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REVIEW Open Access

A review of substitute CT generation for
MRI-only radiation therapy
Jens M. Edmund1,2* and Tufve Nyholm3,4

Abstract

Radiotherapy based on magnetic resonance imaging as the sole modality (MRI-only RT) is an area of growing scientific

interest due to the increasing use of MRI for both target and normal tissue delineation and the development of MR

based delivery systems. One major issue in MRI-only RT is the assignment of electron densities (ED) to MRI scans

for dose calculation and a similar need for attenuation correction can be found for hybrid PET/MR systems. The

ED assigned MRI scan is here named a substitute CT (sCT). In this review, we report on a collection of typical

performance values for a number of main approaches encountered in the literature for sCT generation as compared to

CT. A literature search in the Scopus database resulted in 254 papers which were included in this investigation. A final

number of 50 contributions which fulfilled all inclusion criteria were categorized according to applied method, MRI

sequence/contrast involved, number of subjects included and anatomical site investigated. The latter included brain,

torso, prostate and phantoms. The contributions geometric and/or dosimetric performance metrics were also noted.

The majority of studies are carried out on the brain for 5–10 patients with PET/MR applications in mind using a voxel

based method. T1 weighted images are most commonly applied. The overall dosimetric agreement is in the order of

0.3–2.5%. A strict gamma criterion of 1% and 1mm has a range of passing rates from 68 to 94% while less strict criteria

show pass rates > 98%. The mean absolute error (MAE) is between 80 and 200 HU for the brain and around 40 HU for

the prostate. The Dice score for bone is between 0.5 and 0.95. The specificity and sensitivity is reported in the upper

80s% for both quantities and correctly classified voxels average around 84%. The review shows that a variety of

promising approaches exist that seem clinical acceptable even with standard clinical MRI sequences. A consistent

reference frame for method benchmarking is probably necessary to move the field further towards a widespread

clinical implementation.

Introduction

Dose calculations performed on scans from magnetic

resonance imaging (MRI) were first reported around the

millennium when MRI emerged as a complimentary

modality to computed tomography (CT) in the delinea-

tion step of the radiotherapy (RT) chain [1, 2]. As MRI

provides superior soft tissue contrast and delineation

precision as compared to CT [3–8], the concept of

carrying out all steps of the RT chain on MRI as the sole

modality, so-called MRI-only RT, could provide a favorable

workflow. MRI-only RT would further remove a systematic

registration error when transferring MRI delineated struc-

tures to the CT which has been reported to be in the order

of 2–5 mm for various treatment sites [9–13]. As CT is

used for positioning of the patient at treatment, registra-

tion errors introduce a spatial systematic uncertainty. The

dosimetric impact of a systematic error will increase when

the radiation is aimed at small structures or when the

target is close to sensitive organs. This could be the case

for small tumors or the hippocampus in the brain [14] with

a structure radius in the order of a possible registration

error or when a standard PTV or PRV margin has to be

compromised to maintain an acceptable therapeutic ratio.

An example of the MRI to CT registration variability for a

prostate and nasopharynx case is illustrated in Fig. 1.

In addition, MRI-only will decrease the number of

scans and associated patient discomfort, and, reduce the

planning related costs [15]. The benefits of MRI-only

RT would further increase in a workflow with repeated

imaging, e.g. weekly scans, for response assessment

and/or treatment adaptation.
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A number of concerns related to MRI-only RT exist.

One major challenge of performing dose calculations on

MRI is the lack of correspondence between the voxel

intensity and the associated attenuation property of the

tissue. Unlike CT images where the voxel intensity directly

reflects the radiological characteristics of the tissue, MRI

intensities rather correlate with tissue proton density and

the magnetic relaxation, i.e. the inertia of the dipole

moment [16]. This leads to voxel ambiguity for tissues

such as bone and air which both appear dark on the MRI

although they have very different attenuation coefficients.

The focus of this review is strategies for dealing with this

ambiguity. Further challenges constitute scanner induced

geometrical distortions arising from gradient non-linearity

and magnet inhomogeneities and patient induced artifacts

such as susceptibility and chemical shifts [13]. Specific

problems for algorithms converting the MRI signal into a

CT number further constitute normalization of absolute

signal intensities and data correction strategies such as

bias field correction. These topics are considered out of

scope of this review.

