTL mapping analysis, performed through,
for example, FastQTL (Welter et al., 2014). The identified eQTLs
are overlapped with common variants downloaded from the
NHGRI-EBI GWAS catalog (Storey and Tibshirani, 2003) to
obtain a list of eQTLs that have GWAS significance (P <

5e−8). These eQTLs are denoted as real GWAS variants, GWAS
variants, or GWAS-associated variants.

The NTCS method first uses the Regulatory Trait
Concordance (RTC) (Nica et al., 2010) approach to detect
colocalized variants between the GWAS study and the eQTL
study while properly accounting for LD. The resulted RTC score
is then converted to a probability value that measures the sharing
between a GWAS variant and an eQTL in a tissue, or between
two eQTLs in a pair of tissues based on Bayes’ theorem:

P
(
shared

∣∣RTC = rtc
)

=
P
(
RTC = rtc

∣∣shared
)
· π1

P
(
RTC = rtc

∣∣shared
)
· π1 + P

(
RTC = rtc

∣∣not shared
)
· π0

, (4)

where P
(
shared

)
= π1 is a π1 statistics and π0 = 1 − π1.

When calculating the probability of sharing between the GWAS
variants and eQTLs in a given tissue, the π1 statistics is calculated
from eQTL p-values in the tissue and GWAS variants. When
calculating the probability of sharing between two eQTLs in
a pair of tissues, the π1 statistics is calculated from eQTL p-
values in the two tissues. Both P

(
RTC = rtc

∣∣not shared
)
and

P
(
RTC = rtc

∣∣shared
)
are estimated through simulations, where

the RTC scores are simulated under both the null and alternative
hypotheses. Specifically, for each coldspot that has colocalized
GWAS and eQTL variants (eQTLreal), under the null hypothesis
(H0) where GWAS and eQTL are tagging two different variants,
two hidden causal variants (GWAScausal and eQTLcausal) are
randomly selected. Under the alternative hypothesis (H1) where
GWAS and eQTL are tagging the same variant, one hidden causal
variant (eQTLcausal) is randomly selected. In both hypotheses,
the GWAS and eQTL variants are randomly selected from the
variants that are in linkage disequilibrium with the hidden causal
variants with r2 ≥ 0.5. Afterwards, gene expression is simulated
based on the eQTLreal effect size. The RTC analyses are then
performed under H0 and H1, each for 200 times. For each
coldspot, the total 400 simulated RTC scores under H0 and H1

are merged and sorted to obtain a point probability. Finally,
for each GWAS trait in each given tissue and each eQTL that
colocalizes with a GWAS variant, NTSC defines a normalized
GWAS variant-eQTL probability as the probability of the GWAS
variant and eQTL tagging the same functional effect divided by
the sum of the tissue-sharing probabilities for the eQTL in that
tissue. Intuitively, tissue-specific eQTLs would more likely be a
GWAS variant than tissue non-specific eQTLs that are shared
across tissues. Therefore, for each GWAS trait in each given
tissue, NTCS defines a normalized tissue causality score (NTCS)
and a null NTCS as follows:

NTCS =
1

p2
×

p1∑

j=1

P
(
SNPj − eQTLj shared|rtc

)

P
(
eQTLj shared|rtc

) , (5)

Null NTCS =
p1

p0p2
×

p0∑

j=1

P
(
null SNPj − eQTLj shared|rtc

)

P
(
eQTLj shared|rtc

) , (6)

where p1 is the number of GWAS-associated variants for the
trait; p2 is the total number of eQTLs in a given tissue; p0 is
the number of GWAS-null variants; P

(
SNPj − eQTLj shared|rtc

)

is the probability that a GWAS variant (i.e., SNPj) and eQTLj
tagging the same functional effect; and P

