
A REVIEW OF TECHNIQUES FOR PARAMETER SENSITIVITY 

ANALYSIS OF E N V I R O N M E N T A L  M O D E L S  

D. M. HAMBY* 
Westinghouse Savannah River Company Savannah River Technology Center Aiken, SC 29808, 

U.S.A. 

Abstract. Mathematical models are utilized to approximate various highly complex engineering, 
physical, environmental, social, and economic phenomena. Model parameters exerting the most 
influence on model results are identified through a 'sensitivity analysis'. A comprehensive review 
is presented of more than a dozen sensitivity analysis methods. This review is intended for those 
not intimately familiar with statistics or the techniques utilized for sensitivity analysis of computer 
models. The most fundamental of sensitivity techniques utilizes partial differentiation whereas the 
simplest approach requires varying parameter values one-at-a-time. Correlation analysis is used to 
determine relationships between independent and dependent variables. Regression analysis provides 
the most comprehensive sensitivity measure and is commonly utilized to build response surfaces that 
approximate complex models. 

1. Introduction 

Mathematical models are utilized to approximate various highly complex engi- 

neering, physical, environmental, social, and economic phenomena. Model devel- 

opment consists of several logical steps, one of which is the determination of 

parameters which are most influential on model results. A 'sensitivity analysis' of 

these parameters is not only critical to model validation but also serves to guide 

future research efforts. 

Modelers may conduct sensitivity analyses for a number of reasons includ- 

ing the need to determine: (1) which parameters require additional research for 

strengthening the knowledge base, thereby reducing output uncertainty; (2) which 

parameters are insignificant and can be eliminated from the final model; (3) which 

inputs contribute most to output variability; (4) which parameters are most highly 

correlated with the output; and (5) once the model is in production use, what con- 

sequence results from changing a given input parameter. There are many different 

ways of conducting sensitivity analyses; however, in answering these questions the 

various analyses may not produce identical results (Iman and Helton, 1988). 

Generally, sensitivity analyses are conducted by: (a) defining the model and its 

independent and dependent variables (b) assigning probability density functions to 

each input parameter, (c) generating an input matrix through an appropriate random 

sampling method, calculating an output vector, and (e) assessing the influences and 
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relative importance of each input/output relationship (Iman et  al. 1981a; Iman et 

al., 1981b; Helton and Iman, 1982; Helton et al., 1985; Helton et al., 1986). 

The literature contains details on the types of sensitivity analyses utilized for 

various modeling situations. More than a dozen methods have been reviewed 

(Bellman and Asrrom, 1970; Cukier et al., 1973; Morisawa and Inoue, 1974; 

Kfieger et al., 1977; Box et al., 1978; Oblow, 1978; Conover, 1980; Gardner et 

al., 1980; Demiralp and Rabitz, 1981; Gardner et al., 1981; Iman et  al., 1981b; 

Hoffman and Gardner, 1983; Downing et al., 1985; Helton et al., 1985; Crick et 

aL, 1987; IAEA, 1989; Iman and Helton, 1991; Hamby, 1993). This paper is a 

comprehensive assessment of several of the more practical methods for conducting 

parameter sensitivity studies, ranging from one-at-a-time sensitivity measures to 

standardized regression coefficients to statistical tests based on partitioning of 

empirical input distributions. Generally, method practicality is determined based 

on the calculational ease and the usefulness of results. 

Conceptual descriptions of methods are given so that investigators conducting 

sensitivity analyses can judge the relative merits weighted against the expense, 

resource drain, and usefulness of each technique. Discussions of the following 

sensitivity analysis techniques are included: differential analysis, one-at-a-time 

design, factorial design, the derivation of sensitivity and importance indices, sub- 

jective analysis, construction of scatter plots, the relative deviation method, rela- 

tive deviation ratios, correlation coefficients, rank transformation, rank correlation 

coefficients, partial correlation coefficients, regression techniques, standardized 

regression techniques,the Smirnov test statistic, the Cramer-von Mises test, Mann- 

Whitney test, and the squared ranks test. A separate paper (Hamby, 1995) applies 

each of these tests in a numerical comparison of parameter sensitivity methods on 

a probabilistic dose assessment methodology (Hamby, 1993). 

A few of the sensitivity analysis techniques currently in the literature are intend- 

ed for highly complex or very large models and are discussed below only briefly. 

These include structural idenfifiability (Bellman and Astrom, 1970) and methods 

using adjoint equations (Oblow, 1978), Fourier analysis (Cukier et al. 1973; Hel- 

ton et al. 1991), and Green's functions (Demiralp and Rabitz, 1981). Structural 

identifiability was introduced by Bellman and Astrom (1970) as a tool in bio- 

logical modeling to assess the internal structure of a system from input-output 

measurements (Cobelli and Romanin-Jacur, 1976; Cobelli and DiStefano, 1980). 

The adjoint method has been demonstrated by several investigators in the fields 

of climatological modeling, reactor thermal hydraulics, and reactor safety (Koda 

et  al. 1979; Cacuci et al., 1980; 1983; Hall et al., 1982). In this approach, 'exact' 

(Downing et al. 1985) sensitivities are calculated as defined by partial derivatives. 