The increased use of MRI for target and normal tissue

delineation in RT in general and two device-driven

events have facilitated scientific activity for assigning

electron densities to MRI images1. The first event is the

commercial availability of clinical integrated hybrid PET/

MRI systems around 2010-2011 [17]. Unlike traditional

PET/CT systems where the CT scan is used for attenuation

correction of the PET signal needed in quantitative PET

volume estimates such as the standard uptake volume

(SUV), attenuation coefficients need to be assigned to the

MRI scan in hybrid PET/MRI systems to make a similar

attenuation correction. The second event is the com-

mercial availability of integrated MRI guided systems in

external beam RT around 2014 [18]. These systems can

provide MRI scans for patient setup based on soft tissues

and monitor the tumor movement during treatment

delivery. The systems would be able to calculate and

Fig. 1 Variability of multiple registrations between MRI and the corresponding CT for prostate (top) and nasopharynx (bottom). a: One marker

(of three) indicated by a white circle on the axial MRI. b: Two markers shown by the white dots on the sagittal CT. The multiple thin white lines

are the MRI delineated clinical target volume (CTV) transferred to the CT based on the marker registration following department protocol from

7 different observers. The protocol is based on a rigid automatic (mutual information) registration for a limited FOV around the prostate followed

by a manual adjustment to match the markers in the three planes. The outermost white line was the planned target volume (PTV) applied. The

data are taken from reference [59]. c: The gross target volume (inner) and CTV (outer) as delineated on the axial MRI. d: The multiple thin white

lines are the MRI based CTV transferred to the CT by 6 different observers (sagital CT slice shown). The registration is based on a rigid automatic

(mutual information) registration followed by a manual fine adjustment. The outermost white line was again the applied PTV. The data are taken

from reference [60]
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adapt the dose distribution at each given fraction if a

dose calculation can be performed on the MRI scan

which requires electron densities to be assigned. The

increased focus on MRI in RT and the introduction of

the imaging and treatment devices is reflected in the

number of publications as illustrated in Fig. 2.

In this review, we will report on a collection of typical

performance values for a number of main approaches

encountered in the literature for conversion of MR data

to electron density or HU maps relevant for RT. The

generated map is called “synthetic CT”, “substitute

CT”,”pseudo CT” or similar, i.e. no common terminology

is currently established. In the following, we will use the

term substitute CT (sCT) since the acronym for pseudo

CT (pCT) is often used for the planning CT in adaptive

RT studies [19, 20]. This field of research covers both

diagnostic and therapeutic radiology as well as MRI.

Further, the research field expands into automatic organ

segmentation and image analysis in general. As a result, a

diverse amount of approaches with different scientific

traditions, terminology and endpoints in mind have been

reported in the literature. Consequently, we have had to

make simplifications and compromise details in order to

preserve an overview and to further categorize and score

the methods with the aim of providing results relevant for

RT. Therefore, a direct comparison between the reported

performance metrics presented here is not valid. Rather,

the idea is to provide an overview of the multiple strat-

egies investigated in the literature along with a general

order of accuracy that can be reached.

We have categorized the investigated methods into

three main approaches. These are termed voxel [21–23],

atlas [24, 25] and hybrid [26, 27]. The latter use a com-

bination of the voxel and atlas based approach. Similar

approaches are typically categories as segmentation,

sequence/image contrast, template and atlas in PET/

MRI terminology [16, 28]. The voxel based approach

primarily uses information about voxel intensities (con-

trasts) in the MR images to assign electron densities.

