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Abstract The spatially and temporally variable parameters and inputs to complex groundwater models
typically result in long runtimes which hinder comprehensive calibration, sensitivity, and uncertainty analy-
sis. Surrogate modeling aims to provide a simpler, and hence faster, model which emulates the specified
output of a more complex model in function of its inputs and parameters. In this review paper, we summa-
rize surrogate modeling techniques in three categories: data-driven, projection, and hierarchical-based
approaches. Data-driven surrogates approximate a groundwater model through an empirical model that
captures the input-output mapping of the original model. Projection-based models reduce the dimensional-
ity of the parameter space by projecting the governing equations onto a basis of orthonormal vectors. In
hierarchical or multifidelity methods the surrogate is created by simplifying the representation of the physi-
cal system, such as by ignoring certain processes, or reducing the numerical resolution. In discussing the
application to groundwater modeling of these methods, we note several imbalances in the existing litera-
ture: a large body of work on data-driven approaches seemingly ignores major drawbacks to the methods;
only a fraction of the literature focuses on creating surrogates to reproduce outputs of fully distributed
groundwater models, despite these being ubiquitous in practice; and a number of the more advanced sur-
rogate modeling methods are yet to be fully applied in a groundwater modeling context.

1. Introduction

The physical properties and processes that determine groundwater flow are highly heterogeneous. To
adequately capture such heterogeneity, many groundwater management problems require complex, fully
distributed models that can accommodate fields for the hydraulic properties and boundary conditions that
vary in time and space. There has been a tendency toward including more physical processes, increasing
numerical resolution, and expanding the model domain in fully distributed groundwater models [Leube
et al., 2012; Doherty and Simmons, 2013], typically solved using a finite difference approximation such as
implemented in MODFLOW [Harbaugh, 2005] or a finite element method, as used for example by FEFLOW
[Diersch, 2005]. Greater conceptual model complexity, however, translates to a larger number of parameters
and increased model runtimes.

Long runtimes inhibit the use of models in applications which require many model runs, such as integrated
modeling (where groundwater flow models are coupled with models of different processes), uncertainty
analysis, sensitivity analysis, and inverse modeling. Slow runtimes also prevent models being used in real
time, necessary for applications such as decision support. Furthermore, the ‘‘curse of dimensionality’’ is
encountered as the number of samples required to cover the parameter space in uncertainty analysis, sensi-
tivity analysis, or calibration increases exponentially with the number of model parameters. An increase in
model runtime means that numerical resolution needs to be reduced or physical processes ignored to
decrease runtime and make many model runs computationally tractable. Surrogate models have the poten-
tial to speed up complex models without sacrificing accuracy or detail.

Also known as metamodels [e.g., Blanning, 1975], reduced models [e.g., Willcox and Peraire, 2002], model
emulators [e.g., O’Hagan, 2006], proxy models [e.g., Bieker et al., 2007], lower fidelity models [e.g., Robinson
et al., 2008], and response surfaces [e.g., Regis and Shoemaker, 2005], surrogate models are computationally
cheaper models designed to approximate the dominant features of a complex model. While the main
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motivation for applying a surrogate model is achieving computational efficiency [Razavi et al., 2012a], other
reasons do exist.

Simple surrogate models can reduce numerical instability which facilitates calibration and uncertainty
analysis [Doherty and Christensen, 2011]. The process of building an emulator can reveal insensitive out-
puts and irrelevant parameters of a complex model [Young and Ratto, 2011]. Surrogates may serve as
didactic tools for analyzing model simplification and the ways in which models simplify reality [Watson
et al., 2013]. They can also be used to smooth an objective function surface, allowing the use of gradient
based, nonlinear programming methods for optimization problems [Hemker et al., 2008; Kavetski and Kuc-
zera, 2007], or to reduce ill conditioning of a conjugate gradient optimizer by using eigenvector approxi-
mations [Vuik et al., 1999]. The gain in computational efficiency opens the door for exploration of
structural model uncertainty by simultaneous simulation and calibration of alternative model structures
[Matott and Rabideau, 2008] or inclusion of data and physical processes at multiple scales [Weinan and
Engquist, 2003]. Also, surrogates with sufficiently short runtimes have been used in interactive decision
support environments [Roach and Tidwell, 2009]. Lastly, surrogates have been used for ‘‘complementary’’
modeling, where a simple model is fitted to the residual of a complex model to improve accuracy [Demis-
sie et al., 2009; Xu et al., 2012].

This review is structured around a taxonomy of surrogate models, based on their mathematical structure. We
follow Robinson et al. [2008] by classifying surrogate models into three categories as outlined in Table 1: data-
driven surrogates involving empirical approximations of the complex model output calibrated on a set of
inputs and outputs of the complex model (snapshots); projection-based methods, where the governing equa-
tions are projected onto a reduced dimensional subspace characterized by a basis of orthonormal vectors;
and multifidelity methods, built by simplifying the underlying physics or reducing numerical resolution. The
three categories are addressed in sections 2–4. Rather than describing each technique in detail, we give an
illustrative example. We then discuss the other techniques in each category, how they relate to the example,
and their historical and potential application to groundwater modeling. Since reducing runtime is a major
motivation for using surrogate models, we discuss some alternative techniques for doing so in section 5.

