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�e fuel cell has the nature of high energy conversion e	ciency and low pollutant emission. Carbon nanotubes used for fuel cells
can decrease the needs of noble metals which are used for catalyst and improve the performance of fuel cells. �e application of
carbon nanotubes in fuel cells is summarized and discussed. �e following aspects are described in this paper: the method used to
reduce the platinum, the e
ect of carbon nanotubes on the fuel cell, improving the performance of fuel cell catalysts, the interaction
between catalyst and carbon nanotube support, and the synthetic conditions of carbon nanotube supported catalyst.We summarize
some of the results of previous studies and raise expectations for the microscopic state study of carbon nanotubes in the future.

1. Introduction

�e fuel cell is a device which directly converts chemical
energy into electrical energy. It has high energy conversion
e	ciency and low emissions [1–3]. Fuel cells are considered
to be one of the promising methods to solve future energy
crisis and environmental issues.

In recent years, in order to improve the e	ciency of the
fuel cell, a lot of studies are carried out from di
erent ways.

In order to improve the e	ciency of the fuel cell, the
catalyst is needed. �e noble metal Pt has the good catalytic
e	ciency. However, Pt is expensive, which is a huge obstacle
for fuel cell to be commercialized [2, 3]. So we need to
reduce the use of Pt and develop new catalysts improving the
oxidation-reduction reaction (ORR) of the electrode [4].

�e support of catalyst can help improve the capability
of catalyst [5, 6]. Common catalysts support includes carbon,
graphene, carbon nanotube (CNT), and other forms of
carbon. Low content of platinum catalyst being thin lm layer
has been reported to be e
ective and provides a higher quality
of Pt utilization and activity [7, 8]. Graphene nanosheet as
an ideal alternative compared with the traditional carbon
support materials has a high electrical activity of the catalyst
and superior durability than the commercial Pt/C catalyst
[9]. Furthermore, the support of iron-based catalyst is porous

carbon used in polymer electrolyte fuel cell, which can
improve the fuel cell oxygen reducing ability. So the supports
are really important for fuel cells. CNT as a support can
e
ectively improve the catalyst performance and utilization
[10]. Nowadays, the CNTs adopted in fuel cells are receiving
wide attention.

�is paper focuses on describing the study about the per-
formance of CNTs and the latest advances in fuel cell appli-
cations.

2. CNT Used to Reduce the Using of Platinum

In order to reduce the amount of platinum and make sure
the activity and stability of the catalyst at a high level, the
following methods are mainly used. �ere is an example of
proton exchange membrane fuel cell in Figure 1 [3], so that
we can have a better understanding of fuel cell.

2.1. Using the Support to Reduce the Use of Pt. Jha et al. used
proton exchange membrane fuel cell (PEMFC) structure to
base on functionalized single-walled CNTs (SWCNT), mak-

ing the Pt loading to reach 0.06mg Pt/m2, far below the

0.125mg Pt/m2—the United States Department of Energy
2017 loading of technical indicators about platinum group
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Figure 1: Fuel-cell components [3].
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Figure 2: Current density based fuel cell performance curves.

metals (PGM) [11]. Girishkumar et al. found that the CNT as
support for fuel cells rather than the support of carbon black
for the Pt catalyst has a better catalyst activity and a higher
current density [12]. �erefore, CNT can e
ectively reduce
the use of Pt [13, 14]. So CNTs that are used as support can
e
ectively improve the performance of the catalysts [15, 16].

In Figure 2, curves 1 and 2 are two catalysts in Hydrogen

FuelCells. Pt/multiwalledCNTs (MWCNT) (12�g/cm2) have
a better power density [16]. As a result, in the same condition,
having a higher Pt loading will get a better power density.
Curves 3 and 4 are the performance of the Pt/Carbon Black

and Pt/CNT [13].When the current is not too high, the power
density of Pt/CNT electrode ismuch higher. In aword, we can
get the di
erent current density when we use di
erent fuel
cell, as their conversion e	ciency is di
erent. �erefore, the
use of catalyst support has an important signicance in the
fuel cell applications.

2.2. Exploring Pt-Containing Alloys as a Catalyst. Catalysts
composed by CNT as the support of Pt-Ru alloy have
good dispersion and catalytic [17–19]. By comparing the
Pt/MWCNTs, PtNi/MWCNTs, and PtRu/MWCNTs elec-
trodes, the studies found PtRuNi/MWCNTs have better elec-
trocatalytic activity [20]. When Au-CNT is used, phosphate
bu
er solution, isopropanol, and Naon membrane can be
mixed separately getting PdPtPt/Au-CNT, PtPdPd/Au-CNT,
and PtPdPt/Au-CNT catalysts by the way of continuous
precipitation. �ese catalysts are suitable for di
erent envi-
ronments and have good catalytic e
ect [21].