(
eQTLj shared|rtc

)
is

defined in Equation (4). An enrichment metric is further defined
as NTCS

null−NTCS
. The tissues with an enrichment metric greater

than one are likely the causal tissues for the diseases/traits. To
create a p-value for testing trait-relevance of each tissue, NTCS
first selects a null GWAS variant to match each of the GWAS
variant, based on minor allele frequency and distance to the
closest transcription start site. Afterwards, NTCS repeats the
above enrichment metric calculation using the set of null GWAS
variants, examines one tissue at a time, compares the tissuemetric
for the disease-associated variants to the metric observed under
the null for that tissue, and calculates a corresponding p-value
based on a Mann-Whitney test that compares the distribution
containing each of the j-th elements in Equation (5) and (6) for
the real GWAS and under the null. In the NTCS paper, NTCS
method discovers that liver is the tissue most likely to be causal in
most of the GWAS traits. Brain tissues are the top tissues relating
to traits like schizophrenia, height, and age of onset of puberty.

Frontiers in Genetics | www.frontiersin.org 9 January 2021 | Volume 11 | Article 587887

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhu et al. Trait-Tissue Relevance Inference

eQTLEnrich
eQTLEnrich is a rank- and permutation-based method that aims
to test for enrichment of trait associations among eQTLs in each
tissue. For a given GWAS trait, for each of the tissues with eQTLs,
eQTLEnrich first finds the most significant cis-eQTL per eGene,
and then extracts the GWAS variant association p-values for each
set of eQTLs. Afterwards eQTLEnrich tests for the enrichment of
the distribution of GWAS p-values for each set of eQTLs in the
corresponding tissue. The distribution of the GWAS p-values for
each set of eQTLs is tested for enrichment of highly ranked trait
associations compared to an empirical null distribution sampled
from non-significant variant-gene expression associations.

Specifically, eQTLEnrich first computes the fold-enrichment
for each GWAS-tissue pair. The fold-enrichment is defined as
the fraction of eQTLs with GWAS variant p < 0.05 compared
to expectation. Similarly, eQTLEnrich also computes fold-
enrichment values for randomly sampled sets of non-significant
variant-gene expression associations of equal size to the eQTL
set, matching the distance of eQTL to TSS of the target gene,
MAF, and number of proxy variants (at r2 ≥0.5), to account for
LD. Then eQTLEnrich computes an enrichment p-value as the
fraction of permutations with similar or higher fold-enrichment
than the observed value. Finally, eQTLEnrich computes an
adjusted fold-enrichment by dividing the fold-enrichment for a
specific GWAS-tissue pair by the fold-enrichment of all non-
significant variant-gene expression associations with GWAS P <

0.05 for the tissue-trait pair. The eQTLEnrich method is applied
to analyze 18 complex diseases and traits on 44 GTEx tissues
and identifies many trait-relevant tissues. Examples include the
relevance of left heart ventricle and adipose visceral omentum
to type I diabetes, ovary and artery coronary to coronary artery
disease, and hippocampus to Alzheimer’s disease.

METHODS BASED ON TISSUE-SPECIFIC
GENETICALLY REGULATED EXPRESSION
LEVELS

Here, we describe the third category of methods for trait-
tissue relevance inference. The third category of methods use
information from genetically regulated expression levels (GReX)
that are constructed in a tissue specific fashion. GReX measures
the part of gene expression levels that can be predicted by
(cis-)SNPs (Gamazon et al., 2015). In a given tissue, GReX is
constructed for each gene by fitting a prediction model that
relates the gene expression level to the cis-SNPs. Common
prediction models for GReX construction include elastic net
(Zou and Hastie, 2005), BSLMM (Zhou et al., 2013), and DPR
(Zeng and Zhou, 2017). Constructed GReX is often tested with
the GWAS trait for association evidence through transcriptome-
wide association studies (TWAS) (Gamazon et al., 2015; Gusev
et al., 2016). Indeed, GReX of many genes have been identified
to be associated with diseases and disease-related complex traits.
In this section, we will introduce two methods, IGREX (Cai
et al., 2020) and RhoGE (Mancuso et al., 2017), that rely on
GReX to infer trait-tissue relevance. Both methods effectively are

built upon the same model but rely on different algorithms for
model inference.