No or limited information about the location of voxels is

included in this category. The voxel based methods are

dominated by the concept of machine learning in which

Fig. 2 The number of articles versus time after applying the search string and exclusion criterion 1 provided in the text. The publications are

grouped into proposed applications of the described method and sorted according to publication year. A boost in the amount of publications

can be inspected around 2010 (PET/MRI) and 2013-14 (MRI guided EBRT)
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part of the data is used to train (optimize) a model which

is then applied on the remaining MRI data to predict the

CT numbers. If a study contains n patients, this is usually

done by training the model on n-1 patients and then

predict the sCT on the remaining patient in a rotating

scheme known as leave-one-out cross validation. The

electron density assignment (CT number) can be made on

the basis of generic values (e.g. from ICRU report 46 [29])

to bulk groups of voxels. Alternatively, the assignment can

happen on a continuous scale by including patient specific

CT numbers in a training phase. In contrast, the atlas

based approaches focus on aligning the location of a

patients MRI voxels to the corresponding location of a

MRI voxels in an atlas through registration. The atlas can

either be a single or average (template) patient or contain

a number of patients (often termed multi-atlas). The atlas

contains a pre-known correlation between the MRI voxels

and the value of interest, e.g. CT number or organ label.

Once the alignment has taken place, the atlas CT number

can be assigned to the patients’ MRI scan and hence con-

verting it into a sCT scan.

A large number of MRI sequences/contrasts for electron

density assignment have been reported in the literature.

We have chosen to divide the MR input images into four

main contrasts / sequences categories. The first two

categories are simply termed T1 weighted (T1w) and T2

weighted (T2w). They are based on common clinical MRI

sequences which rely on either the longitudinal (T1) or the

transverse (T2 or T2*) tissue relaxation to produce image

contrast. The T1 and T2 relaxation is determined from

multiple refocusing pluses during the repetition time while

T2* describes the relaxation of the free induction decay

(FID) produced in the receiver antenna coil. Two main

pulse sequences exist for MR image acquisition: spin echo

(SE) and gradient echo (GE). The SE MR signal intensity is

roughly proportional to ρ[1-exp(TR/T1)]exp(-TE/T2)

where ρ (proton density), T1 and T2 are tissue properties

and TR (repetition time) and TE (echo time) are sequence

parameters. The equation is only valid if TR > > TE which

is usually the case, and, in general T1 > T2 > T2* relaxation

[30]. T1w images (short TR, short TE) are preferred for

visualizing anatomy while T2w images (long TR, long TE)

are usually the choice for visualizing pathology. The third

category comprises the Dixon family of fat-water separat-

ing sequences and is collectively termed Dixon [31]. It is

based on the chemical shift between the resonance

frequencies of fat and water and can be weighted towards

T1, T2 or ρ as it is (typically) a SE sequence. The fourth

category of MRI sequences is based on dual ultrashort

echo time (dUTE) to visualize solid structures with a very

short T2 relaxation time such as the bone [32, 33]. In

dUTE image acquisition, a first signal is collected right

after the excitation, and a second using the GE technique at

a longer nominal echo-time. The first image is ρ weighted

or T1w depending on the flip-angle and the second will

have a T2*w or T1w contrast depending on the echo-time

and the flip-angle. T2* is only possible to realize with

gradient echo sequences.

Material and methods

Literature search

This review reports on a collection of typical performance

values for substitute CT generation rather than giving a

detailed theoretical background of the methods used to

predict substitute CT. To give a fair representation on the

scientific activity within this field, we performed a litera-

ture search in the Scopus database November 2015 [34].

Index terms such as Medical Subject Headings (MeSH)

terms were not used to define a search due to the wide

diversity of sciences involved in the research field and

the consequent lack of common terminology. Instead, a

collection of common keywords found in a number of

MRI-only RT and PET/MRI articles were organized in a

logical search string defining the inclusion criteria:

� TITLE-ABS-KEY [(“PET MRI” OR “MR PET”) AND

NOT (functional OR diffusion OR fdg-spect)]

OR

� TITLE-ABS-KEY [(radiotherapy OR “radiation

therapy”) AND (“magnetic resonance imaging” OR

“magnetic resonance” OR mri OR mr) AND NOT

chemotherapy]

AND

� TITLE-ABS-KEY [“Attenuation correction” OR

“computed tomography substitute” OR “substitute CT”

OR “pseudo CT” OR “MRI only” OR “MRI alone”]

where TITLE-ABS-KEY indicate either the title, abstract

or keywords of the paper. This resulted in 254 papers

and we further added 7 papers/abstracts that for various

reasons were not found in the structured literature

search (e.g. strange keywords, conference abstracts etc.).

Three exclusion steps were then introduced. Exclusion 1

was defined as papers having TITLE-ABS-KEY on the

following:

� Diagnostics and delineations based on MRI only.

