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Abstract—Over the past few decades, fuzzy systems have been
widely used in several application fields, thanks to their ability to
model complex systems. The design of fuzzy systems has been suc-
cessfully performed by applying evolutionary and, in particular,
genetic algorithms, and recently, this approach has been extended
by using multiobjective evolutionary algorithms, which can con-
sider multiple conflicting objectives, instead of a single one. The
hybridization between multiobjective evolutionary algorithms and
fuzzy systems is currently known as multiobjective evolutionary
fuzzy systems. This paper presents an overview of multiobjective
evolutionary fuzzy systems, describing the main contributions on
this field and providing a two-level taxonomy of the existing pro-
posals, in order to outline a well-established framework that could
help researchers who work on significant further developments.
Finally, some considerations of recent trends and potential research
directions are presented.

Index Terms—Accuracy–interpretability tradeoff, fuzzy associ-
ation rule mining, fuzzy control, fuzzy rule-based systems (FRBSs),
multiobjective evolutionary algorithms (EAs), multiobjective evo-
lutionary fuzzy systems (MOEFSs).

I. INTRODUCTION

F
UZZY systems can be considered universal approximators,

i.e., they can approximate any real continuous function in

a compact set to arbitrary accuracy [1]. They have been widely

used in several application fields, such as control [2]–[4], clas-

sification [5]–[8], regression [9], [10], and general data mining

problems, due to their ability to handle imprecision and uncer-

tainty and to describe the behavior of complex systems without

requiring a precise mathematical model.

The most common fuzzy models consist of a collection of

logical fuzzy rules and are known as fuzzy rule-based systems
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(FRBSs). They can be roughly divided into several families,

depending on the type of fuzzy sets used in the rule.

The two most popular FRBSs are linguistic fuzzy models,

also called Mamdani-type [4] and Takagi–Sugeno–Kang (TSK)

fuzzy models [11]. The difference between these models lies in

the consequent of their fuzzy rules, which is an output action

or a class in the first case and a polynomial function in the

second. Another category of fuzzy models is represented by

scatter partition-based FRBSs [12], which differ from linguistic

FRBSs as their rules are semantic-free.

The automatic design of FRBSs can be considered an op-

timization task or a search problem. Evolutionary algorithms

(EAs) and genetic algorithms (GAs) [13], [14] have been em-

ployed to carry this out, thanks to their ability to deal with

large search spaces and to find near-optimal solutions without a

precise description of the problem. Moreover, they can easily in-

corporate a priori knowledge into the model. The hybridization

of fuzzy systems and GAs is known as genetic fuzzy systems

(GFSs) [15], [16], and can nowadays be considered a mature

area.

The flexibility of fuzzy systems makes them applicable to

a wide range of problems. From among them, problems with

multiple conflicting objectives are of particular interest to re-

searchers, as they are very common and arise wherever optimal

decisions need to be taken. In these kinds of problems, the im-

provement of an objective leads to the deterioration of the others;

therefore, there is usually no single solution that simultaneously

optimizes all objectives.

This problem is tackled using multiobjective evolutionary

algorithms (MOEAs) [17], [18] for the design of fuzzy sys-

tems. Multiobjective optimization leads to a set of fuzzy models

with different tradeoffs between objectives instead of a single,

usually biased fuzzy model. Afterward, a decision maker (or

an automatic decision making process) can select, depending

on his/her requirements, the most suitable model. These hybrid

approaches are known as multiobjective evolutionary fuzzy sys-

tems (MOEFSs).

In this paper, we analyze the state of the art of MOEFSs,

by describing a collection of proposals that focus on this topic.

Intending to show a well-established framework, we present a

two-level taxonomy to classify contributions, in which the first

level is based on the multiobjective nature of the problem faced,

i.e, the type of objectives used, and the second level is based

on the type of FRBS components optimized during the evolu-

tionary process. Both of them determine the search space type

1063-6706/$31.00 © 2012 IEEE
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Fig. 1. Two-level taxonomy based on the type of the objectives optimized (1st level) and on the type of GFS used (second level).

and complexity, which involve different considerations when

applying MOEFSs.

This way, this taxonomy could help researchers to easily find

existing proposals that are related to a particular branch and to

focus on significant further developments. Finally, we discuss

some current trends and prospects.

To keep this study up-to-date, improving its visibility and

providing additional materials, we have developed an associated

web page that can be found at http://sci2s.ugr.es/moefs-review/.

This web page includes some basic preliminary concepts that are

related to the topic of MOEFSs: introduction to FRBSs, intro-

duction to evolutionary multiobjective optimization (EMOO),

and a definition of MOEFSs as the application of EMOO to

FRBS derivation. It also presents the proposed taxonomy and

shows a summary of the state of the art, grouping the studied

contributions in the form of tables and including the links to

each paper digital object identifier (DOI).

This paper is organized as follows. Section II introduces a

two-level taxonomy of proposals: first based on the multiobjec-

tive nature of the problem tackled and second based on the type

of FRBS components optimized. The following sections con-

tain the descriptions of the main studies that are related to each

field. Section III groups works that deal with MOEFSs applied

to the accuracy–interpretability tradeoff of FRBSs. Section IV

describes MOEFSs that are applied to multiobjective control

problems. Section V focuses on studies that apply MOEFSs to

mine fuzzy association rules. In Section VI, some new trends

and further developments are discussed. Finally, some conclu-

sions are drawn in Section VII.

II. TAXONOMY BASED ON THE APPLICATION OF

MULTIOBJECTIVE EVOLUTIONARY FUZZY SYSTEMS

In this paper, we take into consideration a collection of papers

in which MOEFSs are applied to different problem domains.

Because of the large number of contributions to the field, we

propose a two-level taxonomy, which is shown in Fig. 1, in order

to jointly analyze the different types of MOEFSs. The first level

gathers contributions depending on the multiobjective nature of

the handled problem, i.e., the type of the objectives optimized.

The second one groups papers depending on the type of FRBS

components optimized during the evolutionary process. In fact,

both of them affect the type and the complexity of the search

space, and therefore the way in which MOEFSs are applied.

This way, the first main category includes contributions in

which MOEFSs are designed to generate FRBSs with different

tradeoffs between accuracy and interpretability. In this case, at

least one of the objectives is always related to the interpretability

of the obtained model, regardless of the problem considered. A

considerable number of papers can be found in this group, since

interpretability is one of the most important aspects of FRBSs.

While the accuracy is difficult to improve, interpretability is

easy to obtain, since interpretable models can even be provided

by hand. These differences between both types of objectives

influence the optimization process.

The second main category gathers contributions in which

MOEFSs are applied to multiobjective control problems. The

considered objectives strictly depend on the particular kind of

problem that is taken into account, and usually all of them are

related to performance issues of the control system. Therefore,

the tradeoff and the search space will be different for each

problem and dependent on the problem itself.

The third main category groups contributions in which

MOEFSs are applied to fuzzy association rule mining. The aim

of rule mining is to find a set of fuzzy association rules that

reliably represents the knowledge hidden in a database. In this

case, the objectives are used to describe the quality of the ob-

tained rules, i.e., their accuracy and interestingness. To this end,

support and confidence are the major factors in measuring the

quality of an association rule, although other metrics exist. The

aim of the optimization process is not only to improve the gen-

eral tradeoff between objectives for the whole set of rules, but

also to obtain a large number of rules, each of them satisfying

the objectives to different degrees.

This section illustrates the proposed taxonomy and includes

the description of subcategories for each main category.
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A. Multiobjective Evolutionary Fuzzy Systems Designed to

Generate Fuzzy Rule-Based Systems With Different Accuracy–

Interpretability Tradeoffs

One of the main uses of FRBSs is in the approximation

of a real system with a fuzzy model, which can be used to

explain, simulate, or predict the behavior of the original sys-

tem. Of course, the higher the accuracy, the more reliable the

model.

Initially, the interpretability of the obtained models was ne-

glected, since single-objective EAs permit the optimization of

only a single metric. The problem of improving accuracy while

maintaining or even improving the interpretability of a fuzzy

model was first faced in the mid-1990s by Ishibuchi and his

group [19], and the comprehensibility of fuzzy models began

to be integrated into the optimization process, thanks to the

application of MOEAs to fuzzy systems.

Ever since, interpretability has acquired an increasing im-

portance in the field of MOEFSs. Because of its subjectivity,

the main problem is to find a shared definition of interpretabil-

ity and to measure this characteristic in the obtained models,

since several issues need to be taken into account to obtain a

human-interpretable model.

Over the course of the past decade, several works have an-

alyzed the interpretability problem in FRBSs [20], looking for

interpretability measures that could be universally accepted by

the research community [21]–[23]. This effort has continued in

recent years, as demonstrated by the review papers presented

in [24]–[27], which aim to propose a well-established frame-

work to characterize and classify these measures.

Despite this, there are still no commonly accepted measures,

and even the terms used in the area (comprehensibility, read-

ability, completeness, consistency, etc.) are confusing and used

as synonyms, even if they refer to different concepts. Nowa-

days, researchers agree on the need to consider two groups of

interpretability measures:

1) complexity-based interpretability measures, which are

used to decrease the complexity of the fuzzy model (num-

ber of rules, number of antecedents in a rule, etc.);

2) semantic-based interpretability measures, which are used

to preserve the semantics associated with membership

functions (distinguishability, coverage, etc.) and rules

(consistency, etc.).

Classically, interpretability indices have only focused on the

former group, when evaluating the overall interpretability of a

fuzzy model. On the other hand, the definition of good semantic

interpretability measures is still an open problem, since they are

strongly affected by subjectivity. To this end, several indices

have been proposed recently [26], [28], [29].

