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This review covers the group of data-analysis techniques collectively referred to as symbolization
or symbolic time-series analysis. Symbolization involves transformation of raw time-series measure-
ments (i.e., experimental signals) into a series of discretized symbols that are processed to extract
information about the generating process. In many cases, the degree of discretization can be quite
severe, even to the point of converting the original data to single-bit values. Current approaches for
constructing symbols and detecting the information they contain are summarized. Novel approaches
for characterizing and recognizing temporal patterns can be important for many types of experimen-
tal systems, but this is especially true for processes that are nonlinear and possibly chaotic. Recent
experience indicates that symbolization can increase the efficiency of finding and quantifying infor-
mation from such systems, reduce sensitivity to measurement noise, and discriminate both specific
and general classes of proposed models. Examples of the successful application of symbolization
to experimental data are included. Key theoretical issues and limitations of the method are also
discussed.

I. INTRODUCTION

Experiments involving dynamic measurements typi-
cally require careful definition of the physical quantities
to be measured and the instrumental means by which
the measurements will be made. One is often interested
in testing hypotheses or making inferences on the basis
of temporal patterns in time-series data. When the ob-
served dynamics are relatively simple, such as sinusoidal
periodicities, traditional analytical tools such as Fourier
transforms are easily used to characterize the patterns.
More complex dynamics, such as bifurcations and chaotic
oscillations, can require more sophisticated approaches.
In the latter case especially, the method of data analy-
sis should be selected with careful consideration for the
experimental setup and the underlying physics (if they
are known). Details such as the dynamic instrument re-
sponse, the digital sampling rate, and the signal-to-noise
ratio can significantly affect the reliability of the results.

Our objective in this review is to summarize recent
developments in the application of a data-analysis tech-
nique referred to as symbolization or symbolic time-series
analysis. A central step in the technique is discretiz-
ing the raw time-series measurements into a correspond-
ing sequence of symbols. The symbol sequence is then
treated as a transform for the original data that retains
much of the important temporal information. An im-
portant practical advantage of working with symbols is
that the efficiency of numerical computations is greatly
increased over what it would be for the original data. In
some cases, efficiency may be mainly of value for reduc-
ing the need for computational resources or enhancing
understanding, but it can also imply speed as well. The
latter may be important for real-time monitoring and
control applications.1 Also, analysis of symbolic data is
often less sensitive to measurement noise. In some cases,

symbolization can be accomplished directly in the instru-
ment by appropriate design of the sensing elements. Such
low-resolution (even “disposable”) sensors combined with
appropriate analysis can significantly reduce instrumen-
tation cost and complexity. Fruitful applications of sym-
bolic methods are thus favored in circumstances where
robustness to noise, speed, and/or cost are paramount.

Using symbolic discretization as a data transform, al-
though seemingly counter-intuitive, also has foundations
in information and dynamics theory. For example, prop-
erties of symbolic encodings are central to the theory
of communication2, Markov chains for discrete systems3,
and bioinformatics4. (The interested reader is referred
to Kitchens5, which includes brief historical summaries
at the end of each chapter.) These fields, in turn, have
deeper roots, and have grown out of theories of language
and games of chance. The objects of study in those fields
(code words, DNA base pairs, and coin flips) are most
naturally modeled as discrete states based directly on
their physical attributes, hence a “symbolic” theory is
obviously called for. It is not obvious, however, that a
symbolic approach is useful when dealing with systems
having continuous state spaces. Yet, as we show, many
researchers have used symbolic transformation of contin-
uous data with great success.

Symbolic treatment of time-series data is also closely
related to the mathematical discipline of symbolic dy-
namics. The earliest developments in symbolic dynamics
began with the study of the complex behavior of dynam-
ical systems. In 1898, Hadamard developed a symbolic
description of sequences in geodesic flows on surfaces of
negative curvature.6 Specifically, he identified a finite set
of forbidden symbol pairs (those which cannot occur) and
noted that possible sequences were those which did not
contain the forbidden pairs. This work was extended
by Morse7 and later Morse and Hedlund8, who examined
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dynamical features such as periodic orbits in classical sys-
tems using a symbolic description. Morse and Hedlund
were the first to use the term symbolic dynamics. Later,
Collet and Eckmann9 formalized symbolic dynamics by
showing that a complete description of a dynamical sys-
tem’s behavior can be captured in symbolic dynamics.

Contemporary with Hadamard, Poincaré, in his 1899
analysis of the classic three-body problem, proposed that
the complex time evolution of this system could be de-
picted using a kind of stroboscopic sampling of the multi-
dimensional phase-space trajectory (see Holmes10). (Di-
acu and Holmes11 provide an excellent recent summary
of the development of symbolic dynamics in the analysis
of celestial mechanics.) Specifically, Poincaré defined a
surface in phase space, called a surface of section, such
that the temporal evolution induces successive intersec-
tions between this surface and the (higher-dimensional)
phase-space trajectory. The effect of this technique was
to reduce the dimensionality of the problem and convert
the continuous flow in phase space to a smooth discrete-
time mapping between successive locations in the surface.

In a natural extension of this idea, other investigators
found it useful to coarse-grain the Poincaré surface of
section such that any intersections falling within a cer-
tain sub-region of the surface (called a cell) would all
be designated with the same symbol. Following an or-
bit, the relative frequencies for intersections in various
regions could then be statistically quantified, and the re-
sulting temporal sequence of symbols could be studied as
a replacement for the original variables (see Fig. 1.)
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FIG. 1: Relationship of a Poincaré surface of section and a
phase-space trajectory (a) with corresponding discretized sec-
tion (b). The solid circles represent the points of intersection
with the Poincaré sectioning plane.

Now consider the discrete-time evolution of an ensem-
ble of points in the Poincaré surface of section. These
points are assumed to obey identical deterministic dy-
namics and to differ only in their initial conditions. It
is natural to ask about the time evolution of ensemble
averages of quantities of interest (such as the average po-
sition, momentum or energy). We can also ask whether
such ensemble averages are related in any way to time av-
erages carried out following a ‘typical’ orbit. The answer
to this question is of great practical interest because, typ-
ically, the ensemble averages are easier to calculate theo-

retically while the time averages of a few orbits are often
the only quantities available to the experimenter. The
relationship between these two very different approaches
to the statistical description of a dynamical system is the
central problem in ergodic theory.

It is possible to show that, provided there exists a
probability density that is invariant under the discrete-
time dynamics, the coarse-grained versions for ensem-
bles are finite-state Markov systems. Ulam12 conjectured
that successive refinement of the coarse-graining would
provide a convergent sequence of approximations to the
(highly non-trivial) statisical evolution of the continuum
behavior, desribed by the Frobenius-Perron operator.13
More recently, Rechester and White14,15 and Nicolis16
have suggested that a refinement strategy based upon
the dynamics could have improved convergence proper-
ties.

The developments in symbolic-dynamics have taken
several diverse directions, including analysis of nonlin-
ear oscillators, nonlinear maps, and connections to in-
formation theory and the notion of metric entropy. A
discussion of the modern origins of symbolic dynamics
and its relation to other fields is given in Jackson.17 See
also the recent collection of articles in Bedford et al.18 for
a sampling of related issues in pure mathematics. A gen-
eral feature of this modern work in symbolic dynamics is
that it is theoretical in nature, and most investigations
rely on the existence of so-called generating partitions.
Generating partitions divide the Poincaré plane such that
each unique trajectory in phase space is associated with
a unique sequence of symbols. This uniqueness require-
ment is particularly important for deterministic dynam-
ics, where each initial condition produces a unique sub-
sequent trajectory. It has been demonstrated that gen-
erating partitions can be constructed for certain classes
of model systems, but there is no general approach for
constructing generating partitions a priori when one is
observing the behavior of an unknown system. In addi-
tion, it is also clear that generating partitions do not exist
in the presence of experimental noise, even for systems
with well-understood dynamics.19 Thus, while symbolic
dynamics provides a useful starting point for consider-
ing analysis of experimental time-series measurements,
the theory is not sufficient for dealing with important
practical concerns for experimentalists. To clarify this
distinction between theory and application, we use the
terms symbolization and symbolic time-series analysis to
refer to our main subject here.

