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ABSTRACT

Anticipation, manifested through decreasing age of onset or increased severity in successive gener-

ations, has been noted in several genetic diseases. Statistical methods for genetic anticipation range

from a simple use of the paired t-test for age of onset restricted to affected parent-child pairs, to a

recently proposed random effects model which includes extended pedigree data and unaffected family

members [Larsen et al., 2009]. A naive use of the paired t-test is biased for the simple reason that

age of onset has to be less than the age at ascertainment (interview) for both affected parent and child,

and this right truncation effect is more pronounced in children than in parents. In this paper, we first

review different statistical methods for testing genetic anticipation in affected parent-child pairs that

address the issue of bias due to right truncation. Using affected parent-child pair data, we compare

the paired t-test with the parametric conditional maximum likelihood approach of Huang and Vieland

[1997] and the nonparametric approach of Rabinowitz and Yang [1999] in terms of Type I error and

power under various simulation settings and departures from the modeling assumptions. We especially

investigate the issue of multiplex ascertainment and its effect on the different methods. We then focus

on exploring genetic anticipation in Lynch syndrome and analyze new data on age of onset in affected

parent-child pairs from families seen at the University of Michigan Cancer Genetics clinic with a muta-

tion in one of the three main mismatch repair (MMR) genes. In contrast to the clinic-based population,

we re-analyze data on a population-based Lynch syndrome cohort, derived from the Danish HNPCC-

register. Both datasets indicate evidence of genetic anticipation in Lynch syndrome. We then expand

our review to incorporate recently proposed statistical methods that consider family instead of affected

pairs as the sampling unit. These prospective censored regression models offer additional flexibility to

incorporate unaffected family members, familial correlation and other covariates into the analysis. An

expanded dataset from the Danish HNPCC-register is analyzed by these alternative set of methods.

KEY WORDS: Cox proportional hazards model, Hereditary nonpolyposis colorectal cancer, Mismatch

repair genes, Multiplex ascertainment, Random effects, Sandwich estimator.
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1 Introduction

Genetic anticipation is a term that refers to an earlier age of onset or increased disease severity in

successive generations. Trinucleotide repeat expansions are a well-known explanation of this phe-

nomenon in some Mendelian disorders, though alternative mechanistic explanations have also been

suggested [La Spada, 1997, Fraser, 1997]. While investigating anticipation and assessing the findings

of a study, one has to be cautious about multiple sources of biases that can affect the results and the

choice of appropriate statistical techniques. The “naive” approach to test for anticipation is a paired

t-test comparing the difference in mean ages of onset of affected children and affected parents. Un-

fortunately, as demonstrated by Heiman et al. [1996], truncation bias occurs with older generations

having longer follow-up time and later generations not being followed throughout the entire “at-risk”

period. This can dramatically increase the type I error of a t-test. A nonparametric alternative, like

the matched-pairs signed-rank Wilcoxon test, is another potential choice but is still subject to the same

truncation bias [Westphalen et al., 2005]. A sensible but crude way to minimize truncation bias is to

limit the analysis to older birth cohorts (e.g., with affected parents and children both born before 1920)

[Westphalen et al., 2005, Picco et al., 2001, Nilbert et al., 2009], which allows adequate follow-up

time for both generations. But this entails a loss of sample size and consequently a loss of power for

detecting anticipation effects. This restriction does not make full utilization of the data available in

many newer cohorts.

Apart from truncation bias, other factors that could influence findings on genetic anticipation are

secular trends, such as a change in diagnostic techniques or reporting protocols, or the introduction

of new environmental toxicants/carcinogens that could affect specific birth cohorts. Also prevalent is

ascertainment bias where findings are derived from multiplex families ascertained for genetic studies.

Such families are enriched with early-onset cases and preferentially selected due to the presence of

multiply affected individuals, as opposed to a population-based sample of affected parent-child pairs.

The objective of this paper is twofold. We first review an array of statistical approaches to eval-

uate genetic anticipation as measured by differences in age of onset in successive generations. The
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primary study design we consider is that which samples affected parent-child pairs from existing co-

horts. To this end, we present simulation results that compare the naive paired t-test with parametric

and nonparametric approaches that account for bias due to right truncation [Huang and Vieland, 1997,

Rabinowitz and Yang, 1999]. We present comparison of these methods under random ascertainment as

well as multiplex ascertainment and summarize recommendations in terms of adopting these methods

for a given analysis. We then consider another study design which includes all at-risk family mem-

bers in a predefined cohort (affected and unaffected) and follows them prospectively. The variable of

interest is age of diagnosis and we review survival methods to evaluate risk by relative type [Daugh-

erty et al., 2005, Larsen et al., 2009]. Censoring events are age at death, age at last follow-up visit

or censored at age 85 years. Here, missing data is not right truncated but right censored, which is

accounted for in the survival regression models. Figure A.1 in the Appendix gives a simple schematic

representation of the two different sampling strategies and the corresponding statistical methods with

references.

We then turn our attention to assess evidence of anticipation in hereditary nonpolyposis colorectal

cancer (HNPCC)/Lynch syndrome in two family cohorts potentially representing two distinct sets of

multiplex ascertainment probabilities. One is a population-based cohort of all Danish families iden-

tified with pathogenic mutations in the mismatch repair (MMR) gene. Nilbert et al. [2009] reported

evidence of anticipation in this cohort. The other is an aggregation of families seen at the genetic

counseling clinic at the University of Michigan Comprehensive Cancer Center (UMCCC), with identi-

fied mutations in the MMR gene. The UMCCC data has not been previously analyzed for anticipation

and is a clinical setting where multiplex ascertainment could influence the findings. The few studies

prior to the one by Nilbert et al. [2009] have reached contradictory results on anticipation in Lynch

syndrome [Tsai et al., 1997, Westphalen et al., 2005, Stella et al., 2007]. Our results shed light on

the existing body of literature on anticipation in Lynch syndrome and the dependence of the inference

on the choice of statistical techniques. For illustration purposes, we also employ the second class of

survival regression methods described above to analyze data from an expanded cohort of the Danish
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HNPCC (Lynch syndrome) register which evaluates age-at-onset times for proven MMR mutation car-

riers (affected/unaffected by a cancer associated with Lynch syndrome). This enables us to contrast

this study design and the appropriate statistical methods with the ones involving affected parent-child

pairs. The paper thus presents a comprehensive overview of statistical design and analytic tools to eval-

uate genetic anticipation and contributes new data to the assessment of anticipation in Lynch syndrome

families.

The rest of the paper is organized as follows. In Section 2, we restrict our attention to the most

common format of data on affected parent-child pairs and discuss statistical methods to handle the

right truncation bias. Section 2.1 presents simulation results comparing existing choices within this

class of methods in the absence and presence of familial ascertainment. Section 2.2 analyzes data on

two Lynch syndrome cohorts using affected parent-child pairs. Section 3 discusses the second class

of statistical models that considers all at-risk affected and unaffected family members and employs a

prospective censored regression model. Section 3.1 analyzes expanded family data from the Danish

HNPCC-register with this second class of methods. The concluding section is subdivided into two

subsections to emphasize the two major contributions of the paper. Section 4.1 presents an integrated

overview of the different statistical approaches, putting them in the perspective of different sampling

mechanisms and study designs and furnishing a recommendation for a research investigator. Section

4.2 then summarizes the data analysis results on genetic anticipation in Lynch syndrome, findings

which still conflict across studies and demonstrate a poorly understood phenomenon from a biological

perspective. [Vasen et al., 1994, Rodrı́guez-Bigas et al., 1996, Tsai et al., 1997, Westphalen et al.,

2005, Nilbert et al., 2009, Larsen et al., 2009].

