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Conversion Factors
International System of Units to U.S. customary units

Multiply By To obtain

Length

millimeter (mm) 0.03937 inch (in.)
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)

Area

hectare (ha) 2.471 acre
square kilometer (km2) 0.3861 square mile (mi2)

Volume

cubic kilometer (km3) 0.2399 cubic mile (mi3)
Flow rate

millimeter per hour (mm/h) 0.003281 foot per hour (ft/hr)
Density

kilogram per cubic meter (kg/m3) 0.06242 pound per cubic foot (lb/ft3)
Energy

joule (J) 0.0000002 kilowatthour (kWh)

Abbreviations
α	 surface albedo

ε0 broadband surface thermal emissivity

λ latent heat of vaporization

ρair density of air

ρw density of water

ALEXI Atmosphere-Land Exchange Inverse

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

Cp specific heat of air at constant pressure

DEM digital elevation model

dT temperature difference between two near-surface heights (temperature gradient)

DTD Dual Temperature Difference

EF evaporative fraction

ET evapotranspiration

ET0 reference evapotranspiration

ETa actual evapotranspiration

ETEML Enhanced Two-Source Evapotranspiration Model for Land

ETf fractional evapotranspiration



v

ETf(el) fractional evapotranspiration corrected for elevation

ETf(elvi) fractional evapotranspiration corrected for elevation and vegetation index

ETinst instantaneous actual evapotranspiration

ETperiod actual evapotranspiration cumulated over a period

ETr reference evapotranspiration

ETrF reference evapotranspiration fraction

G ground heat flux

GDAS Global Data Assimilation System

H sensible heat flux

HUC8 8-digit hydrologic unit code

K Kelvin

KL lapse rate in temperature of air moving over the landscape

LAI leaf area index

LE latent heat flux

LST land surface temperature

LSTc land surface temperature corrected for elevation

METRIC Mapping Evapotranspiration at High Resolution with Internalized Calibration

MODIS Moderate Resolution Imaging Spectroradiometer

NDVI normalized difference vegetation index

NSE Nash-Sutcliffe efficiency

PRISM Parameter-Elevation Regressions on Independent Slopes Model

r correlation coefficient

r 2 coefficient of determination

rah aerodynamic resistance between two near-surface heights

RMSE root mean square error

RL↓ incoming longwave radiation

RL↑ outgoing longwave radiation

Rn net radiation

RS↓ incoming shortwave radiation

S-SEBI Simplified Surface Energy Balance Index

SEBAL Surface Energy Balance Algorithm for Land 

SEBS Surface Energy Balance System

SSEB Simplified Surface Energy Balance

SSEBelvi Simplified Surface Energy Balance with correction for elevation and vegetation  
 index

SSEBop Operational Simplified Surface Energy Balance
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Ta air temperature

Tc land surface temperature at “cold” reference pixel

Th land surface temperature at “hot” reference pixel

Ts land surface temperature

Ts datum land surface temperature adjusted to a standard elevation per pixel of the satellite  
 image

TSM Two-Source Model

TSTIM Two-Source Time Integrated Model
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Abstract
Many approaches have been developed for measuring 

or estimating actual evapotranspiration (ETa), and research 
over many years has led to the development of remote sensing 
methods that are reliably reproducible and effective in estimat-
ing ETa. Several remote sensing methods can be used to esti-
mate ETa	at	the	high	spatial	resolution	of	agricultural	fields	and	
the large extent of river basins. More complex remote sensing 
methods apply an analytical approach to ETa estimation using 
physically based models of varied complexity that require a 
combination of ground-based and remote sensing data, and 
are grounded in the theory behind the surface energy balance 
model. This report, funded through cooperation with the Inter-
national Joint Commission, provides an overview of selected 
remote sensing methods used for estimating water consumed 
through ETa and focuses on Mapping Evapotranspiration at 
High Resolution with Internalized Calibration (METRIC) and 
Operational	Simplified	Surface	Energy	Balance	(SSEBop),	
two energy balance models for estimating ETa that are cur-
rently applied successfully in the United States. The METRIC 
model can produce maps of ETa at high spatial resolution 
(30	meters	using	Landsat	data)	for	specific	areas	smaller	than	
several hundred square kilometers in extent, an improvement 
in practice over methods used more generally at larger scales. 
Many studies validating METRIC estimates of ETa against 
measurements from lysimeters have shown model accuracies 
on daily to seasonal time scales ranging from 85 to 95 percent. 
The METRIC model is accurate, but the greater complexity of 
METRIC results in greater data requirements, and the inter-
nalized calibration of METRIC leads to greater skill required 
for	implementation.	In	contrast,	SSEBop	is	a	simpler	model,	
having reduced data requirements and greater ease of imple-
mentation without a substantial loss of accuracy in estimating 
ETa.	The	SSEBop	model	has	been	used	to	produce	maps	of	ETa 
over very large extents (the conterminous United States) using 
lower spatial resolution (1 kilometer) Moderate Resolution 
Imaging Spectroradiometer (MODIS) data. Model accuracies 

ranging from 80 to 95 percent on daily to annual time scales 
have been shown in numerous studies that validated ETa esti-
mates	from	SSEBop	against	eddy	covariance	measurements.	
The	METRIC	and	SSEBop	models	can	incorporate	low	and	
high spatial resolution data from MODIS and Landsat, but the 
high spatiotemporal resolution of ETa estimates using Land-
sat data over large extents takes immense computing power. 
Cloud computing is providing an opportunity for processing 
an increasing amount of geospatial “big data” in a decreasing 
period of time. For example, Google Earth EngineTM has been 
used to implement METRIC with automated calibration for 
regional-scale estimates of ETa using Landsat data. The U.S. 
Geological Survey also is using Google Earth EngineTM to 
implement	SSEBop	for	estimating	ETa in the United States at a 
continental scale using Landsat data.

Introduction
Consumptive water use refers to water that is evaporated 

and transpired from soils, vegetation, and open water (collec-
tively called evapotranspiration [ET]); ingested by livestock 
and humans; or incorporated into crops and other commodi-
ties; and that consequently is unavailable for other demands 
on a water supply (Maupin and others, 2014). Most water con-
sumption is through actual evapotranspiration (ETa), which is 
an important component of the water cycle, and it is estimated 
that about 70 percent of precipitation on land in the United 
States returns to the atmosphere through ETa (Carr and others, 
1990). In addition, in the United States, more than 80 percent 
of water consumption is for agriculture (Carr and others, 
1990), most of which is from ETa. Therefore, water resource 
users and managers have a vested interest in accurately deter-
mining consumptive water use, especially when considering 
the effect of population growth and climate change on water 
demand and supply (Vörösmarty and others, 2000). Distribu-
tion of water resources depends on knowing the volume of 
water that initially is available for use and knowing how much 
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of that water is consumed, thus making it unavailable for 
additional uses.

Many approaches have been developed for measur-
ing or estimating ETa, which constitutes a large fraction of 
consumptive water use (Allen and others, 2011b). The ETa at 
a site can be measured directly using lysimeters (Pruitt and 
Angus,	1960),	eddy	covariance	flux	towers	(Swinbank,	1951),	
or scintillometers (Meijninger and others, 2002); however, 
using these instruments can involve substantial expense and 
effort and requires well-trained personnel. The ETa also can be 
measured indirectly at a site using evaporation pans (Snyder, 
1992)	or	Bowen	ratio	stations	(Fritschen,	1965).	The	use	of	
these instruments, although requiring less expense and training 
than directly measuring ETa, still entails considerable labor. 
Additionally, these direct and indirect measurements of ETa are 
limited to the sites and times at which they are taken.

A simple technique for estimating ETa over larger extents 
and	longer	time	periods	involves	the	use	of	crop	coefficients	
(Allen	and	others,	1998).	A	crop	coefficient	is	a	factor	that	
relates ETa of a plant to that of a reference state by parameter-
izing several characteristics of the plant and the soil. Crop 
coefficients	have	been	developed	for	numerous	plant	species.	
This technique can be scaled to larger extents or longer time 
periods	and	transferred	among	sites	because	crop	coefficients	
are	fixed	parameters,	although	a	crop	type	may	have	several	
factors depending on the number of growth stages (for exam-
ple, initial and development). Applying this technique more 
broadly,	however,	is	difficult	because	of	complications	with	
determining crop types or growth stages from aerial photogra-
phy or satellite imagery. Furthermore, this technique makes a 
questionable assumption that local conditions affecting param-
eters are spatially homogenous. Despite these limitations, the 
crop	coefficient	technique	is	still	used	worldwide	because	of	
its simplicity (Allen, 2000; Allen and others, 2005a).