Because of the limitations of symbolic-dynamics the-
ory, practical uses of symbolization have tended to be
heuristic and empirical. In particular, it has been clearly
demonstrated that heuristically defined symbolic parti-
tions can be useful for characterizing temporal patterns
without being generating. The first practical applica-
tions were probably associated with the advent of dig-
ital computing, where discretization was unavoidable.
For early digital machines, such as those used by the
British in the 1940s for air-warfare computations,20 it was
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observed that correlations among time-series measure-
ments could still be accurately computed, even though
these machines had only 7-bit precision. In more recent
years, explicit applications of symbolization have pro-
liferated far beyond digital computing to include such
wide-ranging fields as astrophysics, classical mechanics,
psychology and medicine, plasma physics, robotics, com-
munication, linguistics, combustion, and multiphase flow.

In subsequent sections, we discuss common methods
for constructing symbolic partitions, symbol trees, and
measures of temporal structure and information content
in the resulting symbol sequences. We also relate symbol-
ization to other techniques that have been developed for
the analysis of data from nonlinear and chaotic processes.
Following that, we summarize how symbolic methods
have been adapted to a variety of experimental contexts
and needs. Finally, we end with a summary of current
limitations in symbolic techniques and major issues in
recent research.

II. PRACTICAL MEASUREMENT ISSUES

Experimental time-series measurements are typically
acquired either at a fixed rate (per unit time) or syn-
chronized to some triggering event. Fixed sampling rates
are generally used when the dynamical process being
observed is inherently time-continuous (that is, when
we can assume that the dynamics are best modeled as
the evolution of differential equations). Time-discrete
measurements apply to dynamical processes that pos-
sess an inherent cycle and are more naturally modeled
as maps (for example, population fluctuations between
animal generations or changes between rotational cycles
in machinery). As discussed above, one can convert time-
continuous measurements to time-discrete measurements
through the construction of a Poincaré surface of section
(or Poincaré section for short). Poincaré sections are pro-
duced by continuously monitoring the system state and
recording key variables when a specified triggering con-
dition is met (e.g., when a hyper-plane in phase space
is intersected in a particular way by the system trajec-
tory). Such monitoring can be done in real time or, per-
haps more frequently, during post-processing of previ-
ously recorded data. However the section is constructed,
the resulting sequence of recorded values is discrete in
time. In many instances, experimentalists only record a
single observable at the moment of the triggering event.
Depending on the dimensionality of the dynamics being
observed, this often produces a lower-dimensional pro-
jection of the actual Poincaré section. An alternative
procedure is to record the time intervals between suc-
cessive occurrences of the triggering condition. Plots of
successive pairs of observations or time intervals are often
referred to as first return maps. Moon21 provides a good
overview of approaches used for triggered measurements.

Whether recording time-continuous or time-discrete
data, it is important to properly account for the effects

of aliasing by application of an appropriate anti-aliasing
filter. Aliasing occurs whenever a dynamic process is ob-
served using sampling rates that are too slow. The effect
is to create apparent dynamical features that are artifacts
of the sampling process rather than true characteristics
of the original behavior. The basis for constructing anti-
aliasing filters is the Shannon sampling theorem, which
dictates that the sampling rate be at least twice as fast
as any of the dynamics being observed. Steiglitz22 and
Oppenheim et al.23 give good discussions of the effects
of aliasing and how it can be avoided with the use of
appropriate anti-aliasing filters.

Noise is another key issue in analyzing experimental
measurements. The term noise can refer to measure-
ment errors associated with the sensing device (measure-
ment noise) or fluctuations in the dynamic state caused
by external inputs (dynamic noise). In either case, it is
implied that the noisy component is different from the
processes of interest and of less importance to the ob-
server. Frequently, this noisy component represents the
effects of many independent or loosely coupled processes
(i.e., the noise is high-dimensional), while the dynam-
ics of interest are dominated by a few features and are
low-dimensional. Ideally, low-dimensional dynamics will
appear as distinct from the noise (e.g., large-amplitude,
low-frequency variations versus small-amplitude, high-
frequency variations). Unfortunately, this ideal situation
is frequently not met in experimental practice, and the
dynamics of interest can be mixed with undesirable fea-
tures.

Noise can have important interactions with the sym-
bolization process that can enhance or distort informa-
tion content. For example, Cuéllar and Binder24 found
that for certain data adding a small amount of uncor-
related noise before discretization improved the effec-
tiveness of noise-reduction techniques applied after dis-
cretization. In a different study, beim Graben25 showed
that symbolization can directly enhance signal-to-noise
ratios.

In some cases, it is possible to make multiple mea-
surements of dynamic systems over time. When all of
the key variables are accessible, one can completely re-
solve the dynamical evolution of the system by means
of simultaneously plotting all of the key variables, and
the result is a direct reconstruction of the system phase
space. In most cases, such complete observations are not
possible, and the experimentalist must make do with a
limited subset of the possible measurements. The most
common situation is when only a single observable is
available. Fortunately, time-delay embedding offers some
hope for recovering at least some details of the unob-
served variables (for good discussions on time-delay em-
bedding, see Abarbanel26 and Kantz and Schreiber27).
The central objective of time-delay embedding is to re-
construct a facsimile of the phase-space dynamics of some
multi-dimensional system from the observations of a sin-
gle observable �X = {x(1), x(2), . . . , x(N)} by plotting
the observations in a phase space of lagged coordinates
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�ξ(t) = {x(t), x(t + τ), x(t + 2τ), . . . , x(t + (m − 1)τ)}.
(See Fig. 2.) The variable τ is an embedding delay, and
m is the embedding dimension. This approach for re-
constructing multi-dimensional dynamics from a single
observable relies on the topological equivalence of such
a reconstructed trajectory as long as the reconstruction
has dimension m ≥ 2D + 1, where D is the dimension
of the original system. Packard et al.28 and Takens29
both suggested that time-delay embedding could provide
a way to extend limited experimental measurements for
complex systems. Takens proved that, as long as the em-
bedding dimension is sufficiently large, the reconstructed
phase space is a true diffeomorphism of the original phase
space. The underlying concept was further generalized by
Sauer et al30. Since that time, time-delay embedding has
become a widely used tool for data analysis. As we dis-
cuss later, there are some similarities between time-delay
embedding and symbol-sequence analysis.

Trajectory

x(i+2T)

x(i+T)

x(i)

T

Time series

FIG. 2: Illustration of time-delay embedding.

Another important issue for experimentalists is that
most statistical approaches for time-series analysis (with
or without symbolization) assume that the observed pro-
cess is at least locally stationary (that is, the system
parameters are constant and external perturbations are
minimal). If this is not true, then the statistical proper-
ties can vary over time and consistent comparisons be-
come much more difficult. Nonstationarity is common
for biological or large-scale natural systems such as the
atmosphere or astrophysical objects. Another important
example of nonstationarity occurs if the system under
study is approaching a bifurcation (such as an instability
threshold). The usual approach for dealing with poten-
tial nonstationarity is to try to limit the data-acquisition
process to a relatively short period compared with any
slow changes that the system may undergo. Analysis of
repeated measurements can confirm whether stationar-
ity was maintained. Methods such as those developed
by Kennel and Mees31 can also be applied to individual
data sets to determine if shifts in the dynamics occurred
during data acquisition. See also Kennel32, Schreiber33,
Witt et al.34, and Yu et al.35 for alternative methods for
testing for stationarity.

III. DEFINING SYMBOLS

Digital data recording automatically produces dis-
cretization (for example, 12- and 16-bit digitization are
common). Such discretization, however, is generally
much more refined than that used for symbolic anal-
ysis. An important caveat for experimentalists, how-
ever, is that the details of the digitization process itself
can introduce confounding structure in the measurements
that is unrelated to the process being measured. Specifi-
cally, Kapitaniak et al.36 demonstrate that the behavior
of certain analog-to-digital converters produces a nonlin-
ear mapping that reduces measurement precision. They
demonstrate the nature of these errors using symboliza-
tion and suggest methods for error reduction.