2 Methods for affected parent-child pairs

Let (TPi
, TCi

) be the ages of onset and (CPi
, CCi

) the ages at ascertainment or ages at interview of the

ith parent and child, respectively. While there is no real physical constraint to the relationship between
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(TPi
, TCi

) and (CPi
, CCi

), we only observe those pairs which satisfy the condition

{CPi
> TPi

, CCi
> TCi

}. (1)

These are the pairs that can be recognized as “affected” at the time of retrospective assessment of the

cohort. Let the term “parent-child pair” hereafter refer to any pair which satisfies (1). As mentioned

before, comparing the sample means of TP and TC via the paired t-test ignores that the data are con-

ditionally observed given (1) and thus leads to biased inference if follow-up times for the cohort are

not sufficiently long. Huang and Vieland [1997] consider a conditional likelihood reflecting (1) and

propose a parametric Wald-type test for this problem. Their method assumes a joint bivariate normal

distribution for (TPi
, TCi

) and is based on the asymptotic normality of the conditional maximum like-

lihood estimate (MLE). Using the work of Huang and Vieland [1997] and Vieland and Huang [1998],

we briefly review the construction of the likelihood.

Assume that (TPi
, TCi

) and (CPi
, CCi

) are conditionally independent given (1). Let f , F denote the

joint probability distribution function (PDF) and cumulative distribution function (CDF) correspond-

ing to (TPi
, TCi

), and g, G denote the joint PDF and CDF of (CPi
, CCi

). The conditional likelihood of

the i-th parent-child pair is given by,

Li =
f(tpi , tci)g(cpi , cci)

Pr(TPi
≤ CPi

, TCi
≤ CCi

)
1[tpi ≤ cpi , tci ≤ cci ].

Here 1[A] is the indicator function which assumes the value 1 if event A is true, and is zero otherwise.

When g is left unconstrained (that is, when its governing parameters are not constrained to be the same

as those of f ), Huang and Vieland [1997] show that the likelihood is proportional to

Li ∝
f(tpi , tci)

F (cpi , cci)
. (2)

That is, as long as g is estimated nonparametrically, maximizing L =
∏n

i=1 Li is equivalent to maxi-

mizing the conditional log-likelihood log(L) =
∑n

i=1 log
f(tpi , tci)

F (cpi , cci)
. We consider three test statistics

which invoke the general form of this likelihood.

1. The parametric test statistic (HV) [Huang and Vieland, 1997]: HV assumes that f is a bivariate

normal distribution and maximizes log(L) with respect to the mean vector and covariance matrix of
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the distribution. Anticipation exists when the difference in the means of the parents and the children

is greater than zero. An estimate of this effect is obtained by evaluating the difference of the MLEs,

µ̂TP
− µ̂TC

, with proper standard errors being estimated from the inverse of the observed Fisher infor-

mation matrix. Wald-type test statistics are then constructed, which are standard normal under the null

hypothesis of no anticipation. The HV approach can be thought of as an adjustment to the t-test for

right truncation, both methods assuming normality.

2. An alternative nonparametric test statistic (RY1) [Rabinowitz and Yang, 1999]: RY1 uses the quadru-

ples (TPi
, TCi

, CPi
, CCi

) to test the null hypothesis that F is symmetric, without assuming a particu-

lar form of the distribution F . RY1 is based on all parent-child pairs for which max(TPi
, TCi

) ≤

min(CPi
, CCi

). This eliminates the bias due to truncation because every pair which satisfies the con-

dition will be observed. Hence,

Pr(TCi
≤ TPi

|max(TPi
, TCi

) ≤ min(CPi
, CCi

)) = 1/2,

under the null hypothesis of no anticipation. For n parent-child pairs, the statistic

n∑
i=1

(1[TCi
< TPi

]− 1/2) 1[max(TPi
, TCi

) ≤ min(CPi
, CCi

)] (3)

is approximately normal with mean 0 and variance
∑n

i=1 1[max(TPi
, TCi

) ≤ min(CPi
, CCi

)]/4. RY1

can be thought of as a modification to the Wilcoxon signed-rank test in the presence of right truncation.

3. A second nonparametric test statistic (RY2) [Rabinowitz and Yang, 1999]: RY2 compares parents

and children across different pairs. For any i1, i2, the following holds, assuming no anticipation:

Pr
(
TCi1

< TPi2
|max(TCi1

, TPi2
) < min(CCi1

, CPi2
),max(TPi1

, TCi2
) < min(CPi1

, CCi2
)
)
= 1/2.

The estimator sums over all pairwise comparisons where the event happens and compares it 1/2:

n∑
i1=1

n∑
i2=1

(
1[TCi1

< TPi2
]− 1/2

)
1[A],

where

A =
{
max(TCi1

, TPi2
) < min(CCi1

, CPi2
);max(TPi1

, TCi2
) < min(CPi1

, CCi2
)
}
.
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This statistic will also have mean 0 under the null hypothesis with variance expression provided in

[Rabinowitz and Yang, 1999].

REMARK 1: The efficiency loss of RY1 comes via a reduction of sample size, as the conditioning

event which eliminates the bias due to truncation will also eliminate data and restrict inference to a

smaller subset (see Section 4.1 for a further discussion of this issue). The extent of this reduction in

sample size will depend on how severe the truncation is. RY2 attempts to compensate for this loss

of data by making comparisons between parent-child pairs. When this between-pair comparison is

justifiable, i.e., when the parent-child pairs are exchangeable, this will increase the effective sample

size and, consequently, the power of the test.

REMARK 2: In a more recent report, Tsai et al. [2005] propose a generalized paired t-test and a

Wilcoxon signed-rank test that very similar in spirit to RY1: they restrict analysis to comparable

parent-child pairs which satisfy max(TPi
, TCi

) ≤ min(CPi
, CCi

) and apply the standard paired t-test

and Wilcoxon signed-rank test to this subset. Due to its similarity to RY1, we refrain from including

this as a separate method for comparison purposes. One contribution of Tsai et al. [2005] is to extend

the generalized t-test to a random effects model that incorporates family level correlation and introduce

a general mixed model framework to test for a difference in mean ages of onset across generations;

this is more robust and general than a t-test.

2.1 Simulation Study

Our simulation study was designed to compare the performance of the above three test statistics (HV,

RY1, and RY2) with the paired t-test under three different ascertainment schema described below.

Note that these methods only use data from affected parent-child pairs. Previously, Vieland and Huang

[1998] provided an extensive discussion on the effect of the ascertainment scheme on the behavior

of HV in terms of Type I error and power but so far no such simulation results are available for the

nonparametric methods RY1 and RY2 under varying selection mechanisms. Also, even for an unbiased

random ascertainment, there does not exist any simulation study directly comparing HV, RY1 and RY2
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simultaneously in terms of power and Type I error. We first describe the simulation design under each

ascertainment scheme and then summarize our simulation findings.