The Fourier amplitude sensitivity test (FAST) (Cukier et al. 1973, 1978) has been 

used to solve coupled nonlinear rate equations by Schaibly and Shuler (1973) and 

Cukier et al., (1975). FAST has also been used by Dickinson and Gelinas (1976) to 

study sensitivities of parameters used to model atmospheric chemical kinetics, by 

Koda et al. (1979) to study atmospheric diffusion, and several others (Leipmann 
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and Stephanopoulos, 1985; Kim etal., 1988). Theoretical aspects of a method using 

Green's functions are presented by Demiralp and Rabitz (1981). In this method, 

Green's functions are used to avoid solving the differential equations for each 

model parameter each time the base-case parameter values are changed (Hall et 

aL, 1982). Iman and Helton (1985) briefly discuss and apply all three methods. 

2. Sensitivity Analysis Methods 

Many authors, when referring to the degree to which an input parameter affects the 

model output, use the terms 'sensitive', 'important', 'most influential', 'major con- 

tributor', 'effective', or 'correlated' interchangeably (Krieger et al., 1977; Downing 

et al. 1985; Iman, 1987; Iman and Helton, 1988; Marguiles et al., 1991). Crick et 

al. (1987) have made a distinction by referring to 'important' parameters as those 

whose uncertainty contributes substantially to the uncertainty in assessment results, 

and 'sensitive' parameters as those which have a significant influence on assess- 

ment results. The consensus among authors is that models are indeed sensitive to 

input parameters in two distinct ways: (1) the variability, or uncertainty, associated 

with a sensitive input parameter is propagated through the model resulting in a 

large contribution to the overall output variability, and (2) model results can be 

highly correlated with an input parameter so that small changes in the input value 

result in significant changes in the output. 

The necessary distinction between important and sensitive parameters is in 

the type of analysis being conducted: uncertainty analysis (parameter importance) 

or sensitivity analysis (parameter sensitivity). An important parameter is always 

sensitive because parameter variability will not appear in the output unless the 

model is sensitive to the input. A sensitive parameter, however, is not necessarily 

important because it may be known precisely, thereby having little variability to 

add to the output. 

At the completion of an analysis on parameter sensitivity the analyst holds 

a list, or 'sensitivity ranking', of the input parameters sorted by the amount of 

influence each has on the model output. More than a dozen sensitivity techniques 

are described, each of which would result in a slightly different sensitivity ranking. 

The actual ranking is not as important as is the specification of which parameters 

consistently appear near the top of the list. Disagreement among rankings by the 

various methods for variables of lesser importance is not of practical concern since 

these variables have little or no influence on model output. 

Throughout this paper a generalized model is utilized that contains several 

independent variables, X = (X1, ..., Xn) ,  and one dependent variable Y, where 

Y = f ( X ) .  These methods can also be applied to models with several dependent 

variables. Sensitivity methods will be addressed in three groups: 

(1) those that operate on one variable at a time; 
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(2) those that rely on the generation of an input matrix and an associated output 

vector; 

(3) those that require a partitioning of a particular input vector based on the 

resulting output vector. 

2.1. DIFFERENTIAL SENSITIVITY ANALYSIS 

Differential analysis, also referred to as the direct method, is discussed first since 

it is the backbone of nearly all other sensitivity analysis techniques. Methods in 

the literature range from solving simple partial derivatives to spatial and temporal 

sensitivity analyses (Morisawa and Inoue, 1974; Atherton et al., 1975; Dickinson 

and Gelinas, 1976; Koda et al., 1979; Dunker, 1981; Gardner et al., 1981; Summers 

and McKellar, 1981; Koda, 1982; Helton et al., 1985; Iman and Helton, 1985; 

Helton et al., 1986; Iman and Helton, 1988; Helton et al., 1991; Zimmerman et al., 

1991). 

A sensitivity coefficient is basically the ratio of the change in output to the 

change in input while all other parameters remain constant (Kfieger et al., 1977). 

The model result while all parameters are held constant is defined as the 'base case'. 

Differential techniques are structured on the behavior of the model given a specific 

set of parameter values, e.g. assuming the base-case scenario is with all parameter 

values set to their mean. Morisawa and Inoue (1974) use the differential method as 

a means of selecting desirable conditions for underground waste disposal sites in 

Japan. They note, however, that, with the direct method, the magnitude of variable 

sensitivity is dependent on the base-case scenario. A major drawback is that this 

localized behavior may not be applicable for realms far from the base case. 