The most common approach for coarse symbol defini-
tion involves partitioning the range of the original ob-
servations (or the range of some transform of the orig-
inal data such as the first differences between succes-
sive values) into a finite number of regions. Each re-
gion is associated with a specific symbolic value, and
each original measurement is thus uniquely mapped to
a particular symbol depending on the region in which
the measurement falls. The number of possible symbols,
n, is termed the symbol-set size (alphabet size in the
symbolic-dynamics literature). For the simplest (binary)
case there are two possible symbols and n = 2. In many
cases, binary symbolization is convenient because it can
directly exploit binary operations in computers. Hsu
et al.37 demonstrate that considerable improvement in
computational efficiency can be produced by severe dis-
cretization, even when standard Fourier transforms are
the objective. Higher values of n correspond to increas-
ingly refined discrimination of measurement details, in-
cluding the effects of any measurement noise that might
be present. In the limit, when n equals the number of
distinct values in the time series, the symbol series and
original measured time series are equivalent in the sense
that they contain the same information (that is, there is
no longer any loss of information produced from the sym-
bolization transform). Thus, in selecting the number of
symbols, one inevitably chooses how much of the original
information is retained in the subsequent analysis.

As noted previously, there is a theoretically optimal
choice for locating partitions for noise-free, deterministic
processes (see for example Crutchfield and Packard19 and
Crutchfield and Young38). Some general methods have
even been proposed for estimating generating partitions
for models (see Rechester and White15, Grassberger and
Kantz39, and Davidchack et al.40). However, it is not pos-
sible to find generating partitions for most experimental
observations because such partitions do not exist when
noise is present, even in principle.19 One is thus left with
the practical problem of choosing appropriate partitions
for a data set that may have been generated by an un-
known dynamic process with unknown levels of noise.

Frequent ad hoc choices for the location of partitions
between symbols are the data mean, midpoint or me-
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dian, equal-size intervals over the data range, or regions
of the range with equal probability (equiprobable or equi-
quantal41 partitioning). For example, Tang et al.42,43

found that a binary symbol set partitioned on the sam-
ple mean was quite adequate for reconstructing the dy-
namics of nonlinear models, even when the observed dy-
namics were heavily contaminated with noise. Rapp et
al.44 investigate errors of using midpoint, instead of me-
dian, partitioning and suggested a manner to check for
spurious identifications of non-random structure. Hively
et al.45,46, on the other hand, used equal-sized data in-
tervals to partition EEG signals in detecting precursors
to seizures. Kim et al.47 analyzed heart-rate dynam-
ics using partitions aligned on the data mean and ±1
and ±2 sample standard deviations, for a symbol-set size
of 6. Godelle and Letellier48 used equiprobable symbols
for analyzing measurements from free liquid jets in order
to readily discriminate between random and non-random
behavior.

In some cases, the context of the problem or the un-
derlying physics dictates a natural choice for partitions.
Systems involving dynamics with a natural threshold, for
example, are a good case for physically based partitions.
Specifically, neurobiological and chemical systems often
exhibit an excitability threshold that must be exceeded
for oscillations to begin (see Kádár et al.49, Freund et
al.50, and Braun et al.51, for example). When one is in-
terested in observing the onset or absence of threshold
crossings, the threshold value itself provides a reasonable
choice for defining symbols. The presence of a limited
number of distinctive dynamic states, such as the “stick”
and “slip” condition in a dry friction oscillator (see Feeny
and Moon52), also provides a natural partition choice.

However partitions are selected, sensitivity of the re-
sults to the choice of partition should be carefully eval-
uated. It is clearly possible to choose bad partition lo-
cations such that most, if not all, of the meaningful dy-
namical information is lost. Bollt et al.53,54 illustrate
this point forcefully in their investigation of the symbolic
analysis of data from several different nonlinear models.
Other investigators have attempted to systematize parti-
tion selection by iterating an initial set of partitions with
an objective function reflecting the information content
of the resulting symbolic series. Lehrman et al.55 used
such an approach for model data combined with a re-
peated assessment of the Shannon entropy for the sym-
bol sequences (see the Symbol-Sequence Statistics section
for a discussion of entropy). They reported that when
enough symbols and appropriate partitions were used,
entropy was maximized and the partition choice was “op-
timal”. Godelle and Letellier48 made similar arguments
in their analysis of data from liquid jets, using examples
from numerical models to confirm their assumptions.

Symbolization schemes based on first- or higher-order
differences in observed measurements have also been pro-
posed (see Kurths et al.56). These are effectively the
same as range-partitioning schemes except that they
operate on first or higher-order differences between se-

quential measurements in the original time series. Such
schemes are sometimes preferred when the observed data
are not fully stationary or where changes in time are more
important than absolute measurement values. These
transforms are termed dynamic, whereas those based
on range-partitioning are termed static.56 This dynamic,
differenced-based symbolization has been employed by
Bandt and Pompe57 for their permutation entropy and
in data mining and rule discovery (see Section VI G).

Still another approach for symbol definition involves
partitioning the phase space rather than a scalar time
series. Specifically, the symbols represent distinct re-
gions of phase space or a subset of the phase space such
as a Poincaré section. Observed symbol sequences, in
turn, represent trajectory segments or mappings that link
the separate regions according to the flow or mapping in
phase space. Examples of this approach include Edwards
et al.58, who used a type of phase-space partition for an-
alyzing the dynamics of model gene networks, and Hively
et al.45,46, who partitioned the time-delay reconstructed
phase space (see next section) to identify seizure precur-
sors in electroencephalograms. Baptista et al.59 likewise
used phase-space partitioning to model communication.
Halow and Daw60 labeled the transitions of trajectories
between quadrants of reconstructed phase space to clas-
sify dynamics in fluidized-bed reactors. In contrast, Mis-
chaikow et al.61 and Lesher et al.62 partitioned Poincaré
maps to study the dynamics of a flexible ribbon and lam-
prey neural signals, respectively.

The concept of mapping flows in coarse-grained phase
space is similar to the cell-to-cell mapping technique (see
Hsu63 and Tombuyses and Aldemir64).

IV. DEFINING SYMBOL SEQUENCES

After symbolization, the next step in identification
of temporal patterns is the construction of symbol se-
quences (words in the symbolic-dynamics literature)
from the symbol series by collecting groups of symbols
together in temporal order. This sequencing process typ-
ically involves definition of a finite-length template that
can be moved along the symbol series one step at a time,
each step revealing a new sequence. If each possible se-
quence is represented in terms of a unique identifier, the
end result will be a new time series often referred to as a
symbol-sequence series (or code series65). Figure 3a illus-
trates this process for a time series that has been initially
converted into a binary symbol series. In the example,
the symbol sequences are constructed from the three suc-
cessive binary symbol values occurring at each point in
time. Each possible sequence is represented by its binary
number equivalent (or the decimal value) determined by
the position of each symbol in the template.

Symbol-sequence construction has at least outward
similarities to time-delay embedding, and one might ar-
gue that the result of symbol-sequence construction is
analogous to coarse-graining of the time-delay recon-
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FIG. 3: Process of symbolizing a time series (a) and tabulat-
ing a symbol-sequence histogram (b).

structed phase space. Unfortunately, there is no rigorous
analogue between the geometric construction underlying
time-delay embedding and the informational content of
symbol-sequence analysis, so there is not necessarily any
finite symbol-sequence length that captures “all” of the
available information in the sense of time-delay embed-
ding. The time-delay embedding theorem promises that
reconstruction will be faithful only for smooth trans-
formations of the original phase space. For symbol se-
quences and symbol-sequence “space”, the concepts of
neighborhood and continuity can be retained66, but dif-
ferentiability is problematic.

Symbol-sequence construction has also been described
in terms of symbol trees.31,42 As illustrated in Fig. 4,
the tree is composed of parallel branches, each of which
represents a possible sequence of the available symbols.
The length of the sequences determines the depth of the
tree and thus the number of branches. For a fixed se-
quence length of L successive symbols, the total number
of branches is nL, and thus the number of possible se-
quences increases exponentially with tree depth. Many
investigators have considered only patterns with a single
fixed sequence length, thereby simultaneously including
all the parallel branches in the tree. Such a constraint is
convenient for enumerating the statistics of possible se-
quences, but it neglects realistic behavior in which some
nonrandom patterns occur over longer intervals than oth-
ers. A recent improvement to the fixed-sequence-length
approach is the implementation of context trees by Ken-
nel and Mees.31,67 This approach allows some of the pos-
sible sequences (i.e., branches) to be shortened to re-
flect reduced predictability over long times. Modification

of the length of individual branches depends on infor-
mation theoretic measures that indicate how efficiently
the observed dynamics are predicted (i.e., how well the
symbolization scheme compresses the available informa-
tion). A similar approach is outined by Schürmann and
Grassberger.68

00

000 111110101100011010001

111001

10

FIG. 4: Construction of a symbol tree.