Just as the research of Wu et al., Pt-containing alloy as
catalyst has a better performance than the commercial Pt/C
catalyst in Figure 3 [22]. Besides, three Pt3Ni catalysts were
more active than Pt. In this case, the alloy using as catalysts
can be a good substitute for fuel cells.

In a word, it can be concluded that it is e
ective to
improve catalysis performance by using Pt alloy or other
metal alloys with CNT support [22–30]. In addition, it should
be noted that the compound temperature of the alloy will
e
ect the catalytic activity with the heat treatment [31].

2.3. No Pt-Containing Catalysts. In order to reduce the use of
Pt, researchers attempt to use cheaper alternatives to achieve
the same e
ect. Sheng et al. found that multiwalled CNTs
as the support of Cu/Cu�O rather than Pt nanoparticles
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Figure 3: �e performance of catalysts [22].

have higher catalytic activity [32]. Wang et al. found when
polyelectrolyte functionalized carbon nanotubes can com-
prise the metal-free catalyst and are used to the oxidation-
reduction reaction, it has a similar property to Pt catalyst in
a fuel cell [33]. When PtRu/MWCNT and PtSn/MWCNT as
anode catalyst, respectively, nonprecious cobalt-polypyrrole
MWCNTs have the improved power density than no Pt
based electrocatalysts as the cathode [34]. �e electrode
with Mo2C catalyst using the support of CNTs has a higher
overvoltage than Pt-based electrode, and its activity may be
further improved [35]. �e nanocomposite of multiwalled
CNTs and SnO2, constituting the anodes of microbial fuel
cells in the electrode, has a larger maximum power density;
therefore the nanocomposite of multiwalled CNTs and SnO2
is a very desirable anode material [36]. �e electrocatalytic
activity of CNTs as the support of Mo2C (16.7 wt.% Mo)
catalyst is equivalent to the Pt catalyst (20wt.%) [37]. What
is more, the catalyst is formed with Pd�Co-two metal alloy
and multiwalled CNTs, which has the better activity. More-

over, Pd3Co/MWCNT (2.53mW/cm2) has a better catalytic
performance than Pd/MWCNT (1.64mW/cm2) and Pt/C
(1.20mW/cm2) as the cathode applied in the fuel cell [38].
As is reported in the thesis of Lefèvre et al. [39], the
current density of a cathode made with the best iron-based
electrocatalyst can equal that of platinum-based cathode.

�erefore, compared to the platinum-containing catalyst,
nonnoble metal catalysts with the CNT support for the elec-
trode also have good catalytic e
ectivity [40, 41] and stability
[42].

2.4. Using of Pt Nanoparticles. Ru-decorated Pt nanoparti-
cles on Nitrogen-doped multiwalled CNTs used for directly
methanol fuel cells have high performance and high dis-
persion [43]. On the one hand, the polymer composition
of Pt nanoparticles loaded into the MWCNT shows higher
electrocatalytic activity and better tolerance as the anode

of direct methanol fuel cell [44]. On the other hand, the
shape and surface’s morphology of CNTs has a profound
impact on its electrocatalytic activity. When attached to the
Pt nanoparticles, the electrical properties of �ower-shaped
nanostructure are signicantly higher than conventional
electro-catalytic properties of spherical nanoparticles [45].

So the use of Pt nanoparticles can well re�ect the per-
formance of the catalyst [46, 47], and Pt nanoparticles can
be more dispersed on the surface of the support, thereby
improving the utilization rate of platinum.

3. Effect of CNTs on Fuel Cell

Among the supports, CNT has a high surface area and high
electrical conductivity, light weight, perfect hexagonal struc-
ture and many unusual mechanical, and electrical and chem-
ical properties. In a silicon microfuel cell test, the PtRu
graphitic carbon nanobers, PtRu CNTs, and PtRu-Vulcan
catalysts were used. �e results obtained have shown that
PtRu nanotubes have a maximum power density; PtRu-
Vulcan has maximum durability [48]. �erefore CNTs are
better able to improve the activity and get widespread atten-
tion. CNTs can improve the fuel cell performance, mainly in
the following areas.

3.1. Improving the Performance of the Catalyst. �e use
of CNTs improves the performance of catalyst [49, 50].
Platinum can be xed in the inner wall and the outer wall
of CNTs and may constitute platinum-CNTs having good
electrocatalytic properties [51]. �e fuel cell using CNTs as a
catalyst support has a larger current density [52]. And the fuel
cell has a high performance, catalytic activity and the quality
of transmission [53, 54]. In proton exchange membrane fuel
cell, the surface of the bipolar plate is covered by conductive
polymer coating (aluminum-coated). Adding the CNTs to
polyaniline coating can enhance the conductive properties of
the polyaniline polymer [55].

