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Abstract Brain networks can be divided into two cate-

gories: structural and functional networks. Many studies of

neuroscience have reported that the complex brain net-

works are characterized by small-world or scale-free

properties. The identification of nodes is the key factor in

studying the properties of networks on the macro-, micro-

or mesoscale in both structural and functional networks. In

the study of brain networks, nodes are always determined

by atlases. Therefore, the selection of atlases is critical, and

appropriate atlases are helpful to combine the analyses of

structural and functional networks. Currently, some prob-

lems still exist in the establishment or usage of atlases,

which are often caused by the segmentation or the par-

cellation of the brain. We suggest that quantification of

brain networks might be affected by the selection of atlases

to a large extent. In the process of building atlases, the

influences of single subjects and groups should be bal-

anced. In this article, we focused on the effects of atlases

on the analysis of brain networks and the improved divi-

sions based on the tractography or connectivity in the

parcellation of atlases.
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1 Introduction

Studies dating from the nineteenth century have demon-

strated that neuronal elements construct an extremely

complicated structural network [1]. Currently, studies of

the topological structure of brain networks and the rela-

tionship between structure and brain function remain a

tremendous challenge [2]. Although knowledge of the

neuroscience of molecular and genetic mechanisms has

increased, the principles of cognition are not generally

understood. Therefore, the relationship between con-

sciousness and higher brain functions requires further in-

vestigation [3]. There is a clear need for new methods to

study the brain, which is a complex and generally misun-

derstood dynamic system.

Modern theories of networks, originating from

mathematics and sociology, are valuable methods used in

the study of the complex systems [4]. The brain network

is the complex network that supports efficient information

integration and communication with relatively low wiring

costs [5]. Recently, some network models have been

applied to demystify the structural characteristics of brain

networks and the basement of brain functional networks,

such as the small-world network [6] and scale-free net-

work [7, 8]. The small-world network, characterized by a

high clustering coefficient and short path length, was

described by Watts and Strogatz [6]. Many previous

studies have demonstrated that structural and functional

brain networks are characterized by a small-world ar-

chitecture [9–14]. The scale-free network is characterized

by an average small number of connections of each node,

but with a high level of global connectivity guaranteed by

the existence of a small number of highly connected

nodes [7, 8, 15]. However, another study reported that

functional networks based on resting-state functional MRI

(fMRI) data at the macroscale followed an exponentially

truncated power law distribution [16]. The analysis re-

sults of anatomical networks in humans also showed a

degree of distribution following the truncated power law

[17].
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In the analysis of structural and functional networks,

some predefined parcellation atlases, the automated ana-

tomical labeling (AAL) and automatic nonlinear imaging

matching and anatomical labeling (ANIMAL) atlases, have

been widely used [12, 16, 18, 19, 20]. In addition, still

some other atlases were used in the previous studies, such

as the Harvard-Oxford (HO) atlas derived from anatomical

landmarks (sulci and gyral), the Eickhoff-Zilles (EZ) atlas

derived from cytoarchitectonic segmentations, the Talar-

iach Daemon (TT) atlas derived from myeloarchitectonic

segmentations and the LONI Probabilistic Brain Atlas

(LPBA40) derived from population-based probability [21,

22]. More information on the above atlases can be obtained

from [23]. Since the importance of determining the nodes

in brain networks was proposed, researchers have made

many efforts toward atlas optimization. Several previous

studies have reported the impacts of different atlases on

brain networks [24, 25]. Quantification of specific brain

network attribute parameters was obviously affected by

atlases, such as the clustering coefficient and shortest path

length. Actually, quantification of the brain network was

directly affected by parcellation strategies, such as con-

nection weights, which limit the selection of network

models and parameters. Also in the previous studies, the

credibility results were archieved by the analysis of sim-

plified networks, such as binary networks. In this article,

we discuss recent studies on parcellation of the brain and

the impact of atlases on the construction of brain networks.

2 Brain networks and atlases

2.1 Structural and functional networks

In graph theory, the network is a graph consisting of a set

of nodes with connecting edges. The brain network can be

defined by a connection matrix (a graph theory concept),

also called a connectome [26]. The node in the connection

matrix is the key element, and it is still an unclear concept

in the analysis of brain networks [26]. Scale and parcel-

lation are key restricted factors in the definition of nodes.

The number of the edges connecting a node is called the

degree. The edges of brain networks can be weighted or

unweighted, directed or undirected. Structural and func-

tional networks can be processed as the simplest graph (an

unweighted and undirected graph). However, weighted

networks and directed networks cannot be ignored despite

the existing controversy. The construction of brain net-

works is showed in Fig. 1 and described below.