Considering the importance of the accuracy-interpretability

tradeoff for the research community, this first category includes

contributions in which MOEFSs are designed to handle this

tradeoff that deals with this concept. Because of the huge

number of existent works, we organized them into a second-

level grouping, according to the taxonomy of GFSs presented

in [16] (see Fig. 1), and thus considering the components of the

FRBS that are managed by the optimization process (for further

information on the types of FRBSs and knowledge base (KB)

components, see the associated web page http://sci2s.ugr.es/

moefs-review/).

1) Tuning of FRBS components, combined or not, with a rule

set tuning process: A predefined KB is tuned by the opti-

mization process, i.e., the parameters of the system (shape

of membership functions in the data base (DB), inference

parameters, etc.) are modified to obtain more accurate

systems. In order to keep the system simple or to reduce

complexity, in some cases a rule selection process, which

is used as a postprocessing method, can be integrated in

the optimization: From the initial rule base (RB), only nec-

essary rules are selected. This approach can be considered

a rule set tuning process. The contributions belonging to

this category are further divided into two subcategories,

named membership function tuning and inference param-

eter tuning.

2) KB learning: Papers belonging to this category consider

the learning of the DB and/or RB. This group is further di-

vided into three subcategories: learning by rule selection,

RB learning, and simultaneous learning of KB compo-

nents. In this case, the rule selection process is used to

perform a learning of the RB.

The majority of works use a linguistic fuzzy model, since it

is the most interpretable type of FRBS. However, there are a

small number of works in which interpretability is considered

even in a TSK-type FRBS. Because of their particularities, these

contributions will be described at the end of this section.

B. Multiobjective Evolutionary Fuzzy Systems Designed for

Multiobjective Control Problems

The performance of traditional controllers depends on their

accuracy in modeling the system’s dynamics. When designing a

controller, the first problem appears if the processes are impre-

cisely described or are controlled by humans, without recourse

to mathematical models, algorithms or a deep understanding

of the physical processes involved. A further problem concerns

how to design adaptive models, i.e., intelligent control systems

that involve a learning or adaptation process when system pa-

rameters change.

Thus, it can be difficult to identify an accurate dynamic model

to design a traditional controller. In these cases, fuzzy logic rep-

resents a powerful tool to deal with the problem of knowledge

representation in an environment of uncertainty and impreci-

sion. Furthermore, in control system design, there are often mul-

tiple objectives to be considered. These objectives are sometimes

conflicting, causing an inevitable tradeoff among them, and no

single design solution emerges as the best with respect to all

objectives. These considerations have led to the application of

MOEAs in the design of fuzzy logic controllers (FLCs).

The design of an FLC includes obtaining a structure for the

controller and the corresponding numerical parameters. MOEAs

can manage these problems by encoding both structure and pa-

rameters in one chromosome that represents the whole FLC.

Therefore, in this second group, works will be explained con-

sidering the following two categories [30]:
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1) identification of controller parameters and/or rules (e.g.,

tuning of membership function parameters, rule selection

as a postprocessing method);

2) learning of controller structure (e.g., learning of the RB).

At the end of the corresponding section, some works are

described that represent a hybridization of MOEAs, fuzzy logic,

and neural networks.

C. Multiobjective Evolutionary Fuzzy Systems Designed for

Fuzzy Association Rule Mining

The hybridization of MOEAs and fuzzy systems permits au-

tomatic knowledge extraction from data; therefore, data mining

problems are one of the most important application domains

for MOEFSs. Data mining has been treated as a synonym of

knowledge discovery in databases (KDD) [31], [32], although

it is a step of KDD. The high-level goals of data mining tend to

be predictive, descriptive, or a combination of both.

A predictive approach focuses on accuracy in predictive abil-

ity and generates models that can be used to predict explicit val-

ues, based on patterns that are determined from known results.

In prediction, a user may not care whether the model reflects

reality as long as it has predictive power. One of the methods

that are used in predictive models is supervised learning, which

can create a function from training data, used to predict the out-

put value for any valid input object. The predictive approach is

applied in classification and regression, and in some cases, it

can also be used in control problems.

On the other hand, the descriptive approach focuses on un-

derstanding the implicit data-generating process, searching for

interesting patterns in existing data, without having any prede-

fined target. The method that is used in this model is usually

unsupervised learning, which differs from supervised learning

in that there is no a priori output to train the model. This method

is mainly applied to models that work with associative rules.

Finally, in some cases there are data mining applications de-

manding some degree of both predictive and descriptive ap-

proaches. A method which combines the mixed approach be-

tween descriptive and predictive is Subgroup Discovery [33].

One way to represent knowledge extracted with data mining

techniques is by means of association rules [34], whose basic

concept is to discover meaningful associations between different

pairs of sets of attribute values. For example, the presence of

a value of some set in a database element implies the presence

of another value in another set. Since fuzzy systems can deal

with imprecise knowledge, they can be successfully applied in

the representation of this knowledge using fuzzy association

rules [35].

In mining fuzzy association rules, the objectives are based on

the quality of the extracted rules: these rules should be precise,

general or specific enough, interesting, etc. Because of the large

amount of metrics, MOEAs have been used successfully to mine

fuzzy association rules.

The works included in this group mainly use a descriptive

approach, i.e., description sets focused on making the data com-

prehensible and interpretable. Additionally, some works using

the Subgroup Discovery approach will be described.

Fig. 2. Accuracy–interpretability tradeoff.

III. MULTIOBJECTIVE EVOLUTIONARY FUZZY SYSTEMS

DESIGNED TO GENERATE FUZZY RULE-BASED SYSTEMS WITH

DIFFERENT ACCURACY–INTERPRETABILITY TRADEOFFS

The problem of improving accuracy while maintaining or

even improving the interpretability of a fuzzy system is widely

acknowledged in the community of MOEFSs; its presence was

noted in the mid-1990s [19]. It is known that there is a point

at which it is not possible to improve both the accuracy and

interpretability of a fuzzy system at the same time. Therefore,

in this framework an MOEA aims to find a set of feasible fuzzy

systems with different tradeoffs between accuracy and inter-

pretability (see Fig. 2).

Hereinafter, we describe contributions in which MOEFSs are

designed to generate FRBSs with a good tradeoff between ac-

curacy and interpretability, and we group them by following the

second level of the taxonomy that is presented in Section II and

explained in Section II-A.

A. Approaches to Performing Tuning

MOEAs can be used to perform the genetic tuning of FRBS

components. Genetic tuning is applied as a postprocessing

method, once the RB has been obtained, to refine the KB pa-

rameters [36]–[39] or to adapt the parameters of the inference

engine [40]; therefore, the works belonging to this category have

been divided into two subcategories: membership function tun-

ing and inference parameter tuning. Moreover, in some cases the

tuning process can be combined with a rule selection process, to

improve the interpretability of the obtained model by removing

unnecessary rules. This approach can be seen as a rule set tuning

process, since it is applied to a previously defined RB.

1) Tuning of Membership Functions: An example of mem-

bership functions tuning process combined with a rule selection

process can be found in [41], in which the authors present a

postprocessing algorithm to improve the performance of lin-

guistic FRBSs for regression problems. A specific MOEA is

used to achieve a good balance between accuracy and complex-

ity, improving accuracy by the tuning of membership functions,

while reducing complexity by removing unnecessary rules. The

proposed algorithm, which is called accuracy-oriented strength

Pareto evolutionary algorithm 2 (SPEA2AC C ), is based on a

particular modification of SPEA2 [42] and takes into account

two objectives: accuracy, expressed by computing the mean
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squared error (MSE), and complexity, expressed as the number

of selected rules. Rule selection and the tuning of membership

functions are performed together, by coding both in the same

chromosome. The SPEA2AC C concentrates the search on the

Pareto zone that have the most accurate solutions with the least

number of possible rules.

The same algorithm is extended in [43], in which six algo-

rithms are considered to perform a rule selection from a given

fuzzy rule set along with the tuning of the membership function

parameters applied to regression problems. The nondominated

sorting genetic algorithm II (NSGA-II) [44] and SPEA2 are

used, along with two versions of NSGA-II proposed for gen-

eral use, which concentrate the search on the Pareto knees. Two

MOEAs for specific application to this concrete problem are

applied. The first one is the SPEA2AC C proposed in [41], and

the second one is its extension, i.e., SPEA2AC C 2 . All these

algorithms improve two objectives: MSE and the number of

rules.

In [45], a hybrid method for the identification of a Pareto-

optimal fuzzy rule-based classifier (FRBC) is presented. The

initial population is created in two steps: first a decision tree,

which is generated through the classical C4.5 algorithm, is trans-

formed into an FRBC. This way, relevant variables are selected,

and an initial partition of the input space is performed. After-

ward, the remaining population is created by randomly replacing

some parameters of the initial FRBC. The tuning process is per-

formed by applying the well-known NSGA-II, with polynomial

mutation and simulated binary crossover (SBX) [46] as genetic

operators. Three objectives are minimized: the number of mis-

classified patterns, the number of rules, and the total number of

conditions in the rules. Each chromosome codifies an FRBC,

including antecedents of the rules and parameters of the fuzzy

sets.

An adaptation of the previous framework can be found in [47],

in which FRBCs are used to model a bioareosol detector. As the

metrics of accuracy, true positive (TP) and false positive (FP)

rates were used instead of the commonly used misclassification

rate, because of the uneven misclassification costs and class

distributions of the collected data. Interpretability of the model

is also a requirement, since it allows the bioareosol detector to

be subsequently adjusted. Therefore, NSGA-II is applied to find

FRBCs with a good tradeoff between objectives. The FP rate and

the complement of the TP rate measure the accuracy, whereas

transparency of fuzzy partitions is used for interpretability. The

latter objective is expressed by the sum of three interpretability

measures: the length of overlap and the length of discontinuity

between fuzzy sets, proposed by Kim et al. [48], and the middle

value penalty.