Differential analysis of parameter sensitivity is based on partial differentiation 

of the model in aggregated form. It can be thought of as the propagation of uncer- 

tainties (Cunningham et al., 1980). A first-order Taylor series approximation is 

applied to the dependent variable, y, as a function of the independent variables 

X = (Xl . . . . .  Xn). The variance of Y, V(Y), is calculated using the general error 

propagation formula, i.e., 

= v ( x i ) .  

i=-I 

The variance in Y is utilized as a measure of uncertainty in model predictions 

while the variance in Xi, weighted by the first-order partial of Y with respect to Xi, 

provides a measure of model sensitivity to Xi (Helton et al., 1985). This method 

is a linearized theory and is valid only for small parameter uncertainties (Koda 

et al., 1979). A statistical sensitivity analysis consists of computing the variance 

and the expected value of each model output and ranking the contributions to 

the variance (Atherton et al., 1975). Iman (1987) uses a matrix-based approach to 

solving the partial derivatives since matrix notation is efficient and because it allows 

for the analysis of large problems. Several recent investigations have utilized the 
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GRESS (Gradient Enhanced Software System) computer code, developed at Oak 

Ridge National Laboratory (Worley and Horwedel, 1986; Horwedel et al., 1988), 

to calculate sensitivity coefficients using the direct method (Helton et al., 1991; Yu 

et al., 1991; Zimmerman et al., 1991). 

Sensitivity analyses using partial differentiation techniques are computation- 

ally efficient (Helton et al., 1985); however, the effort required in solving these 

equations can be quite intensive. Derivatives of simple functions may be generated 

by less rigorous analytical or differencing schemes, but more complicated mod- 

els often require complex numerical procedures (Iman and Helton, 1988). When 

an explicit algebraic equation describes the relationship between the independent 

variables and the dependent variable, the sensitivity analysis is easy to perform 

(Atherton et al., 1975). In this case, the sensitivity coefficient, ¢i, for a particular 

independent variable can be calculated from the partial derivative of the dependent 

variable with respect to the independent variable, i.e. 

¢ ~ -  OXi 

where the quotient, Xi/Y, is introduced to normalize the coefficient by removing 

the affects of units. Inherent to this calculation are the assumptions that the higher 

ordered partials are negligible and there is no correlation between input parameters 

(Atherton et al., 1975; Gardner et al., 1981). For large sets of equations, the partial 

derivative can be approximated as a finite difference and output values calculated 

for small changes in the input parameter (Downing et al., 1985). Thus, if non- 

linearities are neglected, the partial derivative can be approximated as, 

%AY 

¢ i -  % A X i  

Gardner et al. (1981) report that the partial derivative approach to sensitivity 

analysis may become so complex that implementation is impractical. Also, since 

this approach is only valid for small changes in parameter values, when parameter 

variability is allowed to take on 'realistic' values, the direct approach is seriously 

violated (Gardner et al., 1981). The differential analysis is typically much more 

demanding to implement than other sensitivity methods and yet provides only 

comparable results. 

2.2. ONE-AT-A-TIME SENSITIVITY MEASURES 

Conceptually, the simplest method to sensitivity analysis is to repeatedly vary one 

parameter at a time while holding the others fixed (Gardner et aI., 1980; O'Neill 

et aL, 1980; Downing et al., 1985; Breshears, 1987; Crick et aL, 1987; Yu et al., 

1991). A sensitivity ranking can be obtained quickly by increasing each parameter 

by a given percentage while leaving all others constant, and quantifying the change 

in model output. This type of analysis has been referred to as a 'local' sensitivity 
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analysis (Crick et al., 1987) since it only addresses sensitivity relative to the 

point estimates chosen and not for the entire parameter distribution. The RESRAD 

code, developed at Argonne National Laboratory for the Department of Energy, 

calculates dose (or risk) to humans from residual soil contamination (Yu et al., 

1991). The package contains a routine that uses the local sensitivity method by 

varying user-specified parameter values and printing a graphical representation of 

parameter sensitivity over time. 

A more powerful test of local sensitivity examines the change in output as 

each parameter is individually increased by a factor of its standard deviation. This 

sensitivity measure takes into account the parameter's variability and the associated 

influence on model output. Downing et al. (1985) evaluate parameters at their mean 

value and then vary them by 4- 4 standard deviations to measure the effect on the 

output. 

2.3. FACTORIAL DESIGN 

A factorial analysis involves choosing a given number of samples for each param- 

eter and running the model for all combinations of the samples (Box et al., 1978; 

Rose, 1983). The results obtained in this fashion are then utilized to estimate 

parameter sensitivity. For example, a model has five parameters and it is deter- 

mined, rather arbitrarily, that each parameter will be sampled at three specific 

locations, e.g. the 25th, 50th, and 75th percentiles. This experimental design would 

require 53 = 125 model runs. It is evident from this example that a large number of 

parameters quickly prohibits a thorough examination of the model because of the 

tremendous number of model runs required. In some cases, the same information 

can be obtained from a reduced number of trials, using a fractional factorial design 

(Box et al., 1978). 

2.4. THE SENSITIVITY INDEX 

Another of the simple methods of determining parameter sensitivity is to calculate 

the output % difference when varying one input parameter from its minimum value 

to its maximum value (Hoffman and Gardner, 1983; Bauer and Hamby, 1991). 