Specifically, both methods consider two separate models, one
for the gene expression study and the other for the GWAS. In
the gene expression study, both methods examine one tissue and
one gene at a time. For them-th gene in the tissue, both methods
consider the following linear model for modeling the relationship
between gene expression and genotypes of cis-SNPs,

zm = Gmwm + εz , (7)

where zm is an n-vector of expression values measured from a
focal tissue, with n being number of available samples in this
tissue; Gm is an n × p genotype matrix for the same n samples
and p cis-SNPs for the given gene; wm is a p-vector of SNP
effect sizes on the gene expression; and εz ∼ N(0n, σ 2

z In) is the
residual error term. The gene expression zm and each column
of genotype matrix G are standardized, allowing us to ignore
the intercept term in Equation (7). The genetic effects on gene
expression is assumed to follow a normal distribution a priori,
with wm ∼ N(0p, σ 2

wIp).
In the GWAS data, both methods consider the following

regression model that relates the phenotype to genotype:

y = G̃rγ +

M∑

m=1

βmG̃mwm + εy, (8)

where y and εy are defined as in Equation (2); G̃m is the N × p
genotype matrix for p cis-SNPs in the given gene; wm is the same
SNP effects on gene expression as defined in Equation (7); the

scalar βm ∼ N
(
0, σ 2

β

)
represents the genetic effect of GReX

(i.e., G̃mwm) on y and can be interpreted as the causal effect
of GReX on y (Yuan et al., 2019; Zhu and Zhou, 2020); and

γ ∼ N
(
0, σ 2

γ Iq

)
is the q-length vector of alternative genetic

effects; note that G̃γ is not the same genotype matrix as G̃m, and
the q SNPs in G̃γ are those who show direct horizontal effects on
y, such as the trans-eQTLs and SNPs associated with alternative
splicing events (Matlin et al., 2005).

Above, the proportion of phenotypic variance explained by
GReX is calculated as

PVEGReX =
Var

(∑
m βmG̃mwm

)

Var(y)
. (9)

IGREX
IGREX (Cai et al., 2020) relies on a two-stage method to
perform inference for the model defined in Equations (7) and (8).
Specifically, IGREX first estimates the posterior distribution of
genetic effects on expression based on Equation (7) and obtains
the posterior distribution wm|zm,Gm ∼ N

(
µm,6m

)
for each

gene m. Afterwards, IGREX treats the posterior distribution
wm|zm,Gm from Equation (7) as the prior distribution for
Equation (8), and obtain the estimates of σ 2

β , σ 2
γ and σ 2

y using
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either the method of moments (MoM) or REML. Finally, the
estimate of PVEGReX is obtained by

P̂VEGReX =
tr
(∑

m σ̂ 2
β G̃m

(
µmµT

m+6m
)
G̃T
m

)

tr
(∑

m σ̂ 2
β G̃m(µmµT

m+6m)G̃T
m+σ̂ 2

γ G̃rG̃T
r +σ̂ 2

y IN

) . (10)

In the above two-step estimation procedure, IGREX relies on
the posterior distribution wm|zm,Gm to account for estimation
uncertainty associated with wm in Equation (8). Given the point
estimate P̂VEGReX and its standard error estimated by block
jackknife (Quenouille, 1956), IGREX tests the tissue-specific
null hypothesis that H0 : PVEGReX = 0 by using a simple
z-test. While IGREX is presented based on individual level
data, IGREX is also applicable for GWAS summary statistics
using the same model defined above. In the original study,
IGREX used the GTEx project as expression mapping study
and GWAS data in both individual-level and summary statistics.
IGREX identified several trait-relevant tissue types. For example,
significant GReX components were observed in liver for both
high-density lipoprotein and low-density lipoprotein, in brain-
amygdala for bipolar disorder, in brain-spinal cord (cervical c-1)
for coronary artery disease, and in spleen for height.