The methods to construct structural brain networks can

be divided into two categories: cerebral cortex correlation

and white fiber tracking. Many types of brain morpho-

logical measurements are used to calculate cerebral cortex

correlation, including the commonly used cortical thick-

ness and volume [27–29]. Anatomical networks can be

obtained by calculating correlations of cortical thickness

(or volume) between all pairs of regions in a predetermined

anatomical parcellation scheme, such as in the AAL and

ANIMAL atlases [12, 30]. Strong interregional correlation

of cortical thickness measurements may be the axonal

connection, which might be caused by mutual nutrition

[31–33]. Structural networks can also be constructed by the

data of diffusion tensor imaging (DTI) via tracking the

white matter fiber bundles [34]. Some summation indices,

such as the trace apparent diffusion coefficient or the

fractional anisotropy (FA), can be extracted using tensor

decomposition from DTI [35–37]. DTI has become the

preferred choice for detecting white matter alterations in

the human brain [38]. However, the partial volume effect

and inability of the model to cope with nonGaussian dif-

fusion are the two main drawbacks of DTI [39], which limit

its application.

Functional brain networks consist of separated brain

regions and functional connectivities between pairs of

brain regions. Functional connectivity is defined as the

temporal dependency of neuronal activation patterns of

Fig. 1 The construction of

functional and structural

networks
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anatomically separated brain regions [40]. The low-fre-

quency oscillations (*0.01–0.1 Hz) of blood oxygena-

tion level-dependent fMRI time series recorded during

the resting state are gaining special attention and are

used to show correlated patterns between separate brain

regions [41, 42]. Although many methods can be used to

measure spontaneous brain activities and the correlation

between these activities and some neurological diseases

in resting-state fMRI, the test-retest reliability of con-

nectivities is still unclear [43]. Specifically, a small in-

traindividual variability and large interindividual

variability can lead to high test-retest reliabilities [43].

Most previous studies of functional networks were based

on atlases divided by anatomical or cytoarchitectonic

boundaries [44, 45]. As the reliability and suitability of

these approaches were unclear, building atlases based on

functional connectivity was imperative. Recently, some

functional atlases have been proposed, such as the

Dosenbach 160-region atlas and Power 264-region atlas,

both generated based on metaanalysis of task-related

fMRI data [46, 47].

Compared with fMRI, EEG and MEG have a higher

frequency and wider band (*1 to 100 Hz) but lower

spatial resolution. Because of the high temporal resolution,

EEG and MEG are useful techniques in the study of brain

dynamics and functional connectivity [48]. The functional

connectivity could be measured via linear methods, such as

cross-correlation of pairs of EEG signals [49], magnitude-

squared coherence and wavelet coherence from EEG [50].

Besides linear methods, nonlinear methods on the basis of

deterministic chaos and information-based techniques can

also be used to measure the functional connectivity in

EEG/MEG. Cross mutual information is a typical infor-

mation-based method that has been used to diagnose Alz-

heimer’s disease and schizophrenia [51–53].

2.2 Atlases in structural and functional networks

Atlases can be considered as a bridge between neu-

roimaging data and graph theory analysis on the macro-

scale. Neuroimaging data can be converted into graph

theory elements (such as nodes) through atlases. Adverse

effects of using atlases in network analysis should be re-

duced as much as possible because individual variables

(such as head motion) can affect subsequent network

analysis after parcellation. Quantification of brain networks

will be affected by these individual variables. These

mentioned impacts are present in the widely used atlases,

such as the AAL, ANIMAL and Brodmann [12, 16, 18, 19,

20, 54, 55]. Previous studies have shown that small-world

properties in brain networks are robust, morphology inde-

pendent and atlas independent. Small-world properties are

determined by c and k, and they can be worked out as

follows: c ¼ Creal
p =Crandom

p [ 1and k ¼ Lreal
p =Lrandom

p � 1

where Crandom
p and Lrandom

p are the mean network clustering

coefficient and the mean network absolute shortest path

length of matched random networks that have the same

number of nodes, edges and degrees distributions [6]. He

et al. detected the small-world properties of brain networks

from the cerebral cortex thickness divided by the ANIMAL

atlas [12]. Small-world properties of brain network were

also studied based on the brain volume divided by the AAL

atlas [56]. In these analysis courses of the brain structure

network, some different parameters and steps were used,

and the key point was the use of different atlases. These

differences might make a major obstacle to the comparison

between these results in structural networks. In functional

networks, nodes were widely identified based on the

Brodmann areas [57–59]. At the same time, small-world

properties in functional networks were studied based on the

AAL atlas [16, 60]. Of course, some functional atlases

Fig. 2 This figure shows

information on the AAL, EZ,

TT, HO, CC200, CC400,

Brodmann (BA) and LPBA40

atlases [21, 62]
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were used to study small-world properties from fMRI [24,

25, 55, 61].