Remote sensing data have been useful in developing 
methods for estimating consumptive water use from ETa that 
are scalable and transferable, which is important because 
apportionment of water resources is affected by environmental 
and economic circumstances differing in extent and spatio-
temporal resolution. Research over many years has led to 
the development of remote sensing methods that are reliably 
reproducible and effective in estimating ETa. Since satellites 
first	began	collecting	data	on	natural	resources	in	the	1970s,	
researchers have been developing models to process these 
data for estimating ETa (Idso and others, 1975; Jackson and 
others, 1977). Some remote sensing methods for estimat-
ing ETa are focused at very local scales (Jackson and others, 
1977), whereas others are focused at scales ranging from 
regional or continental (Senay and others, 2013; Singh and 
Senay, 2016) to global (Mu and others, 2007). These methods 
also range from simple (Jackson and others, 1977) to complex 
(Bastiaanssen	and	others,	1998a;	Allen	and	others,	2007b).	
Several remote sensing methods can be used to estimate ETa at 
the	high	spatial	resolution	of	agricultural	fields	and	the	large	
extent of river basins—a scale that is useful to water resource 
managers.

Purpose and Scope

This report, prepared in cooperation with the Interna-
tional Joint Commission, provides an overview of selected 
remote sensing methods used for estimating water consumed 
through ETa. Two of the more recently developed methods 
are discussed in detail, Mapping Evapotranspiration at High 
Resolution with Internalized Calibration (METRIC) and 
Operational	Simplified	Surface	Energy	Balance	(SSEBop),	
including the theory behind the continued improvement of 
these methods and some of their applications in ETa estima-
tion. Various qualities of these methods, including the extent 
and spatiotemporal resolution of model estimates and their 
accuracies, the cost, and the ease of implementation, also are 
discussed in comparing the usefulness of the two methods 
for a particular project. This report is not intended to provide 
a systematic review of all remote sensing methods that have 
been developed to estimate consumptive water use from ETa, 
but rather a synopsis of some recently developed techniques 
that currently (2017) seem most applicable to ETa estimation at 
scales appropriate for water resource management, along with 
a discussion of the potential for cloud computing to enable 
the operability of these techniques over large extents at high 
spatiotemporal resolution.

Review of Remote Sensing Methods for 
Estimating Actual Evapotranspiration

The use of remote sensing data for estimating ETa began 
in the 1970s (Li and others, 2009). Original remote sensing 
methods	have	been	improved	over	the	years	with	refinements	
in modeling the processes that affect ETa as well as advances 
in satellite technology and computing power. These develop-
ments have meant that fewer ground-based measurements of 
model parameters are required, and models can be applied 
more accurately over larger extents at higher spatiotemporal 
resolution.

Initial Empirical Methods

One of the earliest remote sensing methods for estimating 
ETa	was	a	simplified	empirical	regression	model	that	estimated	
ETa from the difference between surface and air temperatures 
(Jackson and others, 1977):

 ET R B T Ta n s a= − −( )  (1)

where
 Rn is net radiation, in watts per square meter;
 B	 is	a	composite	constant	related	to	undefined	

parameters;
 Ts is land surface temperature, in kelvins; and
 Ta is air temperature, in kelvins.
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Remote sensing data are used to generate Rn and Ts, but Ta 
is taken from on-the-ground measurements and B requires 
site-specific	parameterization	using	ordinary	least	squares	fit	
to empirical data. Jackson and others (1977) determined that 
this model estimated ETa	reasonably	well	for	a	wheat	field	in	
Arizona.

Other researchers have revised parameterization of the 
model of Jackson and others (1977) and have developed 
modifications	(additional	exponents	and/or	coefficients)	that	
improve its scalability and transferability. Seguin and Itier 
(1983) determined that the model parameters were most 
strongly	influenced	by	atmospheric	stability,	wind	speed,	and	
surface roughness, which allowed for a more standardized 
parameterization of the model. Nieuwenhuis and others (1985) 
tried	to	ease	the	constraints	of	site-specific	parameterization	
using a boundary layer model to simulate the model param-
eters. Taconet and others (1986) also used a boundary layer 
model to simulate the model parameters relative to changes 
in	surface	roughness,	wind	speed,	and	vegetation.	Because	
of these physical factors, ETa estimates from the Jackson and 
others (1977) model were determined to be very sensitive 
to the height above the surface that Ta is measured (Carlson 
and	Buffum,	1989).	This	finding	made	it	reasonable	to	use	
remote sensing data for generating Ta like other parameters 
in the model. It was shown that Ta became	less	influenced	by	
surface features when estimated at least 50 meters (m) above 
the surface, which reduces some of the need for on-the-ground 
measurements.	Moreover,	this	finding	made	it	possible	to	
scale the model from local to regional extents, although ETa 
estimates were produced at a coarse resolution beyond the size 
of most agricultural plots (Seguin and others, 1994).

The model of Jackson and others (1977) for estimat-
ing ETa is expedient because of its simplicity—the only data 
requirements being Ts, Ta, and Rn—which has facilitated 
applications from local to regional scales. This model has been 
applied successfully in many areas under varied atmospheric 
conditions and vegetative cover (Nieuwenhuis and others, 
1985;	Carlson	and	Buffum,	1989;	Seguin	and	others,	1994);	in	
these three studies, the error in ETa estimation averaged about 
1 millimeter (mm) per day. All these applications, however, 
are	limited	by	a	need	for	site-specific	parameterization	that	
does not allow for transference to new locations. More com-
plex analytical methods have been developed that overcome 
limitations of this earlier empirical method, and most use some 
form of the surface energy balance model.

Current Surface Energy Balance Models

More complex remote sensing methods for estimating 
ETa are grounded in the theory behind the surface energy 
balance	model	(Biggs	and	others,	2015),	also	known	as	the	
energy balance model, where available energy from shortwave 
and	longwave	radiation	is	balanced	by	fluxes	from	the	heating	
of Earth’s surface and phase changes of water such as ETa. The 

ETa is estimated by fully or partially solving the energy bal-
ance model (Khan and others, 2015):

 R LE H Gn = − −  (2)

where
 Rn is net radiation, in watts per square meter;
 LE	 is	latent	heat	flux	(energy	consumed	through	

ETa), in watts per square meter;
 H	 is	sensible	heat	flux	(energy	convected	to	the	

air), in watts per square meter; and
 G	 is	ground	heat	flux	(energy	conducted	to	the	

ground), in watts per square meter.
Additionally, these methods apply an analytical approach to 
ETa estimation using physically based models of varied com-
plexity that require a combination of ground-based and remote 
sensing data.

Surface energy balance models can be divided into two 
categories: single-source energy balance models, where veg-
etation and soil are analyzed in a combined energy budget, and 
dual-source energy balance models, where vegetation and soil 
energy budgets are analyzed separately. Single-source energy 
balance	models	include	Surface	Energy	Balance	Algorithm	
for	Land	(SEBAL;	Bastiaanssen	and	others,	1998a),	Simpli-
fied	Surface	Energy	Balance	Index	(S-SEBI;	Roerink	and	
others,	2000),	Surface	Energy	Balance	System	(SEBS;	Su,	
2002), Mapping Evapotranspiration at High Resolution with 
Internalized Calibration (METRIC; Allen and others, 2007b), 
and	Operational	Simplified	Surface	Energy	Balance	(SSEBop;	
Senay and others, 2007; 2013). Dual-source energy balance 
models include the Two-Source Model (TSM; Norman and 
others, 1995), Two-Source Time Integrated Model (TSTIM; 
Anderson and others, 1997), Atmosphere-Land Exchange 
Inverse (ALEXI; Mecikalski and others, 1999), Dual Tem-
perature Difference (DTD; Norman and others, 2000), and 
Enhanced Two-Source Evapotranspiration Model for Land 
(ETEML; Yang and others, 2015).

The premise for using dual-source energy balance models 
to estimate ETa is that they better estimate evaporation from 
bare surfaces, whereas single-source energy balance mod-
els are best used for estimating transpiration from vegetated 
surfaces. However, dual-source energy balance models can 
require more data and parameterization and do not seem to 
provide greatly improved estimates of ETa compared to single-
source models (Timmermans and others, 2007; French and 
others, 2015). The theory and application of many of these 
methods have already been reviewed in detail (Gowda and 
others, 2008a; Li and others, 2009; Liou and Kar, 2014) and 
are beyond the scope of this report. Instead, this report focuses 
on	METRIC	and	SSEBop,	two	energy	balance	models	for	
estimating ETa that are currently applied successfully in the 
United States.
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Mapping Evapotranspiration at High Resolution 
with Internalized Calibration (METRIC)

Allen and others (2007a; 2007b) developed METRIC, 
which is one of the more successfully applied remote sensing 
methods for estimating ETa with the energy balance model 
(eq. 2). The METRIC model can produce maps of ETa at high 
spatial	resolution	(30	m	using	Landsat	data)	for	specific	areas	
smaller than several hundred square kilometers in extent 
(Allen and others, 2007a), an improvement in practice over 
methods used more generally at larger scales. This method 
has been applied for many purposes, including planning of 
water resources, modeling of watershed hydrology, mapping 
of water use by riparian vegetation, monitoring of water rights 
compliance, evaluation of aquifer depletion from pumpage, 
and assessment of irrigation performance (Allen and others, 
2007a).