� Brachytherapy

� CT to MRI registration error/IGRT studies

� Subjects specific for PET/MRI: field-of-view (FOV)

truncation, effects of headphone and coils, etc.

� PET/MRI specific corrections: time-of-flight, line

source, maximum likelihood for attenuation and

activity (MLAA).
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The application of exclusion 1 reduced the number of

papers to 117. These included relevant investigations for

assigning electron densities to MRI scans for the pur-

pose of PET attenuation correction, MRI-only RT or

both (see Fig. 2). Exclusion 2 intended to only include

studies which presented novel methods for electron

density assignment. Abstracts and manuscripts includ-

ing the following were excluded:

� Review articles

� Book series or only insufficient abstracts available.

� RT feasibility/comparative studies: Dose calculations

incl. and excl. CT transferred structures such as

bone and air cavities to the MRI. CT bulky assigned

density vs. normal CT etc.

� PET/MRI feasibility/comparative studies: Difference

in SUV or similar by applying CT based vs. MRI

corrected attenuation maps incl. or excl. CT

transferred structures.

� Focus on MRI artifacts and distortion

quantifications and corrections.

� MRI-only based workflow descriptions.

After exclusion 2, 73 papers presenting novel correc-

tion methods remained (see Fig. 3). Whenever multiple

method approaches and /or MRI sequences were used

these were collectively categorized as “hybrid” and “mul-

tiple”, respectively.

Exclusion 3 intended to only consider studies which

included a quantitative performance metric of the resulting

sCT scan which would be relevant or applicable for RT

purposes. The following papers were excluded:

� No reported quantitative performance metric.

� Reported performance metric not relevant to

MRI-only RT, e.g. differences in SUV, linear

correlation coefficients of activity estimates, etc.

The final 50 papers are shown in Table 1 and the

selection process is summarized in Fig. 4. The final

papers were arranged in the main categories as described

in the introduction and further subcategorized within each

Fig. 3 Categorization of contributions after applying exclusion criterion 2. The papers were sorted according to their main method (left), used

MRI sequences/contrasts (middle) and number of subjects, i.e. phantom, patients or volunteers (right). In the above categories, the following

simplifications were made: head = brain, whole body = torso, cervix = prostate (only 1 study), UTE = dUTE, and water/fat separating MRI

sequences = Dixon. Volunteers and phantoms were categorized as patients. Some papers included description of multiple methods which

were included in the histograms as separate studies, hence the term “published studies” for the ordinate
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main approach and applied MRI sequences when possible.

The latter was limited to the four overall sequence

categories.

Method categories

The methods were organized with subcategories ac-

cording to a main voxel, atlas or hybrid approach in

Table 1. Voxel based sCT generation utilizes the con-

trast in the MR image independently of the voxels

spatial location. This makes it a potential computa-

tional attractive approach. The voxels can be con-

verted into CT numbers in multiple ways which we

have subcategorized below.

Semi-automatic refers to some kind of manual inter-

vention from the user to make the method work, e.g.

delineation of the bone or manually established inten-

sity thresholds below/above which a voxel is categorized

into a certain tissue category. Threshold covers methods

which use the tissue relaxation constant to differentiate

between different tissues. For the dUTE sequence/

contrast, the T2 relaxation time of the bone (0.5–2 ms

depending on magnetic field strength) can as an example

be used to categorize voxel which decays > 1/(0.5–2 ms)

into bone and voxels which remain constant (or decay

slowly) over the short acquisition time into soft tissue [35].

Probabilistic refers to methods which can assign a probabil-

ity of a voxel to belong to different tissue classes with e.g. a

corresponding bulk electron density (sCT) or organ label

(auto contouring). This could be done by assuming that

the MR intensities come from a mixture of K normal

distributions (tissue classes) with a corresponding mean

and standard deviation. The initial mixture can be

estimated with an expectation maximization algorithm

through unsupervised training, i.e. an electron density

(CT number) is assigned to each tissue class subsequently.