Several recent publications compare a subset of surrogate modeling approaches [Forrester and Keane, 2009;
Castelletti et al., 2012; Frangos et al., 2010; Antoulas, 2005; Gugercin and Antoulas, 2000]. Razavi et al. [2012a]
published a review of surrogate models in the water resources literature. However, there appears a general
imbalance in the literature toward data-driven methods. Razavi et al. [2012a], for example, devote 19 pages
to data-driven methods, and only four to the section covering both multifidelity and projection-based

Table 1. Taxonomy of Surrogate Models

Category Also Known As Examples

Data-driven surrogates involving empirical
approximations of the complex model output
calibrated on a set of inputs and outputs of the
complex model (snapshots)

Response surface, statistical and black
box methods

Polynomials [Hussain et al., 2002], neural networks [Kourakos and
Mantoglou, 2009; Yan and Minsker, 2006], Gaussian processes [Stone,
2011; Kennedy and O’Hagan, 2001], kriging [Ba�u and Mayer, 2006;
Garcet et al., 2006], radial basis functions [Regis and Shoemaker, 2005],
support vector machines [Yoon et al., 2011], dynamic mode analysis
[Young and Ratto, 2011], (generalized) polynomial chaos expansions
[Laloy et al., 2013], genetic programming [Fallah-Mehdipour et al.,
2013], Bayesian networks [Fienen et al., 2013]

Projection-based methods, where the governing
equations are projected onto a reduced
dimension subspace characterized by a basis of
orthonormal vectors. Typically divided into SVD
and Krylov-based methods

Reduced order, reduced basis and model
reduction methods

Proper orthogonal decomposition (POD) [McPhee and Yeh, 2008; Siade
et al., 2012; Galbally et al., 2010], Karhunen-Loève expansion [Laloy
et al., 2013], proper generalized decomposition [Chinesta et al., 2011],
Krylov subspace methods [Dunbar and Woodbury, 1989; Woodbury
et al., 1990], dynamic mode decomposition [Ghommem et al., 2013],
Fourier mode reduction [Willcox and Megretski, 2005] and (certified)
reduced basis [Lieberman et al., 2010; Chen et al., 2010; Knezevic and
Peterson, 2011; Efendiev et al., 2012]

Multifidelity based surrogates, built by simplifying
the underlying physics or reducing numerical
resolution

Multiscale, hierarchical and physically
based methods

Multigrid method [Ashby and Falgout, 1996; Saied and Mahinthakumar,
1998; Thum et al., 2011], multiscale finite element method [Shi et al.,
2012; Hou and Wu, 1997], heterogeneous multiscale method [Weinan
et al., 2002], residual free bubbles [Sangalli, 2003], conservative subgrid
[Arbogast, 2002] and variational multiscale method
[Ganapathysubramanian and Zabaras, 2007; Hughes et al., 1998]
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approaches. In particular, we note the sparse treatment of surrogates developed for spatially distributed
models [Pasetto et al., 2011].

Two important motivations exist to correct this imbalance. First, Razavi et al. [2012b] have noted that
despite the optimism about data-driven surrogate modeling in the literature, it can be an inefficient and
unreliable approach to optimizing complex numerical models. Second, Razavi et al. [2012a] observe that
‘‘lower fidelity surrogates’’ (encompassing both projection-based and multifidelity methods reviewed here)
overcome many of the limitations of data-driven approaches; namely, they can be applied to larger num-
bers of parameters, and perform better further from snapshots used in calibration of the surrogate. These
advantages are particularly relevant to spatially distributed models which are ubiquitous in groundwater
studies. Despite this, many sophisticated ‘‘lower fidelity’’ methods have not yet been applied to ground-
water problems.

As well as summarizing the current state of the art in surrogate models, we aim to give a more comprehen-
sive coverage of surrogate modeling approaches and discuss their historical, as well as their potential, appli-
cation to distributed groundwater models. We aim to glean from the wider research community surrogate
methods which show promise for groundwater applications.

Few well-accepted criteria exist for assessing surrogate modeling approaches. Razavi et al. [2012a] note the
need to validate the whole surrogate-enabled analysis framework rather than testing the surrogate in isola-
tion. They also note the need for more developed metrics of computational efficiency gains, and recom-
mend approaches which make use of estimates of surrogate-introduced uncertainty. Several standards of
good modeling practice [Jakeman et al., 2006] are particularly relevant to surrogate modeling. Approaches
should be as simple as possible to avoid coding errors. Justification should be given for the choice of surro-
gate technique. Insofar as possible, surrogate performance should be thoroughly analyzed. Finally, results
and methods should be reported in sufficient detail as to allow informed criticism.

We analyze the surrogate approaches below with reference to the following criteria.

1. If purported to do so, the approach should significantly increase computational efficiency. Ideally this
would be assessed based on:
i. Average runtime of a single surrogate versus complex model run.
ii. The number of complex model runs used to calibrate the surrogate, justified with reference to

surrogate-introduced uncertainty.
iii. Runtime for combining surrogate and complex models, typically this involves (iteratively) calibrating

the surrogate on the output of complex model runs.
iv. An indication of effort required to apply the method. Does the complex model code typically require

modification?
2. The surrogate should allow more thorough analysis and testing of the original model.
3. An indication of surrogate-introduced uncertainty should be given.

2. Data-Driven Methods

In this section, we introduce data-driven methods by describing a particular example, Gaussian processes.
We then discuss other techniques and their application to groundwater modeling.

Let us denote the output of a complex model F as h5FðhÞ. Consider a vector, h, whose values represent a
groundwater model’s inputs and parameters: the hydraulic properties, sources, sinks, and initial conditions.
Data-driven surrogates attempt to emulate the mapping from h to h without considering the inner work-
ings of F. The complex model is run on a set fhðiÞg, known as the design of experiment, to produce a set of
snapshots, fhðiÞg. Depending on the data-driven method, a function

F̂ð/; �Þ; (1)

is chosen, and the snapshots are used to fit the hyperparameters / such that

F̂ð/; hðiÞÞ � FðhðiÞÞ for all i: (2)

Data-driven methods differ in how they select the snapshots and the functional form of F̂ , chosen to emu-
late the h to h relationship.
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2.1. Gaussian Processes—An Example
Gaussian processes [e.g., Kennedy and O’Hagan, 2001; Stone, 2011] assume the relationship can be captured
by a surrogate

F̂ð/; hÞ5fðhÞT b1eðhÞ; (3)

where fðhÞ are chosen regression functions, and the unknown hyperparameters, /, include the regression
coefficients, b, and the parameters of the stochastic process, e. The stochastic process, e, has zero mean and
a specified positive semidefinite covariance function. A common choice is a linear regression function

fðhÞ5ð1; hÞ; (4)
and the covariance function

CovðeðhðjÞÞ; eðhðkÞÞÞ5r2exp 2
X
i

xi jhðjÞi 2hðkÞi jai
 !