Theory

The METRIC model is a further development of the 
techniques	used	by	SEBAL	(Bastiaanssen	and	others,	1998a).	
Both	models	estimate	ETa as a residual of the energy balance 
at the land surface using equation 2 (Allen and others, 2007b). 
To compute the parameters in equation 2, METRIC uses 
shortwave and longwave radiation from satellite imagery, a 
30-m digital elevation model (DEM), and hourly ground-based 
weather data near the study area (Allen and others, 2007b). In 
brief, METRIC computes net radiation (Rn) from narrowband 
reflectance	and	surface	temperature;	ground	heat	flux	(G) from 
Rn, surface temperature, and vegetation indices; and sensible 
heat	flux	(H) from surface temperature, wind speed, and sur-
face roughness.

Net radiation (Rn) in equation 2 is computed by adding all 
incoming radiation and subtracting all outgoing radiation:

 R R R R R Rn S S L L L= − + − − −( )↓ ↓ ↓ ↑ ↓α ε1 0  (3)

where
 RS↓  is incoming shortwave radiation, in watts per 

square meter;
 α  is surface albedo (dimensionless);
 RL↓  is incoming longwave radiation, in watts per 

square meter;
 RL↑  is outgoing longwave radiation, in watts per 

square meter; and
 ε0  is broadband surface thermal emissivity 

(dimensionless).
These intermediate parameters are calculated in METRIC with 
numerous submodels that apply additional parameters derived 
from the ground-based weather data, DEM, and satellite imag-
ery (Allen and others, 2007b).

Ground	heat	flux	(G) in equation 2 is computed with 
one	of	two	alternative	submodels	(Bastiaanssen,	2000;	
Tasumi,	2003).	Both	submodels	apply	empirical	relationships	
between Rn, α, surface temperature, and a vegetation index 

to compute G	(Allen	and	others,	2007b).	Bastiaanssen	(2000)	
uses normalized difference vegetation index (NDVI) as the 
vegetation index, whereas Tasumi (2003) uses leaf area index 
(LAI).

Sensible	heat	flux	(H) in equation 2 is computed with an 
aerodynamic function:

 H C dT
rair p
ah

= ρ  (4)

where
 ρair is density of air, in kilograms per cubic meter;
 Cp	 is	specific	heat	of	air	at	constant	pressure,	in	

joules per kilogram per kelvin;
 dT is temperature difference between two near 

surface heights, Z1 and Z2 ,	in	kelvins;	and
 rah is aerodynamic resistance (surface roughness 

and atmospheric stability) between Z1 and 
Z2 ,	in	seconds	per	meter.

Wind speed, elevation, and LAI or NDVI are used to calculate 
rah with several submodels in an iterative process (Allen and 
others, 2007b). The temperature gradient (dT) is calculated 
with	a	linear	function	developed	by	Bastiaanssen	(1995):

 dT a bTs datum= + �  (5)

where
 a is the intercept;
 b is the slope; and
 Ts datum is land surface temperature adjusted to a 

standard elevation per pixel of the satellite 
image, in kelvins.

The parameter Ts datum corrects for temperature change within 
a satellite image that is related to elevational change but unre-
lated to dT or H (Allen and others, 2007b).

The METRIC model reduces the complications of other 
methods that use the surface energy balance model (eq. 2) 
by focusing its calibration on computing H and internalizing 
the errors and biases associated with computing LE (Allen 
and others, 2007b). This calibration primarily depends on dT, 
which is indexed to surface temperature estimated radio-
metrically rather than measured on the ground, simplifying 
the computation of H.	Two	reference	pixels	are	used	to	define	
the evaporative extremes of the energy balance at the land 
surface.	Both	pixels	are	chosen	by	the	user	to	represent	the	
range of dT over the land surface. A “cold” (also called “wet”) 
reference	pixel	is	selected	in	a	well-irrigated	field	with	full	
vegetative cover where ETa is assumed to equal reference 
evapotranspiration (ETr ). The standardized Penman-Monteith 
equation (American Society of Civil Engineers, 2005) is used 
to calculate ETr.	The	sensible	heat	flux	for	the	cold	pixel	(Hcold) 
is calculated with the energy balance model:

 H R G LEcold n cold cold= −( ) −  (6)
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where
 Rn cold is net radiation at the cold pixel, in watts per 

square meter;
 Gcold	 is	ground	heat	flux	at	the	cold	pixel,	in	watts	

per square meter; and
 LEcold	 is	latent	heat	flux	at	the	cold	pixel,	in	watts	

per square meter.
Research has shown that the coldest (wettest) agricultural 
fields	have	ETa rates about 5 percent greater than those for 
a reference alfalfa crop (Tasumi and others, 2005a), so for 
the cold pixel, the ratio of LE to ETr is assumed to be 1.05; 
however, this assumption does not apply outside of, or at the 
beginning of, the growing season when the abundance of 
vegetation is much less than that of the reference alfalfa crop. 
During these times of the growing season, a more appropri-
ate ratio of LE to ETr for the cold pixel can be calculated with 
a	function	of	NDVI	defined	by	the	user	(Allen	and	others,	
2007b). The temperature gradient for the cold pixel (dTcold) is 
calculated with the inverse of equation 4:

 
dT

H r
Ccold

cold ah cold

air cold p

= �

�ρ  (7)

where
 Hcold	 is	sensible	heat	flux	at	the	cold	pixel,	in	watts	

per square meter;
 rah cold is surface roughness and atmospheric stability 

at the cold pixel, in seconds per meter;
 ρair cold�  is density of air at the cold pixel, in kilograms 

per cubic meter; and
 Cp	 is	specific	heat	of	air	at	constant	pressure,	in	

joules per kilogram per kelvin.
The “hot” (also called “dry”) reference pixel is chosen in 
a	dry,	bare	field	where	ETa is assumed to be zero. Unlike 
SEBAL,	METRIC	verifies	this	assumption	with	a	daily	soil	
water balance model, which determines whether evaporation 
is greater than zero because of antecedent moisture (Allen and 
others, 2007b). The calculations of H and dT for the hot pixel 
are the same as those for the cold pixel (eqs. 6 and 7, respec-
tively). The values for dT and Ts datum for the hot and cold pixels 
are	used	to	calculate	the	two	coefficients	(a, b) in equation 5:

 a
dT dT

T T
hot cold

s datum hot s datum cold

=
−
−� � � �
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b

dT a
T

hot

s datum hot

=
−
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where
 dThot/cold is temperature gradient at the hot/cold pixel, 

in kelvins; and
 Ts datum hot/cold is land surface temperature at the hot/cold 

pixel adjusted to a standard elevation per 
pixel of the satellite image, in kelvins.

Once the user determines the linear relationship between dT 
and Ts datum (eq. 5), H is computed for each pixel of the satellite 
image.

The values for G and H are subtracted from that of Rn to 
compute LE, the energy consumed through ETa. Subsequently, 
LE is used to estimate ETa for each pixel of the satellite image:

 
ET LE

inst
w

= 3600
λρ  (10)

where
 ETinst is instantaneous ETa (depth of liquid 

evaporated at the time of the satellite 
image), in millimeters per hour;

 3600 is a factor for converting from seconds to 
hours;

 LE	 is	latent	heat	flux,	in	watts	per	square	meter;
 λ  is latent heat of vaporization, in joules per 

kilogram; and
 ρw  is density of water (about 1,000 kilograms per 

cubic meter).
The ETa is extrapolated to a daily time scale by calculating ETr 
fraction (ETrF),	which	is	equivalent	to	the	crop	coefficient	for	
the cold pixel (Allen and others, 2007b):

 
ET F

ET
ETr
inst

r

=
 

(11)

where
 ETinst is instantaneous ETa, in millimeters per hour; 

and
 ETr  is reference ET at the time of the satellite 

image, in millimeters per hour.
It is assumed that ETrF is constant throughout the day—an 
assumption	that	Allen	and	others	(2007b)	verified	with	obser-
vational data—and ETrF is used to calculate daily ETa (ET24):

 
ET ET F ETr r24 24= ×

 
(12)

where
 ETrF  is ETr fraction (dimensionless); and
 ETr24 is ETr cumulated over 24 hours on the date of 

the satellite image, in millimeters.
With the assumption that ETa for the study area varies in pro-
portion to changes in ETr at the weather station, ETa is extrapo-
lated to a monthly or seasonal period (ETperiod) by interpolating 
ETrF between successive dates of satellite images (using a 
linear or curvilinear function) and multiplying by ETr for each 
day:

 ET ET F ETperiod i m

n
r i r i= ×( )

=∑ 24  (13)
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where
 ETperiod is ETa cumulated over a period from days m to 

n, in millimeters;
 ETrFi is ETrF interpolated over day i 

(dimensionless); and
 ETr24i is ETr cumulated over 24 hours for day i, in 

millimeters.
One	satellite	image	for	each	month	can	be	sufficient	to	
estimate seasonal ETa (Allen and others, 2007b), but during 
times of rapid vegetative growth, multiple dates of satellite 
images may be needed. In addition, one weather station can 
be adequate for calculating ETr (Allen and others, 2007b), but 
if the study area is very heterogeneous and multiple stations 
are available, the user may need to apply METRIC to separate 
sections in the study area.

Lastly,	unlike	SEBAL,	METRIC	uses	ETrF to extrapolate 
ETa from instantaneous to daily instead of using the evapora-
tive fraction (EF), which is the ratio of ETa to available energy 
( R Gn − ). Research has shown that EF underestimates daily 
ETa in drier climates (Allen and others, 2007b), whereas ETrF 
incorporates changing weather such as wind and humidity 
that affect advection of heat throughout the day because these 
changes are integrated in the calculation of ETr, which is done 
hourly and summed over 24 hours.