Another contribution to the tuning of DB parameters of

FRBSs for regression problems can be found in [49]. In this

work, the concept of context adaptation is used: context adap-

tation is a tuning process that exploits context-specific informa-

tion to adapt a context-free model to a context-adapted FRBS.

NSGA-II has been applied to the tuning of DB parameters, to

maximize both the accuracy and interpretability of a linguis-

tic FRBS. A novel index is, therefore, proposed, to provide a

measure of interpretability, considering ordering, coverage, and

distinguishability. The proposed index and the MSE are used as

objectives of the EA.

The tuning of membership function parameters is tackled

again in [29], in the framework of linguistic fuzzy models for

regression problems. A novel relative index is proposed to help

preserve the semantic interpretability of FRBSs while the tun-

ing of membership functions is performed. The index, which is

called GM3M, is the aggregation of three metrics that aim to

maintain the original meanings of the membership functions as

much as possible. In this paper, a tuning of membership func-

tion parameters is combined with a rule-selection mechanism, in

order to also reduce the complexity of the fuzzy models. There-

fore, an improved specific version of the well-known SPEA2,

namely SPEA2-SI, including incest prevention and restarting, is

proposed, and three objectives are considered: accuracy maxi-

mization, semantic interpretability maximization, and complex-

ity reduction.

2) Tuning of Inference Parameters: Few works have taken

into account the tuning of the inference engine [40]. In [50], a

method is presented to concurrently learn the fuzzy inference

operators and the RB of linguistic FRBSs, in order to obtain

simpler, more compact yet still accurate linguistic fuzzy models.

To this end, two MOEAs were used and adapted: SPEA2 and

NSGA-II. The proposed MOEAs generate a set of FRBSs with

different tradeoffs between interpretability and accuracy: The

two objectives are expressed by the number of rules and the

MSE, respectively.

In [51], an approach is proposed to tackle the interpretability-

accuracy tradeoff in linguistic FRBSs with adaptive defuzzifi-

cation. Adaptive defuzzification methods improve the accuracy

of the system, but cause a loss of interpretability and increase

complexity, due to the introduction of parameters in the de-

fuzzification operator and weights associated with each rule. To

quantify the interpretability of FRBSs with adaptive defuzzifi-

cation, a novel index is proposed, which is the aggregation of

two metrics: number of rules with weight and average number

of rules triggered by each example. Afterward, an adaptation of

NSGA-II is exploited in order to obtain a set of accurate and

interpretable linguistic fuzzy models with adaptive defuzzifica-

tion. Three objectives are minimized: the MSE, the number of

final rules in the system, and the proposed interpretability index.

B. Approaches to Performing KB Learning

Besides the tuning of FRBS components, another possibility

is to learn the KB or a part of it by means of MOEAs. We

identify three approaches within this category: learning by rule

selection, RB learning, and the simultaneous learning of KB

components.

1) Approaches to Learning by Rule Selection: The first con-

tributions to the application of MOEAs to linguistic FRBS

generation with a good interpretability-accuracy tradeoff were

proposed by Ishibuchi’s group on multiobjective rule selection

applied to learning. In their earlier works [19], [52], the authors

use first-generation MOEAs (i.e., MOEAs without elitism) to

perform a rule selection on an initial set of candidate rules as a

two-stages learning process: candidate rule set generation and
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multiobjective rule selection. In the second stage, they con-

sider two different objectives: maximization of the number of

correctly classified training patterns and minimization of the

number of selected rules; therefore, the obtained classification

systems consist of a small number of linguistic rules. In [52],

this rule selection method is extended to the case of classifi-

cation problems with many continuous attributes, by using a

prescreening procedure of candidate rules based on the number

of antecedent conditions of each rule.

To better control the dimensionality problem, the authors add

a third objective in [53]. An MOEA is used to extract a small

number of fuzzy rules from numerical data, taking into account

three objectives: to maximize the number of correctly classified

training patterns, to minimize the number of fuzzy rules, and to

minimize the total number of antecedent conditions. The MOEA

presented in [19] is extended to a multiobjective genetic local

search (MOGLS) algorithm, in which a local search procedure

adjusts the selection process. Moreover, it is combined with a

learning algorithm to obtain rule weights.

In [54], two multiobjective genetic-based approaches are ap-

plied, to obtain FRBCs with a good tradeoff between accuracy

and complexity. The first approach was presented in [19], while

the second one is a hybrid multiobjective genetics-based ma-

chine learning (GBML) algorithm, which is a hybridization be-

tween the Michigan [55], [56] and Pittsburgh [57] approaches. It

considers the same three objectives as the previous model [53].

The same multiobjective GBML algorithm is used in [58],

but in this contribution it is implemented taking advantage of

the well-known NSGA-II and again consists of a hybrid version

of the Michigan and Pittsburgh approaches: each fuzzy rule is

represented by its antecedent fuzzy sets as an integer string of

fixed length; then the concatenation of these strings represents

an FRBC. The objectives remain the same as in [54].

In [59], NSGA-II is applied to the design of FRBCs belonging

to the accuracy-complexity Pareto optimal front. The accuracy

of each classifier is measured as the number of correctly clas-

sified training patterns, whereas the complexity is computed as

the number of fuzzy rules and the total number of antecedent

conditions. Finally, an ensemble classifier (also called a mul-

ticlassifier) is designed by combining nondominated FRBCs,

and its performances are analyzed by performing computational

experiments on six benchmark datasets that are taken from the

University of California at Irvine (UCI) machine learning repos-

itory. The authors observe that the effect of combining several

FRBCs is problem dependent and that an ensemble of classifiers

with high diversity usually has better performances.

2) Approaches to Performing Rule Base Learning: Most of

the approaches that are proposed to automatically learn the KB

from numerical information focus on RB learning using a pre-

defined DB.

In [60], an MOEA is used to generate FRBCs with a good

tradeoff between the complexity of the rule systems and their

reflection of the data. This MOEA uses a measure based on Area

Under the receiver operating characteristic Curve (AUC) to de-

termine how well the classifier reflects the data. Moreover, some

concepts that are taken from SPEA2 are included: the fitness as-

signment of SPEA2 is used to avoid premature convergence, and

an external archive is maintained to store the best individuals

from all the solutions considered. In addition, a tailor-made rep-

resentation scheme is used to preserve the comprehensibility of

the rule systems, and a self-adaptation mechanism is included to

reduce the number of free parameters. Three objectives are opti-

mized: the accuracy, expressed as a measure based on the AUC,

and complexity, computed as the number of rules and conditions.

An example of rule learning for regression problems is pre-

sented in [61], in which the authors propose a modified ver-

sion of the well-known (2+2)Pareto archived evolution strategy

(PAES), which is called (2+2)M-PAES, introduced in [62]. Un-

like classical (2+2)PAES, which only uses mutation to generate

new candidate solutions, (2+2)M-PAES exploits both crossover

and mutation. This approach considers a predefined DB uni-

formly distributed and enables a large set of RBs to be derived,

concurrently minimizing the accuracy and the complexity. The

accuracy is computed as the root mean squared error (RMSE),

whereas complexity is measured as the sum of the conditions

which compose each of the antecedents of the rules included in

the FRBS.

In [63], the accuracy–interpretability tradeoff is considered in

the context of imbalanced classification problems. Usually, the

accuracy of a classifier is measured as the percentage of correct

classification, but this objective might not be suitable for prob-

lems that are characterized by highly imbalanced distributions

of patterns. In this proposal, the authors applied the well-known

NSGA-II to provide a set of binary FRBCs with a good tradeoff

between complexity and accuracy. In this case, complexity is

computed as the sum of the conditions in the antecedents of the

classifier rules, whereas accuracy is expressed in terms of two

objectives: sensitivity and specificity. These express how well

the system classifies patterns belonging to the positive class and

the negative class, respectively.

3) Approaches to Simultaneous Learning of KB

Components: KB learning of linguistic FRBSs aims to

learn the DB and RB concurrently. This approach tackles a very

large search space, which is also difficult for EAs to handle.

Some approaches have been proposed to learn concurrently the

overall RB and DB.

In [64], the authors proposed a method for feature selection

and DB learning, to obtain FRBCs composed of a compact set

of comprehensible fuzzy rules with high classification ability.

The DB learning involves both the number of labels for each

variable (granularity) and the form of each fuzzy membership

function. A nonlinear scaling function is used to adapt the fuzzy

partition contexts for the corresponding granularity. This ap-

proach uses an MOEA to evolve the DB and considers a simple

generation method to derive the RB. The MOEA has two goals:

to improve the accuracy, by minimizing the classification error

percentage over the training dataset, and to obtain a compact

and interpretable KB, by penalizing fuzzy classifiers with large

numbers of selected features and high granularity. The second

objective is expressed by the product of the number of selected

variables and their averaged granularity.

In [65], the authors proposed a technique to concurrently

perform the RB identification and the DB learning of fuzzy

models for regression problems. Two MOEAs are exploited to
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generate a set of linguistic FRBSs with different tradeoffs be-

tween accuracy and interpretability. The proposed approach can

learn RBs and membership function parameters of the associated

linguistic labels; therefore, the search space increases consid-

erably. To manage the size of the search space, the linguistic

two-tuple representation model [66] is included, which uses a

reduced number of parameters to perform the symbolic transla-

tion of labels. The first MOEA is (2+2)M-PAES, and it is com-

pared with the well-known NSGA-II. Two objectives are consid-

ered: the MSE and the number of antecedents activated in each

rule.