Hoffman and Gardner (1983) advocate utilizing each parameter's entire range 

of possible values in order to assess true parameter sensitivities. The 'sensitivity 

index' (SI) is calculated using, 

S I -  
Dmax -- Dmin 

Dmax 

where Dmin and Dmax represent the minimum and maximum output values, respec- 

tively, resulting from varying the input over its entire range (Hoffman and Gardner, 

1983). This figure-of-merit provides a good indication of parameter and model 

variability. 
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2.5. IMPORTANCE FACTORS 

Downing et al. (1985) have introduced three importance factors. Their measures 

are calculated from data collected after a five-point one-at-a-time analysis; model 

output is recorded for each parameter at its mean value, 4-2 standard deviations, 

and -t-4 standard deviations. The first importance factor is defined as parameter 

uncertainty (defined as two standard deviations of the input) multiplied by param- 

eter sensitivity (defined as the change in output divided by change in input). The 

second is the positive difference in the maximum output value and the minimum 

output value. And, third, they estimate importance utilizing the output sample 

variance. 

2.6. SUBJECTIVE SENSITIVITY ANALYSIS 

The final sensitivity method based on analysis of individual parameters is the 

subjective method (Downing et al., 1985). The method is rather simple and only 

qualitative since it relies on the opinions of experienced investigators to determine, 

a priori,  which parameters can be discarded due to lack of influence on model 

results. One advantage is that, for large models, where most other methods are 

impractical, the subjective method can be used as a first cut to reduce the number 

of input parameters to a manageable size. 

3. Parameter Sensitivity Analysis Utilizing Random Sampling Methods 

To this point, sensitivity has been assessed on individual parameters without regard 

to the combined variability resulting from considering all input parameters simul- 

taneously. Random sampling (e.g. simple random sampling, Monte Carlo, Latin 

hypercube, etc.) of input parameters generates input and output distributions useful 

in assessing model and parameter uncertainties in a 'global' sense (McKay et al., 

1979; Iman and Conover, 1980; Iman et al., 1981a; Helton and Iman, 1982; Iman 

and Conover, 1982; Iman and Shortencarier, 1984; Reed et al., 1984; Downing et 

al., 1985; Kim etal . ,  1988; Iman, 1987; Stein, 1987; Helton etal . ,  1991). Gardner 

et al. (1980) refer to parameter sensitivity studies of this type as 'parameter error 

analysis'. 

A large array of randomly selected input parameter values and calculated output 

values provides a means for determining parameter sensitivity through a variety of 

procedures. The influence of other input parameters is meaningful to consider in 

uncertainty and sensitivity analyses since overall model performance is of impor- 

tance. Distribution effects are meaningful because parameter sensitivity depends, 

not only on the range and distribution of an individual input parameter, but also 

on those of other parameters to which the model is sensitive (Iman et al., 1981a). 

Parameter sensitivity is dependent on the interactions and influences of all param- 

eters. 
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3.1. SCATI'ER PLOTS 

Parameter sensitivity can be determined qualitatively by plots of input vs. output 

values, or quantitatively by calculations of correlation coefficients or regression 

analysis. Scatter plots of input vs. output are useful for quick determinations of the 

degree of correlation and the linearity of the input/output relationship (Helton et al., 

1986; Crick et al., 1987; Iman and Helton, 1988; Helton et al., 1991; Helton et al., 

1993). They may also reveal unexpected relationships between input and output 

variables that can provide insight as to how other investigations (e.g. regression 

analysis) might be performed. 

3.2. THE IMPORTANCE INDEX 

Hoffman and Gardner (1983) have also introduced an 'importance index', Ii,  which 

is equal to the variance of the parameter value, s 2 ,  divided by the variance of the 

dependent values, s 2 ,  i.e. 

8 2 
Xi 

I i =  82 , 

where s refers to the variance of the raw data for additive models and to the 

variance of the log-transformed data for multiplicative models. This measure of 

importance is based on the paramemr's fractional contribution to total variability, or 

uncertainty. Variable importance is estimated by Cunningham et al. (1980) through 

the use of a combination of the fractional contribution to output variability and the 

resulting change in output given individual change in input. 

3.3. THE 'RELATIVE DEVIATION' METHOD 

One sensitivity ranking method utilizes random sampling techniques and measures 

the amount of variability introduced into the model output while varying each 

input parameter, one-at-a-time, according to its probability density function. This 

method is similar to the local sensitivity method with the exception that a much 

larger sampling is made of the input distribution. The sensitivity figure-of-merit 

is the 'relative deviation' (RD), the ratio of the standard deviation to the mean 

of the output density function (Hamby, 1993), and is similar to the coefficient of 

variation (standard deviation x 100 / mean). This test provides an indication of 

each parameter's contribution to the variability present in the model output and, 

to a degree, the extent of correlation that exists between the input and output 

variable. 