For any given dynamical system, all sequences are not
realizable. Such nonoccurring sequences are called for-
bidden sequences or forbidden words. Graphically, on a
symbol tree, they represent branches which are trimmed
such that longer sequences which contain a shorter, for-
bidden sequence cannot occur. D’Alessandro and Politi69
discuss dynamical data complexity and its relation to for-
bidden sequences.

Closely related to the issue of symbol-sequence length
is the question of data sampling rate. This is different
from the Nyquist aliasing issue discussed earlier and is
instead associated with the problem of symbolic redun-
dancy. For discrete measurements, one normally samples
the system at each natural iterate, and each step pro-
vides important new information about the system state.
However, it is common for continuous experimental data
to be measured at rates so high that the resulting sym-
bol series contains multiple successive repetitions of the
same symbol. From the standpoint of observing mean-
ingful patterns, high frequencies of symbol repetition are
not very useful and usually indicate over-sampling of the
original data. On the other hand, if the important time
scales in the measured signals are much shorter than the
sampling interval, one is apt to create aliasing or lose
information about the instability time scales (i.e., maxi-
mum Lyapunov time scales). This problem is very simi-
lar to the issue of choosing an appropriate time interval
for time-delay embedding, and thus similar approaches
have been adopted for symbolic analysis. The usual ap-
proach for reducing symbol redundancy is to lengthen the
inter-symbol time interval used in constructing symbol
sequences and/or applying some type of downsampling
to the original data. Commonly used tools for establish-
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ing a reasonable downsampling and/or inter-symbol in-
terval are the autocorrelation function21 and the mutual-
information function70, which is defined by

I(τ) =
∑

pi,j(τ) log2

pi,j(τ)
pipj

(1)

where τ is a specified time delay between successive
measurements. The partitioning used to determine the
probabilities in the above equation is typically based on
equiprobable binning of the observed data to avoid non-
zero values of mutual information when measurements
become truly independent. Fraser and Swinney70 were
the first to propose the use of mutual information as a
tool for evaluating the time interval used for time-delay
embedding. In this seminal work, an estimate of the
mutual information of the original (e.g. continuous-time
analog) signal is computed by successive refinements of
the (discrete-time symbolic) partition until convergence
is achieved. A direct comparison can then be made be-
tween the autocorrelation function of the continous signal
and the mutual information.

It is also possible to introduce estimators of correla-
tion which refer only to the symbolic form of the data.
Such “symbolic” correlation estimators are of obvious im-
portance when dealing with purely discrete phenomenon
(as in DNA or linguistic analysis71–73). Another sit-
uation where symbolic correlation estimates are useful
arises when one needs a fast estimate in real time74, or
when one is dealing with highly compressed data due to
memory limitations.37 More recently, Roulston75 demon-
strated procedures for estimating a priori the uncertainty
in the mutual-information function.

It is of great interest to understand more fully the rela-
tionship between the symbolic correlation estimates, per-
formed on coarse-grained versions of the signal, and the
more traditional “autocorrelation” function, C(τ), which
uses the analog form of the signal. The question is impor-
tant because much is known about the effects of noise and
linear filters upon C(τ) while very little is known about
analogous effects upon the related symbolic signal. For
example, it has been known for some time that if x(t) is a
stationary, zero-mean Gaussian linear process, there is a
direct relationship between the zero-crossing probability
measured at the sampling interval τ and the autocor-
relation function C(τ). This relationship can be traced
to properties of Gaussian integrals known since the late
1800s.76 If we assign the symbol 0 to x(t) ≤ 0 and 1 to
x(t) > 0 (i.e. we hard clip the signal) then, using our
present notation, the autocorrelation C(τ) and the prob-
ability that a comparison of x(t) and x(t+τ) detects a bit
flip, p01(τ) + p10(τ), are related by77 (as cited in Ref.78,
p. 57-58)

C(τ) = cos(2πp01(τ)). (2)

Here, pxy represents the probability of observing se-
quence xy. (N.B. we have replaced p01(τ) + p10(τ) by
2p01(τ) in (2) by the following argument: once the sig-
nal flips the bit “up”, 0 → 1, it must flip the bit back

“down”, 1 → 0, before another 0 → 1 transition can
be observed. Hence, for a long time series we will have
p01 = p10 to high accuracy even for non-Gaussian, non-
stationary systems which remain zero-mean processes.)

The result (2) can be extended to continuous-time sta-
tionary zero-mean Gaussian linear processes and reduces
to the formula of Rice relating the instantaneous zero-
crossing rate with the second derivative of the autocorre-
lation at zero time delay.76,79 This can be seen as follows:
the instantaneous bit-flip ‘rate’, i.e. the number of bit
flips per unit time, is defined to be

lim
τ→0

2p01(τ)
τ

= 2ṗ01(0). (3)

(Overdots denote differentiation with respect to τ .) Tak-
ing the limit as τ → 0 of (2) we find Rice’s result (we
assume the normalization C(0) = 1):

ṗ01(0) =
1
π

[
−C̈(0)

]1/2

(4)

Kedem76 discusses a generalization of (2) to three-
point autocorrelation functions, and notes that there
are no higher-order results known even for Gaussian lin-
ear processes. Kedem has extended (2) to some non-
Gaussian processes, as discussed in Ref.76, where neces-
sary extensions of Rice’s results are also discussed (see
also80).

An attractive property of symbol-sequence statistics is
that they provide a compact summary of multi-step cor-
relations (even if their relationship to the more familiar
multi-point linear correlation functions are not under-
stood at this time). Tang et al.81 have numerically ex-
amined the relationship between the linear autocorrela-
tion, the mutual information as computed by Fraser and
Swinney,70 and the symbolic mutual information com-
puted using (1) for a binary coarse-graining of analog sig-
nals. As shown in Fig. 5, the autocorrelation and mutual-
information functions for purely periodic behavior follow
repeating cyclical variations that match the natural pe-
riod. For chaotic processes, however, these functions de-
cay to a zero value after a finite time. For “random”
processes, the correlation functions immediately tend to
a near-zero finite value, indicating no correlation over
all timescales. (In the figure, mutual information was
normalized according to ρ =

√
1 − exp(−2I).82) When

determining embedding delay or inter-symbol time in-
tervals, one typically chooses some significant fraction
of the time interval to the first zero in autocorrelation
or first minimum in mutual information.26 Another ap-
proach is to identify a natural sampling period based on
the physics of the problem. For example, Godelle and
Letellier48 used a time interval that was a fraction of the
driving frequency of vibrations applied to their liquid jet.
As with symbolic partition definitions, it is always a good
idea to determine how sensitive the final results are to the
chosen inter-symbol interval.

In many experimental situations, it is possible to
record multiple measurements either simultaneously or
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FIG. 5: Typical behavior of the autocorrelation (a) and
mutual-information (b) functions for periodic, chaotic, and
random data.

in some regular time or phase relationship to one an-
other. This is most often the case for spatially extended
systems where there are multiple components or inter-
acting regions. One thus obtains more than one time
series, each of which can be symbolized individually or
in combination with the others. One obvious approach is
to combine individual symbols into multivariate symbol
sequences (i.e., symbolic vectors), where each signal is as-
signed a specific position in the symbolic word. Depend-
ing on how the data are originally recorded, the resulting
words could represent a single instant in time or span
some fixed period of the dynamics. Such a treatment
of multivariate measurements is particularly useful for
detecting and characterizing synchronization, in which
groups of components assume some fixed dynamical re-
lationship with each other (for example, in terms phase
or amplitude). Moon et al.83 illustrate the utility of this
approach for analyzing the behavior of multiple coupled
impact oscillators. Daw et al.84 used a similar approach
for studying interactions among multiple cylinders in in-
ternal combustion engines.