The same (2+2)M-PAES is exploited in [67] to generate lin-

guistic FRBSs for regression problems, with different tradeoffs

between complexity and accuracy. The presented approach aims

to learn the RB and the granularity of the uniform partitions

defined by the input and output variables concurrently. Conse-

quently, the concepts of virtual and concrete RBs are introduced:

the former is defined by uniformly partitioning each linguistic

variable with a fixed maximum number of fuzzy sets. The latter

takes into account, for each variable, the number of fuzzy sets

determined by the specific partition granularity of that variable.

RBs and membership function parameters are defined by the

virtual partitions and, whenever a fitness evaluation is required,

they are mapped to the concrete partitions. Two objectives are

considered: the accuracy of the FRBSs, measured as the MSE,

and their complexity, computed as the number of propositions

used in the antecedent of the rules contained in the concrete RB.

This work is extended in [68], in which the same MOEA is

used to concurrently learn not only the RB and partition gran-

ularity but membership function parameters as well. The same

approach is presented in [69], where a partition integrity index

is proposed as a third objective. This index measures to what

extent a partition is different from an initially interpretable one.

Furthermore, in [28] a novel interpretability index is proposed,

which combines RB complexity with DB integrity.

In [70], a specific MOEA, which is called Pitt-DNF, is pro-

posed to obtain FRBSs for regression problems. The Pittsburgh

approach is chosen; therefore, each chromosome encodes a com-

plete set of fuzzy rules. Antecedents of rules are represented in

disjunctive normal form (DNF), i.e., each input variable can

take an OR-ded combination of several linguistic terms as a

value, and the different input linguistic variables are combined

by an AND operator. Nevertheless, the authors wrongly call

conjunctive normal form these kinds of fuzzy rules. This repre-

sentation provides a high degree of compactness and improves

the interpretability of fuzzy models, but the combination of the

Pittsburgh approach with DNF-type fuzzy rules causes some

problems to generate the rules themselves. The proposed learn-

ing algorithm, which is based on NSGA-II, has been developed

to avoid the generation of DNF-type fuzzy rule sets with these

problems, and it gives a set of solutions with different tradeoffs

between complexity, computed as the number of DNF rules,

and accuracy, measured by the MSE. One crossover operator

and two mutation operators were specifically designed to take

into account the particular representation of fuzzy rules, thus

avoiding inconsistency, redundancy, overgenerality, and incom-

pleteness in fuzzy rules.

In [71], an MOEA is proposed to learn the granularities of

fuzzy partitions, tune the membership function parameters, and

learn the fuzzy rules of a linguistic FRBS for regression prob-

lems. A two-step evolutionary approach is applied: the fuzzy

models are initialized using a method that combines the ben-

efits of an ad hoc RB generation algorithm and decision-tree

algorithms, with the aim to reduce the search space. The initial

population is then optimized by an MOEA that reduces the num-

ber of rules, rule conditions, membership functions, and input

variables. The MOEA is based on NSGA-II, and the original

genetic operators are replaced with new ones that take into ac-

count dynamic constraints to ensure the transparency of fuzzy

partitions. Two objectives are optimized: accuracy, expressed

as the MSE, and complexity, computed as the total rule length

(number of active rule conditions).

In [72], a two-stage approach to obtain linguistic KBs in

classification problems is proposed, based on the multiobjec-

tive fuzzy rule selection presented in [53] and by including a

lateral tuning [39] within the same process and by considering

the same three objectives: to maximize the number of correctly

classified training patterns, to minimize the number of fuzzy

rules, and to minimize the total number of antecedent condi-

tions. The first stage determines appropriate granularities for

the DB and a set of candidate rules. The second stage per-

forms multiobjective rule selection and tuning, based on using

NSGA-II to obtain the final RB and the appropriate DB param-

eters.

A recent proposal can be found in [73], where the authors

focus on the scalability issue of linguistic FRBSs in 17 regres-

sion problems. The first stage uses an improved MOEA (based

on SPEA2) to perform an embedded genetic DB learning in-

cluding feature selection, granularities, and the reduced lateral

displacement of fuzzy partitions in order to control the dataset

dimensionality and obtain a reduced KB. For each DB defini-

tion an ad hoc RB is derived by adding a cropping mechanism

to avoid large RBs and to reduce the required computation time.

Two minimization objectives are used: MSE and number of

rules. Finally, a postprocessing stage for fine tuning and rule

selection is applied to the obtained KBs using the same ob-

jectives. A speeded-up version of a previous MOEA, namely

exploration–exploitation-based SPEA2 (SPEA2E/E ), is pre-

sented by including a new approach to fast fitness estimation

which only uses a small percentage of the training data. Since

this mechanism is proposed for any kind of EA, the authors also

include it in the first stage in order to address the problem of

large datasets (many-instance datasets).

In [74], Alonso et al. propose embedding the high inter-

pretable linguistic knowledge (HILK) heuristic method [75]

in a three-objective EA, with the aim to get a good accuracy–

interpretability tradeoff when building FRBCs. The well-known

NSGA-II algorithm is employed, using two-point crossover and

Thrift’s mutation [76]. Three criteria are optimized: accuracy, by

maximizing the right classification rate; readability, by minimiz-

ing the total rule length; and comprehensibility, by minimizing

the average number of rules fired at the same time (average fired

rules—AVR). Each chromosome includes a number of genes

equal to the number of input variables, and each gene represents
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the number of linguistic terms defined for the related input.

Recently, this proposal has been extended in [77] by consid-

ering a novel comprehensibility index called the logical view

index (LVI), which estimates how much an RB satisfies logi-

cal properties. In this novel version, the AVR is substituted by

the LVI as a better FRBCs comprehensibility measure. Finally,

in [78], both LVI and AVR indices are considered. The proposed

evolutionary framework is used to set up two independent exper-

imental sessions with two objectives: classification rate versus

AFR and classification rate versus LVI. The study aims to find

possible relationships between AFR and LVI, showing that the

AFR minimization implies the LVI minimization, while the op-

posite is not verified.

C. Approaches That Deal With TSK Fuzzy Rule-Based Systems

TSK fuzzy models provide a powerful tool to model complex

nonlinear systems, as multiple submodels (typically linear mod-

els) are combined to describe the global behavior of the system.

The resulting model is often more difficult to interpret, and few

works can be found on this topic.

In [79], a technique based on a hierarchical MOEA [80],

which is derived from MOGA [81], is proposed to construct

TSK fuzzy models [11] from data, considering both their accu-

racy and interpretability. The initial model is generated through

a two-step procedure: A fuzzy clustering method is used to pre-

process the training data and to construct the rule antecedents,

and then the recursive least-squares (RLS) method is applied to

determine the consequent rule. Finally, the hierarchical MOEA

is exploited to obtain the optimized fuzzy models, for regres-

sion problems. A hierarchical chromosome formulation is used

so that it can perform the simultaneous optimization of rule

antecedents and number of rules, whereas consequents are ob-

tained with the RLS method. A two-level hierarchical structure

is used: control genes and parameter genes. Considering that

there are two types of genes in the chromosome, a multipoint

crossover is applied for control genes, whereas for the parameter

genes which are represented in real numbers, BLX-α crossover

is applied. During the optimization, an interpretability-driven

RB simplification is applied to reduce the search space. Five

objectives are optimized: the MSE for accuracy, the total num-

ber of fuzzy sets and the number of fuzzy rules for compact-

ness, a purposely defined aggregate index for both completeness

and distinguishability, and, finally, an appropriate equation for

nonredundancy.

In [82], a novel coevolutionary algorithm [83] is proposed to

improve the performance of TSK fuzzy systems in regression

problems. This algorithm is called the Pareto multiobjective co-

operative coevolutionary algorithm (PMOCCA). The fuzzy sys-

tem is decomposed into two species: antecedents of fuzzy rules

and parameters of fuzzy sets. To obtain a good initial fuzzy sys-

tem, a modified fuzzy clustering algorithm is used. Afterward,

the PMOCCA and some interpretability-driven simplification

techniques are used to evolve the initial fuzzy system with three

objectives: accuracy of the system, the number of fuzzy rules,

and the number of antecedents in each fuzzy rule.

The problem of the tradeoff between accuracy and complexity

in TSK fuzzy systems is also faced in [84], in which a specific

version of NSGA-II is proposed to determine a Pareto-optimal

set of fuzzy models for regression problems. In particular, two

competing objectives are addressed: the accuracy, measured by

the normalized RMSE, and the complexity, expressed by the

number of fuzzy rules. The specialization of the algorithm is

obtained first by using several heuristics to obtain a good ini-

tialization of the population, and second by designing crossover

and mutation operators specific to the problem.

In [85], a multiobjective neuroevolutionary algorithm

(MONEA) is proposed to obtain a parameter estimation of TSK

fuzzy models for regression problems. Neural network-based

techniques and ad hoc techniques for interpretability improve-

ment are included in the MOEA to increase the efficacy of the

algorithm: the fuzzy model is defined by a radial basis function

neural network [86], [87]. The number of neurons in the hid-

den layer of the neural network is equal to the number of rules

in the fuzzy model, and the firing strength of the ith neuron

in the hidden layer matches the firing strength of the ith rule.

The neurons in the output layer perform the computation for

the function that is described in the consequents of the fuzzy

model. The MONEA considers four objectives: accuracy, com-

puted as the MSE, transparency, for which the similarity among

distinct fuzzy sets is considered, and compactness, expressed by

the number of rules and the number of antecedents in the fuzzy

model.