: (5)

Two of the hyperparameters, b and r, can be estimated by analytic expressions using a set of snapshots
[Sacks et al., 1989], but numerical optimization of xi and ai is required.

2.2. Other Data-Driven Methods
Razavi et al. [2012a] thoroughly cover data-driven surrogates with only a few exceptions, which we mention
briefly below.
2.2.1. Bayesian Networks
Bayesian networks are annotated acyclic graphs which give the joint probability distributions of a number
of variables. Nodes are random variables Xi; . . . ; Xn and edges (links) are probabilities PðxijpiÞ where xi is a
realization of Xi, and pi its parents. Fienen et al. [2013] create a Bayesian network surrogate of a groundwater
model. In order to reduce the number of parameters, surrogate parameters are taken as the maximum or
mean of a property along a cross section of the complex model domain. As is a requirement for Bayesian
networks, parameters are discretized into bins. The approach makes causal relationships easy to see and
can be integrated simply with larger Bayesian networks. Being largely a static method, their main restriction
is the difficulty in emulating the temporally varying outputs.
2.2.2. Transfer Functions
Transfer function models consist of a function

hk5Fðhk21; � � � ; hk2n; uk; � � � ; uk2mÞ; (6)

which predicts an output time series hk in terms of its history and possibly a driving input series uk. Young and
Ratto [2011] present a transfer function-based method which, as a dynamic model, purportedly exhibits greater
predictive capability for a wider range of scenarios than static approaches. Immediate drawbacks are the limita-
tion to linear models, and difficulty in creating a map from the transfer function to complex model parameters.
2.2.3. Response Matrices
Cheng et al. [2011] construct a response matrix surrogate using ‘‘one at a time’’ sensitivity analysis of a finite
difference groundwater model’s output heads to changes in pumping and recharge. The sensitivity analysis
is used to compute influence coefficients, @hi;T@Qp;t

, which represent the change in head at location i and time T
caused by a change in pumping rate of well p at time t. Using these derivatives, head can then be approxi-
mated by a truncated Taylor series around Qp;0.
2.2.4. Genetic Programming
Genetic programming [e.g., Fallah-Mehdipour et al., 2013] seeks to find a functional form that approximates
the input-output relationship of a model. An evolutionary algorithm searches through relationships ran-
domly created using inputs, outputs, random variables, and operators (functions, arithmetic operators, bool-
ean operators, or logical expressions). Disadvantages of genetic programming surrogates include
computationally demanding calibration and overfitting.
2.2.5. Polynomial Chaos
The popular polynomial chaos method involves expanding a random variable (parameter or output) in an
orthogonal polynomial basis. Any stochastic process with finite variance can be expanded as a polynomial of
random variables so long as the polynomials are orthogonal with respect to distribution of that random vari-
able. Xiu and Karniadakis [2002] describes the method and the Askey scheme, which details which polynomial
basis is to be used with which distribution. A common example is the use of Hermite polynomials of Gaussian

Water Resources Research 10.1002/2015WR016967

ASHER ET AL. SURROGATES OF GROUNDWATER MODELS 5960



processes (normally distributed variables). The approach has recently been incorporated into a two-step MCMC
(Markov Chain Monte Carlo) Bayesian inversion of a groundwater flow model [Laloy et al., 2013]. As is common
in the wider literature [e.g., Ghanem and Dham, 1998] the polynomial chaos surrogate is coupled with a
Karhunen-Loève parameterization of conductivity. The most common approaches of finding the coefficients of
the polynomials are stochastic collocation and pseudo-spectral methods, which are nonintrusive as they do
not involve editing the complex model code. However, it is possible to use an intrusive Galerkin method which
would make the method a projection-based approach [Herzog et al., 2008].

2.3. Comparisons and Recommendations
There are notable similarities between a number of the data-driven methods listed in Table 1. Forrester and
Keane [2009] note that certain forms of kriging, Guassian process models, radial basis functions, support
vector machines, and single-layer neural networks with radial coordinate neurons are identical.

While many methods do share mathematical structures, such as Guassian function of distance, as in (5), it
would be a mistake to consider all methods labeled as ‘‘kriging’’ or ‘‘radial basis functions’’ to be identical.
Each of the terms listed in Table 1 represents a sizable volume of literature devoted to developing a variety
of methods known by that name.

Furthering the confusion, recent efforts have combined several data-driven surrogate methods. Rather than
selecting a data-driven surrogate method a priori, Viana et al. [2009] suggest a framework for using multiple
surrogates simultaneously. Matott and Rabideau [2008] propose a method for the simultaneous calibration
of multiple models. In their test case employing multiple analytic surrogates, they improve the optimized
objective function and reduce runtime. R. Sch€obi et al. (Polynomial-chaos-based kriging, submitted to Inter-
national Journal for Uncertainty Quantification, 2015) combine polynomial chaos expansions with kriging.

Comparisons of data-driven techniques in the literature are numerous [e.g., Garcet et al., 2006; Forrester and
Keane, 2009; Razavi et al., 2012b; Villa-Vialaneix et al., 2012; Espinet and Shoemaker, 2013]. However, as For-
rester and Keane [2009] note, no method performs best universally. Results will depend on the application
and factors such as the size of training set [Breiman, 2001]. There is some consensus [Forrester and Keane,
2009; Villa-Vialaneix et al., 2012; Razavi et al., 2012a] about the strength of kriging [Jones et al., 1998] and
radial basis function-based [Regis and Shoemaker, 2007] optimization frameworks. Subsequent literature
[Espinet and Shoemaker, 2013] indicates the viability of these methods for groundwater modeling.