The mutual-information concept was recently ex-
tended by Schreiber85 to the more general idea of transfer

entropy, which is appropriate for evaluating relationships
among multiple components in extended systems (e.g.,
identifying driving versus responding elements). Trans-
fer entropy is defined by

TJ→I =
∑

p(in+1, i
(k)
n , j(l)

n ) log2

p(in+1 | i
(k)
n , j

(l)
n )

p(in+1 | i
(k)
n )

(5)

Transfer entropy can be directly estimated from symbol-
ized (i.e., partitioned) data, but Schreiber also proposes
an alternative method based on the correlation integral.

For uniquely identifying symbol sequences, it is com-
mon to use letter strings, in which the letters represent
symbols, or, alternatively, an index computed from nu-
merical values assigned to each symbol. For the lat-
ter convention, numerical symbol values typically range
from 0 to n − 1, where n is the symbol-set size. A
unique index for each possible sequence can then be de-
termined by the base-n value of the sequence. The val-
ues of each successive symbol in the sequence are then
weighted by ni−1, where i is the relative position of the
symbol in the sequence (in either forward time or reverse
time order). For example, if n = 3 the length-5 sequence
01020 → 0 × 34 + 1 × 33 + 0 × 32 + 2 × 31 + 0 × 30 = 33
(base-10). The resulting sum for the sequence can then
be expressed as a single number in any convenient base
such as 2 or 10. Whichever method is used to desig-
nate symbol sequences, the symbolization and sequence-
identification processes transform the original time-series
data to a symbol-sequence series. The statistics of these
sequence series is ultimately the essential focus of exper-
imental data analysis.

V. SYMBOL-SEQUENCE STATISTICS

Temporal structure in observed data is revealed by
the relative frequency of each possible symbol sequence.
Various types of statistics can be determined from the
estimated symbol-sequence probability distribution. Di-
rect visual observation of the frequencies with symbol-
sequence histograms provides a convenient way for ob-
serving possible patterns. The usual histogram format
depicts the sequence identification index (e.g., as defined
by the base-n method described above or a unique char-
acter string) on the abscissa versus the observed fre-
quency for that index on the ordinate as illustrated in
Fig. 3b. One important use for such plots is rapid detec-
tion of experimental or data-handling errors (e.g., over-
sampling or nonstationarity). Also, one can be quickly
alerted to sudden shifts or bifurcations in the dynamics
of an experiment as operating or observational param-
eters are changed. This type of application for visual
histograms is illustrated by Godelle and Letellier48 for
their studies of free liquid jets.

Beyond visual inspection, symbol-sequence analysis
depends on quantitative measures of symbol-sequence
frequencies. Such measures can be divided into two gen-
eral groups: those based on classical statistics (more or
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less) and those based on information theory. Important
examples of the former include the Euclidean norm and
chi-square statistics, which are usually defined, respec-
tively, as

T =
√∑

i

(Xi − Yi)2 (6)

and

χ2 =
∑

i(Xi − Yi)2∑
i(Xi + Yi)

(7)

A principal use for the above type of statistics is to
quantify the difference between two symbol-sequence his-
tograms. Tang et al.42,43 were the first to employ the Eu-
clidean norm statistic as a symbolic objective function
for fitting nonlinear model parameters based on noisy
experimental observations. The chi-square has been re-
cently used by Kennel and Mees31 for evaluating sta-
tionarity. As Kennel and Mees point out, care must be
used in applying the usual chi-square statistical confi-
dence intervals for testing hypotheses because these in-
tervals are based on an assumption that the frequency of
each sequence is independent of the frequencies of other
sequences. Such independence is typically not achieved
for correlated time-series data. In addition, the method
of symbol-sequence construction can result in a redun-
dancy artifact between the frequencies of different se-
quences that reduces the actual degrees of freedom. A
key objective of the “weighted context tree” approach
proposed by Kennel and Mees67 is to minimize such re-
dundancy.

Examples of information-theoretic measures for
symbol-sequence frequencies include the Shannon and
order-q Rényi entropies defined, respectively, as

H = −
∑

i

pi log2 pi (8)

and

Hq =
1

1 − q
log2

∑
i

pq
i (9)

where p is the histogram of symbol-sequence frequencies.
The base-2 logarithm places the entropies in units of bits.

An important use for these and similar measures is to
evaluate the relative complexity of the symbol-sequence
frequencies. Specifically, broad symbol-sequence fre-
quency distributions produce high entropy values, in-
dicating a low degree of deterministic structure. Con-
versely, when certain sequences exhibit high frequencies,
low entropy values are produced, indicating a high de-
gree of determinism (low entropy is also a characteris-
tic of over-sampled data). The theoretical connections
between entropy and noisy nonlinear systems were first
fully explained by Crutchfield and Packard.19 Good dis-
cussions of complexity measures related to the above are

given by Kurths et al. ,56 Pincus,86 Kennel and Mees,67
Perry and Binder,87 and Rapp et al.88

Finite-sample effects have been shown to significantly
affect entropy estimates.89–91 Specifically, for increas-
ingly longer sequences from a finite-length time series,
entropy tends to be underestimated. Herzel89 offered the
expected value of entropy for length-L sequences:

〈HL〉 ≈
M∑
i=1

−pi log pi − M

2N
(10)

where M is the number of sequences with pi > 0 and
time series of length N . These results were followed upon
in the work of Hertzel, Schmitt and Ebeling90 and an
improved correcting formula by Grassberger91 based on
higher moments was discussed:

Hgrass
L =

∑
i

Li

N

(
log N − Ψ(Li) − (−1)L

Li + 1

)
(11)

for Ψ(x) = d log Γ(x)/dx.
An interesting topic of symbolic descriptions of com-

plicated time series is measures of complexity. The Shan-
non and Rényi entropies are two such measures, but
they do not necessarily approximate the true, dynamical
entropy of the source which generated the time series.
One such estimator is the Effective Measure of Complex-
ity given by Grassberger.92 This is a measure relating
residual or truncated entropy and dynamical-entropy (i.e.
Kolmogorov-Sinai) estimates. For truncated entropy

hL = HL+1 − HL (12)

and Shannon entropy per sequence step

h = lim
L→∞

hL , (13)

then the EMC is

EMC =
∞∑

L=1

(hL − h) . (14)

The EMC is a lower bound for the true measure of com-
plexity.

Crutchfield and Young38 used a statistical-mechanical
approach to describe information-processing complexity.
The ε-machine is a computational model constructed
from a data set which attempts to describe in a mini-
mal way the data patterns. The measure of complexity
was defined to be a form of Rényi entropy.

In many cases, the ultimate objective in generat-
ing symbol-sequence statistics is to test null hypothe-
ses about the observed data. Because there are uncer-
tainties in determining appropriate confidence limits for
many time-series statistics, researchers often rely on the
use of surrogate data for bootstrapping the expected dis-
tributions under the null hypothesis. Good discussions
of the generation and use of surrogate data are given by
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Theiler et al. ,93 Theiler and Prichard,94 Schreiber and
Schmitz,95 and Dolan et al. .96 Regardless of the specific
generation method, the general approach is based on cre-
ating many realizations of time series (surrogates) that
are consistent with some specific null hypothesis and, in
every other way, also consistent with the observed data.

A simple example of surrogate generation is to repeat-
edly randomize the time order of the observed data to
create many examples of the same measurements with ex-
actly the same measurement frequency distribution but
with any temporal structure removed (for example, see
Chorafas97). One can then establish the confidence limits
for evaluating some test statistic from the original data
against the random null hypothesis by repeatedly gener-
ating the test statistic for many examples of the random
surrogates. An instance of this is the computation of a
“Monte Carlo” probability by Rapp et al.44 In another in-
stance, Schwarz et al. use Monte Carlo probability to es-
timate the error in mutual-information functions.98 More
sophisticated surrogates are required for testing other
hypotheses for the generating process (e.g., the shuf-
fled Fourier-transform methods described by Schreiber
and Schmitz95). Surrogates can also be generated for
symbolic data, either by applying standard surrogate-
generating techniques to the original time-series data be-
fore symbolization, or by using the symbolized data di-
rectly. Van der Heyden et al. ,99 for example, demon-
strated a procedure for making symbolic surrogates to
test the null hypothesis that the observed data are con-
sistent with an nth-order Markov generator.