1. Random Ascertainment (RA): RA draws a simple random sample of parent-child pairs from the

population of eligible pairs. That is, every parent-child pair for which both individuals have developed

the disease at time of ascertainment has an equal probability of selection, regardless of the size of

the pedigree. Simulation of RA is straightforward. The ages of onset, (TP , TC), are assumed to

be bivariate normal. (CP , CC), the pair of ascertainment ages, is assigned to (c1, c2), where c1 is a

continuous uniform random variable, and c2 = c1− d1, where d1 is also a continuous random variable

with parameters such that c2 is guaranteed to be positive. Sample parent-child pairs are randomly

drawn in this manner, and those which satisfy condition (1) are included in the simulated dataset until

n such pairs have been selected.

2. Generalized Single Ascertainment (GSA) [Hodge and Vieland, 1996]: GSA samples entire pedi-

grees and, within a pedigree, randomly selects a single parent-child pair. A crucial component of this

scheme is that the selection probability of a pedigree is strictly proportional to the number of parent-

child pairs it contains. Hodge and Vieland [1996] prove, and Vieland and Huang [1998] confirm by

example, that if pairs are ascertained with probability proportional to the number of parent-child pairs

in the pedigree, then the correct likelihood is proportional to the conditional likelihood given the trun-

cation. This shows that whether the data come from a true random sample of all possible parent-child

pairs (an unlikely situation) or from GSA, maximizing the conditional likelihood is valid and will yield

unbiased estimates.

To simulate GSA, we follow the prescribed methods in Appendix B of Vieland and Huang [1998] to

generate simple pedigrees. Three ages at ascertainment are drawn (c1, c2, c3), representing a grandparent-

parent-child triad. As described in RA, c1 is a continuous uniform random variable, c2 = c1 − d1, and

c3 = c1 − d1 − d2, where d1 and d2 are also continuous uniform random variables with parameters

such that c2 and c3 are guaranteed to be positive. One of the two possible parent-child pairs (either

(c1, c2) or (c2, c3)) is selected with equal probability and assigned to (CP , CC). After drawing a single
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random bivariate normal pair (TP , TC), if (1) is satisfied, the pair is included in the dataset, otherwise

not. Thus those pedigrees which have two affected parent-child pairs are twice as likely to be selected

as those with one pair; this is the condition which satisfies GSA. (Although (c1, c2) and (c2, c3) are

selected with equal probability, the fraction of young pairs in the resulting dataset will be less than 0.5,

since (c2, c3) will fail to satisfy (1) more often than (c1, c2).)

3. Multiplex Ascertainment (MA): In MA, pedigrees with more affected parent-child pairs are ascer-

tained with a larger probability that is not directly proportional to the number of affected parent-child

pairs. Vieland and Huang [1998] argue that this results in samples with younger affected individuals:

a pedigree with young affected individuals will also have many affected individuals, since the disease

tends to present earlier in that pedigree. Thus a sampling scheme which preferentially selects pedi-

grees with multiply affected individuals will have the byproduct of having selected many young pairs.

This will artificially create a difference in mean ages of onset between the parent and the child, even if

there is none. This artificial difference is in addition to that created by the truncation bias. To simulate

MA, then, we “enrich” our sample with young pairs. Three ages of ascertainment are drawn, as in

GSA. One of the two pairs is selected (the probability of which determines the level of “enrichment”

of young pairs in the dataset), and random draws of (TP , TC) are made until condition (1) is satisfied.

For each of the sampling schema, our choice of distributional parameters was governed by previous

simulation studies from Rabinowitz and Yang [1999] and Vieland and Huang [1998]. Under each

simulation configuration, we generated 5000 simulated datasets, each with 50 parent-child pairs, and

tested the null hypotheses of no genetic anticipation against a one-sided alternative that the mean age

of onset in parents exceeds the mean age of onset in children. In each setting, we calculated the

proportion of times the null hypothesis was rejected in 5000 replications. When data were generated

under the null distribution, this proportion provided an estimate of Type I error, whereas under the

alternative, it provided an empirical estimate of power.

Table 1 provides the simulation results under RA. In terms of Type I error, the most honest test

is RY1, which is close to its nominal value of α = 0.05 for each set of generating parameters. HV
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and RY2 stay just above their nominal size, while the paired t-test fares poorly. The Type I error rate

of the paired t-test depends crucially on the amount of truncation; it converges to its nominal value

as the ascertainment distributions increase and the age-of-onset distributions remain fixed. This is the

rationale behind restricting analysis to older birth cohorts. Under the alternative, RY1 is the most

underpowered, with only about 35% of simulations able to detect a difference of 5 years under the

assumption of uncorrelated ages of onset. RY2 does slightly better and HV the best. Of course, the

t-test is the most powerful, which is to be expected given its high rate of false positives.

REMARK 3: For all 4 tests, as the correlation between the ages of onset increases, performance im-

proves. To understand this phenomenon, note that “large” values of TC are the primary cause of a pair

being truncated: in the first three rows of Table 1, Pr(TC > CC) ≈ 0.32, whereas Pr(TP > CP ) ≈

0.002. This truncation inflates the difference in the observed means, even when no such difference

exists between the true means. When TC is uncorrelated with TP , knowing that a pair was ascertained

does not provide much information about TP . But, as the correlation increases, small TC become as-

sociated with small TP , the bias from truncation decreases, and, under the null, test statistics converge

to the correct asymptotic distribution faster. Under both the null and non-null scenario, presence of a

positive correlation leads to increased precision for estimating the mean differences for a fixed n. The

fact that HV is most sensitive (among the three asymptotically unbiased statistics HV, RY1 and RY2)

to changes in ρ can be understood further by observing that the computation of HV involves calculat-

ing ρ̂, the estimated correlation between TP and TC , by maximizing a profile likelihood. We noted in

our simulation that this estimator ρ̂ generally becomes more precise as ρ departs from the null value

of zero: the estimated mean squared error of ρ̂ when ρ = 0 is 2.92 × 10−2 but is 1.98 × 10−2 when

ρ = 0.5, providing a estimated relative efficiency of 68%. Moreover, in small samples, ρ is slightly

overestimated when the true value is 0, causing the variance of the difference in mean age of onset to

be underestimated and the null hypothesis of no anticipation to be rejected more often than desired.

On the other hand, RY1 and RY2, which do not directly use an estimate of ρ in their calculation and

are non-parametric tests, remain less affected.
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Table 2 displays the estimated Type I error rates and power under GSA. As before, RY1 is consis-

tently close to its nominal significance level, and RY2 and HV do reasonably well. The paired t-test,

again, falsely rejects the null many more times than its nominal size suggests. Power rankings are also

as before, with RY1 performing the worst and HV almost as powerful as the t-test. As was the case

under RA, greater correlation decreases Type I error and increases power.

Table 3 simulates multiplex ascertainment, varying the level of enrichment of young pairs for a

fixed set of generating distributions. As before, RY1 commits the expected number of Type I errors.

The paired t-test performs very poorly, rejecting the null hypothesis with probability 1 for sufficient

levels of enrichment. The number of false positives HV yields increases with increasing enrichment.