The same atlas provided convenient comparison of the

structural and functional networks, but the differences in

small-world properties between functional networks con-

structed by the ANIMAL and AAL atlases respectively

have been a concern [24]. Besides the small-world prop-

erties, the degree distribution was also affected [24]. Wang

et al. found that small worldness and the degree distribu-

tion were significantly different in brain networks based on

different atlases [24]. However, different atlas parcellation

strategies did not affect whether a small-world structure or

an exponentially truncated power law distribution existed.

These differences might be caused by the region size or

method used to obtain the atlas, which indicates the im-

portance of selection in atlases.

Zalesky et al. studied the properties of anatomical net-

works on the macroscale (like the AAL and ANIMAL at-

lases) and mesoscale. They reported a similar result, finding

that the node scale did not affect whether or not a network

was small world or scale free, but the scale affected the

quantification and the extent to which the network exhibited

these topological properties [25]. Andrew et al. constructed

an anatomical network using DTI data and reported that

small worldness exhibited a 95 % difference between the

widely used AAL template and a 4,000-node random par-

cellation (rAAL ¼ 1:9 vs: r4000 ¼ 53:6� 2:2 [25]. More

nodes with higher spatial resolution can preserve more

individual differences in fMRI analysis. Therefore, the

combination of different node scales was necessary [61].

As discussed above, different atlases can be applied for

different neuroimaging data to find some similar network

properties, but discrepancies in the properties exist, which

means that atlases are an important factor in the reliability

of brain network analysis. Although the AAL and Brod-

mann atlases were popular, they might perform more

poorly than other atlases, such as the LPBA40 [22]. Ota

et al. showed that the LPBA40 performed better than the

Brodmann and AAL atlases in predicting mild cognitive

impairment [62]. Details of the Brodmann, AAL and

LPBA40 atlases are shown in Fig. 2.

3 Improvement in parcellation

Research has been carried out addressing brain networks,

comparing functional (resting-state fMRI) and structural

networks (diffusion-based methods). The previous studies

suggested that diffusion-imaging and fMRI data reveal a

close relationship between structural and functional con-

nections, including some brain regions that form the

structural core [63]. The combination of DTI and fMRI can

improve cortex parcellation. The internal diversity of some

regions with heterogeneous functions and anatomy could

be subdivided by DTI, such as Broca’s area, the supple-

mentary motor area (SMA), posteromedial cortex (PMC),

Fig. 3 The parcellation process based on DTI and functional connectivity. This figure shows parcellations of the substantia nigra [64], Broca’s

area [65] and left inferior parietal lobule [66] based on DTI and parcellations of the human orbitofrontal cortex based on resting-state fMRI [71]
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substantia nigra and left inferior parietal lobule (LIPL) (see

Fig. 3) [64–68]. The somatotopic representation of the

body and temporal organization of movements were par-

tially controlled by the SMA [69]. The PMC had the fol-

lowing functions: visuospatial imagery, episodic memory

retrieval, self-processing and consciousness [70]. Of

course, cortex parcellations can also be identified based on

a K-means cluster algorithm using only fMRI data [71].

These parcellations depending on DTI or fMRI data were

mainly based on unsupervised clustering techniques, such

as the K-means cluster and spectral cluster algorithms [72,

73]. Recently, some atlases based on clusters of functional

connectivity were proposed. Craddock et al. reported a

functional atlas (the CC200 in Fig. 2) generated based on

spatially constrained spectral clustering [74].

Although clustering-based parcellations could improve

the divisions of some heterogeneous regions to some extent,

some disadvantages still needed more study, such as the re-

producibility and hierarchy. The atlases used could be di-

vided into single-subject topological and population-based

probabilistic atlases [75], single-subject atlases revealing

more interindividual differences and population-based

probabilistic atlases revealing more intergroup differences.

The parcellation should be balanced between interindividual

and intergroup differences, revealing more disease-related

differences and the individual effects on them.