One of the most recent uses for symbols in analyzing
data from unknown sources is to test the hypothesis that
the observed data could have been generated by a Gaus-
sian linear process (or at most filtered by a static nonlin-
ear transformation). In the context of nonlinear dynam-
ics, if one observes a significant amount of time asymme-
try, the above hypothesis can be clearly rejected.100–102
In many cases, this rejection is extended to indicate that
there is a strong possibility that the generating process
was, in fact, nonlinear. The key relevant feature in this
context is the presence of significant time asymmetry,
that is, a difference in the symbol-sequence statistics de-
pending on whether one observes the data in forward or
reverse time. Voss and Kurths103 and Daw et al.104 have
proposed two different symbol-based methods for testing
the linear Gaussian hypothesis.

VI. APPLICATIONS

In this section we summarize references from several
different disciplines in which symbolization has been suc-
cessfully applied. Our goal is not to create an exhaustive
list, but rather to provide a sufficient breadth of examples
such that most readers will be able to find problem con-
texts that they can relate to. In the end, one of the most
important observations from previous work is that the
theoretical foundation of symbolic analysis is still in its

infancy. We expect that the greatest near-term benefits
from its use will probably come from individual model-
ers and experimenters adapting previously demonstrated
approaches to their specific needs and interests.

A. Astrophysics/geophysics

An early application of symbolization to astronomy
was made by Goldstein74, who used hard clipping to an-
alyze weak reflected radar signals from the planet Venus
to measure the rotational period. Given the original sig-
nal resolution, it was estimated that several thousand
hours of computer time (on existing computers) would
have been needed to measure the line shape using Fast
Fourier transforms. Single-bit digitization allowed the
construction of a special-purpose computer to calculate
the correlation function in hardware in real time as the
signal arrived, and allowed the lineshape to be measured
in only 1.4 hours.

More recent applications of symbolic analysis to astro-
physics and geophysics have centered mostly on the inter-
pretation of complex signals arising from earth-based ob-
servations of complex astrophysical and geophysical phe-
nomena. In the latter case, Gavrishchaka and Ganguli105
noted that threshold-based symbolization of measure-
ments of auroral electrojet dynamics permitted improved
forecasting of large-amplitude events with neural net-
works. The authors attribute this improvement to the
fact that the symbolization minimizes the impact of
small-amplitude details in the measurement signals that
are not related to the dynamics that dominate the large-
scale events. The authors also suggest that, in practice,
it may be advisable to set up and train multiple neural
networks (e.g., in parallel) with varying threshold lev-
els so that determination of the optimal threshold level
and training at that level can be accomplished simulta-
neously.

Schwarz et al.98 used a binary symbolization to ana-
lyze solar flare events with mutual information, Shannon
entropy, and an algorithmic complexity measure. They
found that, based on the characteristics of the symbolic
measures, the flare spikes were more likely caused by lo-
cal organization (a single event exciting many adjoining
areas) rather than global organization (a succession of
events in the same area).

B. Biology and medicine

There have been many recent applications of symbolic
analysis for biological systems, most notably for labora-
tory measurements of neural systems and clinical diag-
nosis of neural pathologies. Lesher et al. ,62 for exam-
ple, symbolized experimental time series data from lam-
prey locomotion. They visualized spike time series from
bursting oscillators in the spinal cord as Poincaré sec-
tions derived from embedding the fast (spike) oscillations
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in a higher-dimensional phase space. Symbols were pro-
duced from regions on the Poincaré map. Freund et al.50

and Greenwood et al.106 studied the electrosensory re-
sponse of paddlefish to noise and electric signatures from
individual Daphnia plankton. They employed symbolic
models and detection of phase synchronization between
the receptors and external noise to demonstrate the im-
portance of stochastic resonance in the paddlefish’s abil-
ity to detect their prey. The symbolic partition in this
case was defined by the characteristic detection threshold
of the paddlefish’s electroreceptor cells. Steuer et al.107

examined interspike-interval sequences of neurons from
paddlefish and crayfish using techniques from symbolic
dynamics and information theory. They symbolized the
time intervals between firings of neuronal elements and
analyzed the symbolized temporal sequences with a mea-
sure of local predictability. With this analysis, they noted
the differences between the two types of neural responses
associated with crayfish’s ability to “recognize” patterns
simulating prey activity.

Wendling et al.108, bein Graben et al.109 and Hively
et al.45,46 all used various implementations of symbolic
analysis for characterizing electroencephalogram (EEG)
signals. Wendling et al.108 focused on stereoelectroen-
cephalographic (SEEG) signals recorded with depth elec-
trodes to understand interactions between brain struc-
tures during seizures. They proposed a comprehen-
sive methodology for comparing SEEG seizure recordings
that involves three key steps: segmentation of SEEG sig-
nals; characterization and labeling of segments; and com-
parison of observations coded as sequences of symbol vec-
tors. beim Graben et al.109 applied symbolic analysis to
nonstationary and noisy multivariate EEG signals in or-
der to estimate event-related potentials (ERP). Their ap-
proach included cutting the continuous time-serial data
into epochs according to the stimuli events presented to
the subjects. They then employed a statistical mechan-
ics approach to coarse-grained symbolic descriptions of
the dynamics and developed time-dependent measures
of complexity that could be monitored to detect changes
associated with the stimuli. Their findings indicated that
symbolization could be useful for investigating synchro-
nization and phase locking of neuronal oscillators in the
context of ERP studies. Hively et al.45,46 developed a
method for diagnosing EEG changes based on shifts in
the phase-space density functions as represented by a dis-
crete coarse-graining of phase space. In the approach re-
ported here, the criterion for identifying individual bins
(i.e., phase-space symbols) was selected based on equal-
interval partitioning of the observed signal range. Eu-
clidean and chi-square norms were used to detect shifts in
the phase space densities associated with epileptic seizure
precursors.

Saparin et al.110 used symbolic techniques to encode
two-dimensional images of human cancellous bone and
analyze the spatial complexity as a function of structural
changes due to osteoporosis. The symbolic transform was
based on detection of both absolute intensity and edge

features in 2D CT scanner images. Taken together these
features defined an encoding set of five symbols. Using
measures of complexity determined from the resulting
symbols, the authors determined that the bone complex-
ity declined more rapidly than density with the loss of
bone due to osteoporosis.

Edwards et al.58 studied a simple ODE model for a
genetic network in which model genes deterministically
control the production rates of other genes. The dynam-
ics of these equations are found to be represented symbol-
ically, with symbols defined on the basis of the flow of the
trajectory through the state space and the intersection of
trajectory with specified boundaries. The resulting sym-
bol letters and words correspond to Poincaré maps of the
integrated flow. With this information, the authors dis-
cuss the solution of the reverse problem of determining
the underlying network from the observed dynamics.

Kurths et al.111 considered both static and dynamic
symbolic transformations to ECG signals to characterize
heart-rate variability. They analyzed the RR intervals,
and first difference of the intervals, of the cardiac cy-
cle using both the Shannon and Rényi entropies as mea-
sures of signal complexity. With a symbol-set size of 4
and sequence length of 3, they found that the ECGs of
persons with cardiac risk exhibited more ordered sym-
bolic patterns than those without; the generalized Rényi
entropy was found to be more useful than Shannon en-
tropy. The authors found that combining information
from the symbolic analysis with traditional frequency-
domain (Fourier) analysis yielded better results than the
symbolic or Fourier analysis alone.

Kurths et al.56 also applied symbolic methods to cogni-
tive psychology, particularly regarding synchronization of
keystrokes. Using a unique symbolic encoding, they were
able to measure phase shifts between left- and right-hand
keystrokes to polyrythms on an electronic keyboard as a
function of driving tempo (see Fig. 6). In the figure, the
left hand was keying 3 strokes for every 4 strokes in the
right hand, and the figure maps the loss of coordination
with driving tempo.