Another proposal can be found in [88], in which the authors

used a hybrid technique to optimize the structure of TSK fuzzy

systems for regression problems. First, a backpropagation algo-

rithm is applied to optimize the membership function parameters

and the parameters of fuzzy rules. In a second phase, NSGA-II

is used to perform a fine tuning of parameters and to select the

optimal number of fuzzy rules. The algorithm considers two

objectives: the system’s accuracy, computed as the MSE, and

complexity, defined by the number of active fuzzy rules in the

RB.

In [89], a regression problem named the ocean color inverse

problem is approached by using the (2+2)M-PAES to optimize

TSK FRBSs. The evolutionary optimization roughly identifies

the structure of the fuzzy models, and then a tuning process is

performed: TSK FRBSs are implemented as an artificial neu-

ral network, and by training the neural network, the param-

eters of the fuzzy model are adjusted. The result is a set of

fuzzy models with different tradeoffs between accuracy and

complexity.

A recent contribution has been presented in [90], in which

the authors first analyze the time complexity for both the gen-

eration and the evaluation of TSK FRBSs. Since the identifi-

cation of the rule consequent parameters is one of the most

time-consuming phases in TSK FRBS generation, a simple and

effective technique is proposed for speeding it up. Then, this

approach is included in the optimization process of the struc-

ture of TSK fuzzy systems for regression problems. (2+2)M-

PAES is applied, and one-point crossover and three appropri-

ately defined mutation operators are used. Two objectives are

optimized: the MSE as a measure of accuracy and the total
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number of conditions different from don’t care as a measure of

complexity.

D. Summary of Multiobjective Evolutionary Fuzzy Systems De-

signed to Generate Fuzzy Rule-Based Systems With Different

Accuracy–Interpretability Tradeoffs

In order to give an overview of the contributions that are de-

scribed so far, Table I presents a summary of the works that deal

with the accuracy–interpretability tradeoff of FRBSs. Papers are

grouped considering the components of the KB that are opti-

mized and within each group they appear in chronological order.

For each paper, the type of FRBS approach is shown, together

with the kinds of rules. The number and type of the objectives

are reported together with the name of the MOEA, its generation

type, and the kind of proposal (novel, general use or based on

a previous MOEA). The repetition of the objective type means

the presence of two different optimized measures for the same

objective. In the last column, the type of application problem is

briefly described.

Except for some earlier works, the greater part of the ap-

proaches use a second-generation MOEA (i.e., MOEA with

elitism) to tackle the accuracy–interpretability tradeoff: in fact,

the introduction of the concept of elitism is essential for the

convergence of the algorithms. Moreover, the concept of inter-

pretability becomes more complex and complete over the years:

earlier contributions considered interpretability only in terms

of complexity, whereas more recently, semantic interpretabil-

ity has been studied in depth and included in the optimization

process.

Looking at the FRBS approach, it is evident that Mamdani

FRBSs are used more than TSK ones, probably due to the in-

trinsic interpretability of the Mamdani model. Finally, we can

remark that earlier contributions scarcely considered the prob-

lem of learning the whole KB, which is progressively considered

more often in the latter contributions.

IV. MULTIOBJECTIVE EVOLUTIONARY FUZZY SYSTEMS

DESIGNED FOR MULTIOBJECTIVE CONTROL PROBLEMS

FLCs are one of the most common applications of fuzzy

logic. An FLC includes a set of linguistic control rules that

are related by the dual concepts of fuzzy implication and the

compositional rule of inference [91]. No fixed process to design

a fuzzy controller exists, and the appropriate fuzzy parameters

have to be chosen on the basis of an experimental study of the

control objective. To overcome this difficulty, the application

of EAs was proposed for the design of FLCs [92]–[94]. Two

problems arise during this process: The first issue concerns how

to establish the structure of the controller; second, the numerical

values of the controller’s parameters have to be chosen.

Many contributions can be found in the literature on the use

of EAs to obtain the optimal design of FLCs, both for tuning

and learning tasks. Most of them take into account only one per-

formance objective. The first multiobjective approaches were

carried out by combining several performance objectives into

a single one, by using a weighting approach. Afterward, more

objectives were included in the optimization process with the

aim of considering not only different performance measures,

but also characteristics such as time constraints, robustness and

stability requirements, comprehensibility, and the compactness

of the obtained controller. EAs have been used either for offline

or for online design of FLCs, although in the latter case the com-

putation time is sometimes a critical issue. Further information

on EAs applied to FLCs can be found in [95].

In the following, we will analyze the existing works on the

application of MOEFSs to fuzzy control, considering both cat-

egories presented in Section II-B. They are controller parame-

ters’ identification and the learning of controller structure. Un-

less otherwise specified, the contributions use a Mamdani-type

FLC.

A. Controller Parameters’ Identification

The first approach aims to modify the parameters that affect

the controller’s performance once an initial design of the FLC

is established. Tuned parameters can be the scaling factors for

each variable, the shape of fuzzy sets representing the meaning

of linguistic values and the selected IF–THEN rules. This ap-

proach permits the reduction of the computational load required,

since the search space is smaller than the one considered when

learning all the components together. Nevertheless, since the pa-

rameters and structure of fuzzy models are strictly related, the

obtained solutions are affected by the initial system definition.

One of the first works on the use of the first-generation MOEA

for the optimization of an FLC is presented in [96]. A Mamdani-

type fuzzy system is designed for the vibration control of a civil

engineering structure in seismic zones. Consideration of the

building performance includes both the safety and the comfort

level of the user. The former issue is achieved by minimizing the

peak displacement, while the latter one is achieved by minimiz-

ing the peak acceleration. The tradeoff between the two objec-

tives is handled using a two-branch tournament GA that provides

a set of Pareto optimal solutions and optimizes the parameters of

the input and output membership functions. Each membership

function is represented by a generalized bell-shaped function

that is defined by three values. One-point crossover is employed,

and the mutation is performed on a bit-by-bit basis, with a cer-

tain probability.

A similar approach is undertaken in [97], where a hybrid con-

trol system (using active and passive control strategies) is pro-

posed for the structural vibration control of buildings. A tuned

mass damper and an active mass driver are used as respective

the passive and active control components of the hybrid control

system. To control the active mass driver, an FLC is used, and

the two-branch tournament GA is applied to the optimization of

the parameters of the input and output membership functions.

In [98], a further objective is added. A three-branch tournament

GA is used this time, in which the minimization of peak dis-

placement, acceleration, and rotation of the structure about its

vertical axis are considered as the three objective functions.

In [99], the same approach is used for the optimization of

an FLC that drives an active tuned mass damper toward the

response control of wind-excited tall buildings. Furthermore,

in [100], the authors improve the proposal presented in [97] by
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adding an active control system to the hybrid control system.

The overall system is driven by an FLC, whose parameters

are optimized by means of the two-branch tournament GA,

presented in the previous works.

Further works use the first-generation MOEA to tune the pa-

rameters of the membership functions of an FLC. In [101], a hi-

erarchical MOGA-based approach is used to tune fuzzy schedul-

ing controllers for a gas turbine engine. The engine should sat-

isfy nine large-signal performance criteria (e.g., steady-state ac-

curacy, transient accuracy, disturbance rejection, stability, stall

margin, structural integrity, engine degradation, etc.). Once an

initial suitable fuzzy scheduling controller is designed, param-

eters of membership functions and scaling factors are tuned to

meet the former criteria.

In [102], an MOGA-based approach is presented to tune an

FLC for a solid oxide fuel cell power plant. The obtained model

achieves fast transient responses and has very low total harmonic

distortion in output current steady-state operation. To improve

the fuzzy structure of the controller, a tuning process adapts the

parameters of membership functions and scaling factors. Fuzzy

sets are defined by the center points of normalized, triangular

membership functions. Objectives are described by a system of

equations that represent the harmonics to be minimized.

With regard to the use of second-generation MOEAs, in [103],

the authors investigate the use of smart base-isolation strategies

to reduce structural damage that is caused by severe loads. A

friction pendulum system and a magnetorheological damper

are employed in a smart base-isolation system, and an FLC is

used to modulate the magnetorheological damper. The classic

NSGA-II is used to optimize parameters of membership func-

tions and to find appropriate fuzzy rules for the FLC. Gaussian

membership functions are used for all input and output variables

of the FLC. The shapes of Gaussian membership functions are

defined by two parameters and are coded into the chromosome
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with a real-valued representation. The optimization process aims

to minimize root mean squared structural acceleration and base

drift.

This problem is tackled again in [104], in which a novel con-

trol technique is proposed, by utilizing a hierarchical structure of

FLCs. The structure consists of two lower level controllers and a

higher level supervisory controller. Lower layer controllers are

optimized by NSGA-II, considering four objectives: reduction

of peak superstructure acceleration, peak isolation system de-

formation, RMSE of superstructure acceleration, and RMSE of

isolation system deformation. Gaussian membership functions

are used for all input and output variables of the FLC, as in the

previous contribution.

In [105], an FLC is designed to manage two magnetorheolog-

ical dampers for the mitigation of seismic loads. NSGA-II with

controlled elitism is used for the optimization of FLC param-

eters. Fuzzy sets of input and output variables are represented

by Gaussian membership functions, which are described by two

parameters. These parameters are coded in the chromosome by

means of floating point values. The overall optimization pro-

cess aims to maximize four objective functions: peak interstory

drift, peak acceleration, RMSE of interstory drift, and RMSE of

acceleration.