Unlike the prior ascertainment schema, this inflation cannot be solely attributed to small sample sizes;

as shown by Vieland and Huang [1998], the method does incur inflated Type I error under multiplex

ascertainment. Besides the t-test, HV is the most powerful test statistic. Both the nonparametric test

statistics lose power precipitously with increasing enrichment. In this setting, since the t-test and HV

do not maintain nominal Type I error, we present two combined measures of precision, the accuracy

(ACC) and positive predictive value (PPV), defined as

ACC =
1− Type I error + Power

2
,

PPV =
Power

Power + Type I Error
.

Note that here the ACC and PPV measures are used not in the sense of a diagnostic test but rather as

a combined metric of Power and Type I error, just as mean squared error is a combined measure of

bias and variance in the context of estimation. For example, these measures have recently been used to

assess properties of statistical tests for genetic association which do not strictly maintain Type I error

level in the context of combining individual and family-based studies [Mirea et al., 2010]. All three

test statistics, HV, RY1, and RY2, outperform the paired t-test in terms of these metrics. HV performs

best for all levels of enrichment; its strength is most evident in terms of its accuracy for high levels

of enrichment. The loss of power is not nearly as dramatic as for the nonparametric tests, and this

outweighs its increase in Type I error. Between RY1 and RY2, RY2 would be preferred in terms of
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both metrics.

REMARK 4: In Tables 1-3, we noted that HV has the highest power, while the nonparametric tests,

RY1 and RY2, lack power in spite of adhering to nominal Type I error rates under a wide spectrum of

scenarios. Recall that in all these simulation settings we generated the age-of-onset distribution from

a bivariate normal distribution. Thus the parametric modeling assumption of HV was exactly satisfied

by the generated data. To assess the sensitivity of HV in terms of model misspecification, we generated

ages of onset from a bimodal distribution, governed by a two component mixture of Normals (results

not shown). Under this setting, HV has slightly inflated error rates compared to the more robust RY

statistics but still retains its power advantages in most cases. This trade off between robustness and

efficiency is expected in comparing any parametric method with its nonparametric counterpart.

2.2 Example: Application to Lynch syndrome data from affected parent-child
pairs.

In addition to the above simulation studies, we applied these methods to two cohorts of families with

genetic predisposition to Lynch syndrome (previously better known as hereditary nonpolyposis col-

orectal cancer (HNPCC), but first known as a cancer family syndrome [Warthin, 1913], characterized

by the early onset of gastrointestinal, uterine and other cancers). In 1991, the Amsterdam criteria were

developed for inclusion of families in HNPCC studies to identify causal genes [Vasen et al., 1991,

1999]. The genetic basis of Lynch syndrome is germline mutation in MMR genes, with four genes

known so far to be causally responsible for Lynch syndrome (hMSH2, hMLH1, hMSH6 and hPMS2).

The possibility for anticipation has been suggested, sometimes by anecdotal observation or subjective

observation of the data [Menko et al., 1993, Vasen et al., 1994, Rodrı́guez-Bigas et al., 1996] and

sometimes by formal statistical analysis [Westphalen et al., 2005, Nilbert et al., 2009]. In a carefully

done analysis in Tsai et al. [1997] consisting of 475 pairs selected from 308 families identified through

the Hereditary Colorectal cancer registry at John Hopkins University, no evidence of anticipation was

noted. However the nature and definition of our cohort is quite different from the Tsai et al. study

where only 14 out of the 475 pairs were from 7 families identified with germline mutations in hMSH2
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or hMLH1.

Our first dataset consisted of 74 families, each with an identified deleterious MMR mutation, seen

at the genetic counseling clinic at the UMCCC. The index cases presented to the clinic between 1999

and 2009. Thus the clinic data is very likely to be subjected to multiplex ascertainment as discussed

in Section 2.1. Cancers that qualified as a part of Lynch syndrome were colorectal cancer, endometrial

cancer, epithelial ovarian cancer, upper urothelial cancer, gastric cancer, cancer of the small intestine,

and malignant brain tumors. Out of these 74 families, 57 had at least one affected parent-child pair,

leading to 181 affected parent-child pairs in the database. For patients with multiple cancers, the first

was used to establish the age of onset. Due to missing age-of-onset information, some pairs were

deleted from the current analysis, and the final analysis was restricted to 136 parent-child pairs with

complete age-of-onset information coming from 47 MMR-positive families. The maximum number

of pairs coming from a single family was 15 with an average of 3.53 pairs coming from each pedigree.

The final dataset consisted of 190 individuals. The date of ascertainment was taken as the date of

interview with the proband. For relatives with missing date of birth, age at ascertainment was estimated

from a prediction model based on the proband/index person’s year of birth and relationship to the

proband/index person. Construction of the family cancer history was based on interviews with the

proband by a trained genetic counselor and cross-verified by interviews with other family members.

Absence of confirmatory medical records to verify ages of onset was an obvious limitation of this

cohort. We will refer to this cohort as UMLYNCH from now on.

The other dataset we considered comes from the Danish HNPCC-register on all Danish families

identified with hereditary colorectal cancer from 1991 until December 2006. The Lynch syndrome

cohort was defined as 151 families with pathogenic MMR gene mutations. Out of these 151 families,

92 families contained at least one affected parent-child pair. The final cohort consisted of 400 indi-

viduals making up 290 parent-child pairs. Unverifiable cancers were ignored, and, for patients with

multiple cancers, the first was used to establish the age of onset. Nilbert et al. [2009] analyzed this

data in a prior paper using the paired t-test and HV but did not apply the methods of Rabinowitz and
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Yang [1999]. We will refer to this cohort as DLYNCH from now on. In comparison to UMLYNCH,

DLYNCH has more complete age-of-onset information and the advantage of having verified medical

history data. From Table 4, the mean age at diagnosis for all individuals in UMLYNCH was 47.1 yrs,

compared to 46.8 yrs in DLYNCH.