FIG. 6: Symbolic representation of 36 left-hand keystroke
intervals as a function of driving tempo. Keystrokes were
performed on an electronic keyboard with 3 left-hand strokes
per 4 right-hand strokes. Black pixels represent interstroke
intervals longer than their immediate predecessor, white else.
From Kurths et al. (1996).56

C. Fluid flow

Application of symbolization to fluid flow measure-
ments has spanned a wide range of data types from
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global measurements of flow and pressure drop, to for-
mation and coalescence of bubbles and drops, to spatio-
temporal measurements of turbulence. Rao and Jain112

developed an approach for transforming images of com-
plex flow fields (as well as other textured fields) into a
symbolic representation. Symbol sets were defined based
on phase portraits reconstructed from flow field images.
After the symbolic transformation, they used symbolic
models to reconstruct salient features of the original im-
age (i.e., they demonstrated symbolic compression of the
images).

Lehrman et al.55 applied symbolic analysis to the
Lorenz ODE model, which is related to fluid velocity and
temperature fluctuations in Bérnard thermal convection.
Their objective was to demonstrate characterization of
the dynamic coupling between different time signals com-
ing from the same process (i.e., demonstrate that the
signals did indeed come from the same process). In this
case, the different signals were different variables in the
Lorenz model. They also used the same technique to
quantify coupling between different components in high-
dimensional dynamics produced by a system of multiple
coupled nonlinear equations proposed by Lorenz113 for
simulating the key features in atmospheric turbulence.
A version of this method was used previously by Mazzu-
cato et al.114 and Rechester et al.115 to analyze turbulent
plasma measurements.

Lehrman and Rechester116 developed a method for ex-
tracting symbolic cycles in time series from turbulent flow
systems. Using a dynamic partioning, they developed
a stability factor to describe the cycles. They applied
their analysis to a water flow in a pipe with D = 0.3 m
and L = 30 m at ReD = 3 × 105. An interesting result
was that although time records from wall and interior
measurements had no direct correlation, they had simi-
lar symbolic cycle distributions, suggesting the dynamic
patterns at the different measurement locations were sim-
ilar.

Godelle and Letellier48 employed symbolic methods for
evaluating experimental measurements from free liquid
jets of water and water-glycerol mixtures. Time series
measurements of jet diameter were made using illumina-
tion from a laser sheet located at varying distances below
the injector. The authors constructed first return maps
and generated symbols from the diameter measurements
using an equiprobable partition of the range. Special
care was taken to evaluate the effects of changing both
the number of available symbols and the sequence length.
Extensive use was made of symbol sequence histograms
in the evaluation process. On the basis of their results,
Godelle and Letellier concluded that the jet dynamics
ranged from white noise to various types of determinis-
tic intermittencies. See Fig. 7 for symbol statistics of a
range of nozzle-orifice sizes.

Angeli et al.117 used a symbolic transform developed
by van der Welle118 to identify bubble passages in three-
phase flow. The signal from a laser and light sensor was
transformed into a binary series, a 1 for a bubble in the

FIG. 7: Symbol statistics at a constant jet velocity over
a range of orifice diameters. From Godelle and Letellier
(2000).48

light beam and 0 else, and the binary series was analyzed
statistically.

Gonçalves et al.119 examined the interdrop-interval
time series from a dripping faucet experiment. Using a
topological-entropy metric to define partitions, they con-
structed minimal topologcal machines and developed a
new graphical method to describe the dynamics. They
found that the dynamics from three distinct flow regimes
could be described with the same basic topological graph
with some differences in weightings of certain graph
branches.

D. Chemistry

Chemistry-related applications of symbolic techniques
have been developed for chemical systems involving spon-
taneous oscillations or propagating reaction fronts. An
example of the latter is given by Jung et al. ,120 who
studied the formation of coherent structures in model
2D reacting systems. In their analysis of spatiotemporal
patterns produced in a cellular excitable medium and a
reaction diffusion model of CO oxidation, Jung et al. de-
veloped a method for defining the complexity of coherent
reaction clusters (i.e., distinctive regions where signifi-
cant reactions are occurring). These clusters evolve over
time by collision and subsequent merging to produce a
distribution of cluster sizes. Although they did not ex-
plicitly use the term symbolization, the authors devel-
oped a procedure for discretizing the observed patterns
into binary values based on a threshold of activity. Active
sites were then further grouped into clusters depending
on their proximity as immediate neighbors. The degree
of homogeneity in the distribution of clusters was then
evaluated using a kind of spatiotemporal entropy. It was
found that this entropy was a useful measure of cluster
pattern changes as model parameters were changed.

Hsu et al.37 applied a type of symbolization for improv-
ing the performance of Fourier-transform ion-cyclotron
mass spectrometry. Specifically, they used 1-bit dis-
cretization of the original signals to greatly reduce data
storage, search, and retrieval requirements (the storage
requirements alone were reduced by a factor of at least
20). At the same time, they demonstrated that the re-
sulting mass spectra were as useful and, in some cases,
enhanced over the original spectra (see Fig. 8 for an ex-
ample comparing mass spectra of high- and low-precision
signals). The major change required in order to use the
high level of discretization was to construct a new com-
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pound library with a similar degree of discretization.

FIG. 8: Comparison of mass spectra from raw time series (a)
and its 1-bit representation (c). From Hsu (1985).37

E. Mechanical systems

Mechanical systems were one of the first applications
where symbolic analysis was successfully used to charac-
terize complex dynamics. Feeny and Moon52 were able to
demonstrate good agreement between experiment and a
simple model using a symbolic description of the dynam-
ics of a dry friction (stick-slip) oscillator. As described
previously, this was a case where the binary symbol selec-
tion was easily defined from the naturally discrete state
of the system (sticking or not sticking). In addition to ex-
plaining the observed dynamics, Feeny and Moon demon-
strated the computation of a symbolic autocorrelation
function and used it to estimate the largest Lyapunov
exponent.

In another paper, Moon et al.83 demonstrated the use
of symbols for describing the spatially complex, tempo-
rally chaotic dynamics of eight coupled impact oscillators
connected by a string. Their experiments utilized trig-
gered, multi-channel recordings of the impacts of each
oscillator as the string was vibrated with an electromag-
netic shaker. Symbols of 0 or 1 were generated directly
by the detection system during each drive cycle according
to whether an impact had occurred or not. The global
system state for each drive cycle was then represented
as an 8-bit binary number as a function of time. Note
that because the original 8-bit state vectors were directly
recorded, this is an example of direct detection of the
symbols as opposed to post-transformation of the origi-
nal data to symbols. A symbolic entropy measure was
used to characterize the dynamics as operating param-
eters were changed (see Fig. 9). Moon121 also gave a
comprehensive overview of his group’s experimental tech-
niques for measuring chaotic behavior in mechanical sys-
tems that included a brief discussion of symbolic analysis.

FIG. 9: Symbol entropy of an impact oscillator as a function
of constraint gap. From Moon et al. (1991).83

More recent studies by Kobes et al.122 studied the be-
havior of a 3-ODE model for a type of periodically driven
pendulum. The specific model they studied corresponds

to a physical system consisting of two gears and a rod.
The authors used characteristic regions of a Poincaré sec-
tion to define a 3-letter symbol dynamics, which they
used to characterize the behavior of the system as pa-
rameters were changed. Through their numerical experi-
ments, Kobes et al. determined similarities between this
system and other well-known model systems, including
the forced Brusselator and the dissipative standard map.

Daw et al.65,84,104 applied symbolic methods to the
analysis of experimental combustion data from internal
combustion engines. Their objective was to study the
onset of combustion instabilities as the fueling mixture
was leaned. In-cylinder pressure measurements were con-
verted to discrete time series of heat release for each cylin-
der and each engine cycle. The symbolization procedure
involved equiprobable partitioning in a fashion similar to
that used by Godelle and Letellier48 for liquid jets. Also
like Godelle and Letellier, the authors evaluated the effect
of changing the symbolization parameters on the symbol-
sequence histograms and complexity measures. In addi-
tion, they utilized measures of time asymmetry to ob-
serve details of the bifurcation sequence underlying the
combustion instability.

F. Artificial Intelligence, Control, and
Communication

In a prescient early paper, Kalman123 examines the
control of nonlinear systems given sampled data. He dis-
cusses the interplay of sampling and nonlinearity, the ex-
treme sensitivity to initial conditions of many nonlinear
systems, the statistical nature of coarse-grained (sym-
bolic) representations of the sampled data, and the re-
lationship to finite-state Markov models. More recently,
Delchamps124 has examined strategies for stabilizing lin-
early unstable systems if one is given only coarse-grained
information about the state of the system.