For calibration and uncertainty quantification, we would, in addition to kriging and radial basis functions,
advocate for the use of polynomial chaos expansions. The polynomial chaos method of Marzouk and Najm
[2009] and related stochastic partial differential equation approaches form a very active area of research.
These methods are worthy of consideration since they have only recently been applied to groundwater
models and few comparisons with other data-driven approaches have been published other than the theo-
retical work of O’Hagan [2013]. Advantages of polynomial chaos methods include the ability to calculate
sensitivity indices of parameters and their interaction analytically from the expansions [Sudret, 2008] and
the depth of literature devoted to selecting samples at which to calibrate the surrogate [e.g., Xiu and Hes-
thaven, 2005]. While it has been noted [Forrester and Keane, 2009; Razavi et al., 2012a] that it is better to
select snapshots iteratively, taking into account surrogate error, many surrogates do not have established
methods for selecting snapshots of the complex model.

Data-driven surrogates have a number of limitations. Razavi et al. [2012b] warn they may be subject to com-
putationally demanding calibration, subjective structure, and overfitting. They are of the opinion that the opti-
mism in the literature around data-driven surrogates is in some areas ill founded, pointing out that in some
cases optimization methods without surrogates were more effective than those employing surrogates. It is
worth noting that there are well-established methods for addressing issues such as overfitting [Hastie et al.,
2009]. Other disadvantages include the possibility of getting trapped in local minima [Demissie et al., 2009]
and the limitation of only being able to handle a relatively small number of parameters. This latter limitation
often results in aquifer parameters being assumed homogeneous [Mugunthan et al., 2005] or known a priori
[Yan and Minsker, 2006]. However, novel methods of calibrating polynomial chaos surrogates using adaptive
sparse grids [Jakeman and Roberts, 2013] have been applied to increasingly large numbers of parameters.

Data-driven surrogates are not expected to perform well away from design sites. A known limitation of all
global surrogates, where a single surrogate is used for the full parameter range of interest, is their inability
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to adequately capture heterogeneity [Najm, 2009]. Solutions for polynomial chaos surrogates have been
proposed involving piecewise polynomial bases [Wan and Karniadakis, 2005], multivariate wavelet bases [Le
Maitre et al., 2004], or sparse grid collocation with local interpolants [Matthies and Keese, 2005; Xiu and Hes-
thaven, 2005]. Marzouk and Najm [2009] propose adaptive polynomial degree, sparse truncation of the
basis, or partitioning the prior support as other possible improvements.

Despite their drawbacks, well used data-driven approaches remain a valuable tool in applications such as
decision support and integrated modeling, where it may be necessary to limit both the number of parame-
ters and the ranges which they take. Quick runtimes once calibrated and their nonintrusive nature make
data-driven methods particularly useful for these applications.

3. Projection-Based Methods

The essence of projection-based surrogates is to replace a vector space, h, by a linear combination of
(orthogonal) basis vectors

h � Uhr : (7)

Complexity is reduced because the number of basis vectors (columns of U), and therefore elements in hr ,
needed to approximate h is often much smaller than the dimension of h. Projection-based methods vary accord-
ing to which vector space is approximated and how the basis vectors are found. The process invariably involves
substitutingUhr for h in the governing equations, and using an orthogonality condition to simplify the result.

3.1. Proper Orthogonal Decomposition—An Example
The proper orthogonal decomposition (POD) method (also referred to as singular value decomposition
(SVD), principal component analysis, and empirical orthogonal functions) is a common projection-based sur-
rogate. It proceeds as follows [McPhee and Yeh, 2008]. For a complex model F, we obtain a set of snapshots
fyðiÞg from a set of samples of the input space fhðiÞg where yðiÞ5FðhðiÞÞ. A set of normalized snapshots is
then combined in a matrix

Y5
yð1Þ

jjyð1Þjj
yð2Þ

jjyð2Þjj � � � yðnÞ

jjyðnÞjj

� �
: (8)

The method requires the eigenvalues and eigenvectors of the covariance matrix C5YYT . However, in prac-
tice the smaller Cs5YTY is used to solve the eigenproblem

CsgðiÞ5gðiÞkðiÞ i 2 f1; � � � ; ng: (9)

The eigenvectors U of C are then computed as

U5Y gð1Þ gð2Þ � � � gðnÞ� �
K21

2; (10)

where

K21
25

ffiffiffiffiffiffiffi
kð1Þ

p
ffiffiffiffiffiffiffi
kð2Þ

p
. .
.

ffiffiffiffiffiffiffiffi
kðnÞ

p

2
6666664

3
7777775

21

: (11)

The dimensions of U are the same as Y. However, the proportion of the variance in Y explained by each
eigenvector (column ofU) is given by the normalized value of its corresponding eigenvalue

wðiÞ5
kðiÞXn

j51
kðjÞ

: (12)

In practice, a minimum acceptable explained variance hmin can be chosen, and m identified such thatXm

i51
wðiÞ � hmin , where wðiÞ are arranged in descending order. A useful surrogate is created when m is

orders of magnitude smaller than n.
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In the case of confined aquifers (linear flow) where transmissivity does not vary in time, the discretized
groundwater equation may be written [Harbaugh, 2005]

M
dh
dt

1Ah5q; (13)

where h is head, q a source-sink term, and M and A are derived from hydraulic conductivity, storativity, and
head-dependent boundary conditions.

SubstitutingUhr for h in (13), left multiplying withUT , and noting hr is time dependent but notU, we obtain

UTM U
dhr

dt
1 UTA Uhr5 UTq: (14)

Although this reduced order equation can be solved using similar methods as those used for (13), this typi-
cally involves editing the complex model solvers.