REMARK 5: SINCE THE OBJECTIVE OF THIS ARTICLE IS TO PROVIDE A REVIEW AND COMPAR-

ISON OF EXISTING METHODS, OUR SIMULATION STUDIES ONLY CONSIDERED THE ORIGINALLY

PROPOSED TEST STATISTICS (t-TEST, HV, RY1, RY2) AND GENERATED INDEPENDENT PARENT-

CHILD PAIR DATA WITH ONE PAIR PER FAMILY. HOWEVER, THE DATA ANALYSIS RESULTS PRE-

SENTED IN THIS SECTION ARE MODIFICATIONS OF THE ORIGINAL TEST STATISTICS IN THE SENSE

THAT THEY MAKE ADJUSTMENTS FOR THE CORRELATION THAT MAY POTENTIALLY EXIST BE-

TWEEN MULTIPLE PAIRS SAMPLED FROM THE SAME FAMILY, WHICH IS THE CASE FOR BOTH

UMLYNCH AND DLYNCH COHORT. FOR THE PARAMETRIC METHODS (t-TEST AND HV), WE

USED ROBUST SANDWICH ESTIMATORS OF THE STANDARD ERRORS BASED ON THE SCORE RESID-

UALS SUMMED OVER EACH FAMILY. FOR THE NONPARAMETRIC METHODS (RY1 AND RY2) WE

EXTENDED THE ORIGINAL VARIANCE FORMULAE TO ACCOMMODATE BETWEEN-PAIR CORRELA-

TION WITHIN THE SAME FAMILY (ASSUMED TO BE CONSTANT ACROSS FAMILIES). MORE SPECIF-

ICALLY, FROM THE THEORY OF U -STATISTICS, BOTH RY1 AND RY2 CAN BE ASYMPTOTICALLY

REPRESENTED IN THE FORM
∑n

i ui (WITH i INDEXING EACH PAIR AND N BEING THE TOTAL NUM-

BER OF pairs) WHERE EXACT EXPRESSIONS FOR ui AND THE CORRESPONDING VARIANCE AP-

PROXIMATIONS UNDER THE INDEPENDENCE ASSUMPTION ARE PROVIDED IN RABINOWITZ AND

YANG [1999]. THE ORIGINAL unADJUSTED VARIANCE ESTIMATES ASSUME THAT VAR ui = σ2
u

FOR i = 1, . . . , n AND COV (ui, uj) = 0 FOR i 6= j . THUS, V̂AR
∑n

i ui = nσ̂2
u. WE INTRODUCE

A FAMILIAL CORRELATION STRUCTURE BY LETTING COV (ui, uj) = ρuσ
2
u WHEN i AND j COME

FROM THE SAME FAMILY, WHICH IMPLIES THAT

V̂AR

n∑
i

ui = σ̂2
u

[
n+ 2ρ̂u

# FAMILIES∑
k=1

(
# PAIRS IN FAMILY k

2

)]
,

WITH THE CONVENTION THAT
(
1
2

)
= 0. THIS SERVES TO ADJUST FOR THE ARTIFICIAL INCREASE
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IN SAMPLE SIZE DUE TO INCORRECTLY ASSUMING BETWEEN-PAIR INDEPENDENCE. THE ESTI-

MATES σ̂2
u AND ρ̂u ARE OBTAINED FROM THE EMPIRICAL VARIANCE AND CROSS-CORRELATION

OF ûi, WITH ûi AS DESCRIBED IN RABINOWITZ AND YANG [1999].

Table 5 provides the correlation-adjusted version of the set of four test statistics discussed in Sec-

tion 2. We first discuss the analysis that includes all pairs. The paired t-tests, even with robust standard

errors, as might be expected, display high levels of significance, with observed differences in mean

ages of onset of 9.89 years for UMLYNCH (P < 0.0001) and 8.72 yrs for DLYNCH (P < 0.0001).

Similar evidence is obtained by RY2 (P = 0.0067 in UMLYNCH and P < 0.0001 in DLYNCH). HV

gives only slight evidence of genetic anticipation in UMLYNCH (P = 0.0294) compared to DLYNCH

(P < 0.0001), and RY1 applied to UMLYNCH shows no significance (P = 0.5) whereas DLYNCH

shows significance (P = 0.0046). This last observation is explained by the fact that in UMLYNCH,

only 62 pairs qualified in the construction of RY1, limiting the power and reliability of the analysis (as

discussed in Remark 1 of Section 2). Results from DLYNCH show greater levels of significance than

UMLYNCH for all the tests we considered, which is explained by the larger sample size of DLYNCH.

Considering only those pairs where both individuals had colorectal cancer, the difference in mean

ages of onset increased in both datasets (11.19 yrs in UMLYNCH, 11.01 yrs in DLYNCH); with one

exception (HV in DLYNCH), the significance level dropped slightly across the board due to the re-

duced sample size in this subgroup. In UMLYNCH, mutation status was known for 46 out of 190

individuals. Since this is a small number of subjects, stratified analysis by gene-specific mutation type

was not feasible. In DLYNCH, where complete data was available on mutation status, the gene most

commonly mutated was hMSH2 (153/290 pairs). The difference in mean ages of onset in successive

generations restricted to hMSH2 mutation carriers was 7.58 yrs, and all three test statistics (HV, RY1,

RY2) displayed only marginal statistical significance (0.01 < P < 0.05). Among those with a muta-

tion in the hMLH1 gene, the difference in mean ages of onset was larger, 10.10 yrs, and HV and RY1

were less significant; however, RY2 was actually considerably more significant (P < 0.0001). The

hMSH6 group had a difference of 9.76 yrs and was least significant due to only 41 pairs.
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For the sake of completeness, the data analysis results using the test statistics as proposed in the

original articles and discussed in Section 2, without adjusting for correlation among pairs coming

from the same family are presented in Table ?? and, as expected, they are inflated relative to the ad-

justed results in Table 5. Appendix Table ?? provides the inverse variance-weighted pooled estimates

[DerSimonian and Laird, 1986] combining UMLYNCH and DLYNCH estimates from the full cohort

corresponding to Table ??. The pooled estimates from the t-test, HV and RY2 still show strong sta-

tistical significance, whereas RY1 fails to reach significance. The same finding holds for adjusted

estimates presented in Table 5 when pooled.

3 Use of censored regression models: Inclusion of affected and
unaffected family members

Anticipation is a phenomenon which can be addressed via study designs beyond a retrospective com-

parison of mean ages of onset of affected parent-child pairs in a (possibly truncated) cohort. The

second genre of methods and thus study designs considers a well-defined cohort of all at-risk affected

and unaffected individuals and applies censored regression models and classical survival analysis tech-

niques to test for a generational effect.

Hsu et al. [2000] proposed two nonparametric matched and unmatched test statistics based on

multivariate survival analytic techniques that consider both affected and unaffected family members

and potential correlation between the ages of onset within a family. For unaffected individuals, Hsu

et al. consider age at last follow-up or age at death and include this information while differentiating

the age-of-onset distribution in two successive generations. The method proposed by Hsu et al. [2000]

cannot incorporate other covariates. However, their idea of including all affected/unaffected pairs

is further extended into a general survival regression framework in the following two more recent

papers. The advantages of these censored regression models are the flexibilities to incorporate other

covariates, environmental factors, screening practices or secular trends as needed. They are also easily

amenable to incorporate familial correlation using standard techniques for correlated failure time data
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[Kalbfleisch and Prentice, 2002].

1. Normal random effects model (REM): Larsen et al. [2009] employ a normal random effects model

in the following study setting. Pedigrees known to be carriers for mutations in one of the MMR genes

are identified, and all at-risk members of these families (affected or unaffected) are followed until

disease diagnosis or time of censoring. The paper uses a superset of DLYNCH. Let tij be the age to

disease diagnosis for the jth individual in the ith family. Larsen, et al. posit the following model,

Tij = ui + βXij + γZij + εij, (4)

where ui is a family specific random effect, Zij is the generation of the j-th individual in the i-th

family (with the oldest individual in a family being denoted as first generation with Zij = 1), γ is the

fixed effect of generations, and εij is the residual with mean zero and a given variance component.

All random effects u and ε are assumed to be independent. When γ = 0, there is no change in time

to disease diagnosis across generations. Random family effects account for within family correlation,

and fixed effects for other covariates can be added to the model, as the term βXij represents in (4). The

likelihood is adjusted for censoring indicators, assuming censoring is non-informative with respect to

age of onset.