An example application of symbolization to communi-
cation is the study by Dolnik and Bollt125,126, who used
small perturbations to encode messages in oscillations of
the Belousov-Zhabotinsky (BZ) reaction. Binary sym-
bolic messages were encoded by forcing the chaotic os-
cillations to follow a specified trajectory (see Fig. 10).
In addition to demonstrating communication with the
BZ system, the authors’ objective was to study several
practical aspects of applying symbolic analysis in a real-
world noisy laboratory environment. Practical issues in-
vestigated include modeling noisy time series, learning
the underlying symbol dynamics, and evaluating system
response to parametric changes.

Data compression is currently of great concern for
increasing effective digital communication bandwidth.
Goodman and Brooke127 developed a symbolic substi-
tution system for data compression by mapping symbol
strings onto a two-dimensional tree. The resulting two-
dimensional pairs could be “transmitted” and then sub-
sequently mapped to another tree structure for regener-
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FIG. 10: Control of the Belousov-Zhabotinsky reaction to
communicate the message “Chaos”. From Dolnik and Bollt
(1998).126

ating strings at the “receiving” end. Both adapative and
nonadaptive versions of the system were defined.

Tani128 describes an artificial intelligence application
in which a robot constructs a symbolic model that guides
its interactions with the environment. He focuses on two
essential problems for applying symbols in artificial in-
telligence. The first problem is symbol grounding, which
is a generalization of how symbols are defined so that
they are intrinsic properties of the system that is be-
ing modeled and not simply artifacts of the observer’s
own internal language. The other major problem is the
appropriate interpretation of symbolic patterns learned
from experience, which he refers to as proper interpre-
tation of the current situation. Tani applied his model-
based approach to the navigation of an experimental mo-
bile robot. Tani’s model, based on a recurrent neural
network, demonstrated robot learning of symbolic struc-
ture in the geometry of the workspace. Furthermore, the
robot generated diverse action plans to reach an arbitrary
goal using the acquired model.

Binder and Pedraza129 used the standard map model
(a widely used model for Hamiltonian chaos) to produce
the symbolic dynamics of a Poincaré section of a peri-
odically kicked rotor. Their objective was to demon-
strate that Markov tree and Markov chain models for
such a physically realizable system can produce nonreg-
ular grammars near conditions where there is an order-
chaos transition. (In this context, grammar refers to the
Chomsky language hierarchy that is based on the amount
of computational power needed to recognize that a par-
ticular string is an instance of the language in question).
The 5-letter symbolization used was based on the motion
of the map value on each iteration relative to special dy-
namical structures known as cantori. From their results,
Binder and Pedraza conclude that both context-free and
context-sensitive languages are produced by this system
depending on initial conditions.

Baptista et al.59 proposed a new communication tech-
nique based on deterministic dynamics modeling of lan-
guage. They created a time-delay coarse-graining of the
logistic map phase space based on the symbol-sequence
statistics and then transmitted messages to a receiver by
means of codewords that are specific phase-space target-
ing instructions rather than an explicit message. The au-
thors reported that their approach yields error correction,
compression, high security, and language recognition.

The combination of symbolization with neural network
learning for noisy time series prediction is discussed by
Giles et al.130 The authors use a self-organizing map
(SOM) to symbolize initial time-series data and then

train recurrent neural networks to predict future symbols
based on grammatical inference. The approach specifi-
cally takes advantage of the known abilities of such neural
networks to learn deterministic grammatical rules that
capture predictability in the evolution of the series. Giles
et al. demonstrate their method using measured foreign
exchange rate data.

G. Data Mining, Classification and Rule Discovery

The methods of data symbolization have also been ap-
plied for data mining, classification and rule discovery.
Data mining is the process of finding useful information
amidst a large set of information where patterns and rules
might not be obvious. Classification is the process of
building models from data for identification of unknown
data sets. Rule discovery is the process of identifying
rules of sequential patterns or relationships between pat-
terns over time.

Typically, rule discovery relies on inherently symbolic
data such as “people who buy eggs and root beer also
buy avocados”. In a seminal paper, Das et al.131 applied
rule-discovery techniques to real-valued time series via
a process of symbolization. They symbolized the time-
series data by clustering relative data relationships within
a sliding time window and assigning symbols to each clus-
ter (e.g., one symbol might represent three consecutively
increasing data values, another might represent a low-
high-low sequence of data, and so on). Thus, all relative
data patterns were represented without defining parti-
tions. (Note that this type of symbolization is similar
to that employed by Bandt and Pompe57 for their per-
mutation entropy.) They then used the J-measure for
rule ranking132,133 and examined stock-price trends for
significant rules.

André-Jönsson and Badal134 used first differences to
encode time-series patterns into a “Shape Description
Alphabet” composed of letters. The magnitudes of dif-
ferences between adjacent data records were significant
in assigning symbols. The resulting encoded text stream
was then indexed into a signature file and used for “blurry
matching” of similar data patterns.

Self-organizing maps are often used for clustering con-
tinuous data, but for discrete data such as symbol strings,
incremental learning laws are not easily defined. Koho-
nen and Somervuo135 adapted the internal distance mea-
sures used in forming SOMs for use with symbol strings.
They analyzed phoneme data of spoken Finnish using un-
supervised learning as well as supervised improvements
using Learning Vector Quantization.

Hebrail and Hugueney136 also used clustering of small
windows of time-series data to define non-partitioned
symbolic descriptions of data patterns. They then used
this symbolic description for visualization and for mining
of sequential patterns. One key feature of the work was
the compression of long time series into a few symbols
representing distinctive episodes of time-series behavior
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(for instance, a time series of 8760 records was com-
pressed into a symbol-sequence representation of length
26).

An interesting clustering application is the phylogeny
of historical texts, in which variant texts are examined for
closeness to the original source based on a genetic-type
analysis. Barbrook et al.137 performed such an analysis
on 44 15th-century texts of “The Wife of Bath’s Pro-
logue” from The Canterbury Tales by Geoffrey Chaucer.
In this analysis, they treated distinct phrases (“charac-
ters”) as genes, or symbols, and produced a phyloge-
netic tree using the split-decomposition software Split-
sTree. They concluded that the original source was an
annotated working draft with notes on additions or dele-
tions.

Karp138 adapted methods of pathway databases to
encode scientic theories into symbolic form. Pathway
databases are used to describe linked relationships such
as the metabolic maps of bacteria. Karp argued that
as scientific theories become more complex, the need
for symbolically encoding the elements of the theory be-
comes more important.

VII. DISCUSSION

As interest continues to grow in high-speed data ac-
quisition and observation of complex dynamical systems,
symbolic analysis will clearly remain an important re-
search tool. Symbolic methods offer a unique potential
for computational efficiency, ease of visualization, and
connections with information theory, language, and arti-
ficial intelligence that cannot be matched by any other
approach.

Perhaps the most important (and contentious) current
issue in application of these methods is the development
of algorithms for appropriately defining symbols in the
absence of generating partitions. In some cases new ap-
proaches for noise reduction may lead to more accurate
empirical reconstruction of the underlying phase space.
Clearly, however, there will always be many important
cases in which experimentalists will need algorithms for
defining symbols from noisy experimental measurements
where little is known about the underlying physics. Even
if the symbolic transformation always involves some de-
gree of imprecision, the successful application of sym-
bolization in numerous experimental contexts seems to
indicate that such a goal is not unrealistic.

Closely associated with the question of symbol defini-
tion is the need to have efficient algorithms for defining
appropriate symbol sequence (word) lengths. The recent

development of approaches that automatically allow for
variable sequence lengths (e.g., context trees), and up-
dating of these length with time, appears to offer consid-
erable hope that such methods will be available soon.

As more engineering applications of symbolics emerge,
we expect to see increased utilization of ’hard-wired’ sym-
bol transformation in which the conversion to symbols oc-
curs directly in the measurement instrumentation. Thus
post-processing and cost are minimized while speed is
enhanced. Such applications are likely to be limited pri-
marily to systems or processes in which the objective is to
detect the onset of well understood dynamical transitions
(e.g., bifurcation sequences) in real time.
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