For each voxel, a probability can then be calculated for all

tissue classes and the voxel can be assigned to the tissue

class for which the highest probability was calculated. This

Fig. 4 The adopted strategy for inclusion of papers with reported metrics in this review

Edmund and Nyholm Radiation Oncology  (2017) 12:28 Page 8 of 15



is known as Bayesian statistics. Markow Random Fields

include the tissue classes of neighbor voxels in the

probability calculation of a given voxel [22]. Fuzzy c-

means clustering use a similar strategy of dividing the

MRI voxels into distinct clusters (tissue classes). Cluster

similarity coefficients are then calculated for each voxel

which is then assigned to the tissue which it resembles the

most. A number of different similarity measures exist.

Regression collects methods which correlate MRI inten-

sities to CT numbers through (statistical) regression on

a continuous scale. This can be done in a fashion simi-

lar to the Bayesian approach here termed Gaussian by

including co-registered CT intensities in an initial super-

vised training phase of the data that establish the prior

mixture of the K tissue classes [23]. Discriminant analysis,

Principal Component Analysis and Random Forest are

other strategies of performing such a regression between

MR and corresponding CT data. Sinogram use a for-

ward projection CT like approach to transform the MRI

scan into raw MR data where the different tissues are sub-

sequently identified. Neural network describes supervised

training of a correlation model in a hidden layer with an

MRI input layer and a CT output layer. Pattern recognition

in a voxel setting compares an MRI pattern, e.g. a cluster

of 3x3x3 size MR voxels known as a patch, with a pre-

established correlation between MR patterns and CT num-

bers obtained through supervised training. Different mea-

sures for pattern similarity can be used such as the

(normalized intensity) Euclidean distance. Hybrid voxel

methods combine a voxel based method with somewhat

loose information of the voxels location, e.g. distance

from center of the brain.

Atlas based sCT generation use the location of an MRI

voxel to establish the corresponding CT number by

aligning the voxel to an atlas with a pre-known correlation

between the MRI voxel location and corresponding CT

number. This is potentially more computational chal-

lenging as each patient's MRI has to be aligned with an

atlas with no possibility of exploiting a pre-training

model (except for the atlas building). In an atlas setting,

Pattern Recognition compares similarities of patient

MRI patches (see above) with atlas MRI patches within

a limited search volume after alignment. Deformable

refers to methods which use deformable registration,

i.e. non-rigid registration, to assign CT numbers from

an atlas to a given MRI scan. The patient's MRI is first

registered non-linearly with the atlas MRI. This could

be one registration if the atlas consists of one average

or template patient. Otherwise, the MRI has to be indi-

vidually registered to all MRIs in a multi-atlas which is

computationally less attractive. Alternative, one can set-

tle with one (entrance) registration if the multi-atlas is

internally registered, i.e. a registration map between the

entrance atlas and the other atlases has been pre-

established. The deformation map between the patient

and atlas MRI is then applied to the corresponding

atlas CT and the sCT produced. If multiple atlases are

used, a fused CT number can be applied.

Hybrid atlas methods combine multiple methods

within the atlas based category. This could be a method

which combines deformable registration with a (patch)

pattern recognition approach to minimize the influence

of registrations which resulted in a poor alignment.

The final Hybrid approach combines categories of

the voxel and atlas based approaches. This could for

example be a calculation of two probability density

functions (PDFs) for each voxel; one based on de-

formable registration (atlas) and the other based on

Bayesian statistics (voxel). The two probabilities are

then combined into a unified posterior PDF which

determines the final assignment of CT number to the

voxel [26]. An example of atlas and voxel based sCT

generation for the pelvis and brain can be seen in

Fig. 5.

Performance metrics

Three common metrics reported in the literature to

score the performance of a given sCT generation method

were chosen. The first metric, ΔDose, describes the dosi-

metric agreement when performing dose calculations on

the sCT as compared to the standard CT. This is usually

quantified as the percentage difference in either single

characteristic points, e.g. iso-center or dose prescription

point, or in dose volume histogram (DVH) points. The

general equivalent uniform dose (gEUD) has also been

used to describe the biologically relevant differences of

the entire DVH. Another commonly reported metric for

quantifying dosimetric differences is the gamma index

[36]. This metric covers spatially correlated dose deviation

in both the high and low dose regions. Whenever

differences in multiple dose metrics were reported, e.g.