2. Cox proportional hazards model (CPH): Daugherty et al. [2005] use a Cox proportional hazards

model under the following study design: families with at least one affected individual are first ascer-

tained, and all parents and children of affected individuals are followed until the cancer event (disease

diagnosis) or time of censoring. Let tij again be the age of onset for member j in family i. The

following marginal proportional hazards model is assumed:

λ(tij|Xij, Zij) = λ0(tij) exp(β
∗Xij + γ∗Zij). (5)

The term λ0 is the baseline hazard function, Xij are other relevant measured covariates for a given

individual and Zij is a binary indicator of relative type (0 for offspring and 1 for parent). Evaluating

H0 : γ
∗ = 0 evaluates the relative hazard between parents and offspring. Estimation of β∗ and γ∗ are

carried out via a working independence assumption, but, by using a robust sandwich estimate of the
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covariance matrix, within-family correlations can be accounted for. Despite these strengths, however,

the model answers the question of anticipation at the generational level and not the familial level; that

is, all parents are assumed to have the same hazard function and all children another. This is problem-

atic for two reasons. First, the degree of anticipation in one family may be different than the degree of

anticipation in another, yet both are constrained to have the same hazard. The matched statistic of Hsu

et al. [2000] addresses this issue of heterogeneity of hazards across families. Second, when three con-

secutive generations are considered, the middle individual plays the role of a child in one parent-child

pair and that of a parent the other. The same individual will thus have two predicted hazards, one as

a child and one as a parent according to this model. This also artificially inflates the sample size. To

overcome this second limitation of their approach, we slightly modify the model, letting Zij denote the

generation of person j in family i (as in REM). This slightly changes the interpretation of γ∗, which

now becomes the hazard ratio between two successive generations.

3.1 Application of censored regression models to expanded Danish cohort

For illustration purposes of the second class of methods as well as to understand the differences in

defining the study cohort, we return to the Danish HNPCC registry and consider the same dataset

analyzed in Larsen et al. [2009]. The dataset consists of 816 individuals who are mutation positive

for one of the three MMR genes, coming from 155 pedigrees. Lynch associated cancer developed in

568 individuals by December 2007. Zij took values in {1, 2, 3, 4}, with Zij = 1 corresponding to the

oldest member of a family. Excluding censored individuals, the mean ages of onset were 53.0 years,

45.2 years, 40.0 years and 25.0 years in generations 1,2, 3, and 4, respectively.

Let Xij = 1[individual j in family i is male] in (4) and (5), so that β, here 1-dimensional, char-

acterizes the increase (or decrease) in age at diagnosis between males and females, and β∗, also 1-

dimensional, gives the log hazard ratio between males and females, all other factors being equal. See

Larsen et al. [2009] for details of the derivation of the likelihood of (4), where censored observations

must be taken into account. Maximization of the likelihood can be accomplished via standard opti-
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mization routines or via a grid search, and standard errors can be calculated by inverting the Hessian of

the maximum likelihood estimates. Standard software packages will estimate parameters and standard

errors for (5), this being the regular partial likelihood of the Cox proportional hazards model. Table 6

gives parameter estimates and test statistics under both REM and CPH model.

REM estimates of γ indicate that each generation within a family, adjusting for gender, develops

Lynch syndrome about 3 years sooner than the previous generation; this effect is highly significant

(P < 0.0001). As mentioned before, we modified the CPH approach of Daugherty et al. [2005]

slightly by defining Zij not as a dichotomous classifier but as the generation of the jth individual in the

ith family. CPH estimates γ∗, the difference in the log-hazards between two consecutive generations,

to be 0.222 (P = 0.001). The hazard for generation k + 1 is about e0.222 = 1.25 times higher than the

hazard for generation k, k = 1, 2, 3. The gender effect is not significant in REM and only marginally

so in CPH, but both indicate that men with Lynch Syndrome tend to be diagnosed with cancer at a

later age than women. The interpretation/magnitudes of γ and γ∗ are not directly comparable (as is

also the case with β and β∗), although, in both cases, the null hypothesis of no genetic anticipation

H0 : γ(or γ
∗) = 0 is rejected.

4 Discussion

Since the paper has a two-pronged objective of reviewing analytical choices to assess genetic anticipa-

tion and adding new evidence to the context of Lynch syndrome, we separate the two discussion items

and summarize our findings.

4.1 Choice of statistical methods

The primary objective of the paper is to provide the reader with a sense of the gamut of statistical

techniques that can be used to assess genetic anticipation, depending on their choice of cohort. We

clearly delineate contrasting statistical issues when one assesses generational effects on age of onset

using just affected parent-child pairs versus affected and unaffected family members at risk. Collecting
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data under the first design is probably easier, because gathering information on unaffected relatives

often requires substantial work. However, the censored regression models are more powerful, since

each family contributes the additional information of its unaffected members. The second class of

methods falls under the well-developed realm of regression models for censored data and allows the

immediate extension to inclusion of covariates and correlations among ages of onset.

The simulation study in the paper is also the first one to compare the parametric and nonparametric

methods that address the issue of truncation bias. We evaluate the performance of these alternatives

under different ascertainment schema and model misspecification. Using solely Type I error as a

metric, RY1 is consistently the preferred test statistic across all ascertainment schema, among any set

of generating parameters we considered. However, as demonstrated in Tables 1 to 3, its power, even

for an effect as large as a difference in 10 years in mean age of onset, can be unacceptably small. We

notice this limitation in our data analysis as well, where RY1 appears to have a non-significant/less

significant result in contrast to HV and RY2. This is because many parent-child pairs get excluded

from the construction of the RY1 test statistic. For example, in the last row of Table 3, over 5000

simulations, an average of 5.58 pairs (out of 50) satisfied 1[max(TPi
, TCi

) ≤ min(CPi
, CCi

)] (see

expression (3) above). Thus the hypothesis was typically accepted or rejected based on only 5 or 6

parent-child pairs, with all the others being excluded from the sample. In some simulations, no parent-

child pairs satisfied the criterion for being retained and RY1 is not defined in that case. The highest

level of enrichment simulated in Table 3 was 90%. HV has inflated Type I errors of approximately

16% in this instance. Although these extreme levels of enrichment do inflate HV’s Type I error, for a

modest level of enrichment (50-60%), the Type I error is still within an acceptable range. RY2 also

maintains Type I error, but under extreme enrichment, (90%) it is very conservative with Type I error

rate lower than nominal level (0.02).

In terms of power, because we generated data from the Bivariate normal distribution in Tables 1–3,

HV was superior as expected. However, the nonparametric RY methods are valid over any distribu-

tional form of the age-of-onset distribution in terms of Type I error rates. Among the two nonpara-
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metric methods, RY2 has better power properties than RY1 across all simulation settings. Given the

operating characteristics of these procedures across simulation settings, we recommend calculating

HV and RY2, and examining the results of both procedures, so as to strike a balance between bias

and efficiency. If there is the possibility of multiplex ascertainment strongly influencing the results, or

major violation of the normality assumption, one should trust RY2 more than the HV method in order

to avoid the chance of yielding false positives.

REMARK 6: A referee suggested comparing the methods in Section 1 (affected parent-child pairs) with

methods in Section 2 (all affected and unaffected family members at risk). Since the two classes of

methods are based on two different designs, it is hard to structure a realistic simulation study that will

be meaningful to compare across all six tests (Design 1: t-test, HV, RY1, RY2; and, Design 2: REM

and CPH) based on generated pedigree data. Note that REM and CPH always maintains Type I error

as they are valid statistical tests under the given survival regression model. To provide an approximate

sense of relative power across the six tests, we resampled the extended DLYNCH data with pedigree

sizes of 25, 50 and 75 respectively and applied the Section 1 methods to the affected parent-child pairs

from the sampled families and applied Section 2 methods to the entire sampled family. The results are

presented in Appendix Table ??. We note that HV, RY2 and REM are the most powerful statistical

tests. Since REM uses data from all family members and is a likelihood-based parametric approach, it

is the most powerful method. The CPH and RY1 appear to be less powerful tests in this context. The

loss of power in CPH as compared to REM may be attributed to the use of robust sandwich estimator

of variance to account for familial correlation in CPH, whereas REM is a model-based approach,

modeling the age-of-onset times directly via a normal random effects model.