Application

Several studies have compared on-the-ground measure-
ments of ETa to satellite-based estimates from METRIC. 
Estimates of ETa from METRIC were compared to measure-
ments from lysimeters near Montpelier, Idaho, for a 150- by 
300-kilometer	(km)	portion	(two	Landsat	scenes)	of	the	Bear	
River basin (Allen and others, 2007a). Measurements of ETa 
were	taken	with	lysimeters	located	near	an	irrigated	field	of	
a native sedge forage crop that was characteristic of the area. 
Estimates of ETa	were	made	with	METRIC	for	a	field	close	
to the lysimeters on four dates throughout the 1985 grow-
ing season. The least accurate monthly ETa estimate was for 
July 14, which had a difference of 28 percent between the 
estimated and measured ETa; however, this difference was 
deemed reasonable because of vegetation growing rapidly at 
that time and precipitation preceding the date of the satellite 
image. The average difference between monthly ETa estimated 
with METRIC and that measured with the lysimeters was plus 
or minus 16 percent. When data for the growing season were 
compared, the difference was only 4 percent, which was attrib-
uted to the reduction in random errors associated with each 
monthly METRIC estimate and lysimeter measurement (Allen 
and others, 2007a).

Estimates of ETa from METRIC also were compared 
to lysimeter measurements on the Snake River Plain near 
Kimberly, Idaho, on eight dates of Landsat 5 scenes dur-
ing the 1989 growing season (Allen and others, 2007a). The 
lysimeters had been measuring ETa for more than 20 years 
over a range of ground cover and weather conditions, enabling 
comparisons of those measurements to estimates of ETa from 

METRIC over various times of the growing season and for 
various crop types and growth stages. This study showed that 
METRIC functioned consistently across clear, partly cloudy, 
and cloudy days, validating the assumption that ETrF for a 
daily time scale can be estimated by instantaneous ETrF at the 
time of the satellite image. Estimates of ETrF for the 24-hour 
period were within 5 percent of instantaneous ETrF in nearly 
all samples for clipped grass and sugar beets. Estimates of 
ETa from METRIC were least accurate during the early and 
late growing season, which had differences of 139 percent for 
April 18 and 34 percent for September 25, although the differ-
ence for April 18 was partially attributed to drying of recently 
wetted bare ground. When omitting the value for April 18, 
the average difference was 14 percent. Like the study from 
Montpelier, Idaho, this difference decreased when data for the 
growing season were compared. Measured by the lysimeters, 
the seasonal ETa of the sugar beet crop was 718 mm, whereas 
the estimate from METRIC was 714 mm, a difference of less 
than 1 percent (Allen and others, 2007a).

Estimates of ETa from METRIC also have been compared 
to	those	made	with	SEBAL.	The	two	models	were	applied	
independently in southern Idaho to two partially overlapping 
Landsat 5 and 7 scenes in 2000 (Tasumi and others, 2005b). 
These	independent	applications	of	METRIC	and	SEBAL	
involved different users, different pathways and dates for 
the Landsat scenes, different weather stations, and different 
choices of the hot and cold reference pixels. Monthly and sea-
sonal estimates of ETa	made	with	SEBAL	and	METRIC	were	
compared for pixels sampled from the overlapping portion 
of the Landsat scenes. The seasonal estimates of ETrF from 
METRIC and EF	from	SEBAL	were	consistent	and	repeat-
able;	coefficients	of	determination	(r 2; Helsel and Hirsch, 
2002) were 0.59 and 0.58 and standard deviations were 
0.06 percent and 0.05 percent, respectively, in comparisons of 
the two scenes. The monthly estimates had more variability 
because data were less available in some months. These appli-
cations demonstrated the value of METRIC for estimating ETa 
of agriculture in the semi-arid western United States.

Another application of METRIC has been to improve 
estimates of water balance models that have used empirical 
models, rather than a physically based surface energy balance 
model, to estimate ETa. Using METRIC to estimate ETa, San-
tos and others (2008) applied a water balance model to pro-
duce	more	efficient	irrigation	schedules	for	the	Genil-Cabra	
Irrigation Scheme of Spain. The high temporal resolution of 
the water balance model and the high spatial resolution of 
the satellite imagery provided near real-time estimates of ETa 
from METRIC to improve irrigation scheduling for individual 
agricultural plots. The study area consisted of 6,800 hect-
ares (ha) of irrigated farmland with a diversity of crop types, 
including wheat, cotton, olive, maize, sugar beet, beans, 
garlic,	sunflower,	and	other	vegetables.	Landsat	scenes	on	
11	dates	in	2004–5	and	weather	data	from	five	ground-based	
stations were used to make estimates with the model. Among 
plots, estimates of ETa from METRIC ranged from 0 mm for 
non-agricultural	fields	in	the	study	area	to	1,000	mm	for	some	
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well-irrigated plots of sugar beet. The estimates showed high 
variability	in	crop	coefficients	(ETa from METRIC divided 
by ETr) among the crop types, suggesting in part subopti-
mal irrigation scheduling. In addition, the estimates showed 
great variability within plots, ranging from 70 mm for pepper 
(12 percent of seasonal ETa)	to	160	mm	for	sunflower	(44	per-
cent of seasonal ETa). Using the model estimates to update 
the irrigation schedule in real-time would have reduced the 
watering depth from 733 mm to 559 mm for cotton, a 24-per-
cent decrease in water use, but would have increased water use 
for sugar beet by 21 percent. Estimated ETa from METRIC for 
selected crops and plots was 677 mm, whereas the measured 
delivery of irrigation water was 699 mm, an error of 3 percent. 
In this application, METRIC provided estimates of ETa at high 
spatiotemporal resolution, improving irrigation performance 
and water consumption throughout the growing season for 
individual agricultural plots.

Gowda and others (2008b) applied METRIC to ETa 
estimation in the Texas High Plains near Lake Meredith in 
agricultural	fields	dependent	on	irrigation	water	pumped	from	
the Ogallala Aquifer. The study area encompassed 234,000 ha, 
about one-half of which were planted with corn, cotton, 
sorghum, soybean, and wheat, and the rest had interspersed 
semi-arid shrubs and grasses. The study area experiences 
strong winds and temperature gradients across the landscape 
during the growing season, affecting advection of heat, which 
is responsible for more than half of ETa. Estimates of ETa were 
made with METRIC using Landsat 5 scenes on two dates 
(June 27 and July 29) in 2005 and ground-based weather data 
from four stations. Estimates of ETa in four fully or partially 
irrigated	fields	of	corn	and	cotton,	experiencing	varied	water	
stress, were compared to a daily soil water balance model. The 
partially	irrigated	cotton	field	had	relatively	high	differences	
between estimated and measured ETa, potentially because 
of less plant biomass and more bare soil. When omitting the 
values	for	this	field,	the	average	difference	was	13	percent	and	
-5 percent on June 27 and July 29, respectively, which Gowda 
and others (2008b) deemed exceptional given the prevailing 
weather conditions that promote advection of heat.

Most applications of METRIC have been at local scales 
at high spatial (30 m) but lower temporal (8–16 days) resolu-
tion using data from Landsat 5, 7, and 8. Few studies have 
attempted	to	apply	METRIC	or	SEBAL	at	regional	scales	at	
lower spatial (250–1,000 m) but higher temporal (1–2 days) 
resolution using data from Moderate Resolution Imaging 
Spectroradiometer (MODIS). Data from MODIS were used 
in	applications	of	SEBAL	in	Brazil	and	China	(Ruhoff	and	
others, 2012; Yang and others, 2012). Trezza and others 
(2013) used METRIC with MODIS data in a study of a 3- by 
3-degree	section	of	the	Middle	Rio	Grande	Basin	in	New	
Mexico.	The	main	difficulty	in	using	METRIC	with	low	spa-
tial resolution (1 km) MODIS data is the selection of hot and 
cold reference pixels that are uniform within 1 square kilo-
meter (km2), the area of a pixel. To overcome this limitation, 
the cold pixel was chosen with a procedure that incorporated 
MODIS and Landsat 5 data, whereas the hot pixel selection 

was made with MODIS data. Comparisons were made 
between METRIC estimates of ETa using MODIS and Landsat 
5 data for scenes on 13 dates in 2002. Estimates of ETa using 
data from MODIS were lower than those made with Landsat 
for pixels with high NDVI but comparable for pixels with 
low NDVI. Moreover, ETa estimates made with MODIS data 
were highly correlated with those using Landsat (r 2 = 0.9); 
annual ETa	averaged	over	the	Middle	Rio	Grande	Basin	was	
1,045 mm with MODIS and 1,067 mm with Landsat. Uncer-
tainty of ETa estimates for individual agricultural plots, how-
ever, was very high when using METRIC with MODIS data.