RhoGE
RhoGE (Mancuso et al., 2017) fits a similar model as defined
in Equations (7) and (8) as IGREX, but with three differences.
First, RhoGE uses only the posterior mean estimate µm obtained
from Equation (7) and subsequently ignores the uncertainty in
the estimation ofwm. Second, RhoGE is based on LDSC, and thus
estimates the variance components σ 2

β effectively using MoM.
Third, RhoGE does not account for the horizontal pleiotropic
effects G̃rγ . Technically, RhoGE modifies the LDSC estimation
procedure to use gene level summary statistics. Specifically, the
gene-level statistic χ2

m is computed as ŵT
mφmφT

mŵm/ŵT
mVmŵm,

where ŵm is obtained from the genomic best linear unbiased
prediction (GBLUP) (de los Campos et al., 2013); φm are the
p-vector of SNP-based Wald statistics from the GWAS study;
and Vm is an p × p LD matrix calculated from a reference
panel. Afterwards, RhoGE follows the same inference procedure
as in LDSC to estimate PVEGReX and tests whether PVEGReX is
statistically significant from zero. The resulting test statistic is
served as evidence for trait-tissue relevance inference. RhoGE
analyzed GWAS summary statistics for 30 complex traits and
found 108 significant trait-tissue pairs across 17 traits and 33
tissues, including BMI-brain, schizophrenia-brain, and high-
density lipoprotein-heart.

METHODS BASED ON TISSUE-SPECIFIC
GENE CO-EXPRESSION NETWORK

In this section, we introduce the fourth category of methods,
which currently consists of only CoCoNet (Shang et al., 2020b),
for trait-tissue relevance inference. CoCoNet performs trait-
tissue relevance inference using tissue- or cell type-specific
gene co-expression network information obtained from bulk or
single cell gene expression studies. Gene co-expression networks
characterize how genes are connected with each other and are

coregulated together. Gene co-expression networks have been
shown to be informative for predicting gene-level association
effect sizes on diseases in GWASs and are often tissue and
cell type specific (Chen et al., 2011; Hou et al., 2014; Jia
and Zhao, 2014; Hao et al., 2018). Genes with high network
connectivity have also been shown to be enriched for heritability
of GWAS traits (Kim et al., 2019). Therefore, it is important to
take advantage of tissue-specific gene connection information
in tissue-specific gene co-expression networks to facilitate the
inference of disease tissue relevance.

CoCoNet
CoCoNet (Shang et al., 2020b) first obtains anM-vector of gene-
level effect sizes with the trait of interest from theGWAS, denoted
as θ = (θ1, · · · , θM)T . In the gene expression study, CoCoNet
examines one tissue at a time and for the given tissue constructs
anM byM gene-gene adjacency matrix A = (amm

′ ) to represent
the gene co-expression network there. The mm′-th element of
the adjacency matrix amm′ is 1 if gene m is connected to gene
m′ in the network and 0 otherwise. amm is set to be 0 for any
1 ≤ m ≤ M to ensure the absence of self-loops (Urry and Sollich,
2013). CoCoNet then relies on a covariance regression network
model (Lan et al., 2018) to model the relationship between A

and θ

θ ∼ N (1Mµ,6 (A)) , (11)

where µ is the intercept and 6 (A) is the covariance of θ as a
function of the adjacency matrix A. The covariance 6 (A) is in a

general form6 (A) =
∑L

l=0 σ 2
l
Al, whereAl =

(
a
(l)
mm′

)
is the l-th

power of A, and L is the maximum number of paths considered

for linking between any two genes. For any integer l, a(
l)
mm′ is the

number of l-paths linking from gene m to gene m′ in the co-
expression network, where an l-path is any path of length l. For

example, when l = 2, a(2)mm′ =
∑M

h=1 amhahm′ , where amhahm′ is
1 only when there is a link connecting the three genesm−h−m′

and 0 otherwise. For l ≥ 1, CoCoNet sets a(
l)
mm = 0. When l = 0,

CoCoNet sets A0 = I. In the real data application, CoCoNet
suggests choosing L based on Bayesian Information Criterion
(BIC) according to real data analysis.