3.2. The Lanczos Method—Another Example
As with the POD method described above, the Lanczos [Dunbar and Woodbury, 1989] approach is based on
the reduced order equation (14). However, the basis vectors making up U are computed differently. Rather
than using the eigenvectors of the snapshot covariance as basis vectors, the Lanczos method uses the solu-
tion to the generalized eigenvalue problem

A U5M U K; (15)

where A and M are from (13), U are the eigenvectors to be found, and K is the diagonal matrix of corre-
sponding eigenvalues. Again, we only need find the m smallest eigenvalues and corresponding vectors.
Using the orthogonality properties of the eigenvectors, UTM U5I and UTA U5 K, (14) can be reduced to

dhr

dt
1 Khr5 UTq: (16)

If g5UTq is time independent, this has the analytic solution

ðhrÞiðtÞ5ðhrÞ0i e2ki t1
gi
ki
ð12e2ki tÞ: (17)

A time stepping algorithm can be applied for calculating time dependent g as done by Sahuquillo [1983].
However, finding the m smallest eigenvalues of A U5M U K is a computationally challenging problem.

Note that we can rewrite (15) as

U K215A21M U: (18)

The Lanczos algorithm seeks the solution to the tridiagonal system

LT5A21ML; (19)

by finding the tridiagonal matrix

T5

a1 b2

b2 a2 . .
.

. .
. . .

. . .
.

. .
. . .

.
bm

bm am

2
66666666664

3
77777777775
; (20)

and the so-called Lanczos vectors L5ðL1; L2; � � � ; LmÞ.
The eigenvalues of T give good approximations to the smaller eigenvalues of A U5M U K. The strength
of the approach lies in the efficient algorithm for computing Li, ai and bi using a standard tridiagonal solu-
tion algorithm. Similarly to above, substituting Lhr for h in (13) and left multiplying with LTMA21, gives
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LTMA21ML
dhr

dt
1LTMLhr5LTMA21q; (21)

which can be reduced to

T
dhr

dt
1hr5LTMA21q; (22)

using the orthogonality properties LTMA21ML5T and LTML5I. A solution for hr can then be found using
standard time integration techniques.

3.3. Other Projection-Based Methods
Other reduced basis methods employ different techniques to find bases which reduce the dimensionality
of the parameter or output space. Table 2 lists a number of different approaches.

We note here that projection-based surrogates, despite employing many of the same techniques, differ
from parameterization methods. In a discussion of parameterization methods for calibrating reservoir mod-
els, Oliver and Chen [2011] mention zonation, pilot points, splines, Karhunen-Loève approximations, wave-
lets, and singular vectors of the model sensitivities. While these might be considered surrogate
parameterizations, they do not emulate the model. The distinguishing feature of the work listed in Table 2
is that each uses an intrusive (model driven) method to derive an orthogonal basis.

3.4. Comparisons and Recommendations
Antoulas [2005] and Gugercin and Antoulas [2000] divide ‘‘reduced models’’ into two categories: SVD based
(e.g., POD) and Krylov subspace based. While SVD-based methods have an error bound they cannot be
applied to highly complex systems. Antoulas [2005] argue that Krylov methods can be implemented itera-
tively and so are more appropriate for systems of high complexity. He describes a method combining the
two categories designed to overcome the limitations of both. However, Frangos et al. [2010] claim that Kry-
lov methods are limited to linear cases. There seems to be very limited application of Krylov methods to
groundwater, some being the Lanczos algorithm by Dunbar and Woodbury [1989] and the Arnoldi method
by Woodbury et al. [1990].

There has been more attention paid to the POD method which, for a given dimension, minimizes the least
squares error of the surrogate on the snapshots [Frangos et al., 2010]. Hay et al. [2012] note that variation in
parameters reduces the effectiveness of a POD surrogate. They propose replacing each mode with a first-
order Taylor expansion. A finite difference method is used to compute the sensitivity of the mode to varia-
tions in each parameter. Ghommem et al. [2013] compare POD and dynamic mode decomposition methods
and find the latter basis makes more accurate predictions for a variety of parameter and boundary condi-
tion values. Chinesta et al. [2011] advocate for proper generalized decomposition based on empirical stud-
ies, but note the lack of rigorous mathematical foundations. Nouy [2007] note that the method allows
greater online computational savings compared to POD.

For a linear system, Willcox and Megretski [2005] compare their approach to POD and Arnoldi methods, and
demonstrate superior computational efficiency and error bounds over a wide range of frequencies. Chen
et al. [2010] points out that POD-based methods have only the largest ignored singular value as an error
approximation, and Krylov methods have no estimate at all. He advocates the certified reduced basis
method employing the ‘‘greedy’’ algorithm [e.g., Knezevic and Peterson, 2011]), so called because it itera-
tively adds basis vectors in the direction of the residual. Buffa et al. [2012] provide the proof underlying the

Table 2. Methods for Computing a Reduced Basis

Method Basis Reference

POD SVD of snapshot covariance McPhee and Yeh [2008]
Proper generalized decomposition Separation of variables Chinesta et al. [2011]
Dynamic mode decomposition SVD of forward operator Ghommem et al. [2013]
Lanczos and Arnoldi Krylov subspace Dunbar and Woodbury [1989] and Woodbury et al.

[1990]
Fourier model reduction Fourier expansion of the discrete-

frequency transfer function
Willcox and Megretski [2005] and Gugercin and Willcox

[2008]
(Certified) reduced basis Greedy algorithm Lieberman et al. [2010], Chen et al. [2010], and

Knezevic and Peterson [2011]
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greedy algorithm’s error estimate. Lieberman et al. [2010] employ the reduced basis method on the parame-
ter and state spaces of a groundwater inverse problem.