Operational Simplified Surface Energy Balance 
(SSEBop)

Senay	and	others	(2013)	developed	SSEBop,	which	is	
the	most	recent	revision	of	Simplified	Surface	Energy	Balance	
(SSEB;	Senay	and	others,	2007).	Because	SSEBop	builds	on	
the	theory	from	SSEB,	this	section	will	focus	first	on	SSEB	
and	then	discuss	its	progression	toward	SSEBop.	Similar	to	
METRIC,	SSEBop	is	another	remote	sensing	method	that	
applies	the	simplified	version	of	the	surface	energy	balance	
model (eq. 2) to estimate ETa. Applications of this method 
also have had many purposes, including drought monitoring 
and famine early warning in regions with sparse ground-based 
data, mapping of water use by different land cover classes, and 
estimation of ETa in the United States at regional to continental 
scales (Senay and others, 2007; 2011a; 2013; 2016). The SSE-
Bop	model	has	been	used	to	produce	maps	of	ETa over very 
large extents (the conterminous United States) using lower 
spatial resolution (1 km) MODIS data (Senay and others, 
2016).	Unlike	METRIC,	SSEBop	requires	less	parameteriza-
tion of the energy balance model, making for simpler applica-
tion over larger extents, and does not have the same require-
ments	for	finely	resolved	ground-based	data	such	as	hourly	
weather information.

Theory

The	SSEB	model	functions	similarly	to	METRIC	(Allen	
and others, 2007b). The METRIC model assumes that varia-
tion in land surface temperature (LST) is linearly related to the 
temperature difference between the land surface and air. This 
relation	is	defined	through	the	selection	of	two	reference	pix-
els:	a	hot	pixel	that	represents	bare,	dry	fields;	and	a	cold	pixel	
that	represents	vegetated,	wet	fields.	The	temperature	gradi-
ent is used in equation 2 to estimate H	(sensible	heat	flux),	
which is assumed to vary linearly between the hot and cold 
pixels.	This	assumption	holds	for	SSEB,	where	it	is	further	
assumed that LE in equation 2 (energy consumed through ETa) 
also varies linearly between the hot and cold pixels. Senay 
and others (2007) remark that this assumption is supported by 
research showing that the temperature difference between the 
land surface and air is linearly related to soil moisture. They 
additionally assume that ETa can be inferred from the tem-
perature gradient, which can be estimated from land surface 
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temperatures of the hot and cold pixels. At the hot pixel, ETa is 
assumed to be zero, and ETa at the cold pixel is assumed to be 
maximal—that is, to equal ETr. At all other pixels in a study 
area, ETa is scaled proportionately to the surface temperature 
of each pixel in relation to that of the hot and cold pixels. With 
this assumption, fractional evapotranspiration (ETf ) is calcu-
lated for each pixel:

 
ET

T T
T Tf
h s

h c

=
−
−  

(14)

where
 Th is LST for the hot pixel, in kelvins;
 Ts is LST of each pixel, in kelvins; and
 Tc is LST for the cold pixel, in kelvins.

To	calculate	the	parameters	in	equation	14,	SSEB	uses	
satellite imagery for LST and a vegetation index (NDVI) to 
assist in choosing the hot and cold reference pixels. From the 
study area, regions of high temperature and low NDVI (hot, 
bare	fields)	and	low	temperature	and	high	NDVI	(cold,	well-
vegetated	fields)	are	identified	from	which	the	hot	and	cold	
reference pixels are chosen. The ETa is calculated from ETf for 
each pixel in the study area:

 ET ET ETa f= × 0  (15)

where
 ETf is fractional ET (dimensionless); and
 ET0 is reference ET, in millimeters.
Available gridded data such as those from the Global Data 
Assimilation System (GDAS) model are used to calculate 
ET0, which results in a 1-degree grid of global daily data 
(Senay and others, 2008). The GDAS model uses the standard-
ized Penman-Monteith equation (American Society of Civil 
Engineers, 2005) to compute ET0 for a shortgrass crop (Allen 
and others, 1998). Senay and others (2007) disaggregate the 
1-degree data from this model onto a 10-km grid. However, 
if ET0 is available from a weather station, ETa estimates will 
likely be more accurate using the local values of ET0.

A	major	assumption	of	SSEB	is	that	differences	in	LST	
over a homogeneous landscape are related to differences in 
vegetation	and	its	water	use	(Senay	and	others,	2007).	Because	
this assumption ignores α  and G, ETa is underestimated for 
surfaces	with	low	albedo	(light	reflectance)	and	overestimated	
for	surfaces	with	high	albedo	and	high	ground	heat	flux,	such	
as	bare	soils	(Senay	and	others,	2011a).	In	addition,	SSEB	
assumes that LST and ETa are linearly related, but this assump-
tion is questionable if α and G of a pixel on the landscape dif-
fer greatly from that of the reference crop (Senay and others, 
2011a). To better support these assumptions, Senay and others 
(2011a)	developed	an	adaptation	of	SSEB	(SSEBelvi)	with	
a correction for elevation with a DEM and another correc-
tion	for	land	cover	with	a	vegetation	index.	These	modifica-
tions	were	developed	to	improve	SSEB	in	applications	on	

landscapes with varied elevation, slope, or aspect, and with 
mixed bare soil and green or senesced vegetation.

To	improve	SSEB	for	applications	not	just	on	flat,	
irrigated	fields	but	also	on	more	complicated	terrain,	LST	is	
corrected for topographic differences:

 LST LST K DEMc L= + ×  (16)

where
 LSTc is  LST corrected for elevation, in kelvins;
 LST is uncorrected LST, in kelvins;
 KL is lapse rate in temperature of air moving over 

the landscape, in kelvins per meter; and
 DEM is land surface elevation from a digital 

elevation model, in meters.
The standard value for the lapse rate is 0.0065 kelvins per 
meter.	When	using	SSEBelvi,	LSTc is substituted for LST to 
calculate ETf in equation 14.

To	improve	the	application	of	SSEB	for	mixed	land	
cover, NDVI is used to correct for vegetation differences:

 
ET NDVI ETf elvi f el( ) ( )= × +
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(17)

where
 ETf(elvi) is ETf corrected for elevation and vegetation 

index (dimensionless);
 NDVI is normalized difference vegetation index 

(dimensionless); and
 ETf(el) is ETf from equation 14 corrected for land 

surface elevation (dimensionless).
With	SSEBelvi,	it	is	assumed	that	if	the	NDVI	value	of	a	pixel	
is greater than 0.7, that pixel is well-vegetated and will have 
ETa greater than that of the reference crop if water is not limit-
ing (Senay and others, 2011a). The possible range of the coef-
ficient	in	equation	17	(the	resulting	value	of	all	terms	within	
the parentheses) is 0.65–1.15, but the probable maximum is 
1.05 because NDVI is rarely greater than 0.8 for a pixel. Senay 
and others (2011a) state that this range has no strong theoreti-
cal basis, but that the probable maximum is equivalent to the 
correction factor used by METRIC (1.05) for calculating ETf 
of	the	cold	reference	pixel.	When	using	SSEBelvi,	ETf(elvi) is 
substituted for ETf to calculate ETa in equation 15.

To reduce the potential for bias from the user selecting 
the	hot	and	cold	reference	pixels	in	SSEB	and	SSEBelvi,	SSE-
Bop	was	developed	with	a	procedure	similar	to	that	of	SEBS	
(Su, 2002) to predetermine the difference between the hot 
and cold boundary conditions for each pixel (Senay and oth-
ers,	2013).	The	SSEBop	model,	unlike	METRIC,	SSEB,	and	
SSEBelvi,	does	not	require	the	user	to	select	the	hot	and	cold	
reference pixels for a study area. The only data required are Ts, 
Ta, and ET0. Senay and others (2013) state that their model is 
boldly simple, but that it is grounded in knowledge that avail-
able Rn drives the surface energy balance model. They argue 
that under clear skies the hot and cold boundary conditions do 
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not	vary	significantly	among	years,	and	more	importantly	the	
difference between the hot and cold reference values can be 
assumed constant for a given location and day of year. With 
this assumption, ETa is calculated as a fraction of ET0:

 ET ET kETa f= × 0  (18)

where
 ETf is fractional ET (dimensionless);
 k	 is	a	coefficient	that	scales	ET0 to maximum 

ETa of a less aerodynamic crop; and
 ET0 is reference ET for a shortgrass crop, in 

millimeters.
The	standard	value	for	the	coefficient	is	1.2,	but	it	also	can	
be determined with calibration procedures using soil water 
balance	or	surface	energy	balance	approaches,	or	field	data	
(Senay and others, 2013). The idealized hot and cold reference 
values for each pixel are used to calculate ETf in equation 14.

It is assumed that under clear-sky conditions ETa will be 
equivalent to potential ET if Ts is similar to Ta (H is minimal), 
so daily maximum air temperature (Ta) can be multiplied by a 
correction factor to calculate land surface temperature for the 
cold pixel (Tc) in equation 14:

 T cTc a=  (19)

where
 c	 is	a	coefficient	that	relates	Ts to Ta for well-

irrigated vegetation at maximum ETa; and
 Ta is air temperature, in kelvins.
This	assumption	can	be	verified	by	relating	Ts to Ta from 
remote sensing data for well-irrigated vegetation in the study 
area.