multiply DVH points, a collectively representative value,

e.g. the mean of all the deviations, was chosen. The second

metric is the mean absolute error (MAE) and describes the

absolute voxel-wise difference in HU defined as

MAE ¼
1

N

XN

i¼1

CT i−sCT ij j

where N is the number of voxels, CT is the standard CT

and sCT is the substitute CT. This metric is typically

lowered as the number of voxel similar to water or air

increases, e.g. moving from the brain to the pelvis or

including air outside the body outline (see Fig. 6a). The

MAE shows a great variation over the different tissue

regions. For the data presented in Fig. 6a, the shown

median MAE of 87 HU for all tissue in the skull covers
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a median MAE of 216, 36 and 261 HU for air, soft tissue

and bone, respectively.

The third metric, the dice similarity coefficient (DSC)

for bone [37], is a geometric score describing the overlap

between the CT and sCT bone volumes. It is defined as

DSCbone ¼
2 VCT∩V sCTð Þ

VCT þ V sCT

where V is the volume of the bone on the CT and substi-

tute CT (sCT), respectively. A similar measure, the Jaccard

coefficient (JAC) can be converted to the DSC through the

relation DSC = 2 · JAC/(1 + JAC) [38]. Another commonly

reported metrics is the sCT specificity and sensitivity for

different tissues such as the bone. The bone DSC,

sensitivity and specificity will depend on the threshold

value set for the CT number of the bone (see Fig. 6b

and c). Other metrics are otherwise noted in the legend

of Table 1.

The performance metrics reported in the literature

cannot be directly compared due to issues such as patient

selection and exclusion criteria which are often

underreported and can introduce a bias. Further, the

amount of preprocessing included in the algorithm such

as data normalization and bias field correction will affect

the final result. Still, methods performing equally well in

the same body region should produce performance

metrics within the same gross interval.

Results

The statistics reported in Fig. 2 and Fig. 3 indicate that

most studies are carried out on the brain for 5-10 pa-

tients with PET/MR applications in mind using a voxel

based method. It is common to use model input data

that coincide with the image data used for the delinea-

tion of the target volume or organs at risk. The main

benefits are avoidance of unnecessary registrations in

the workflow to compensate for intra examination pa-

tient motion and to keep the examination time as short

as possible. Therefore evaluation of T1w input data is

common for the brain region, while T2w input data is

common for the pelvic region. dUTE has the benefit of

enabling separation of cortical bone and air, but has not

been reported useful for delineation purposes. Our

Fig. 5 Examples of sCT generation for the pelvic (top) and brain (bottom). a: An axial CT slice of the pelvic from a prostate patient. b: The

corresponding sCT slice created with an atlas patch based approach [49]. c: An axial CT slice of a brain patient. d: The corresponding sCT slice

created with a voxel Gaussian mixture regression based approach [75]
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review shows that at present point dUTE has only been

evaluated for intra-cranial conditions or phantoms

(Table 1). Dixon based sequences enable separation of

water and fat signal, and is currently often used for at-

tenuation correction of PET data in hybrid PET/MR

scanners. Dixon sequences also tend to be fast and the

in-phase sequence has been reported useful for identifi-

cation of fiducial makers in the prostate [39]. Table 1

shows a wide diversity in terms of the methods and

MRI sequences investigated in the literature. Overall,

the dosimetric agreement is in the order of 0.3–2.5%. A

strict gamma criterion of 1% and 1mm has a range of

passing rates from 68 to 94% while less strict criteria

show pass rates > 98%. Given the relatively small order

of dosimetric disagreement, the residual distortion (i.e.

remaining distortion after applying distortion correc-

tion procedures) present in the MR and hence sCT im-

ages subject to dose calculations seem to be of minor

importance in order to reach an acceptable dosimetric

accuracy. Rather, these seem to be more critical for

accurate target and OAR delineation [40]. The MAE is

between 80 and 200 HU for the brain with a majority

of values lying in the 120–140 HU interval. The MAE

values are around 40 HU for the prostate (pelvis re-

gion). The Dice score for bone is between 0.5 and 0.95

across the different methods, MRI sequences/contrasts

and anatomical sites. The specificity and sensitivity

range from 75 to 98%. As is apparent from Fig. 6c, in-

creasing the specificity will decrease the sensitivity and

vice versa. A compromise seems to be in the upper 80s

for both quantities. Correctly classified voxels average

around 84% for the different methods. No strict rela-

tionship between the dosimetric and geometric agree-

ment as scored by the metrics common in the literature

is present. Further, when a large number of patients are

present in a study, i.e. more than 20 patients, the dice

score seem to be in the lower range (<0.85) of the

reported values probably caused by a larger diversity in

the patient material.