Small-world properties can be destroyed by neuropsy-

chiatric diseases. Liu et al. reported that topological mea-

surements such as clustering and small worldness were

inversely correlated with the duration of illness in

schizophrenia [76]. Other diseases such as attention deficit

hyperactivity disorder (ADHD) and Alzheimer’s disease

(AD) can also affect the properties of fMRI brain networks

according to several recent studies. For example, previous

studies suggested that global efficiency decreased and local

efficiency increased in the brain networks of ADHD sub-

jects at a wide range of cost thresholds (a wide range of

cost thresholds was specifically employed to investigate

network efficiency) [77]. Additionally, patients with AD

showed increased connectedness and randomization in the

small-world model [78]. In the analysis of weighted net-

works derived from resting-state MEG data, the study

showed a decreased clustering coefficient and increased

path length in the patients with AD [79]. Individual vari-

ables cannot be ignored. The individual variables in the

actual measures include physiological noise [80], in-scan-

ner head motion [81], the condition of the resting state [82],

scan length [83], quality of registration [84], etc. Yan et al.

have shown that head motion in fMRI can bring about

increasing local efficiency while decreasing global effi-

ciency and small worldness [55]. In the analysis of brain

networks, head motion should be corrected. Although

many of the methods discussed above were used to

investigate brain networks, quantifying brain connectivity

efficiently and accurately still remains a challenging

problem [85]. Therefore, the impacts of diseases should be

reflected in improved atlases.

4 Further considerations

Whether the degree of node distribution in brain networks

follows an exponentially truncated power law or a scale-free

degree distribution (power law) is still disputed [24]. How-

ever, the dispute has not obstructed the verification of the

atlas-based impact on brain networks. Studies of brain net-

works based on different atlases on different scales and on

the same scales both showed that atlases affected the quan-

tification of network properties (small-world and scale-free

properties). This impact on quantification was a compre-

hensive result, combining the impacts of atlases and eval-

uation algorithm of network properties. In the estimation of

small-world properties, the construction of random networks

was very critical. Random networks should have the capacity

to reduce the impacts of methods to construct a connectivity

matrix on small-world properties and provide network

properties close to true random networks. As Zalesky et al.

described in their studies, appropriate null networks should

be used to benchmark network measures in correlation net-

works [86]. Otherwise, the extent of small-world properties

might be overestimated with full correlation and underesti-

mated with partial correlation [86]. Besides quantification of

network properties, quantification of the brain network was

also affected. Most analyses of structural and functional

networks were based on undirected and unweighted graphs,

which might be related to the accuracy of quantification of

the brain network. Poor quantification could cause an accu-

mulation of the impacts and lead to results far from those

expected.

Most of the atlases used were derived from anatomical

landmarks or cytoarchitectonic boundaries. These atlases

contained little information about connectivity, so their ca-

pacity for accurately representing connectomes was limited

[21]. Using clustering theory, atlases could be improved

based on connectivity, such as the CC200/CC400 proposed

by Craddock et al. [74]. In their papers, they summarize some

criteria for evaluating the suitability of a set of regions of

interest for whole-brain resting-state functional connectivity

analyses. Of course, many other factors should be taken into

account to improve the atlases, such as most of the cortex

being buried in the sulcal folds [87], gene expression and

dynamic functional connectivity. Optimized atlases can be

developed by meta-analyses, such as the Dosenbach

160-region and Power 264-region atlases.

The constructed brain networks also can be grouped into

two classes: single-subject and group networks.

Structural and functional brain networks 49

123



Probabilistic atlases might be not suitable for construction

of single networks. In the analysis of functional networks,

both single and group networks were sometimes used, so an

atlas balancing interindividual and inter-group differences

might be needed. In the practical use of atlases, the segment

of individual neuroimaging and a common coordinate space

affect the use effect. When building atlases, how to opti-

mally use them should be taken into account. Multi-atlas

segments might be a method to make better use of them; this

could generate more accurate structural segmentations of

the brain by combining prior anatomical information from

multiple atlases [88, 89]. A multi-atlas could also reduce the

negative impacts from registration errors [90]. As a result, a

multi-atlas might be an important approach to matching

atlas information and the subjects used.

5 Conclusion

Although atlases have a lesser effect in the determination

of brain network properties, they have a great influence on

the quantification of brain network properties. Improved

atlases can facilitate the quantification of brain networks

and the introduction of more network theories. The selec-

tion of atlases is important, and cortex parcellation should

be improved based on the function and structure of the

brain. Parcellation should also balance inter-individual and

intergroup differences. Additionally, the new theories need

to be applied in studies related to unknown fields in the

brain network. With the development of the technology, a

stronger magnetic field might be employed and higher

resolution images acquired, which would greatly promote

studies in brain science.
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