Land surface temperature for the hot pixel (Th) is calcu-
lated by adding the temperature difference to Tc from equation 
19:

 T T dTh c= +  (20)

where
 Tc is land surface temperature for the cold pixel, 

in kelvins; and
 dT is temperature gradient between the idealized 

hot and cold reference values for each 
pixel, in kelvins.

The parameter dT is predetermined for each pixel and day of 
year by partially solving the energy balance model for dry, 
bare soil where it is assumed that ETa is zero and H is maximal 
(Bastiaanssen	and	others,	1998a;	Allen	and	others,	2007b).	
Because	LE and G in equation 2 are assumed to be zero at a 
daily time scale for bare, dry soil, Rn can be estimated as H in 
equation 4, and dT can be calculated with the inverse of equa-
tion 4. Senay and others (2013) used a trial-and-error calibra-
tion approach to determine rah,	which	they	fix	at	110	seconds	

per meter, a value also found in the range reported by other 
research (Qiu and others, 1998).

Lastly, satellite imagery can underestimate Ts on some 
non-vegetated surfaces with high albedo, such as desert sands, 
or	high	emissivity,	such	as	lava	rocks.	Consequently,	SSEBop	
may overestimate ETa for these surfaces. To correct for this 
misinterpretation of Ts	when	using	SSEBop	to	estimate	ETa, 
either a mask is applied over these surfaces or a correction fac-
tor is used with α to increase Ts.

Application

The	SSEB,	SSEBelvi,	and	SSEBop	models	have	been	
applied at local, regional, and continental scales, and tested 
against more complex remote sensing methods for estimating 
ETa.	Senay	and	others	(2007)	used	SSEB	to	estimate	ETa in 
irrigated agricultural lands in two river basins in Afghanistan 
during	2000–5.	Because	these	river	basins	had	varied	tempera-
ture gradients, they were each divided by elevation into three 
subdivisions, ranging in size from 430 to 2,100 km2. Irrigated 
fields	were	delineated	with	data	from	Landsat,	MODIS,	and	
Advanced	Spaceborne	Thermal	Emission	and	Reflection	
Radiometer	(ASTER).	Afghanistan	lacked	field	data	for	model	
validation, but spatial and temporal patterns of estimated ETa 
were consistent with observations of vegetative cover from 
NDVI, estimates of ETa from a water balance model, and 
published reports of precipitation (Senay and others, 2007). 
Furthermore,	in	a	preliminary	validation	of	SSEB	against	
METRIC	applied	to	corn	and	soybean	fields	in	South	Dakota	
in 2001 with Landsat data (Senay and others, 2007), ETa 
estimates from both models were highly correlated (r 2 greater 
than 0.9).

Satellite-based estimates of ETa	from	SSEB	have	been	
compared to on-the-ground measurements in several studies. 
Estimates of ETa	using	SSEB	were	compared	to	measurements	
taken	with	lysimeters	near	Bushland,	Texas,	on	the	Southern	
High Plains (Gowda and others, 2009). Lysimeters measured 
ETa in dryland and irrigated agricultural plots planted with 
corn and sorghum. Estimates of ETa	were	made	with	SSEB	for	
Landsat scenes on 14 dates during the 2007 and 2008 growing 
seasons. Estimates of ETa	from	SSEB	explained	84	percent	
of the variance in the daily measurements from lysimeters, 
and had a root mean square error (RMSE; Helsel and Hirsch, 
2002)	of	1.2	mm.	The	differences	between	SSEB	and	the	
lysimeters mostly involved the dryland agricultural plots; 
SSEB	overestimated	ETa at lower values (less than 2.5 mm) of 
lysimeter-measured daily ETa and underestimated ETa at higher 
values.	It	was	determined	that	SSEB	performed	comparably	
to more complex energy balance models at estimating ETa in 
semi-arid landscapes. Gowda and others (2009) concluded that 
SSEB	is	promising	for	regional-scale	applications	because	of	
its	simplified	approach	with	minimal	data	requirements.

Estimates of ETa	made	with	SSEB	also	have	been	
compared to those from a water balance model (Senay and 
others, 2011b). For 1,399 eight-digit hydrologic unit code 
(HUC8) subbasins in the conterminous United States, ETa 
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was	estimated	using	SSEB	and	was	modeled	as	the	difference	
between precipitation and runoff (Senay and others, 2011b). 
The comparison was made with the median values for pre-
cipitation and runoff for 2000–9. Estimates of ETa	from	SSEB	
and the water balance model were highly correlated (r 2 greater 
than 0.9) and had a mean error of -67 mm (11 percent of the 
difference between precipitation and runoff). Senay and others 
(2011b)	ascertained	that	SSEB	showed	the	expected	patterns	
of ETa across the contiguous United States but underestimated 
ETa in more arid regions. This underestimation most likely was 
due to the low spatial resolution (1 km) of MODIS data, which 
assimilates land within a 1-km2 pixel that may not be contrib-
uting to ETa.

Senay and others (2011a) compared spatial and tempo-
ral variation in ETa	estimates	from	SSEBelvi	to	those	from	
METRIC	for	agricultural	fields	in	southern	Idaho.	Spatial	
variation in ETa estimates was compared for the whole study 
area on June 28, 2003, and temporal variation in ETa esti-
mates was compared for six plots in Landsat scenes on seven 
dates throughout the 2003 growing season. For pixels in the 
study area at elevations less than 2,000 m, where the terrain 
was homogeneous, spatial variation in ETa estimates from 
SSEBelvi	and	METRIC	were	highly	correlated,	having	a	
correlation	coefficient	(r; Helsel and Hirsch, 2002) of 0.95. 
For pixels greater than 2,000 m in elevation, which had more 
complicated	terrain,	SSEBelvi	tended	to	overestimate	ETa at 
lower values of ETa estimated with METRIC; however, the 
corrections for elevation and vegetative cover with a DEM and 
NDVI were determined to improve the correlation between 
SSEB	and	METRIC	for	pixels	at	higher	elevations	(r = 0.62). 
Temporal variation in ETa estimates also was comparable 
between	SSEBelvi	and	METRIC	for	most	of	the	agricultural	
plots.	Although	SSEBelvi	tended	to	overestimate	ETa earlier 
in the growing season, it was similar to METRIC later in the 
growing season when daily or monthly ETa is much greater. 
Senay and others (2011a) surmised that selecting the cold ref-
erence pixel in a water body would help reduce this error.

Two	studies	have	compared	SSEBop	estimates	of	ETa 
to eddy covariance measurements (Senay and others, 2013; 
Chen and others, 2016). In both studies, ETa estimates were 
compared	to	measurements	taken	at	more	than	40	flux	towers	
covering diverse ecosystems across the contiguous United 
States, including cropland, grassland, forest, shrubland, and 
woody savanna. Senay and others (2013) parameterized 
SSEBop	with	monthly	air	temperature	data	in	2005	from	
Parameter-Elevation Regressions on Independent Slopes 
Model (PRISM) and found high correlation between monthly 
ETa	estimates	from	SSEBop	and	eddy	covariance	measure-
ments (r 2 = 0.64; RMSE = 27 mm). Senay and others (2013) 
concluded	that	SSEBop	is	promising	for	applications	at	a	
continental scale given the minimal data requirements and the 
consistency of model estimates produced by different users. 
Chen	and	others	(2016)	parameterized	SSEBop	for	monthly	
data	during	2001–7	and	determined	that	across	five	land	cover	
classes,	SSEBop	estimates	of	ETa explained 86 percent of the 
variance in the monthly eddy covariance measurements and 

had an RMSE of 15 mm. The model performed best for crop-
land (r 2 = 0.92; RMSE = 13 mm). A sensitivity analysis of the 
model determined that errors in all six parameters might cause 
errors in ETa estimation as great as 30 percent, and that the 
model is most sensitive during the non-growing season and in 
more arid regions. Despite the potential for error in parameter-
izing	SSEBop,	Chen	and	others	(2016)	determined	that	uncer-
tainty	in	the	simplification	of	the	model	did	not	significantly	
affect	how	well	SSEBop	estimates	ETa at a regional scale.

Singh and Senay (2016) compared ETa estimates from 
SSEBop	to	those	from	three	different	energy	balance	models	
(METRIC,	SEBAL,	and	SEBS)	for	irrigated	and	non-irrigated	
farmlands in the midwestern United States. Estimates of ETa 
were made with Landsat scenes on seven dates throughout the 
2001 growing season over three sites planted with maize and 
soybean. Estimates of ETa	from	METRIC,	SEBAL,	SEBS,	and	
SSEBop	were	compared	to	eddy	covariance	measurements	
taken at the three sites. Singh and Senay (2016) determined 
that all four models demonstrated similar spatial and tempo-
ral patterns of ETa. Performance of the models was evaluated 
with four metrics: r, r 2,	Nash-Sutcliffe	efficiency	(NSE),	and	
RMSE.	The	NSE	compares	the	relative	fit	of	model	simula-
tions	to	observed	data	and	ranges	from	negative	infinity	to	1,	
with 1 being the optimal value and values less than 0 being 
worse than the mean observed value (Nash and Sutcliffe, 
1970). When compared to eddy covariance measurements, 
estimates of ETa made with METRIC had an r, r 2, NSE, and 
RMSE of 0.96, 0.92, 0.87, and 93 mm, respectively; for SSE-
Bop,	they	were	0.96,	0.92,	0.90,	and	84	mm,	respectively.