�erefore, while CNTs are of the catalyst support, the
electrocatalytic properties of catalyst can be improved [52, 56,
57].

3.2. Improving the Stability and Corrosion Resistance of the
Catalyst. CNTs can make the fuel cell more stable [58] and
have higher corrosion resistance performance in work. CNT
as catalyst support for fuel cells can reduce the formation of
surface oxides and corrosion current as is shown in Figure 4
[59].

From Figure 4, Pt supported on MWCNT and Vulcan
XC-72 has similar initial half wave potential. With time going
on, MWCNT exhibits a much slower decrease rate than
Vulcan XC-72 of the half wave potential [59].

Studies have shown that, in the fuel cell, the CNT as
catalyst support is more stable than the carbon black XC-72,
is more resistant to corrosion, and has a higher peak power
density [50, 60]. �e oxidized graphene catalyst supported
on CNTs is coated on the melamine sponges as electrode
prepared by the special method. And it can prove a large
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Figure 4: Comparison of half potential for ORR between Pt
supported onVulcanXC-72 andMWCNTas a function of oxidation
treatment time.

conductive surface of microbial fuel cell for transferring
electrons; compared to the conventional carbon-based anode
and themetal group, it can have better durability and catalytic
activity [61].

3.3. Reducing the Cost of the Fuel Cell. �e CNT has a high
surface area, good support for Pt, and high dispersion of the
platinum, getting a smaller particle size [62]. So it can reduce
the cost of production by reducing the use of platinum [63,
64].

3.4. Increasing Transmission Capacity

(1) Electron transport capabilities: CNTs as electrode
in solid acid fuel cell can improve the connection
between platinum catalyst nanoparticles and current
collector [65]. And multiwalled CNTs increase the
anode surface area and the volume ratio, enhancing
the ability of the anode electron transmission in
microbial fuel cells [66].

(2) Quality of transmission capacity: �e mixture of
multiwalled CNTs and single-walled CNTs used as
Pt support can enhance the cathode quality activities
and the mass transport in the catalyst layer, which
can be a goodmethod to ameliorate themass transfer,
when SWNT is used as catalyst support [67].

4. Improving the Performance of Catalysts
by Using CNT

4.1. Optimization of Support

4.1.1. Nitrogen-Containing Catalyst Support. It can e
ectively
improve the catalytic activity and stability, introducing
the nitrogen functional group on the carbon support for
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Figure 5: Peak current density for methanol oxidation on the var-
ious electrodes.

the catalyst [68–70]. Cheng et al. found PtRu nanoparticles
are supported onto poly(diallyldimethylammonium chlo-
ride) (PDDA), polyethylenimine (PEI), 1-aminopyrene (AP),
and tetrahydrofuran (THF) functionalized multiwalled
CNTs. Pt-Ru nanoparticles supported on PEI, AP, and PDDA
functionalized CNTs exhibited signicantly much higher
electrocatalytic activity and stability for the electro-oxidation
of methanol as compared with PtRu supported on THF-
CNTs [71]. Platinum supported on multiwalled CNTs doped
with nitrogen, as the cathode catalyst, has a higher maximum

power density (0.78mW/cm2) than commercial carbon

supported Pt catalyst (0.72mW/cm2). When the oxidant is
the actual gas, the use of the former has a signicantly higher
performance in direct methanol fuel cell [72]. Maiyalagan et
al. [69] have done the experiment for nitrogen-containing
catalyst support in Figure 5, which could testify the advantage
of nitrogen-containing CNT.

4.1.2. Other Forms of Carbon Added

(1) �e fuel cell supported by the mixed electrode mate-
rial of Graphene and multiwalled CNTs has a good
catalytic e
ect [73]. Pham et al. got the unique layered
graphene-CNT hybrid structures by a chemical vapor
deposition method. �en they used the structures
to support the Pt catalyst and found the catalyst
for a fuel cell had superior polarization performance
[74].�erefore, adding graphene into the support can
e
ectively improve the catalytic performance.

(2) Carbon shells embedded carbon nanotubes can facil-
itate Pt nanoparticles dispersing on the core-shell
nanostructural support and the carbon shell embed-
ded carbon nanotube supported Pt catalyst will form
a new catalyst, and this catalyst has a higher electro-
chemical activity surface area and mass activity than
the Pt catalyst loading on the original CNTs [75].