Because of the computation burden associated with the model
in Equation (11), CoCoNet relies on composite likelihood for
approximate inference. In particular, the composite likelihood
only needs to make an assumption that each pair (θm, θm′ )
follows a bivariate normal distribution, instead of making a
strong assumption that the m-vector of θ jointly follows a
multivariate Gaussian distribution. Specifically, for each pair of
genes m and m′, CoCoNet considers the composite likelihood
P(θm, θm′ |µ, σ 2

0 , σ
2
1 ) as

(
θm
θm′

)
∼ BN

((
µ

µ

)
,
∑L

l=0 σ 2
l

(
a
(l)
mm a

(l)
mm′

a
(l)
mm′ a

(l)
m′m′

))
, (12)
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where BN represents bivariate normal distribution. CoCoNet
finally constructs the log composite likelihood as

loglik (θ) =

M∑

m=1

M∑

m
′
>m

log P
(
θm, θm′

∣∣µ, σ 2
0 , · · · , σ

2
L

)
. (13)

CoCoNet fits the above composite likelihood through a
standard maximum likelihood inference procedure. Afterwards,
CoCoNet calculates the maximum composite likelihood for
each tissue and eventually ranks tissues by the corresponding
log likelihoods. In the original study, the comparative results
between CoCoNet and LDSC-SEG/RolyPoly in the original
study suggest that tissue-specific gene co-expression network
provides valuable trait-tissue relevance information, perhaps
more so than the information provided by marginal tissue-
specific gene expression pattern used in LDSC-SEG/RolyPoly.
CoCoNet analyzed eight different disease GWASs that include
four neurological disorders and four autoimmune disorders on
38 tissues obtained from GTEx, CoCoNet found that the top
relevant tissues identified for neurological disorders are generally
brain tissues, which are disease causing tissues. CoCoNet also
found the top relevant tissues for autoimmune disorders to
be intestinal tissues, which are disease-target tissues. In trait-
cell type relevance identification, CoCoNet found GABAergic
interneurons, oligodendrocyte precursor cells, astrocytes, and
microglia are the top relevant cell types in Alzheimer’s disease.
CoCoNet also found both pyramidal neurons and various glia
cells are selected as top relevant cell types in bipolar disorder.

DISCUSSION

We have presented a systematic review on existing statistical
methods for trait-tissue relevance inference. Our review comes
from a technical perspective and summarizes the input data
types, detailed statistical model and inference algorithm, criteria
for evaluating tissue/cell type relevance of a trait, as well as the
main findings from these existing methods. Identifying trait-
relevant tissues using these methods not only facilitates the
understanding of disease etiology but also enables more powerful
association analysis in future GWASs (Hao et al., 2018). For
example, tissue-specific SNP annotations and their contributing
weights to SNP heritability in the trait-relevant tissue can be used
to construct more powerful SNP set tests in GWASs (Hao et al.,
2018). In addition, the inferred trait-relevant tissues and/or cell
types facilities the interpretation of TWAS analysis and improves
the analysis power (Gamazon et al., 2015; Gusev et al., 2016).

Thus far, existing methods have primarily relied on ad hoc
procedures to validate the inferred trait-tissue relevance results.
For example, one would examine top trait-relevant tissues one
by one and look for corresponding evidence in the literature to
support such results. Manually cross checking with literature,
however, requires domain knowledge and may yield biased
results. Manual literature checking is also time consuming and
the outcome results are not easy to quantify. To overcome the
shortcomings of manual literature checking, Hao et al. (2018)