3.4. THE 'RELATIVE DEVIATION RATIO' 

Given two input distributions, one narrow and one wide, producing identical output 

distributions, a model will be more sensitive to the input parameter of the narrow 
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distribution. Accordingly, this test statistic will be the ratio of the output distribu- 

tion's relative deviation to the input distribution's relative deviation and is similar 

to the importance index proposed by Hoffman and Gardner (1983). A large value 

of this 'relative deviation ratio' (RDR) indicates that either the output distribution 

varies widely or that the input distribution is relatively narrow. Additionally, infor- 

mation on the amount of variability added to the total output variability by the 

model itself is gained from this statistic. A value greater than unity indicates that 

uncertainty propagated through the model is being increased due to the model's 

structure and its high sensitivity to that particular variable. An RDR of 1 indicates 

that all input uncertainty is passed through the model and appears as output uncer- 

tainty, while a value less than unity indicates that the model is less sensitive to the 

parameter, thereby contributing to output uncertainty to a lesser degree. 

3.5. PEARSON'S r. 

A quantitative estimate of linear correlation can be determined by calculating a 

simple correlation coefficient on the parameter values of input and output. Gardner 

et al. (1981) recommend using simple correlation coefficients, derived from Monte 

Carlo simulations, as a reasonable way to rank model parameters according to 

their contribution to prediction uncertainty. Pearson's product moment correlation 

coefficient is denoted by r and is defined as 

E j \ l ( X i j  - 2 d ( Y j  - ? )  
r ~  

[~jn=.l(Xij -- X i  2 2 jn= l ( ]~  -- if')2] 1/2 

for the correlation between Xi  and Y (Conover, 1980). The larger the absolute 

value of r the stronger the degree of linear relationship between the input and 

output values (IAEA 1989). A negative value of r indicates the output is inversely 

related to the input. A linear regression on the data can be used to determine the 

correlation coefficient from the square root of the coefficient of determination, 
R 2" 

Major drawbacks of utilizing the correlation coefficient for sensitivity ranking 

include the inherent assumption that the input/output relationship is linear and the 

possibility that input parameters strongly correlated to one another may result in 

apparent input/output correlations (Hoffman and Gardner, 1983; Crick et al., 1987; 

IAEA, 1989). In addition, a large number of trials may prohibit hand calculations 

of the correlation coefficient. 

3.6. THE RANK TRANSFORMATION 

One of the problems encountered in calculating test statistics, e.g. correlation 

coefficients, from raw data is that the data are not necessarily linear. A method of 

reducing the effects of nonlinear data is to use the rank transformation (Iman and 
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Conover, 1979). The transformation of raw data into ranks has been shown to work 

quite well if the dependent variable is a monotonic function of the independent 

variables (Iman and Conover, 1979). Rank transformation linearizes monotonic 

nonlinear relationships between variables and reduces the effects of extreme values 

(Helton and Iman, 1982). This transformation converts the sensitivity measure from 

one of linearity to one of monotonicity. 

3.7. SPEARMAN'S p 

ff the input/output associations are monotonic then rank transformations of the 

input and output values (i.e. replacing the values with their ranks) will result in 

linear relationships and the rank correlation coefficient will indicate the degree of 

monotonicity between the input and output sample values (IAEA, 1989). The rank 

correlation coefficient, or Spearman's p, can be calculated using the equation for 

Pearson's r with the exception of operating on the rank transformed data (Iman and 

Conover, 1979). 

3.8. THE PARTIAL CORRELATION COEFFICIENT 

Strong correlations between input parameters may influence input/output correla- 

tions. Partial correlation coefficients (PCC) are calculated to account for correla- 

tions among other input variables (Gardner et aI., 1980; Gardner et al., 1981; Iman 

et al., 1981a; Iman and Conover, 1982; Otis, 1983; Downing et al., 1985; Iman 

and Helton, 1985; Breshears, 1987; Whicker and Kirchner, 1987; Iman and Helton, 

1988; IAEA, 1989; Whicker et al., 1990; Iman and Helton, 1991; Helton et al., 

1993). Given random variables X1 and X2 as input and the output variable Y, a 

partial correlation coefficient is a measure of the correlation between X1 and Y, 

for example, while eliminating indirect correlations due to relationships that may 

exist between X1 and X2 or )/2 and Y. The PCC is defined as (Conover, 1980) 

rx~y  - -  TX1X2rX2y 

rXlY IX2 : V/(1 - -  r 2 1 X 2 ) ( 1  - r 2 2 y )  

where the notation rx l  Y i x  2 represents the partial correlation coefficient for X 1 

and Y while accounting for the affects of X2. The parameters of the generic model 

considered in this report are assumed to be independent and no correlations have 

been assigned, i.e. r x l x z  = 0. Therefore, r x l Y  I x2 reduces to 

7"X 1 y 

TX1Y I X2 -- ~//(1 -- r2x2 Y) 

where, again, X1 and X2 represent any two input variables and Y represents the 

output variable. The square of the partial correlation coefficient is useful in deter- 

mining the percentage of variability in Yaccounted for by variability in Xi (Gardner 
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et al., 1981). Sensitivity rankings based on the relative values of the partial cor- 

relation coefficients will not change from the rankings determined based on the 

simple correlation coefficients. Therefore, with no correlations existing between 

input parameters, there is no need for calculating partials to determine sensitivity 

rankings. 