Two studies have used ETa	estimated	with	SSEBop	to	
help improve water resource management in the Colorado 
River	Basin	(Singh	and	others,	2014a;	Senay	and	others,	
2016). In both studies, ETa was estimated with Landsat and 
MODIS data for 144 HUC8 subbasins. Singh and others 
(2014a) determined there was high correlation between SSE-
Bop	estimates	of	annual	ETa made with high spatial resolution 
(30 m) Landsat data and eddy covariance measurements taken 
at seven sites in 2000 (r 2 = 0.78); removing two sites affected 
by	wildfire	further	increased	the	correlation	(r 2 = 0.95). More-
over, annual ETa	estimates	from	SSEBop	for	the	HUC8	sub-
basins were highly correlated with those from a water balance 
model (r 2 = 0.85). Singh and others (2014b) also determined 
that estimates of annual ETa	made	with	SSEBop	using	lower	
spatial resolution (1 km) MODIS data had high correlation 
to those made with Landsat data (r 2 = 0.79). However, ETa 
estimates made with MODIS data were not spatially explicit 
enough	to	manage	water	resources	at	the	field	scale.	Senay	
and	others	(2016)	determined	that	SSEBop	estimates	of	daily	
ETa were highly correlated to eddy covariance measurements 
taken at two sites (r 2 greater than or equal to 0.82; RMSE 
less than or equal to 0.6 mm), and annual ETa estimated with 
SSEBop	had	high	correlation	to	that	from	a	water	balance	
model (r 2 =0.78; RMSE = 77 mm). To increase the temporal 
resolution of ETa	estimates,	SSEBop	was	parameterized	with	
daily air temperature data from Daymet (Thornton and oth-
ers, 1997). Senay and others (2016) analyzed ETa by 16 land 
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cover classes and determined that shrubland, the dominant 
land cover, consumed 146 cubic kilometers (km3) of water, 
whereas cropland consumed 4 km3. However, they determined 
that precipitation only provided 26–43 percent of water used 
by	cropland	in	five	irrigation	districts,	emphasizing	the	value	
of the high spatiotemporal resolution estimates to managing 
water resources.

Comparison of METRIC and SSEBop 
Models

The	METRIC	and	SSEBop	models	each	have	been	
shown to estimate ETa with acceptable accuracies in many 
applications. A robust remote sensing method for estimating 
ETa, METRIC has been applied successfully in the United 
States	and	internationally,	and	METRIC	and	SEBAL	(the	
model from which METRIC was developed) have been used 
to estimate ETa in more than 25 countries and on all conti-
nents	except	Antarctica	(Bastiaanssen	and	others,	1998b;	
2005;	Allen	and	others,	2007a).	The	SSEBop	model	largely	
has been used to estimate ETa in the United States (Senay and 
others, 2007; 2011a; 2013; 2016). The METRIC and SSE-
Bop	models	have	many	similarities	(table	1),	including	their	
theoretical grounding in the surface energy balance model and 
their ability to incorporate low (1 km) and high (30 m) spatial 
resolution data from MODIS and Landsat; however, they have 
important differences in data requirements, ease of implemen-
tation, and cost.

The METRIC model has shown greater accuracy at esti-
mating ETa	than	simpler	techniques	that	use	crop	coefficients	
or vegetation indices exclusively (Choudhury and others, 
1994; Allen and others, 1998), and also removes the need to 
know crop type and growth stage (Allen and others, 2011a). 
The model can detect reductions in ETa from water shortages, 
soil salinity, and frozen soil, and can detect evaporative losses 
from bare soil. In addition, many studies validating METRIC 
estimates of ETa against measurements from lysimeters have 
shown model accuracies on daily to seasonal time scales rang-
ing from 85 to 95 percent (Allen and others, 2007a).

The METRIC model is accurate and accounts for all 
terms of the energy balance model (table 1). The greater 
complexity of METRIC results in greater data requirements, 
including remote sensing data in the visible, near-infrared, and 
infrared regions of the electromagnetic spectrum, as well as 
on-the-ground measurements of wind speed and air tempera-
ture. Some of the complexity of solving the energy balance 
model is mitigated by the internalized calibration of METRIC, 
which reduces data requirements compared to more complex 
energy balance models; however, this internalized calibration 
leads to greater skill required for implementation compared to 
SSEBop.

Skill is required in the selection of the hot and cold 
reference pixels by the user, which is the principal determi-
nant of the accuracy of METRIC. Long and Singh (2013) 

demonstrated that context dependency can affect this selec-
tion by the user. An appropriate reference pixel may not exist 
within a satellite image if all the land cover is vegetated (or 
non-vegetated), or the choice of the reference pixels can 
be affected if the extent or resolution of the satellite image 
changes, which in turn would change estimates of ETa. User 
error in choosing the hot and cold reference pixels is the 
greatest source of error in ETa estimates from METRIC. To 
apply METRIC appropriately, the user needs background in 
the theoretical basis of the surface energy balance model and 
knowledge of the biophysics of vegetation. This user training 
and the sophistication of the physically based model means 
that METRIC can cost more than $75,000 per year (in 2004 
dollars) to estimate ETa for a Landsat scene (Allen and others, 
2005b). Although METRIC may cost less than estimating ETa 
for	a	study	area	using	crop	coefficient	techniques	with	on-the-
ground measurements of reference ET, it is still expensive for 
a 1-year application.

Because	of	the	training	needed	to	apply	METRIC	prop-
erly and the variability in ETa estimates among even trained 
users, effort has been made to automate the calibration of 
METRIC (Allen and others, 2013). Morton and others (2013) 
developed an algorithm that might simplify ETa estimation 
with METRIC. Six trained users manually calibrated METRIC 
for estimating ETa with Landsat scenes from 2006 for a study 
area in Nevada. Statistics from empirical cumulative distribu-
tion functions of the selection of the hot and cold reference 
pixels by these users were used to parameterize the automated 
calibration algorithm. Comparisons of daily ETa estimates 
from	the	automated	calibration	to	Bowen	ratio	and	eddy	cova-
riance measurements at eight sites showed high correlation 
(r 2	=	0.8).	Morton	and	others	(2013)	affirmed	that	the	auto-
mated calibration algorithm compared well to manual selec-
tion of the reference pixels, but that more validation is needed 
in other study areas with different crop types and growing 
conditions. The automated algorithm for selecting reference 
pixels is a promising development toward greater objectivity 
in METRIC estimates of ETa, and more importantly a more 
user-friendly means of implementation.

In	contrast,	SSEBop	is	a	simpler	model	(table	1),	having	
reduced data requirements and greater ease of implementa-
tion without a substantial loss of accuracy in estimating ETa. 
Performance	has	improved	greatly	from	SSEB	to	SSEBelvi	
and	SSEBop.	Like	other	energy	balance	models,	SSEBop	does	
not perform as well on more complicated terrain, but Senay 
and others (2013) have suggested further adaptations of the 
model that may include corrections for slope and aspect in cal-
culating net radiation. Additionally, model accuracies ranging 
from 80 to 95 percent on daily to annual time scales have been 
shown in numerous studies that validated ETa estimates from 
SSEBop	against	eddy	covariance	measurements	(Senay	and	
others, 2013; Chen and others, 2016).

The	data	requirements	of	SSEBop	are	air	temperature,	
albedo, land surface elevation, NDVI, net radiation, refer-
ence ET, and land surface temperature, most of which are 
taken from remote sensing data (table 1). Although greater 
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accuracy is possible with the incorporation of ground-based 
data, no ground-based data are required. The process followed 
by	SSEBop	in	estimating	ETa is relatively simple. Instanta-
neous or averaged surface temperature is taken from Landsat 
or MODIS data. Daily, weekly, or monthly air temperature 
is taken from Daymet data, or ground-based weather data 
for higher spatial resolution applications at smaller scales. 
A correction factor can be calculated relating land surface 
temperature to air temperature under clear-sky conditions 
for wet, vegetated pixels. A seasonally dynamic but annually 
static temperature difference under clear-sky conditions for 
each pixel is calibrated to a dry, bare pixel. Reference ET is 
calculated	with	data	from	gridded	weather	fields	such	as	those	
from GDAS, or ground-based weather data for more local 
applications. Fractional ET is calculated using the idealized 
hot and cold reference values for each pixel, and estimates 
of ETa at the desired time scale are calculated by multiplying 
reference ET by fractional ET. Although some parts of the 
process necessitate internal calibration, the skill required is 
greatly reduced.