Rewie�nski and White [2006] propose a method which combines a reduced basis and a quasi piecewise linear
approximation of the state function for a nonlinear differential equation. It is claimed the approach outper-
forms POD on their case studies.

The projection-based approach of Sahuquillo [1983] has been applied by Andreu et al. [1996] to provide
real-time spatially distributed groundwater flow modeling for decision support.

Projection-based methods have two principal drawbacks: the basis vectors depend on the snapshots used
to compute them, making inverse modeling and uncertainty analysis difficult, and solving the reduced
model typically involves editing the model code. To address the former issue, recent work aims at selecting
optimal snapshots which cover both the parameter space and the time domain. Lieberman et al. [2010]
develop an approach for the reduced basis method, Siade et al. [2010] and Ba�u [2012] for POD, and Pasetto
et al. [2013, 2014] and Boyce and Yeh [2014] for syntheses of the two methods. For confined aquifers,
reduced models have been demonstrated to run orders of magnitude faster than the full order equivalent.
However, the approach does not yield similar results in nonlinear problems as many more basis vectors
need to be included [Cardoso et al., 2009].

4. Multifidelity Methods

Multifidelity surrogates refer to those constructed from the complex model by reducing numerical resolu-
tion, increasing tolerances, or removing processes. Perhaps the simplest surrogate possible is created by
reducing the numerical discretization of the complicated model. Previous research has focused on how to
upscale properties from the scale of measurements or a fine grid to a coarse grid for rapid computation.
However, Farthing et al. [2012] note that underresolved models can produce inaccurate objective function
values and may produce ‘‘false’’ solutions.

The disadvantages of simply reducing resolution and the requirement for finer detail has led to multifidelity
methods that attempt to combine models at multiple levels of complexity to attain the detail of the com-
plex, at the speed of the simple. This typically involves solving the global problem on a coarse grid, along
with multiple local problems on a finer grid. Methods often differ in how they relate the results; in particular,
in how they set the boundary conditions for the local problems.

Weinan and Engquist [2003] differentiate between homogeneous multiscale methods, which use identical
models at different scales and heterogeneous methods, which allow for different processes at each scale;
for example, Darcy’s law at one scale, and lattice Boltzmann pore-scale effects at another. In this review we
consider only homogeneous multiscale methods, which we refer to as multifidelity methods as they can be
more readily classified as surrogates. While they do not have the advantage of incorporating multiple physi-
cal processes, they do still simplify the inclusion of data at multiple scales, possibly negating the need for
upscaling.

4.1. The Multiscale Finite Volume Method—An Example
Consider the groundwater flow equation (the continuous form of (13))

r � ðKrhÞ5Ss
@h
@t

1q: (23)

For the multiscale finite volume method (MsFV) developed by Jenny et al. [2003] (for a detailed explanation,
see Hajibeygi et al. [2008]), the model domain X is divided into a coarse grid with M control volumes (grid
cells) �Xm and a dual coarse grid, formed by joining the midpoints of the control volumes of the coarse grid.
The dual grid has N control volumes ~Xn. Head on the fine grid is computed as

hðxÞ �
XN
n51

XM
m51

/m;nðxÞ�hm1/�
nðxÞ

 !
; (24)

where basis functions /m;n and correction functions /�
n are computed by solving the following systems of

equations for each dual grid cell [Lunati and Jenny, 2008]:
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r � ðKr/m;nÞ50 x 2 ~Xn

ðn � rÞððKr/m;nÞ � nÞ50 x 2 @ ~Xn;

/m;nðxiÞ5dni at dual grid point xi

(25)

r � ðKr/�
nÞ5Rn x 2 ~Xn

ðn � rÞððKr/�
nÞ � nÞ5R�n x 2 @ ~Xn;

/�
nðxiÞ50 at dual grid point xi

(26)

where Rn and R�n are some specified functions. In practice, good results are achieved with Rn5 0, but more
advanced techniques exist [e.g., Hajibeygi et al., 2008]. In a typical finite volume fashion, (24) can then be
substituted into (23), the resulting equation integrated over �Xm and Gauss’ theorem applied to find the
coarse grid heads �hm. The MsFV method has potential for wide-scale application where it is to be included
in the recently released finite volume package MODFLOW-USG [Panday et al., 2013].

4.2. Other Multifidelity Methods
In this section we discuss the application of several multifidelity methods to groundwater modeling. The
multiscale finite element method (MsFEM) [Efendiev and Hou, 2007] proceeds similarly to the above MsFV
approach, but without the correction functions. The approach has recently been applied to groundwater
flow by He et al. [2013]. Recent work [Efendiev et al., 2012, 2013] has combined MsFEM with projection-
based approaches to reduce online runtime. Sun [2008] reviews a number of multiscale methods for
groundwater modeling including the multiscale finite element method (MsFEM), the mixed MsFEM, subgrid
upscaling, mixed mimitec multiscale methods for corner-point grids, the stochastic variation multiscale
method, the MsFV method, and ghost node local grid refinement. All but the latter two are mixed finite ele-
ment methods. Although MsFEM and MsFV methods are not typically more computationally efficient than
the corresponding fine grid solution, they allow greater parallelization [Sun, 2008].

Multigrid [e.g., Bastian and Reichenberger, 2000] and adaptive mesh refinement methods [e.g., Mansour and
Spink, 2013] allow the problem to be solved on a hierarchy of resolutions, providing methods for interpolat-
ing between multiple scales on the same computational domain. Similar to traditional multigrid methods,
the ghost node local grid refinement method involves an iterative interpolation of head from the coarse-
grid solution to local fine-grid boundaries, and flux solutions in the opposite direction. The approach is
widely available as the MODFLOW-LGR package [Mehl and Hill, 2005]. Vilhelmsen et al. [2012] conclude that
the method is more efficient than a uniform fine grid only when the area of refinement covers less than 10–
15% of the total model.