In [106], the authors present a multiobjective evolutionary

process to tune the fuzzy membership functions of a fuzzy vi-

sual system for autonomous robots. This fuzzy visual system

is based on a hierarchical structure that includes three different

linguistic FRBCs. The combined action of these classifiers al-

lows robots to detect the presence of doors in the images that are

captured by their cameras. The DB of the whole fuzzy visual sys-

tem is coded in a single chromosome, which comprises the four

parameters defining each trapezoidal-shaped membership func-

tion. Blend crossover (BLX-α) [107] and random mutation are

considered as genetic operators, whereas the conflicting objec-

tives to be optimized are the TP and FP detection rates. Different

single (a generational GA and CHC) and multiobjective (SPEA,

SPEA2, NSGA-II) evolutionary algorithms are considered and

compared, with NSGA-II obtaining the best performance.

In [108], the parameters of an adaptable hierarchical TSK

fuzzy controller for blinds are optimized by NSGA-II, consid-

ering two objectives: energy consumption and thermal comfort.

The fuzzy sets are represented by triangular membership func-

tions whose parameters are optimized. The performances of the

FLC are tested by means of software for dynamic simulation of

indoor climate and energy.

In [109], an MOEA based on SPEA2 is developed to optimize

the parameter of an FLC that aims to improve the water quality

of a sewage treatment plant. The FLC uses ten parameters for its

operation, and each chromosome codifies a set of parameters.

Depending on these parameters, the controller decides when to

activate a blower in the aeration tank, in order to keep the water

clean. Water quality is based on different criteria; therefore,

the optimization process tries to minimize the concentrations of

three chemical compounds.

In [93], the authors proposed a tuning process combined with

a rule selection process, to improve the performance of FLCs for

the control of heating, ventilating, and air conditioning (HVAC)

systems, including several performance criteria such as energy

performance, stability, and indoor comfort requirements. The

technique is based on SPEA2E/E and aims to obtain a more

accurate controller by forcing the removal of unnecessary rules

and biasing the search through those solutions that satisfy the

performance objective to a higher degree. Two objectives are

considered: maximizing the performance, which is expressed

by aggregating five quality measures, and minimizing the com-

plexity, which is computed as the number of rules obtained.

B. Learning of Controller Structure

Learning of controller structures is used for the generation

of an FLC in situations where a reasonable set of rules is not

immediately apparent. These kinds of approaches are able to

take into account the synergy between the RB and DB, but they

involve a heavier computational burden due to the increase in

the search space.

One of the first works in this branch is [110]. An FLC for a

nonlinear missile autopilot is designed using NSGA. Both the

membership functions’ distribution and the RB of the FLC are

determined. The design process minimizes four objectives: the

steady-state error, the overshoot, the settling time, and the rising

time.

In [111], a specific MOEA is presented for the online design

of the structure of a fuzzy speed controller for a dc motor motion

control platform. The optimization involves three objectives to

be minimized: the current tracking error, the velocity tracking

error, and the power consumption of the system.

A medical application is presented in [112], where an MOEA

is used to design FLCs to adjust the amount of drug dosage

necessary to achieve the required neuromuscular blockade level

in patients during surgery. The evolutionary approach is based on

SPEA2 and considers two goals: the optimization of the amount

of the drug required and the minimization of the complexity of

the obtained FLC so that the undertaken control decision can be

explained in natural language.

Beyond the works presented previously, there are some contri-

butions that use a hybrid approach of fuzzy systems, neural net-

works and GAs, in order to automatically construct a controller.

For example, in [113] an intelligent combustion controller is

designed to handle an incineration process, by integrating dif-

ferent soft computing approaches. The proposed methodology

applies three techniques simultaneously: A representative state

function is modeled using a GA and a neural network. Then,

this model is used as surrogate of the plant, and a specific first-

generation MOEA is applied to obtain a set of FLCs, represented

by TSK-type control rules. Finally, the control RB is improved

by a tuning process. In this specific application, two goals are

considered: effluent quality and heat recovery.

In [114], a gain-scheduling adaptive control scheme for non-

linear plants is presented. The controller is based on fuzzy sys-

tems, neural networks, and GAs. A fuzzy proportional integral

(PI) controller is optimally designed using a specific MOEA

to satisfy three objectives: minimizing overshoot time, mini-

mizing settling time, and smoothing output response. Then, the

backpropagation algorithm is applied to design a neural gain
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TABLE II
SUMMARY OF THE PROPOSALS ON MOEFSS FOR MULTIOBJECTIVE FUZZY CONTROL PROBLEMS

scheduler with the aim to tune the optimal parameters of the

fuzzy PI controller at some operating points.

C. Summary of Multiobjective Evolutionary Fuzzy Systems De-

signed for Multiobjective Control Problems

All contributions on MOEFSs that are designed for fuzzy

control are grouped in Table II. Papers are divided based on the

aspects of the controller that are considered by the optimization

process. A description of this type of table is given for Table I.

In almost all cases, the objectives express a performance mea-

sure; therefore, the objective type does not appear in this table.

Because of the various application fields of FLCs, the last col-

umn contains a brief description of the application framework.

Within each group, papers are sorted in chronological order.

In most cases, the proposal deals with the postprocessing of

FLC parameters, since it is the simplest approach and requires a

reduced search space. Earlier works consider first-generation

algorithms, and only very recently the best known second-

generation MOEAs have been applied. Finally, in almost all

papers, a Mamdani-type FRBS is used.

V. MULTIOBJECTIVE EVOLUTIONARY FUZZY SYSTEMS

DESIGNED FOR FUZZY ASSOCIATION RULE MINING

The knowledge which is extracted by the mining process can

be represented in several ways, for example, using association

rules. A general association rule is defined as an implication

X ⇒ Y , where both X and Y are defined as sets of attributes.

This implication is interpreted as follows: “for a specified frac-

tion of the existing transactions, a particular value of attribute set

X determines the value of attribute set Y as another particular

value under a certain confidence,” where a transaction consists

of a set of items I .

Two classic concepts are involved in association rules: sup-

port, which is the percentage of transactions that contains both

X and Y , and confidence, that is, the ratio between the support

of X ∪ Y and the support of X . Thus, the problem of associ-

ation rule mining [34] consists of finding all association rules

that satisfy user-specified minimum support and confidence.

Early works used Boolean association rules, which consider

only whether an item is present in a transaction or not, without

evaluating its quantity. To take into account this aspect, fuzzy

association rules [35] were introduced.

In the following, we describe those contributions that apply

MOEFSs to fuzzy association rule mining. Then, a brief sum-

mary of the existing works is provided.

A. Description of the Existent Contributions

Fuzzy association rule extraction can be performed using

MOEAs, as they obtain good results when dealing with prob-

lems involving several measures that could be contradictory to

some degree. Moreover, they could also include interpretability

concepts, since fuzzy association rules can explain the associa-

tions they represent.

For example, in [115], a specific Pareto-based multiobjective

evolutionary approach is presented for mining optimized fuzzy

association rules. Two different coding schemes are proposed:

the first one tries to determine the appropriate fuzzy sets in a

prespecified rule, also called certain rule. In such cases, each in-

dividual represents the base values of membership functions of a

quantitative attribute in the DB. The second coding scheme tries

to find both rules and their appropriate fuzzy sets. In both ap-

proaches, three objectives are maximized: support, confidence,

and comprehensibility of fuzzy association rules, where the last

one is expressed by a measure related to the number of attributes

in a rule.
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TABLE III
SUMMARY OF THE PROPOSALS ON MOEFSS FOR MINING FUZZY ASSOCIATION RULES

A fuzzy data mining approach is presented in [116] for the

single-minimum-support fuzzy-mining problem. An MOGA-

based algorithm is proposed to extract both membership func-

tions and association rules from quantitative transactions. The

algorithm tries to maximize two objectives. The first is the suit-

ability of membership functions, through a combination of cov-

erage and overlap factors. This measure is used to reduce the

membership functions that are redundant or too separate. The

second objective is the total number of large 1-itemsets in a

given set of minimum support values. Since a larger number of

1-itemsets will usually result in a larger number of all of the

itemsets with a higher probability, this implies more interesting

association rules. Thus, this metric expresses the interestingness

of a rule.

The earlier proposals in fuzzy association rule mining as-

sumed that the number of fuzzy sets is pre-specified. In [117],

an automated clustering method is proposed, which aims to au-

tomatically cluster values of a quantitative attribute, in order to

obtain a large number of large itemsets in less time. The method

uses an MOEA which is based on SPEA, and the optimization

process considers two objectives. The first is to maximize the

number of large itemsets with respect to a given minimum sup-

port value, since a large itemset potentially leads to the discovery

of some interesting fuzzy association rules. The second objec-

tive is to minimize the time required to find all large itemsets in

a given database.

In [118], a technique to mine optimized fuzzy associa-

tion rules is proposed, to detect intrusions in a network. The

proposed framework aims to concurrently identify fuzzy at-

tributes and to define the membership functions by exploit-

ing clustering techniques. Afterward, MOGA [81] is applied

to generate and optimize fuzzy association rules of different

orders. The optimization process tries to maximize two ob-

jectives: confidence, which represents the strength of a rule,

and support, which in this case identifies the generality of a

rule.

A particular approach which is focused on predictive induc-

tion is presented in [119], in which an MOEA is used to derive

fuzzy association rules from uncertain data for consumer be-

havior modeling. Rules are codified with DNF-type fuzzy rules.