The rank transformation can also be applied to partial correlation as a test of 

monotonicity between input and output variables while accounting for relationships 

between input parameters. The partial rank correlation coefficient (PRCC) is widely 

utilized for sensitivity studies (Iman et al., 1981a, b; Crick et al., 1987; Iman 

and Helton, 1988; IAEA, 1989; Iman and Helton, 1991). Downing et al. (1985) 

compared parameter sensitivity rankings determined using partial rank correlation 

with orders from their three importance rankings (see section above on Importance 

Factors). They report the PRCC to be more powerful at indicating the sensitivity 

of a parameter that is strongly monotonic yet highly nonlinear. 

3.9. REGRESSION TECHNIQUES 

Regression methods are often used to replace a highly complex model with a 

simplified 'response surface' (Cox, 1977; Iman et al., 1978; Iman et al., 1981a, b; 

Helton and Iman, 1982; Downing et al., 1985; Kim et al., 1985; Iman and Helton, 

1988; Helton etal . ,  1991). The response surface is simply a regression equation that 

approximates model output using only the most sensitive model input parameters. 

Stepwise regression procedures are utilized to ensure that the final regression model 

provides for the best fit of raw data (Iman et aL, 1978; Iman and Conover, 1980; 

Iman et al., 1981b; Iman and Conover, 1982; Helton and Iman, 1982; Reed et al., 

1984; Helton etal . ,  1985, 1986; IAEA, 1989; Iman and Helton, 1991; Zimmerman 

et al., 1991; Helton et al., 1991, 1993). The stepwise regression may involve 

higher ordered equations, quadratic terms, and parameters as functions of other 

parameters. 

Regression coefficients provide a means of applying sensitivity rankings to 

input parameters and have been used for such in several investigations (Iman and 

Conover, 1980; Iman et al., 1981b; Helton et al., 1985; Kim et al., 1985; Helton et 

aL, 1986; Whicker and Kirchner, 1987; W h i c k e r  etal . ,  1990; Margulies etal . ,  1991; 

Zimmerman et al., 1991; Kleijnen et al., 1992; Helton et al., 1993). A model with 

many sensitive parameters may result in a complex regression equation. Matrix 

techniques have been utilized in such cases to calculate the regression coefficients 

(Krieger et al., 1977). 

The generalized form of a simple regression equation is, 

? = b0 + bkZk, 

k 

where each Zk is a predictor variable and a function of (X1 ..... Xn) and each bk 

is a regression coefficient (Helton et al., 1985, 1986). The use of the regression 
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technique allows the sensitivity ranking to be determined based on the relative 

magnitude of the regression coefficient. This value is indicative of the amount of 

influence the parameter has on the whole model. Because of units and the rela- 

tive magnitudes of parameters, a standardization process is sometimes warranted, 

however. 

3.10. STANDARDIZED REGRESSION TECHNIQUES 

Standardization takes place in the form of a transformation by ranks or by the ratio 

of the parameter's standard deviation to its mean. The effect of the standardization 

is to remove the influence of units and place all parameters on an equal level. 

Standardized regression analyses are performed by Iman and Helton (Helton et  al., 

1985; Iman and Helton, 1988, 1991). 

The calculation of a rank regression coefficient (RRC), i.e. standardization by the 

rank transformation, is a simple procedure requiring less computation. Utilizing 

means and standard deviations of input and output data sets (the standardized 

regression coefficient, SRC), however, is slightly more rigorous and is achieved 

by 

where each Zk is a function of ( X  1 . . . . .  Xn)  , s is the standard deviation of the output, 

and sk is the standard deviation of the input (Helton et  al., 1985, 1986). If each Zk is 

a function of only one parameter in X, then the value of b k s k x s  is the standardized 

regression coefficient for parameter Xk, where k = 1 to n. 

The PRCC estimated in the section above and the standardized regression 

coefficient are essentially the same when using ranks; the numerical values may be 

different but both exhibit the same pattern of sensitivity ranking (Iman and Helton, 

1988). 

4. Sensitivity Tests Involving Segmented Input Distributions 

These statistical tests involve dividing or segmenting input parameter distributions 

into two or more empirical distributions based on an associated partitioning of the 

output (Crick et  al., 1987). The tests are utilized to compare the characteristics of 

the input distributions created by the segmentation. For example, if a dose distribu- 

tion is calculated and the median value of the distribution is chosen as the dividing 

point, all input values for the parameter in question associated with the calcula- 

tion of a dose value below the median are said to belong to one random sample 

while the input values associated with dose estimates above the median belong to 

a second random sample. Means, medians, variances, and other characteristics of 

the independent random samples are statistically compared to determine whether 
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the samples originated from the same population. Division of the output distribu- 

tion can occur at any value or percentile, but should be based on the statistical 

question to be answered, e.g. 'Is the model more sensitive to the parameter when 

determining the mean value or when estimating maximum values'. If the input 

distributions generated by this -process are statistically identical then the model is 

not sensitive to that parameter. However, if the distributions are different then the 

output distribution is indeed influenced by the input and the absolute value of the 

test statistic can be used to perform the sensitivity ranking. 