Discussion

Table 1 is not a complete list of all methods used for

generating a sCT, due to the search strategy, time of

search and exclusion criteria applied, some novel

methods such as sparse representation [41] and Random

Forest with auto-context modelling [42, 43] are not in-

cluded. With these limitations in mind, our investigation

shows that sCT generation for MRI-only based radio-

therapy or PET/MRI attenuation correction seems to be

a comprehensively tested area of research given the

Fig. 6 Performance metrics dependence on the region of interest and CT threshold number for the bone. All metrics are calculated on substitute

CTs from 3D T1w MR images of 6 brain patients [47] using an atlas patch based method [48]. a: The boxplot shows the MAE within the body

outline (left) and the whole field of view (FOV, right). The medians were 87 and 49 HU for the body and FOV MAE, respectively, and were

significantly different (p < 0.002). b: The Dice similarity coefficient (DSC) metric for bone as a function of threshold CT number. c: Receiver

operating characteristic (ROC) curve of the sCT bone as a function of CT threshold number (thres). True positive (TP) = sCT > thres & CT > thres,

false positive (FP) = sCT > thres & CT < thres, true negative (TN) = sCT < thres & CT < thres and false negative (FN) = sCT < thres & CT > thres.

Sensitivity = TP/(TP + FN) and specificity = TN/(TN + FP). The threshold was varied from 100 (right) to 3000 (left) HU in steps of 100 HU. Only

voxels > 100 HU on the CT, i.e. the bone region, was included in the evaluation to keep the TN number (non-bone tissue on the sCT and CT) to a

reasonable number
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variety of investigated methods which are able to pro-

duce a sCT from an MRI scan. This presents an advan-

tage in the sense that a broad material is currently

available to further develop on. This strength, however,

also presents a challenge for the field. There is no obvi-

ous method or MRI contrast(s) which seem to be clearly

favorable from the others and hence no clear indication

as to which path of promising methods to pursue. The

data in Table 1do not indicate that inclusion of more

MR contrasts in the generation of the sCT automatically

increase the accuracy. This is encouraging as extra se-

quences both increase the total acquisition time and

overall complexity of the method and the workflow.

Notably, the dice score of the voxel hybrid approaches

using Random Forest (Random F) in Table 1 creates an

almost perfect overlap between CT and sCT bone vol-

umes especially considering the high threshold of 600

HU applied in these studies (see Fig. 6b). These reported

results should encourage other researchers to reproduce

this method on different datasets especially since a pure

Random F approach on dUTE images does not produce

similar high performance scores. The average dosimetric

deviations reported in Table 1 should be used with some

caution. Korsholm et al. reported on dose deviations

using bulk density corrections for multiple treatment

sites [44]. With a bulk density correction for the bone,

the average deviation for median PTV dose of the pros-

tate was practically zero but covers a range of -1.1 to

1.1% representing the 95% confidence interval. They fur-

ther argued that the 95% confidence interval should be

within a 2% dosimetric deviation to produce clinical

acceptable results.

The focus of the present review is the conversion of

image data acquired with MRI to electron density or HU

maps to facilitate a so called MR-only treatment plan-

ning workflow. In addition and not limited to the MR-

only approach, use of MR in radiotherapy requires MR

data with a minimum of geometrical distortions. It has

been shown that distortions due to non-linearity in the

spatial encoding gradients can be successfully corrected

using deterministic algorithms [45], and chemical shift

artifacts and distortions caused by susceptibility effects

can be minimized using a sufficient bandwidth [46].

There is, however, still a need to further confirm these

results and develop efficient quality control techniques,

but this is out of the scope of the current review.