4.2 Looking for an answer in Lynch syndrome?

In the context of Lynch syndrome, new evidence in favor of genetic anticipation is added through the

analysis of UMLYNCH. UMLYNCH arguably falls under more severe multiplex ascertainment than

DLYNCH; a likely catalyst for probands/index persons to present at the clinic is multiply affected

20



family members with early age of onset. On the other hand, DLYNCH data is a richer, population-

based database of larger size, with cancers verified through medical records, clinical records and death

certificates, as well as complete characterization of mutation status. Despite these differences, there is a

surprising amount of agreement between UMLYNCH and DLYNCH cohorts in terms of the mean age

of onset, their mean differences across generations and effect sizes in terms of genetic anticipation.

We analyzed the datasets by all four methods, after adjusting for correlation between pairs coming

from the same family, and the generally significant results with P < 0.01 (except HV and RY1 in

UMLYNCH) are indeed reassuring. Our simulation results (Table 3) indicate that under multiplex

ascertainment, RY1 and RY2 are valid procedures, maintaining correct Type I error rates with RY2

having more power to detect a given effect size. Thus, using RY2, the risk of false positives from an

inflated Type I error due to multiplex ascertainment is not a concern in our analysis of UMLYNCH

and DLYNCH. The analysis of the expanded DLYNCH data also presents strong evidence in favor of

genetic anticipation in Lynch Syndrome by both a random effects and a proportional hazards model.

There are other considerations that add complexity to the situation. While age of onset is an impor-

tant indicator for anticipation, there may also be anticipation exhibited through more aggressive disease

severity. In Lynch syndrome, for example, this can be measured by the number of cancers/tumors or

the stage of the tumor. Ideally, the measured response then would be multivariate, taking into account

all of these outcomes via a multivariate response model. As mentioned in the introduction, bias in

estimates may result from a change in screening practices over time. For the case of Lynch syndrome,

an increase in the rate of colonoscopies or a decrease in the mean age of first colonoscopy may lower

the mean age at diagnosis apart from the effects of genetic anticipation. For retrospective data, this

may mean stratifying analysis by time relative to the introduction of the colonoscopy as a common

diagnostic tool. A model-based approach to this bias would be the inclusion of an indicator variable

for whether the individual was diagnosed before or after the introduction of the colonoscopy. Incor-

porating detailed colonoscopy records would be a critical contribution towards arriving at the truth. In

the Danish registry, information on all colonoscopies were not available, but if an adenoma had been
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identified at screening, this information was entered in the population-based pathology register and

at-risk individuals were censored at this time.

Another addition to the regression-based approaches in Section 2 would be the expansion of the

random effects model; a referee pointed out that a constant random intercept alone might not properly

account for familial correlations of larger datasets, and each family may have an individual random

slope for generational effects. Changing the fixed effect γ to a random effect γi in (4) would allow for

additional flexibility in the model, and family-wise predictions of γi may be of clinical interest. We

are currently investigating this model from a Bayesian perspective.

Finally, detecting anticipation statistically does not necessarily suggest a plausible mechanistic ex-

planation to genetic anticipation in Lynch syndrome. Before the biological basis of anticipation had

been demonstrated in several specific disorders, the phenomenon was thought to be due to sampling

bias, epigenetic effects, gene conversion, or recombinant events. Since then, the biological basis for

anticipation in a number of neurodegenerative disorders has been shown to be attributable to trinu-

cleotide repeat instability, with expansion of repeats clearly correlated with an earlier age of onset.

While molecular instability due to MMR gene mutation is a natural hypotheses for anticipation in

Lynch syndrome, there is no mechanistic data to support this. Recently, telomere shortening has been

suggested as the mechanism for anticipation [Vulliamy et al., 2004]. Anticipation has been hard to

study in cancer genetic syndromes. However, new evidence from studies of Li-Fraumeni syndrome

(LFS) suggest telomere shortening as an alternative mechanism [Tabori et al., 2007]. Accelerated

telomere attrition has been reported in affected carriers with LFS compared with unaffected carriers

as well as compared with normal wild-type controls, leading investigators to speculate that defects in

TP53 allow cells with shorter telomeres to escape senescence and proliferate. If this type of selection

for shorter telomeres applies to both somatic and germline tissues, then one would expect that shorter

telomeres would be identified at birth in each successive generation. Whether this hypotheses is ten-

able for Lynch syndrome is a question that still remains to be answered. The National Comprehensive

Cancer Network’s guidelines recommend initiating colonoscopy at age 20 to 25 or 10 years before
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the earliest diagnosis in carrier families, and these new data clearly support enhanced surveillance for

mutation carriers at a young age. Except for the Tsai et al. [1997] paper, all published data have so far

presented evidence in favor of genetic anticipation in Lynch syndrome. Further mechanistic studies

are needed to arrive at the true answer to this important question.

Software: Annotated R codes for implementing all these methods are available at

http://www.sph.umich.edu/bhramar/public_html/research/.
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5 Tables and Figures

Table 1: Estimated Type I error rates and Power (corresponding to 5000 simulations with 50 parent-child pairs per
simulation) with nominal significance level α = 0.05 under Random Ascertainment for 4 test statistics. (TP , TC)

are the respective ages of onset for the parent and child, with BV N the bivariate normal distribution with parame-
ters (µp, µc, σp, σc, ρ(Tp, Tc)). The ascertainment ages (CP , CC) are determined by c1 ∼ Unif(80, 90) and d1 ∼
Unif(20, 30) as described in Section 2. Powers in bold come from tests which asymptotically fail to maintain nomi-
nal level of significance. Powers in italics come from tests which are asymptotically unbiased, but, due to small sample
size, have Type I error rates significantly greater than 0.05.

(TP , TC)∼
t-test HV1 RY12 RY22

Type I Error
BV N(55, 55, 100, 100, 0.0) 0.858 0.085 0.054 0.067
BV N(55, 55, 100, 100, 0.5) 0.562 0.069 0.048 0.062
BV N(55, 55, 100, 100, 0.7) 0.387 0.064 0.049 0.058

Power
BV N(55, 50, 100, 100, 0.0) 0.996 0.642 0.353 0.543
BV N(55, 45, 100, 100, 0.0) 1.000 0.988 0.826 0.966
BV N(55, 50, 100, 100, 0.5) 0.999 0.912 0.673 0.853
BV N(55, 45, 100, 100, 0.5) 1.000 1.000 0.993 1.000
BV N(55, 50, 100, 100, 0.7) 1.000 0.993 0.891 0.979
BV N(55, 45, 100, 100, 0.7) 1.000 1.000 1.000 1.000

1 Huang and Vieland [1997]
2 Rabinowitz and Yang [1999]
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Table 2: Estimated Type I error rates and Power (corresponding to 5000 simulations with 50 parent-child pairs per
simulation) with nominal significance level α = 0.05 under Generalized Single Ascertainment for 4 test statistics.
(TP , TC) are the respective ages of onset for the parent and child, with BV N the bivariate normal distribution with
parameters (µp, µc, σp, σc, ρ(Tp, Tc)). The ascertainment ages (CP , CC) are determined by c1 ∼ Unif(80, 90) and
d1, d2 ∼ Unif(20, 30) as described in Section 2. Powers in bold come from tests which asymptotically fail to maintain
nominal level of significance. Powers in italics come from tests which are asymptotically unbiased, but, due to small
sample size, have Type I error rates significantly greater than 0.05.