(3) CNTs and oxidized graphite form a three-dimen-
sional carbon ber composited material, just as
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a sandwich, which gives a maximum PEMFC perfor-

mance of 495mW/cm2 at 60∘C temperature [76].

4.1.3. Adding Substances to CNT to Synthetize the Support.
Adding new substances on the CNTs synthetizes new support
to improve its performance; the researchers made a lot of
attempts and exploration. Examples are listed below:

(1) Sulfonated polyamide (PA-S) and sulfonation of poly-
styrene (PS-S) are two categories of mechanically
robust and thermally stable nanocomposites, respec-
tively, based on multiwalled CNT and silica nan-
otube (SiNT). �rough solution blending, they were
well dispersed and adhered on the nanostructures,
forming a porous membrane structure for a fuel cell,
which has high proton conductivity of 1.28–2.23 S/cm
at 80∘C and higher water retention capacity [77].

(2) CNT is doped with heteroatoms forming a core-
sheath nanostructure, which is attached to the CNTs
forming the catalyst. Compared to Pt/C catalyst, it has
higher durability. When used as the cathode catalyst,
it exhibits very high current and power density [78].

(3) �e composed lm using CNTs and polytetra�uo-
roethylene is located between the bipolar plate and the
electrode. �e contact resistance is reduced. �ere-
fore, the proton-exchange membrane fuel cell output
power is increased by about 1.6 times [79].

4.1.4. Surface Treatment of CNTs. Some substances were
coated on the surface of CNTs to improve performance. �e
following examples show part of the studies:

(1) By coating mesoporous polysulfone substrate on
SWNTs forming a three-dimensional porous poly-
sulfone-SWCNT, which is used as an anode in a
microbial fuel cell, it has a high activity of surface
region and the e
ective electron transfer in outer cells
[80].

(2) �e surfactant was adsorbed on the surface of func-
tionalized MWCNTs, where they prevented reaggre-
gation of MWCNTs on the nanocomposite. �ereby
enhancing the dispersion of nanocomposite mate-
rials, the prepared CNTs used in proton exchange
membrane can enhance the thermal performance
[81].

4.2. Multimetal Addition of the Catalyst. Studies have shown
that the multiwalled CNTs are used as the support with Pd
catalyst in anode, respectively, and Rh, Ru, Pt, Au, Ag, Pd, Ni,
and Cu as the cathode catalyst for direct reduction of H2O2.
�e fuel cell maximum power density in descending order is
Au>Ru>Pt>Ag>Rh>Pd>Ni>Cu [82].�erefore, the use
of various metals may have an impact on the catalytic activity
[83]; we have a need to study the impact of the performance
of various metals adding to the catalyst.

For example, Ni added to PtRu catalyst with the support
ofmultiwalledCNTs can improve the electrochemical surface
of the catalyst; meanwhile, comparing with the commercial
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catalyst (20wt.% PtRu/C), it has an e
ect in which the PtRu
loading is reduced (10wt.%PtRu) and a similar catalytic e
ect
can be achieved [84].UsingCMK-3, ferrocene nickel as nickel
source will be allowed to grow on CNTs, by chemical vapor
deposition method. �rough traditional wet impregnation
method, we can get Pt catalyst. As a result, Pt particles get
smaller, and they have a better performance under the condi-
tions of a smaller Pt loading [85].

4.3. Using Oriented CNTs. Pt is supported on the oriented
CNTs. In this way they form the catalyst, which has a good
durability and reduces the loading amount of Pt; thereby we
reduced themanufacturing costs. Using it in proton exchange
membrane, fuel cell can have a higher energy density and
current density [86]. Studies have shown that the oriented
CNT lm as cathode of the proton exchange membrane
fuel cell can achieve a higher performance and a higher
electrocatalytic activity than the disorder CNT membrane
system of Pt/CNT [53]. Vertically alignedCNTs together with
Pt forming the electrodes can be a good transfer of protons,
electrons, and water. Catalyst layer and microporous layer
have a good conduction for proton exchange membrane fuel
cell, resulting in very good current density and reducing the
use of Pt [87].

4.4. Functionalization of CNTs. While the port of CNT is
functionalized,MWCNT-OHhas a better power density than
MWCNT-COOH [88]. �e molecular dynamics simulation
results also show that the functional groups on the port of the
CNTs have a signicant in�uence on the mass transporting
through the port. As shown in Figure 6 [89], the speed of
lithium-ion getting into the functionalized CNTs’ port with
hydroxy(–OH) is faster than with carboxyl(–COOH).