provided a convenient approach to quantitatively validate trait-
tissue relevance identified from real data applications in an
unbiased fashion. Specifically, Hao et al. (2018) performs cross
checking with previous literature quantitatively via PubMed
search. The intuition behind Hao’s approach is that, if a
tissue is truly relevant to a given trait, then the number of
previous biomedical researches would have been carried out
on the tissue for the trait. Consequently, the relevance of a
tissue to a trait can be measured by the number of previous
publications on the trait-tissue pair. Therefore, for each trait-
tissue pair, Hao et al. (2018) used the names of trait and
tissue as input and counted the number of publications that
contain the input values either in the abstract or in the title.
For example, for the schizophrenia-CNS trait-tissue pair, they
conducted the search by using “schizophrenia [Title/Abstract]
AND (CNS [Title/Abstract] OR brain [Title/Abstract] OR central
nervous system [Title/Abstract] OR neuron [Title/Abstract] OR
glia [Title/Abstract]).” By counting the number of previous
publications on the trait-tissue pair, Hao et al. (2018) provides
a somewhat ground truth for quantifying and comparing the
inferred trait-tissue relevance results. For example, PubMed
yielded 17,720 hits for the pair of schizophrenia-CNS, which
covers 63.8% of all schizophrenia-tissue search results from the
previous literatures, supporting the relevance between CNS and
schizophrenia. By performing PubMed search, Hao et al. (2018)
shows that certain histone modification marks often provide
more information than others. A follow up study using similar
PubMed search approach also shows that histone modifications
are more informative in inferring trait-tissue relevance than
using either the marginal expression information or gene co-
expression network information extracted from gene expression
studies (Shang et al., 2020b).

Existing methods are primarily developed to take advantage
of one particular genomic information for trait-tissue relevance
inference. As we summarized in the review, some methods make
use of histone modification marks (for example, sLDSC and
SMART) while some other methods make use of gene expression
data (for example, LDSC-SEG and RolyPoly). However, different
genomic information may contain complementary information
for trait-tissue relevance inference. Indeed, Finucane et al. (2018)
found that one function annotation may be more preferable
than another. The same study thus proposed ways to combine
two annotations together either by creating a joint synthetic
annotation or by combining p-values from analyses of the
two annotations separately. A follow up method, SMART,
formally models multiple genomic annotations jointly with a
multivariate statistical model to improve the accuracy of trait-
tissue relevance inference (Hao et al., 2018). SMART found
that substantial accuracy gain can be achieved by combining
multiple genomic annotations than using one annotation at a
time. Besides methodology development to directly incorporate
multiple annotations for trait-tissue relevance inference, methods
have also been developed to combine multiple annotations into a
single, more interpretable and more informative annotation. For
example, GenoSkyline creates synthetic annotation based on a
variety of epigenetic annotations (Lu et al., 2016). An updated
version of GenoSkyline, GenoSkyline-Plus, can now incorporate
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both RNA-seq data and DNA methylation data in addition
to epigenetic annotations to produce functional epigenetic
annotations across 127 tissues and cell types (Lu et al., 2017).
A similar method, FUMA, is a recently developed web-based
platform that can annotate GWAS significant SNPs for functional
consequences on genes, CADD scores, and chromatin states in
127 tissues and cell types (Watanabe et al., 2017). Similarly, in
gene expression studies, while existing approaches use either
the list of tissue-specifically expressed genes, tissue-specific gene
expression levels, or tissue-specific gene co-expression pattern,
combining the use of all the information together may have
added benefits. Therefore, developing statistical methods to
incorporate multiple genomic data types as well as multiple
aspects of the same data type will likely yield more accurate
tissue-trait relevance in the future. Beyond the scope of our
review on trait-tissue relevance, we would add a word for GWAS.
GWAS has been developed and used for nearly two decades and
reported over 200,000 trait-SNP associations (GWAS catalog as
of Dec 15, 2020). However, sample size is always a controversial
issue. Current GWAS is toward larger and larger sample sizes in
order to discover novel SNPs, however, the “overly-identified”
SNPs are often lack of meaningful biological explanations. In
contrast, small sample size typically cannot detect any signals.
The first issue is now relatively well-studied, for example fine-
mapping, gene-based test, etc. We think that the second issue

is worth more investigations in the field of GWAS. In addition,
factors that determine the phenotype/disease are complex and
various, further questions include when and how, i.e., what,
when, and how a factor/factors determines a phenotype/disease.
We believe that all of the theoretical, computational and
experimental work are very meaningful to explore the “truth” of
how genome affects “us” and makes “us” different.
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