Standard parametric tests are not reasonable on input data sets generated by ran- 

dom sampling methods because of our limited knowledge of the input variables and 

their associated distributions (Iman et al., 1981b). Nonparametric statistical tests, 

therefore, are used where the data are considered to be distribution-free (Conover, 

1980). The four nonparametric statistical tests that follow (Smirnov, Cramer-von 

Mises, Mann-Whitney, and Squared Ranks) are used to determine whether the null 

hypothesis can be accepted. The Smirnov and Cramer-von Mises tests compare 

empirical distributions with a null hypothesis of 'the distributions originate from 

the same population'. The Mann-Whitney test and the Squared Ranks test com- 

pare means and variances, respectively, of the empirical distributions. These test 

statistics are calculated for the purpose of sensitivity ranking, however, and not for 

accepting or rejecting null hypotheses. 

The convention stated earlier, that Y is a function of X ( Y  = f { X 1 ,  ..., Xn}), 

is no longer appropriate; a new notation is used and specified for each test. The 

following tests operate on ranks of the raw data. Tied values are assumed not to exist 

because the input and output values can be determined to several significant figures 

(although this feature does not necessarily reflect a high degree of precision). By 

excluding the possibility of ties, equations for calculating the test statistics are 

greatly simplified (Conover, 1980). 

4.1. THE SMIRNOV TEST 

The Smimov test operates on the two empirical distributions, SI(X) and S2(x), 

generated as a result of partitioning the input parameter values. The degree of 

similarity between distributions, measured by the test statistic, is used to indicate 

the degree of sensivity between the input and output values. 

The Smimov test statistic can be measured directly as the greatest vertical 

distance between the two distribution functions plotted on the same graph (see 

Figure 1), or the test statistic can be qalculated using, 

T1 =sup lS l (X)  - S 2 ( x ) ] ,  

where 'sup' is the abbreviation for supremum and the equation represents the 

greatest absolute difference between S1 (x) and S2(x) (Conover, 1980). In the exam- 

ple of Figure 1, a plot is shown of two empirical distributions of input values 

resulting in an output less than the median and input values resulting in an output 
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Fig. 1. Example of the graphical determination of the Smirnov statistic. The value of TI is a measure 
of the disparity of the two empirical distributions. 

greater than the median. The value of the Smirnov statistic can be taken from the 

plot or its accuracy can be increased by calculating T1 from the two empirical 

distributions. 

4.2. THE CRAMER-VON MISES TEST 

The Cramer-von Mises test is very similar to the Smimov test in that its purpose 

is to determine whether two empirical distributions are statistically identical. The 

computation of the test statistic is slightly more complicated, yet there is little 

difference in the test's power compared to the Smimov statistic (Conover, 1980). 

The Cramer-von Mises statistic, T2, is the sum of all squared vertical distances 

between the two empirical distributions, 

s2( . / ]  2 T2 -- ( M  + n) 2 

where the values of n and m are the number of samples utilized to estimate the 

distributions. It is expected that the parameter rankings based on the Smirnov 

and Cramer-von Mises tests will be very similar since the two tests show little 

difference in their statistical power. 

Recall that a large Smirnov or Cramer-von Mises statistic is indicative of a 

larger difference in the two empirical distributions generated by the division of 

input data based on some output criteria. This large difference indicates a greater 

correlation between the independent and dependent variables. 

4.3. THE MANN-WHITNEY TEST 

The Mann-Whitney test, also known as the Wilcoxon test, is utilized to compare the 

means of two independent samples (Conover, 1980). Two distribution functions, X 

and Y, are ordered as a single sample and ranks are assigned based on the ordering; 
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ties are assumed not to exist. The test statistic, T, is the sum of the resulting ranks 

of the data from distribution X, 

n 

T = Z R ( X , ) ,  
i=1 

where R(Xi) refers to the rank of Xi. In theory, if one sum of the single-sample 

ranks is much larger than the other, the two sample means are different (Conover, 

1980), i.e., the test statistic is either very small or very large. The use of ranks in the 

Mann-Whitney test is preferred over the use of raw data since probability theory 

does not depend on distribution-type when operating on ranks (Conover, 1980). 

For hypothesis testing, a range is calculated in order to accept or reject the null 

hypothesis that the two distributions have the same mean value. A calculated test 

statistic larger than the midpoint indicates that the mean value of the first empirical 

distribution is larger than the mean value of the second. Since the Mann-Whitney 

test is two-tailed, sensitivity ranks are based on an adjusted value of T. The adjusted 

statistic is either the value of the test statistic itself, if it is less than the midpoint 

of the comparison range, or the test statistic minus twice the difference between T 

and the midpoint, if it is greater than the midpoint. For example, if the midpoint 

of the comparison range is 500 and a value of 400 is calculated for T, the value of 

T is not adjusted. If, however, the calculated T is 550, the adjusted value becomes 

450. Then, smaller values of T indicate the more sensitive parameters since the 

means of the distributions show a greater difference based on the partitioning of 

input data. 