Standardization

One could argue for a need to unify the efforts to localize

promising candidate for sCT generation. A possible way is

to standardize the calculation of the performance metrics

reported in the literature. It is clear from Fig. 6 that the

MAE, DSCbone, specificity and sensitivity metrics have

their limitations and further do not necessarily reflect the

corresponding dosimetric performance of the method.

Quantitative metrics that more unambiguously reflect a

correlation between the geometrical and dosimetrical

agreement are needed and these should further display an

independence of parameters such as selected CT number

threshold and field-of-view. An example could be to score

the sCT-CT difference in bins covering the HU scale inde-

pendent of the number of voxel present in each bin [47].

Another example could be to use differences in radiologic

(water equivalent) path lengths which represent both a

geometric and dosimetric property [48, 49]. The accuracy

of the performance metric should further be related to the

application in question, e.g. RT or PET/MRI. To bench-

mark results, another possible way would be to make

datasets consisting of MRI scans with a variety of con-

trasts and corresponding CT scans for different ana-

tomical sites public available. Such a dataset currently

exists for quantitative imaging of biomarkers [50] and a

similar dataset for sCT generation could serve as a

mandatory step for method benchmarking before publica-

tion. Issues related to the algorithms processing of MRI

signal normalization and correction would further become

apparent on such a dataset. Currently, many studies only

benchmark the sCT against the gold standard CT. In

addition, a dosimetric comparison between a proposed

method and the investigated MRI scan(s) set to water

should be included in a study to give a perspective of the

reported quantities. Another issue is a number of relevant

items which are often not addressed. These cover inclu-

sion or exclusion criteria for the investigated patients

which could create a bias, computation time needed for a

given method to work and restrictions in the possible

clinical implementation of the method.

Clinical implementation

So far, the authors are aware of two institutes which cur-

rently have implemented in-house developed MRI-only

methods clinically. The first institute use a voxel based dual

regression approach on the prostate and have currently

treated around 1502 patients [21, 51]. The second institute

use a voxel based probabilistic approach with fuzzy c-

means on the brain and have currently treated around 30

whole brain and 153 focal brain cases, respectively [52].

Further, commercial solutions for sCT generation are

becoming available [27, 53]. Stereotactic radiosurgery

treatment planning of brain tumors have been carried out

on MRI scans set to water for decades [54]. Brain radiosur-

gery was outside the scope of this review but one could

question this practice given published literature which

demonstrates an improvement in dosimetric accuracy as

compared to a pure water based dose calculation for the

brain, see e.g. [55]. For the brain and other treatment sites,

it has further been shown that a bulk density assignment is

probably sufficient for RT treatment planning [44, 56].
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Treatment delivery and quality assurance (QA) of an

MRI-only based RT workflow are other important issues

which need to be addressed for clinical implementation of

MRI-only RT. In terms of commissioning an MRI-only

workflow, the guidelines as to what tolerances which are

acceptable are limited. As mentioned earlier, a 2% dosimet-

ric agreement between sCT and CT based dose calculation

seems to be of an acceptable order [44] and most of the

investigated methods demonstrate an agreement better

than this. For kV X-ray based image-guided RT (IGRT)

delivery systems, the cone beam CT (CBCT) seems to

provide an acceptable solution for patient setup of both

brain and pelvic patients (marker match is probably suffi-

cient for prostate) [47, 57, 58]. The CBCT can further be

used for patient specific QA of the generated sCT as it

provides an independent estimate of the CT numbers [47].

sCT QA verification efforts using the electronic portal im-

aging device (EPID) has also been proposed [53]. All of the

above elements should be considered when formulating an

MRI-only based RT protocol.

Conclusions

In summary, a variety of promising approaches for substitute

CT generation exist which seem to provide results accept-

able for clinical implementation. This also includes methods

based on clinical simple standard MRI sequences/contrasts.

However, the field suffers from a current lack of an estab-

lished benchmarking method and reporting consistency,

which challenge the commitment from interested vendors

and hence risk a delay for a broad clinical implementation.

Endnotes
1In photon-based RT, the main interest is to convert the

CT number (HU) into an electron density (relative to water)

for dose calculation purposes. Therefore, CT number and

electron density is used interchangeable throughout the text.
2Korhonen J. Personal correspondance. 2015.
3Balter JM. Personal correspondance. 2015.
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