The proposed framework considers data collection, data min-

ing, and, finally, knowledge interpretation. During the mining

process, an evolutionary scheme which is based on NSGA-II

is applied, and three objectives are minimized. The accuracy is

expressed by the approximation error; the complexity is rep-

resented by the number of DNF-type fuzzy rules. This second

objective does not completely assess the interpretability of the

fuzzy system, since the internal structure of each DNF-type

fuzzy rule is not considered. Thus, a third objective is added

that measures the number of equivalent Mamdani-type fuzzy

rules for each DNF-type fuzzy rule.

Beyond predictive and descriptive induction, there are mixed

techniques that combine the characteristics of both types of in-

duction. An example is Subgroup Discovery [33], which aims to

extract descriptive knowledge from data that concern a property

of interest. Subgroup Discovery is a form of supervised induc-

tive learning or subgroup description, in which the algorithm

analyzes a set of data in order to find interesting subgroups,

given a property of interest chosen by the user. The induction of

rules that describe subgroups can be considered a multiobjective

problem, since a Subgroup Discovery rule can be evaluated by

means of different quality measures.

An application of an MOEA to Subgroup Discovery can be

found in [120]. The algorithm, which is called the nondominated

multiobjective evolutionary algorithm for extracting fuzzy rules

in Subgroup Discovery (NMEEF-SD), is based on the well-

known NSGA-II and aims to extract novel and interpretable

fuzzy rules that describe subgroups. In NMEEF-SD, the quality

measures that are considered as objectives in the evolutionary

process can be selected, making it possible to study the com-

binations of measures that provide better results. Three quality

measures are available: support, confidence, and unusualness,

i.e., the weighted relative accuracy of a rule. These last mea-

sures attempt to obtain a good tradeoff between the generality,

interest, and precision of results.

B. Summary of Multiobjective Evolutionary Fuzzy Systems De-

signed for Fuzzy Association Rule Mining

Table III contains all contributions that deal with MOEFSs

that are designed for mining fuzzy association rules, presented in

chronological order. As with Tables I and II, a description of this
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type of table is given in Section III-D, but the column describing

the FRBS approach is no longer necessary. The remaining fields

assume the meanings previously explained.

In most cases, the classical measures of data mining, sup-

port and confidence, are used as objectives. The application of

MOEAs to extract fuzzy association rules is quite recent, be-

ginning in 2006. Therefore, the majority of works exploit the

second-generation MOEA.

VI. OPEN PROBLEMS AND NEW TRENDS IN MULTIOBJECTIVE

EVOLUTIONARY FUZZY SYSTEMS

In this section, some current trends in the field of MOEFSs

will be presented, and some recent contributions related to them

will be described. In addition, some issues will be highlighted

in order to focus researchers’ attention on new problems that

arise when using MOEFSs in real-world applications.

One important issue concerns the fact that MOEAs have not

been specifically designed for MOEFSs, in which a chromo-

some represents parts of an FRBS and consequently assumes a

complex structure that can even comprise a combination of bi-

nary, integer, and real coding. Moreover, MOEFSs have to take

into account test errors, which are not usually present in EMOO

benchmarks. Because of this fact, existent MOEAs may not be

suited to optimize FRBS structures, thus producing suboptimal

solutions.

Considering this issue and the current state of the art of

MOEFSs that are described in the previous sections, we try

to highlight some problems related to MOEFSs that should be

investigated. The following subjects will be stated as open prob-

lems and briefly described:

1) performance evaluation of MOEFSs;

2) reliable interpretability measures;

3) objective dimensionality;

4) scalability issues;

5) application to imbalanced datasets;

6) automatic selection of the most suitable solution;

7) integration of decision maker’s preferences;

8) design MOEFSs to generate type-2 fuzzy systems.

A. Performance Evaluation of Multi-Objective Evolutionary

Fuzzy Systems Approaches

Comparing different multiobjective optimization techniques

is a difficult task, since the optimization result is a set of non-

dominated solutions rather than a single solution. Researchers

generally agree on considering two informal criteria to assess

the quality of a solution set: The distance of the approximated

points from the true Pareto front should be minimized, and

solutions should be equally distribute along the front. Addition-

ally, the extent of the obtained nondominated front should be

maximized.

In the literature, several performance measures have already

been proposed to consider these criteria and to evaluate the

search capacity of algorithms. The following measures are

widely used: attainment surfaces, hypervolume, epsilon dom-

inance [121]–[123], etc. A drawback of these measures is that

the quality difference between the obtained FRBSs remains un-

clear. Moreover, the Pareto front approximation is generated

with respect to the training data, whereas the performance of

the algorithm should be evaluated with respect to test data by

applying a statistical analysis.

A novel attempt based on the ideas in [43] to obtain repre-

sentative mean values has been proposed in [65] to compare

different multiobjective approaches: For each dataset and for

each trial of an algorithm (considering cross validation), the

approximated Pareto front is generated and three representative

points are extracted (the best in the first objective, the median

considering both objectives, and the best in the second objec-

tive). Afterward, for each dataset, the mean values and the stan-

dard deviations of some measures (first objective or training

accuracy, second objective or complexity and test accuracy) are

computed for each representative point over all the trials, and a

nonparametric statistical test is applied locally for each measure

at each representative point. This way, the authors were able to

statistically compare the different algorithms by analyzing the

performance of the obtained FRBSs when looking for the de-

sired properties in the Pareto front extremes and in the midpoint

(equilibrium point).

This approach has been extended in [29] and applied to

problems with more than two objectives. To make a statisti-

cal comparison of the different interesting points possible, the

authors project the obtained Pareto fronts on the planes gener-

ated by considering pairs of objectives (in this case, accuracy–

complexity and accuracy–semantic planes). This way, they can

analyze the nondominated solutions by considering the said in-

teresting points for each pair of objectives.

This technique presents some problems when the Pareto

fronts generated by different algorithms reside in distant zones

of the objective space, as it is not applicable in these cases.

Therefore, a previous graphical representation of the averaged

Pareto fronts is necessary to determine whether this technique

is suitable or not. In cases where the obtained Pareto fronts

are located in different parts of the objective space, it could

be determined which representative points are comparable for

each dataset by considering this graphical representation, con-

stituting a first attempt to assess the quality difference between

fronts.

B. Reliable Interpretability Measures

In Section III, we explain how the definition of interpretabil-

ity heavily affects the comprehensibility of an FRBS and re-

searchers are still looking for reliable and widely accepted in-

terpretability measures. Some proposals attempt to define new

indices to consider multiple interpretability measures [28], [29],

[124]. This problem is mainly related to contributions of the first

category, and it is discussed deeply in [27], where a taxonomy

is proposed to organize the different measures or constraints

that are used in the literature to assess interpretability in lin-

guistic FRBSs. A taxonomy with four quadrants is presented:

complexity and semantic interpretability are taken into account

at the level of RB or at the level of fuzzy partitions. Since the

interpretability of linguistic FRBSs is still an open problem, the

review tries to organize the different measures proposed so far,
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in order to help researchers to determine the most appropriate

measures according to the part of the KB in which they want to

maintain or improve interpretability.

This research [27] highlighted that there is not a single com-

prehensive global measure to quantify the interpretability of lin-

guistic models; thus, it would be necessary to consider appropri-

ate measures from all the quadrants. It is necessary to establish a

way to combine these measures globally. To this end, the differ-

ent measures might be optimized as different objectives within a

multiobjective framework, by also taking accuracy into account.

However, the real problem resides in the choice of common and

widely accepted measures for each of the quadrants, which is

still an open problem for the useful application of MOEFSs that

aim to discover the accuracy–interpretability tradeoff of FRBSs.

C. Objective Dimensionality

MOEAs usually work very well for two or three objective

problems, whereas their search capacity worsens as the number

of objectives increases. Problems with four or more objectives

are often called many-objective problems [125].

These kinds of problems can be handled by different

approaches:

1) integrating many aspects into few objectives;

2) selecting few aspects as objectives;

3) using all the objectives.

The first approach aims to combine several objectives into

a single one, using weights or appropriate aggregation opera-

tors. This method presents the common problems of a single-

objective approach: the aggregation method and weights have

to be chosen carefully, since they greatly influence the perfor-

mance of the optimization process. However, it represents an

effective way to handle many objectives when some of them are

related and can be properly combined.

The second approach is achieved by reducing the dimension-

ality in the objective space, since not all the objectives may be

necessary. If there is a certain number of nonconflicting objec-

tives, these objectives must be considered redundant. On the

other hand, in some cases there are some objectives (conflict-

ing or not) that could be removed without significantly losing

the problem information, in which case only the statistically

significant conflicting objectives should be considered.

The third method is the most complex one, as when applying

a classic MOEA to a many-objective problem, several prob-

lems arise. When the number of objectives increases, almost

all solutions in a population become nondominated; therefore,

the search capacity of MOEAs based on the Pareto-dominance

concept is heavily affected. The number of solutions required

to approximate the entire Pareto front increases exponentially

with the number of objectives. This happens because in many-

objective problems the Pareto front is represented by a hyper-

surface in the objective space. The decision making process

becomes harder, since the final solution is chosen from among

a wider number of multiobjective solutions.

To overcome these problems, researchers found that the low

selection pressure could be tackled by inducing a preference or-

dering over the points in the nondominated set. The approaches

that are based on preference ordering include relaxing the con-

cept of Pareto dominance, controlling the dominance area, mod-

ifying the rank definition, substituting the distance metric, etc.

These approaches seem promising, but they still need further

investigation.