Weinan et al. [2007] refer to a number of other classical and recent multiscale methods. Domain decomposi-
tion aims to allow the problem to be solved independently on a number of subdomains to facilitate parallel
computation. Wavelet methods decompose a model into its components of different frequencies, allowing
each component to be computed using the appropriate resolution.

In certain cases a simpler model which has a different structure or ignores certain physical processes may
be available. For example, Keating et al. [2010] build an ad hoc analytic surrogate to predict influences on
groundwater head of nuclear tests. Although potentially useful, the approach is not generic enough to be
classified and contrasted against more general methods.

4.3. Comparisons and Recommendations
The multifidelity surrogates discussed above aim to solve the forward model, and can therefore be substi-
tuted for the complex model in any application. While they are intrusive, the MsFEM, MsFV, and multigrid
methods maintain the detail and accuracy of the complex model. This makes them ideal for those imple-
menting groundwater modeling codes, but less relevant to practitioners.

Related to such forward model surrogates, several approaches have been developed to use multifidelity
models in optimization and uncertainty analysis. Robinson et al. [2008] aim to develop a general framework
for optimization using multiple models with different sets of parameters. A space mapping, linking low to
high-fidelity parameters is created by varying low-fidelity parameters to match high-fidelity output. A com-
mon uncertainty analysis approach is to use a coarse model to increase acceptance rates of MCMC during
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Bayesian inversion of a complex model [Efendiev et al., 2005]. Samples are evaluated by the complex model
only if accepted by the surrogate. Cliffe et al. [2011] apply the multilevel Monte Carlo method to ground-
water flow. Narayan et al. [2014] develop an uncertainty quantification method based on multifidelity sto-
chastic collocation which uses low-fidelity results to inform sampling locations for the high-fidelity model.

Doherty and Christensen [2011] advocate the use of both simple and complex models. Complex models allow
the use of expert information in prior distributions, since their parameters correspond more readily to physical
quantities. Simple models allow numerical stability and efficient calibration. They develop a method to com-
pare the results of simple and complex models to infer whether errors are due to dependency on the complex
model null-space, measurement noise in the calibration data, or surrogate parameters compensating for the
structural simplification. Results allow the correction of predictions of a simple model calibrated on field data.
A case study is presented using two finite difference models of different grid resolutions.

If different fidelity models (e.g., a complex model and a data-driven surrogate or the same model at differ-
ent resolutions) exist, these multifidelity inverse modeling methods are particularly attractive since they can
be applied nonintrusively. As noted by Robinson et al. [2008], such approaches require a mapping from sur-
rogate to high-fidelity parameters. For groundwater models, even upscaling parameters from a fine to a
coarse grid is no simple matter [Wen and G�omez-Hern�andez, 1996; Vermeulen et al., 2006; Mehl and Hill,
2010]. To what extent multifidelity models can be used in the aforementioned inverse modeling frame-
works, using simple and practical mappings, remains an open question.

5. Decreasing Runtime

Decreasing model runtime can be a major motivation for employing one of the surrogates mentioned in
sections 2–4. In this section we note some of the techniques available for reducing model runtime other
than employing a surrogate.

5.1. A Simpler Model
Determining appropriate model complexity is a complex issue. At one extreme, proponents of analytic
models [Matott et al., 2006; Craig and Read, 2010; Estabragh et al., 2013] espouse not just their fast runtimes,
but other advantages such as numerical stability. Others, such as Doherty and Christensen [2011] and Miller
et al. [2013], argue for the many advantages of increasing model complexity. In any case, computational
expense should certainly feature as a consideration when determining model complexity [Hill, 2006].

5.2. Parameterization
Rather than simplifying the model itself, a common approach is to reduce the number of parameters, thus
reducing the number of samples necessary for uncertainty analysis or calibration. A number of parameter-
ization methods are common in practice; for example, zones, pilot points, splines, Karhunen-Loève, wave-
lets, and singular vectors of the model sensitivities [Oliver and Chen, 2011]. Such approaches are often
coupled with surrogate modeling techniques. Laloy et al. [2013], for example, combine a polynomial chaos
surrogate with a Karhunen-Loève parameterization of conductivity.

5.3. Uncertainty Analysis Algorithm
Surrogates are commonly used to accelerate uncertainty quantification and the choice of uncertainty analy-
sis algorithm may also have a large effect on total runtime by reducing the number of model runs required.
A large number of uncertainty analysis methods exist. Matott et al. [2009] for example, evaluate 65 software
packages for evaluating model uncertainty. Mariethoz et al. [2010] propose a method, iterative spatial
resampling, that requires fewer model runs than MCMC but yields ‘‘reasonably’’ similar posterior distribu-
tions. Franssen and Kinzelbach [2009] compare ensemble Kalman filtering to a Monte Carlo-based inversion
algorithm and note a significant speed up. The field of stochastic partial differential equations provides
many alternatives to sampling. For example, moment differential equations [Winter et al., 2003] involve solv-
ing the flow equation for as many probability moments as one is interested in. Perturbation-based solutions
exist for the first and second moments of head and flux [Guadagnini and Neuman, 1999]. The wide-scale
application of the approach is limited by its ability to account for highly heterogeneous media. Vrugt et al.
[2003] combine the Metropolis algorithm with an evolutionary approach to reduce the number of model
runs required for Bayesian inversion compared to traditional MCMC. Shafii et al. [2014] suggest that simply
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relaxing the convergence criterion of a MCMC sampler may yield sufficiently accurate uncertainty estimates
at a fraction of the computational cost.

5.4. Optimization Algorithm
As is the case with uncertainty analysis, an apt choice of algorithm may reduce the number of forward runs
necessary to calibrate a model. The SVD-assist [Tonkin and Doherty, 2005], adjoint sensitivity [LaVenue and
Pickens, 1992], and Principal Component Geostatistical [Kitanidis and Lee, 2014] approaches all claim to
reduce the computational burden of the inverse problem. Franssen et al. [2009], Oliver and Chen [2011], and
Zhou et al. [2014] review some of the many optimization algorithms available to modelers.