(TP , TC)∼
t-test HV1 RY12 RY22

Type I Error
BV N(55, 55, 100, 100, 0.0) 0.906 0.078 0.051 0.065
BV N(55, 55, 100, 100, 0.5) 0.653 0.049 0.051 0.063
BV N(55, 55, 100, 100, 0.7) 0.444 0.044 0.050 0.055

Power
BV N(55, 50, 100, 100, 0.0) 0.994 0.635 0.330 0.521
BV N(55, 45, 100, 100, 0.0) 1.000 0.988 0.778 0.951
BV N(55, 50, 100, 100, 0.5) 1.000 0.799 0.633 0.834
BV N(55, 45, 100, 100, 0.5) 1.000 0.997 0.984 1.000
BV N(55, 50, 100, 100, 0.7) 1.000 0.931 0.854 0.968
BV N(55, 45, 100, 100, 0.7) 1.000 0.997 0.999 1.000

1 Huang and Vieland [1997]
2 Rabinowitz and Yang [1999]
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Table 3: Estimated Type I error rates, Power, Accuracy and Positive Predictive Value (corresponding to 5000 simulations
with 50 parent-child pairs per simulation) with nominal significance level α = 0.05 under Multiplex Ascertainment for 4
test statistics. ‘Percent Young’ is the level of enrichment of young pairs. For all rows, the ages of onset for the parent and
child are generated from (TP , TC) ∼ BV N(55, 55, 100, 100, 0) (Type I Error) or BV N(55, 45, 100, 100, 0.0) (Power).
The parameters associated with the ascertainment distributions are c1 and (d1, d2) as described in Section 2, with c1 ∼
Unif(80, 90), and d1, d2 ∼ Unif(20, 30). Powers in bold come from tests which asymptotically fail to maintain nominal
level of significance. Powers in italics come from tests which are asymptotically unbiased, but, due to small sample size,
have Type I error rates significantly greater than 0.05.

Percent t-test HV1 RY12 RY22 t-test HV1 RY12 RY22

Young Type I Error Power
0.1 0.975 0.066 0.049 0.061 1.000 0.989 0.776 0.953
0.3 0.999 0.060 0.046 0.064 1.000 0.973 0.685 0.900
0.5 1.000 0.068 0.052 0.068 1.000 0.926 0.563 0.796
0.7 1.000 0.102 0.048 0.053 1.000 0.848 0.391 0.536
0.9 1.000 0.160 0.052 0.020 1.000 0.745 0.201 0.079

Accuracy Positive Predictive Value
0.1 0.513 0.962 0.864 0.946 0.506 0.937 0.941 0.940
0.3 0.501 0.957 0.820 0.918 0.500 0.942 0.937 0.934
0.5 0.500 0.929 0.756 0.864 0.500 0.932 0.915 0.921
0.7 0.500 0.873 0.672 0.742 0.500 0.893 0.891 0.910
0.9 0.500 0.796 0.575 0.523 0.500 0.823 0.794 0.798

1 Huang and Vieland [1997]
2 Rabinowitz and Yang [1999]

Table 4: Summary of UMLYNCH and DLYNCH with numbers of individuals, mean ages of diagnosis (aod) and standard
errors (SE) by cancer type and mutation status. Cancers in the ‘Other’ category include brain tumors, ovarian, rectal, cancer
of the small intestine, stomach, endometrial, cancer of the ureter, and upper urothelial cancer.

UMLYNCH DLYNCH
n mean aod (SE) n mean aod (SE)

All Individuals 190 47.1(13.7) 400 46.8(12.3)

Cancer
·Colorectal 130 45.7(13.7) 266 46.4(13.1)
·Other 60 50.1(13.3) 134 47.7(10.6)

Mutation

·hMSH2 27 44.9(15.3) 207 46.5(11.4)
·hMLH1 18 42.7(11.6) 134 44.6(13.0)
·hMSH6 1 70.0(NA) 59 52.9(12.1)
·Unknown 144 47.8(13.5) 0

Total Pairs (n) 136 290
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Table 5: Four analytical methods1 applied to UMLYNCH and DLYNCH. ’Only CRC’ considers those parent-child pairs where both
had colorectal cancer and, for DLYNCH, ‘MSH2’, ‘MLH1’ and ‘MSH6’ stratify by mutation type. *** indicates a p-value less than
0.0001, ** less than 0.001, and * less than 0.01.

Subset
UMLYNCH DLYNCH

Difference Test StatisticsSignificance Difference Test StatisticsSignificance

pairs(n) in means t-test HV2 RY13 RY23 pairs(n) in means t-test HV2 RY13 RY23

Entire cohort 136 9.89 5.65∗∗∗ 1.89 0.00 2.47∗ 290 8.72 7.77∗∗∗ 4.10∗∗∗ 2.60∗ 4.67∗∗∗

Only CRC 62 11.19 4.53∗∗∗ 1.82 -0.10 2.28 130 11.01 6.68∗∗∗ 4.25∗∗∗ 2.01 3.85∗∗∗

MSH2
Not Analyzed Due to Missingness

153 7.58 5.13∗∗∗ 2.85∗ 2.09 2.86∗

MLH1 92 10.10 4.28∗∗∗ 2.51∗ 1.21 3.74∗∗∗

MSH6 41 9.76 4.29∗∗∗ 1.74 1.05 2.08
1 With adjustments to the variance estimates for correlation of multiple pairs coming from the same family.
2 Huang and Vieland [1997]
3 Rabinowitz and Yang [1999]
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Table 6: Analysis of expanded DLYNCH data of all at-risk individuals from MMR carrier families using a normal random effects model (REM) and Cox
proportional hazards model (CPH). For REM, ui is the family-wise random intercept, γ is the effect of generation on time to diagnosis, and β is the expected
difference between males and females in time to diagnosis. For CPH, γ∗ is the log hazard ratio corresponding to generation, and β∗ is the log hazard ratio
corresponding to gender. Gender is coded as Male=1 and Female=0, whereas generation can take values 1,2,3 and 4, with 1 representing the oldest generation in a
family.

REM1 CPH2

Parameter Estimate(SE) Wald p-value Parameter Estimate(Robust SE) Wald p-value
E(ui) 55.03(1.36) < 0.0001 γ∗ (Generation) 0.22(0.07) 0.0014

γ (Generation) -3.28(0.61) < 0.0001 β∗ (Gender) -0.17(0.08) 0.0300
β (Gender) 1.22(0.93) 0.1870

Var(ui) 11.17(4.77)
Var(εij) 135.76(8.92)

1 Larsen et al. [2009]
2 Daugherty et al. [2005]
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