D. Scalability Issues

In recent years, having to deal with large or high-dimensional

datasets has become more common [16], [126]. Large datasets

include many instances, while high-dimensional datasets refer to

datasets with a large number of features. These kinds of datasets

provide some difficulties: the size of large datasets affects the

fitness function computation, thus increasing the computational

time, whereas high-dimensional datasets increase the search

space. Moreover, in most of the cases, the wider the search space,

the greater the number of generated rules. Resulting models can

be very complex, with interpretability heavily affected. This

problem is particularly evident in the works belonging to the

first and third groups of the taxonomy.

In the case of large datasets, these problems can be tackled by

reducing the training set, i.e., removing irrelevant training in-

stances prior to the learning process. The choice of the subset is

a crucial task, since it has to describe the whole training set with-

out the loss of information. When dealing with high-dimensional

datasets, it is also possible to perform a feature selection process

that determines the most relevant variables before or during the

learning process. Finally, the interpretability issue can be tackled

by reducing the rule set through a postprocessing approach.

Large and high-dimensional datasets increasingly occur in

real-word problems, but until now there have been few works

that attempt to approach them through the multiobjective evolu-

tionary optimization of fuzzy systems; therefore, this is still an

interesting investigation field. A recent example can be found

in [73], which proposes an MOEA to obtain linguistic Mamdani

compact models in 17 regression problems, including up to 80

variables and up to 40 000 example data. A variable selection

mechanism is applied to ensure a fast convergence in the pres-

ence of a high number of variables. To handle problems with a

high number of examples, an error estimation of the obtained

models is computed by using a reduced subset of the training

patterns within a new mechanism for fitness estimation which

is applicable to any EA.

E. Imbalanced Datasets

Problems with imbalanced datasets appear mainly when deal-

ing with classification tasks [127]. Usually, the accuracy of a

classifier is evaluated according to the percentage of correct

classification, which should be maximized by the optimization

process. This measure is inappropriate when the application do-

main is characterized by a highly imbalanced distribution of

samples, since positive cases compose just a small fraction of

the available data used to train the classifier. In some cases, the

cost of misclassification is different between the positive and

negative classes. Thus, the obtained classifier presents a high

predictive accuracy over the majority class and poor predic-

tive accuracy over the minority class. Furthermore, the minority
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class examples can be considered as noise and completely ig-

nored.

Two approaches can be followed to reduce or avoid bias

toward the majority class.

1) At data level: Preprocessing mechanisms can be applied to

patterns to prevent imbalance. These solutions include dif-

ferent forms of resampling, i.e., oversampling, undersam-

pling, and variations on or combinations of the previous

techniques.

2) At algorithmic level: Solutions are mainly based on cost-

sensitive approaches, by using metrics that take into ac-

count the misclassification costs of each class.

With regard to MOEFSs, imbalanced datasets could be han-

dled in the application of FRBCs. The first approach in this

sense can be found in [63], in which the performance of bi-

nary FRBCs is analyzed, considering an application domain

characterized by highly imbalanced distributions of examples.

To assess FRBCs’ performance, two objectives are maximized:

sensitivity and specificity. Sensitivity corresponds to the TP rate,

while specificity corresponds to the complement of the FP rate.

These two metrics describe the system’s ability to correctly clas-

sify patterns belonging to both the positive and negative classes.

The sum of the conditions in the antecedents of rules in the

classifier is added as a third objective, in order to decrease the

complexity. After the optimization process, the receiver oper-

ating characteristic (ROC) curve analysis is used to compare

the obtained binary classifiers and to select a set of potentially

optimal classifiers.

Since these kinds of datasets are increasingly used in several

fields, such as security systems, medicine, telecommunication

systems, information retrieval tasks, etc., they are receiving in-

creasing attention from researchers.

F. Automatic Selection of the Most Suitable Solution

The strength of MOEAs resides in their ability to approximate

a wide part of the Pareto front, thus providing multiple solutions

with different tradeoffs between objectives. However, in many

application fields, only a single solution is required. The problem

of automatically choosing a single solution for a specific purpose

has not been discussed in the studies presented so far.

Focusing on a set of obtained FRBSs (and on a single FRBS)

represents a way to ease the choice of an appropriate single

solution. However, this kind of visualization is a difficult task

when the number of objectives increases, since it is impossible

to show all the nondominated solutions in many-dimensional

visualization spaces.

The obtained FRBSs also present the problem of overfitting

since they are evaluated according to test data (generalization

ability). Since MOEFSs are expected to obtain a large set of

FRBSs, the choice of a single solution should consider FRBSs

with good generalization abilities. However, this is not an easy

task since it has to be included in the learning process; therefore,

it is only possible to take into account the results of the training

set, while the test set remains unused.

An approach to determine the most suitable FRBS from a

given Pareto front in terms of its generalization ability has been

proposed in [128]. In this contribution, the authors propose a

technique using a double cross validation to evaluate the gener-

alization ability of the obtained models. Double cross validation

has a nested structure of two cross-validation loops. The inner

loop is used to determine the best complexity of FRBSs with the

highest generalization ability for the training data in each run in

the outer loop. That is, the inner loop plays the role of validation

data. The determined best complexity is used to choose the final

FRBS in each run in the outer loop.

G. Integration of Decision Maker’s Preferences

In a multiobjective optimization problem, exploring the whole

search space can be unnecessary if the final goal is to find only

those solutions that satisfy some requirements specified by the

decision maker. A good strategy may be to direct the search

process toward the areas of the Pareto front that better reflect the

decision maker’s preferences, by integrating these preferences

into the optimization process. This way, the search space is

reduced, and the efficiency of the search process is significantly

increased. The incorporation of decision maker’s preferences is

an interesting research issue which has yet to be well explored

in the literature.

In [129], the problem of multicriteria decision making

(MCDM) is considered as the conjunction of three components:

the search of the possible solutions, a preference tradeoff process

to select a single solution, and an interactive visualization pro-

cess to embed the decision maker in the solution refinement and

selection loop. The authors introduce a requirement framework

to compare most MCDM problems, compare their solutions,

and analyze their performances.

The second example is presented in [130], where user pref-

erences are incorporated into a rule selection process of FRBSs

for pattern classification problems. Because of the difficulty in

choosing an objective interpretability measure, multiple inter-

pretability criteria are combined into a single preference func-

tion, which is used as one of the objective functions during the

optimization process. Moreover, the preference function can be

changed interactively by the user through the modification of

the priority of each interpretability criterion.

Another possibility to indirectly consider user’s preferences is

to concentrate the search on the most significant objectives. Usu-

ally, when dealing with MOEFSs, the objectives used present

different difficulty levels. This way, objectives that are easy to

achieve, such as the complexity of the obtained models, bias

the search, leading to suboptimal models (overly simple mod-

els presenting inappropriate accuracies when using complexity

measures). However, the user is not only interested in obtaining

simple models but also accurate ones. Some approaches concen-

trating the search on the accuracy objective as a way to obtain

the most accurate models can be found in [41], [43], and [93].

H. Design Multiobjective Evolutionary Fuzzy Systems to Gen-

erate Type-2 Fuzzy Systems

At the end of the 1990s, a new class of fuzzy system was

presented [131], in which the antecedent or consequent mem-

bership functions were type-2 fuzzy sets. The concept of a type-2
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fuzzy set is introduced by Zadeh [132] as a generalization

of the concept of an ordinary fuzzy set, also referred to as

type-1 fuzzy set. A type-2 fuzzy set incorporates uncertainty

about the membership function into fuzzy set theory since its

membership function is 3-D, where the third dimension is the

value of the membership function at each point on its 2-D do-

main. If there is no uncertainty, a type-2 fuzzy set is reduced

to a type-1 fuzzy set. Such sets are useful when it is diffi-

cult to determine an exact membership function for a fuzzy

set.

As in the case of type-1 fuzzy systems, the hybridization of

type-2 fuzzy systems and GAs was proposed in [133], in order

to automatically design type-2 fuzzy systems, following which

several contributions have been published, in which GAs, and

in general EAs, are used to obtain type-2 fuzzy systems, mainly

in control applications [134]–[136].

Despite this, as far as we know, no proposals have yet been

presented to combine MOEAs with type-2 fuzzy systems; there-

fore, this may be a new and promising research field.

VII. CONCLUSION

The application of MOEAs to fuzzy systems has received

great attention from the research community for the past

15 years. MOEFSs can take into account multiple goals within

the same optimization process, thus generating a set of nondom-

inated fuzzy systems that represent a tradeoff among objectives.

MOEFSs have been applied in several fields, due to their ability

to represent real-world problems in a simple way and to include

previous knowledge in the model. The number of contributions

in this area has increased greatly in recent years. This paper has

provided an overview of MOEFSs, suggesting an organization

of the contributions in this area according to their types.

To this end, in this contribution we have proposed a two-level

taxonomy, in which the first level is arranged depending on the

multiobjective nature of the problem tackled and the second one

on the type of GFS used.

The most prolific category includes works on the application

of MOEFSs to the tradeoff between interpretability and accu-

racy. Therefore, many complex variations of existing MOEAs

have been proposed in order to obtain better performances.

The second category concerns works that deal with the appli-

cation of MOEFSs to multiobjective fuzzy control problems, in

which many contributions focus on first-generation algorithms,

probably due to the fact that they could be efficiently applied

in control problems, in spite of their simplicity. However, it

should be remembered that the introduction of the elitism con-

cept in second-generation MOEAs is a theoretical requirement

to assure convergence.

Only recently have MOEFSs been applied to extract fuzzy

knowledge from databases; therefore, this category comprises

few contributions. In addition, there are no well-described mea-

sures that consider fuzziness in association rules.

Finally, several current trends and open problems have been

highlighted, in order to draw the attention of the research com-

munity to their importance, since they are either unsolved or

have still not been addressed.
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