Implementation of Large-Scale 
Estimation of Actual Evapotranspiration 
with Cloud Computing

Estimation of consumptive water use at large scales is 
difficult	but	is	a	key	priority	of	the	U.S.	Geological	Survey	
(USGS) and part of the focus of the National Water Census on 
mapping water use and availability nationally (U.S. Geologi-
cal Survey, 2007; Alley and others, 2013). The USGS has 
been developing an objective way to estimate ETa at this scale, 
but the high spatiotemporal resolution of ETa estimates using 
Landsat data over large extents takes immense computing 
power. For example, in the two consumptive water use studies 
of	the	Colorado	River	Basin	that	used	SSEBop	(Singh	and	
others, 2014a; Senay and others, 2016), 43 Landsat scenes on 
multiple dates, each about 1 gigabyte in size, were analyzed. 
The	Colorado	River	Basin	is	about	7.5	percent	of	the	area	of	
the conterminous United States, so a continental-scale analysis 
of consumptive water use might need to process more than 
550 scenes on multiple dates throughout the growing season. 
This processing involves masking clouds from the satellite 
images, interpolating between dates of satellite images with 
clear skies, and seamlessly mosaicking the satellite images. 
Other remote sensing data, such as air temperature, albedo, 
land surface elevation, and reference ET also require process-
ing	prior	to	inclusion	in	SSEBop.	Because	of	these	geospatial	
processing needs, an effort at this scale has not occurred.

The size of high spatial resolution satellite imagery can 
be prohibitive for doing large-scale analyses on an average 
desktop computer. For example, all the data associated with 
a Landsat 8 scene downloaded from Earth Explorer (https://
earthexplorer.usgs.gov) are about 1 gigabyte. To download and 

process data for a great number of scenes on multiple dates is 
unfeasible at this size, particularly when exploratory analy-
sis	is	first	required.	Cloud	computing—based	on	computing	
resources that are shared over the internet—is providing an 
opportunity for processing an increasing amount of geospatial 
“big data” in a decreasing period of time (Yang and others, 
2011; Lee and Kang, 2015). For example, although it might 
take an individual computer 10 hours to process 1 gigabyte of 
data, cloud computing might apportion that data among 100 
(or 1,000) computers, which each take 1 hour (or 1 minute) to 
process its portion of the data.

Many cloud computing options, such as Amazon Web 
ServicesTM, Google Earth EngineTM,	IBM	CloudTM, or Micro-
soft Azure TM, have potential for estimating ETa over larger 
extents and longer time periods. For example, Google Earth 
EngineTM, which uses Google’s computer infrastructure to 
process data in parallel on many servers, is already operative 
in research in the earth sciences (Yu and Gong, 2012). Google 
Earth EngineTM has been used to implement METRIC with 
automated calibration for regional-scale estimates of ETa using 
Landsat data, with a beta version of a web app presented at 
Google’s 2015 Earth EngineTM User Summit (J.L. Huntington, 
Desert Research Institute, oral commun., 2016). The USGS 
also is using Google Earth EngineTM	to	implement	SSEBop	
for estimating ETa in the United States at a continental scale 
using Landsat data, with a proof-of-concept annual ETa 
product showcased by the Google Earth EngineTM Team at 
the	American	Geophysical	Union’s	2016	Fall	Meeting	(G.B.	
Senay, U.S. Geological Survey, written commun., 2016). 
Although estimates of ETa at low spatiotemporal resolution 
for the contiguous United States are already available (Senay 
and others, 2013), higher resolution estimates are currently in 
development.

Summary
Water resource users and managers have a vested interest 

in accurately determining consumptive water use, and many 
approaches have been developed for measuring or estimat-
ing actual evapotranspiration (ETa), which constitutes a large 
fraction of consumptive water use. The ETa at a site can be 
measured	directly	using	lysimeters,	eddy	covariance	flux	
towers, or scintillometers, or indirectly using evaporation 
pans	or	Bowen	ratio	stations,	but	these	direct	and	indirect	
measurements of ETa are limited to the sites and times at 
which they are taken. A simple technique for estimating ETa 
over larger extents and longer time periods involves the use 
of	crop	coefficients,	but	applying	this	technique	more	broadly	
is	difficult	because	of	complications	with	determining	crop	
types or growth stages from aerial photography or satellite 
imagery. Research over many years has led to the development 
of remote sensing methods that are more reproducible and 
effective in estimating ETa. Several remote sensing methods 
can be used to estimate ETa at the high spatial resolution of 
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agricultural	fields	and	the	large	extent	of	river	basins—a	scale	
that is useful to water resource managers.

One of the earliest remote sensing methods for estimat-
ing ETa	was	a	simplified	empirical	regression	model	that	
estimated ETa from the difference between land surface and 
air temperatures. This method for estimating ETa is expedient 
because of its simplicity, and it has been applied successfully 
in many areas, but applications are limited by a need for site-
specific	parameterization	that	does	not	allow	for	transference	
to new locations. More complex analytical methods have been 
developed that overcome limitations of this earlier empiri-
cal method and are grounded in the theory behind the surface 
energy balance model, where available energy from shortwave 
and	longwave	radiation	is	balanced	by	fluxes	from	the	heating	
of Earth’s surface and phase changes of water such as ETa. 
These methods apply an analytical approach to ETa estima-
tion using physically based models of varied complexity that 
require a combination of ground-based and remote sensing 
data.

This report, prepared in cooperation with the Interna-
tional Joint Commission, provides an overview of selected 
remote sensing methods used for estimating water consumed 
through ETa and focuses on Mapping Evapotranspiration at 
High Resolution with Internalized Calibration (METRIC) and 
Operational	Simplified	Surface	Energy	Balance	(SSEBop),	
two energy balance models for estimating ETa that are cur-
rently applied successfully in the United States. The METRIC 
model can produce maps of ETa at high spatial resolution 
(30	meters	using	Landsat	data)	for	specific	areas	smaller	than	
several hundred square kilometers in extent, an improvement 
in practice over methods used more generally at larger scales. 
This method has been applied for many purposes, including 
planning of water resources, modeling of watershed hydrol-
ogy, mapping of water use by riparian vegetation, monitoring 
of water rights compliance, evaluation of aquifer depletion 
from pumpage, and assessment of irrigation performance. 
Similar	to	METRIC,	SSEBop	is	another	remote	sensing	
method that applies the surface energy balance model to esti-
mate ETa, and applications of this method also have had many 
purposes, including drought monitoring and famine early 
warning in regions with sparse ground-based data, mapping 
of water use by different land cover classes, and estimation 
of ETa in the United States at regional to continental scales. 
The	SSEBop	model	has	been	used	to	produce	maps	of	ETa 
over very large extents (the conterminous United States) using 
lower spatial resolution (1 kilometer) Moderate Resolution 
Imaging Spectroradiometer (MODIS) data. Unlike METRIC, 
SSEBop	requires	less	parameterization	of	the	energy	balance	
model, making for simpler application over larger extents, 
and	does	not	have	the	same	requirements	for	finely	resolved	
ground-based data such as hourly weather information.

The	METRIC	and	SSEBop	models	each	have	been	
shown to estimate ETa with acceptable accuracies in many 
applications. A robust remote sensing method for estimating 
ETa, METRIC has been applied successfully in the United 
States	and	internationally.	The	SSEBop	model	largely	has	

been used to estimate ETa in the United States. The METRIC 
and	SSEBop	models	have	many	similarities,	including	their	
theoretical grounding in the surface energy balance model 
and that they can incorporate low (1 kilometer) and high 
(30 meter) spatial resolution data from MODIS and Landsat; 
however, they have important differences in data require-
ments, ease of implementation, and cost.

The METRIC model has shown greater accuracy at esti-
mating ETa	than	simpler	techniques	that	use	crop	coefficients	
or vegetation indices exclusively, and also removes the need to 
know crop type and growth stage. The model can detect reduc-
tions in ETa from water shortages, soil salinity, and frozen soil, 
and can detect evaporative losses from bare soil. In addition, 
many studies validating METRIC estimates of ETa against 
measurements from lysimeters have shown model accuracies 
on daily to seasonal time scales ranging from 85 to 95 percent. 
The METRIC model is accurate, but the greater complexity of 
METRIC results in greater data requirements, and the internal-
ized calibration of METRIC leads to greater skill required for 
implementation.	In	contrast,	SSEBop	is	a	simpler	model,	hav-
ing reduced data requirements and greater ease of implementa-
tion without a substantial loss of accuracy in estimating ETa. 
Model accuracies ranging from 80 to 95 percent on daily to 
annual time scales have been shown in numerous studies that 
validated ETa	estimates	from	SSEBop	against	eddy	covariance	
measurements.

Estimation of consumptive water use at large scales is 
difficult	but	is	a	key	priority	of	the	U.S.	Geological	Survey	
(USGS) and part of the focus of the National Water Census 
on mapping water use and availability nationally. The USGS 
has been developing an objective way to estimate ETa at this 
scale, but the high spatiotemporal resolution of ETa estimates 
using Landsat data over large extents takes immense comput-
ing power. Cloud computing is providing an opportunity for 
processing an increasing amount of geospatial “big data” in a 
decreasing period of time. For example, Google Earth Engi-
neTM has been used to implement METRIC with automated 
calibration for regional-scale estimates of ETa using Land-
sat data. The USGS also is using Google Earth EngineTM to 
implement	SSEBop	for	estimating	ETa in the United States at 
a continental scale using Landsat data. Although estimates of 
ETa at low spatiotemporal resolution for the contiguous United 
States are already available, higher resolution estimates are 
currently in development.
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