5.5. Computational Techniques
If the aim of a surrogate model is simply to reduce runtime, improving computational techniques may be a
viable alternative. Relevant topics, including choice of solvers, programming language, and parallelization
techniques are covered by Miller et al. [2013]. Seemingly banal choices, such as that of compiler, may have
significant implementations. For example, Intel compiled MODFLOW can be almost eight times faster than
the gfortran version according to Dong and Li [2009].

Of particular note, parallelizing the forward model can reduce runtimes for a variety of applications. HYDRO-
LAB [Erhel et al., 2009], ParFlow [Ashby and Falgout, 1996], and PFLOTRAN [Mills et al., 2009] are examples of
softwares developed explicitly for highly parallelized groundwater modeling. Linear reduction of parallel
walltime versus the number of processors, up to 27,580 cores, has been achieved using PFLOTRAN. By com-
parison, the most significant result in the data-driven surrogate approaches reviewed by Razavi et al.
[2012a] is a 97% reduction in complex model evaluations reported by Regis and Shoemaker [2012]. Ignoring
time to develop and run the surrogate, this time saving could be achieved by parallelization of the original
model on a 30 core machine. Parallel implementations of the algebraic multigrid solver [Thum et al., 2011]
exist for both MODFLOW and FEFLOW. Fienen and Hunt [2015] outline approaches for further parallelizing
high throughput applications, where it is unnecessary for computations to interact when running, such as
uncertainty analysis and calibration.

6. Further Research

Based on our review of the methods above, we consider that a number of areas warrant further research.
The limitations of global surrogates have been identified. In particular there is a need to deal with complex
fields with discontinuities. Localization techniques attempt to overcome these difficulties by dividing
parameter space into a number of subdomains, and employing a different surrogate on each. Such meth-
ods are still in their infancy, but are receiving increasing attention (see polynomial chaos references in sec-
tion 2.3). While localized parameterizations have been developed for groundwater models [e.g., Nan and
Wu, 2011], localized surrogates, to our knowledge, have not.

Quantification of the uncertainty introduced by the surrogate model is another nascent field. Many
approaches have not yielded rigorous bounds on surrogate computed posteriors. Application of, and com-
parison between, approaches is made difficult by the lack of an established measure of surrogate-induced
uncertainty [Chen et al., 2010], and surrogate-enabled runtime reduction [Razavi et al., 2012b].

Multiscale methods which preserve the accuracy and detail of the complex forward model hold promise for
implementation in industry groundwater modeling codes. For example, as mentioned in section 4, there is
the possibility of a MsFV or MsFEM version of the numerous finite volume and finite element codes in wide-
spread use. Further investigation is required into the possible increases in computational efficiency of each
multiscale method.

Many data-driven methods rely on ad hoc approaches to select snapshots on which to calibrate the surro-
gate. Further research is warranted into the application to groundwater model surrogates of the innovative
snapshot selection methods from the multifidelity [e.g., Narayan et al., 2014] and projection-based [e.g.,
Pasetto et al., 2014] literature. Although these approaches were developed in an uncertainty analysis frame-
work, they could as easily be applied to snapshot selection for integrated modeling or decision support.

In addition to the above areas which require further research, a number of promising techniques appear as
active areas of research in the literature. For a small number of parameters, radial basis function and
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kriging-based optimizers [Regis and Shoemaker, 2012] have been shown to compare favorably to industry
standard methods such as gradient-based PEST [Espinet and Shoemaker, 2013]. Tensor-based sparse grid
collocation methods for polynomial chaos-based uncertainty analysis [Espig et al., 2013; Jakeman and Rob-
erts, 2013] deserve attention, as it is a rapidly improving field of research with the ability to handle increas-
ing numbers of parameters. Parameter-independent projection-based methods [Boyce and Yeh, 2014;
Pasetto et al., 2014] have been shown capable of significant runtime reductions while maintaining spatially
distributed parameters and outputs, making them applicable to inverse modeling along with other
applications.

7. Conclusion

The purpose of this review is to summarize approaches to surrogate modeling which are applicable to
groundwater modeling. As has been already indicated, no surrogate method is universally superior. We con-
clude by summarizing our findings on surrogate models appropriate to different use cases.

Multiscale and parameter independent projection-based methods have potential to replace groundwater
models in any context, since they can emulate the full output of a complex model. However, their likely
application is by developers of groundwater model codes, rather than everyday users, because they are
intrusive. If the aim of a surrogate model is simply to reduce runtime, we add that computational techni-
ques may be a viable alternative in any context.

For decision support, where very short runtimes are required, data-driven approaches are the obvious
choice. Since decision support typically involves a small number of parameters, many of the drawbacks of
data-driven methods are irrelevant. The only alternatives are certain projection-based approaches which
only require the once off computation of basis vectors.

In the case of inverse modeling, we echo previous concerns that despite the ease of use and popularity of
data-driven methods, they have well-established limitations and should be used with care. Preference
should be given to approaches which have been validated in the context in which they are to be used. For
example, the kriging and radial basis functions enabled optimization, or polynomial chaos expansion uncer-
tainty analysis methods mentioned in section 6. Projection-based approaches have only recently been
applied to the inverse modeling of groundwater models, with promising results for runtime reduction.
Doubtless, the benefits and disadvantages of these methods will be exposed more clearly as they are fur-
ther explored. Multifidelity inverse modeling methods (discussed in section 4.3) offer potential for both
direct application and future development. Again, they have only recently been applied to groundwater
models, but hold great promise. Developing maps from low to high-fidelity models remains the biggest
hurdle to their widespread application.
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