4.5. �e Use of Polymers. Filling polyethylene terephthalate
(PET) and polyvinylidene �uoride (PVDF) into CNTs, we
can form a triple continuous structure. It can be applied
to a proton exchange membrane fuel cell’s bipolar plate,
with excellent conductivity and strength [90]. Film, based
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on the polymer Naon membrane adding some surfactant
and working with functionalmultiwalled CNTs, makes CNTs
have good dispersion. �is nanocomposite is measured
though thermogravimetric analysis (TGA), and results show
that it lowers absorption of methanol and improves thermal
stability [91].

5. Interaction between Catalyst and
CNT Support

5.1. �e Catalyst Particles Are More Dispersed with CNT Sup-
port. For example, CNT, used as a catalyst to support PtPd,
can make PtPd nanoparticles distribute uniformly. CNT
directly used inmethanol fuel cell increases the activity of the
electrochemical surface area and mass activity [92]. �ere-
fore, it is important for carbon nanostructure as the support
material and it can e
ectively disperse catalyst particles [93].

5.2. CNT Diameter and Number of Layers. When CNT-
supported Pt nanoparticles are used for ORR, the specic
surface area decreases with the diameter of the CNT increas-
ing. When the diameter of CNT increases, the performance
of Pt catalyst becomes more stable and the amount of Pt
loading reduces [94]. Besides, multiwalled CNTs have better
performance than single-walled CNTs [95]. As shown in
Figure 7, the curves are the comparing cathode catalyst made

of 82 �g Pt/cm2 Pt/SWCNT and 12 �g Pt/cm2 Pt/MWCNT,
while other conditions do not have too much discrepancy.
Even through Pt/SWCNT has a higher Pt loading, their cell
voltages do not generate the great di
erence.

5.3. Adhesion between the Pt Nanoparticles and Support. He
et al. studied how the size and the shape of Pt nanoparticles
a
ect the catalytic performance. �e results show that as the
size of the Pt nanoparticles is larger, adhesive force becomes
bigger regardless of the humidity. When the nanoparticles

are tetrahedral, it has good adhesion. But other shapes did
not signicantly impact the adhesion. When the humidity of
Naon membrane is increased, enhanced hydration leads to
weakened adhesion. At the same time, controlling the content
of the Naon membrane can also improve the absorption
[96].

6. The Synthetic Conditions of CNTs Catalyst

6.1. In Supercritical Fluid. If platinum CNTs are synthesized
in supercritical �uids, they can be electrocatalyst for the low
temperature fuel cells [97] or for the direct methanol fuel cell
[98].

6.2. �e Application of Microwave Technology. �e CNTs
can be manufactured though microwave-assisted reduction
polyol method, and then platinum deposits on the CNTs to
form the catalyst. �e catalyst can be used in direct methanol
fuel cells [99]. Chloroplatinic acid is used in providing Pt to
synthesize platinum catalyst by the intermittent microwave
radiation technology. �is platinum catalyst has better per-
formance than commercial platinum carbon black catalyst
[100]. �e vertically oriented CNT is synthesized using
a microwave plasma enhanced chemical vapor deposition
method. �en platinum nanoparticles are deposited on the
CNTbyDC sputtering system to form the catalyst. Increasing
surface nitrogen content of this catalyst is expected to become
the future fuel cell electrodes [101].

6.3. Processing in Acid. A�er CNTs are processed in acid,
they can be used to manufacture the catalyst with platinum
nanoparticles by chemical deposition method [102].

6.4. Low-Temperature PlasmaMethod. �ismethod is widely
used in the synthesis of CNTs and graphene material applied
to the fuel cell, because it is possible to obtain many advan-
tages like highly dispersed active substances, reducing energy
requirements, enhancing the activation of the catalyst, short-
ening the synthetic time, reducing environmental pollution,
and so on [103].

7. Summary and Outlook

Fuel cells have the nature of high energy conversion e	ciency
and low pollutant emission and are considered to be one
of the promising methods to solve future energy crisis and
environmental issues. Carbon nanotube used as the support
of catalysis has an important signicance in the fuel cell
applications. We summarize and discuss the application of
carbon nanotubes in fuel cells. We focus on the e
ect of
carbon nanotubes on the fuel cell in which the ways are
used to reduce the need of noble metal and to improve the
performance of fuel cell catalysts, as well as the interaction
with catalyst and carbon nanotube support and the synthesis
conditions of carbon nanotube supported catalyst.

Researches about the support of CNTs and catalyst’s
performance have made a lot of achievements and make us
much more clearly to understand the e
ects of the CNT
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on fuel cell. However, the microscopic transport mechanism
in CNTs remains to be further studied. �e molecular
dynamics simulation should be a powerful method to study
the microscopic transmission in CNTs.
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