4.4. THE SQUARED-RANKS TEST 

The variances of two independent samples, Xi and Y, can be compared using the 

squared-ranks test. Ranks are not based on the raw data, rather on the absolute 

difference between the random sample (e.g. Xi) and the sample mean (e.g. #~). 

There are assumed to be no ties and the ranks are assigned to a single sample of 

the two distributions based on this transformation. The ranks then are squared, to 

provide more statistical power (Conover, 1980), and summed in a fashion similar 

to the Mann-Whitney test. The test statistic, T, is equal to 

T = , 

i----1 

where 

= Ix - 

For parameter ranking purposes, the normalization procedure executed on the 

Mann-Whitney statistic also is necessary with the squared-ranks statistic. 
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Based on preliminary numerical comparisons to other sensitivity tests, the 

squared-ranks test does not appear to be of much value for parameter sensitiv- 

ity rankings. Uncertainty analyses may benefit, however, in that the amount of 

variability in the output distribution may be shown to be influenced by input values 

that result in either high or low output values. 

5. Summary and Discussion 

A number of sensitivity analysis techniques have been presented. The majority of 

investigators utilize only a few of the methods including partial differentiation, 

partial correlation, and regression techniques. Investigators report on sensitivity 

theory and techniques related to environmental transport, reactor safety, chemical 

kinetic models, radiation dosimetry, multi-compartment ecological models, and 

general mathematical and statistical theory. 

The simplest approach to sensitivity analysis is the one-at-a-time method where 

sensitivity measures are determined by varying each parameter while all others 

are held constant. The factorial design is easy to conceptualize, but its procedure 

can become quite intensive with larger models. Standardized regression analysis 

using a stepwise regression procedure appears to be the most comprehensive tech- 

nique and is relatively easy to perform with commercially available software. If 

possible, complex models should be carried through an aggregating process in the 

screening stage to simplify the model's structure and reduce the number of input 

parameters. 

The most fundamental of sensitivity techniques is the direct method. Direct sen- 

sitivity analysis involves calculating partial derivatives of the model with respect 

to each input parameter. The technique is only valid for small variability in param- 

eter values and the partials must be recalculated for each change in the base-case 

scenario (e.g. all parameters set to their mean value). As stated above, 'local' sen- 

sitivity methods, or one-at-a-time analyses, are conceptually the simplest methods. 

These too are valid only for the base-case. When working with complex models a 

subjective analysis, whereby experienced modelers discard unimportant variables, 

may be necessary as a screening tool to reduce the number of parameters to a 

manageable size. 

Certain sensitivity analyses examine parameter influence based on output vari- 

ation while simultaneously changing input parameters. These methods are easily 

performed by utilizing a random sampling technique to build an input matrix and 

then calculating an output vector. Correlation, rank correlation, and partial rank 

correlation coefficients can be calculated to determine relationships between the 

independent and dependent variables. Rank transformations are often utilized in 

correlation analysis to eliminate the forced assumption of linear correlations among 

the raw data. Investigators typically calculate partial correlations to eliminate influ- 

ences between two or more input parameters. Regression analysis is commonly 
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utilized to investigate parameter sensitivity and to build response surfaces that 

approximate complex models. Standardized regression coefficients are used as 

sensitivity measures since the standardization process removes the effect of units 

and places all parameters on a comparable level. 

Crick et  al. (1987) propose statistically analyzing selected input vectors by 

segmenting input values based on their relationship to some critical output value 

(e.g. the mean, median, or 90th percentile of the output distribution). This type 

of analysis provides detailed information on parameter sensitivity based on the 

calculated output. Nonparametric statistical tests are used to determine whether the 

inputs contributing to an output less than the critical value are any different than 

the inputs contributing to an output greater than the critical value. For example, the 

analysis may show that a model is much more sensitive to a particular input when 

the output is greater than its mean value. The nonparametric tests on partitioned 

data sets are labor intensive and are not necessarily beneficial unless a particular 

question is to be answered regarding the sensitivity of a parameter with respect to 

the range of the model output. 

Generally, the purpose of a sensitivity analyses is to determine which input 

parameters exert the most influence on model results. This information, in turn, 

allows for unimportant parameters to be eliminated and provides direction for 

further research in order to reduce parameter uncertainties and increase model 

accuracy. Strict adherence to sensitivity rankings, therefore, is not as important as is 

the determination of the top several parameters to which the model is most sensitive. 

While some sensitivity methods are mathematically elegant and comprehensive, 

their use is inefficient and their results, in many cases, are comparable to those 

obtained from simpler techniques. Since very few comprehensive studies exist that 

indicate the superiority of one approach over several others (Rose, 1983; Dalrymple 

and Broyd, 1987), a study was completed to compare the methods numerically and 

provide recommendations on their use (Hamby, 1995). 
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