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Abstract 

This paper is a review of the approaches developed to solve 2D packing problems with meta-heuristic algorithms. 
As packing tasks are combinatorial problems with very large search spaces, the recent literature encourages the use 
of meta-heuristic search methods, in particular genetic algorithms. The objective of this paper is to present and 
categorise the solution approaches in the literature for 2D regular and irregular strip packing problems. The focus is 
hereby on the analysis of the methods involving genetic algorithms. An overview of the methods applying other 
meta-heuristic algorithms including simulated annealing, tabu search, and artificial neural networks is also given. 
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1. Introduction 

Packing problems are optimisation problems concerned with finding a good arrangement of multiple items in larger 
containing regions. This type of problem is encountered in many areas of business and industry. The objective of 
the packing process is to maximise the utilisation of material.  

High material utilisation is of particular interest to mass production industries since small improvements of the 
layout can result in large savings of material and considerably reduce production cost. The manual generation of 
layouts is costly in terms of man-power hence methods for the automation of packing are being sought. 

This paper reviews the application of meta-heuristic methods to 2D regular and irregular strip packing. Particular 
emphasis is put on solutions involving genetic algorithms. 

2. Packing Problems 

2.1 Definitions 

Cutting and packing problems describe patterns consisting of geometric combinations of large objects (e.g. stock) 
and small items (e.g. order book, order list). In the case of packing problems the large objects (e.g. container, bin) 
are defined as empty and need to be filled with small items (e.g. boxes). Cutting problems are characterised by 
large objects (e.g. sheet, roll) that need to be cut up into small items (e.g. 2D shapes). The residual objects, that 
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occur in the pattern and do not belong to the order list, are called trim loss. The objective of most cutting and 
packing problems is to minimise the trim loss or wastage. 

Dyckhoff (1990) emphasises the strong relationship between cutting and packing problems, which results from the 
duality of material and space. In this sense cutting stock problems can be seen as packing the space occupied by the 
small items into the large objects. Vice versa packing problems can be seen as cutting the large objects into small 
items. 

2.2 Classification of Packing Problems 

Over the past 30 years research in cutting and packing problems have been widely described in the literature. These 
problems arise in many industries and are not restricted to the manufacturing sector. Packing problems for instance 
are encountered in operational research and the financial sector in a more abstract form.  

Due to this diversity of problems and application areas similar packing problems appear under different names in 
the literature. Analysing packing problems shows that many of them have the same basic logical structure, although 
they are encountered in different application areas. In order to facilitate the information exchange across different 
disciplines Dyckhoff (1990) identified common characteristics and properties and proposed a classification system. 
He distinguishes between packing problems involving spatial dimensions and those involving non-spatial 
dimensions. The first group consists of cutting and packing or loading problems that are defined by up to three 
dimensions in Euclidean space (e.g. cutting stock problems, vehicle loading and pallet loading). The other group 
covers abstract 'cutting and packing' problems including non-spatial dimensions such as weight, time or financial 
dimensions (e.g. memory allocation, capital budgeting, coin change and line balancing). 

Dyckhoff’s classification system describes four important characteristics of packing and cutting problems 
(Dyckhoff, 1990; Dyckhoff and Finke, 1992): 

• The most important characteristic is the dimensionality defining the minimum number of dimensions necessary 
to describe the geometry of the pattern. Problems with more than three dimensions are obtained when they 
expand to non-spatial dimensions, e.g. time or weight. 

• The kind of assignment describes whether all objects and items or only a selection have to be assigned.  

• Assortment of the objects: This characteristic distinguishes between problems, which have objects of identical or 
different shape. 

• The assortment of the items refers to the shape and the number of the items. Problems can consist of few items, 
congruent items, many items of many different shapes and many items of relatively few different shapes. 

2.3 Regular and Irregular Packing  

The objective of a packing problem is the efficient allocation of figures in a containment region without overlap. 
Hence, the complexity of packing problems is strongly related to the geometric shape of the items to be packed. 
Concerning the geometry two types of shapes can be distinguished: regular shapes, that are described by a few 
parameters (e.g. rectangles, circles) and irregular shapes including asymmetries and concavities. 

Regular packing problems are largely concerned with packing a set of rectangles onto a rectangular object. Packing 
of irregular shapes is also known as nesting e.g. in the shipbuilding industry and as marker layout problem in the 
textile industry (Figure 1). 

Figure 1: Irregular packing problem from the textile industry 

In 2D rectangular packing, the following layout types can be distinguished on the basis of the geometry of the 
items to be packed (Hinxman, 1980). In the case of regular items packing patterns can be orthogonal describing 
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cuts only parallel to the sides of the stock sheet and non-orthogonal (Figure 2). Orthogonal cutting additionally 
distinguishes between guillotineable and non-guillotineable layouts.  

Figure 2: Non-orthogonal layout 

Guillotineable problems include a constraint, which prescribes that the layout has to be processed by a series of 
straight cuts across the full length of the remaining object (Figure 3). This type of cutting problem occurs for 
instance in the glass and paper industry. As non-guillotineable problems are not restricted by this rule, an item can 
be placed in any available position, which results in a non-overlapping layout (Figure 4). 

Figure 3: Guillotineable layout 

Figure 4: Non-guillotineable layout 

2.4 Types of Packing Problems  

Packing problems occur in various application areas involving different constraints and objectives. In general, strip 
packing and bin packing tasks can be distinguished depending on the object type. 

Strip Packing 

In the paper and textile industry the raw material is available in the form of rolls. Hence the packing process aims at 
reducing the height of the layout. This is known as strip packing. Figure 5 illustrates a strip packing problem 
involving rectangles. 

Figure 5: 2D strip packing problem 

Bin Packing 

Bin packing refers to packing of multiple bins and can be found where the stock material is available in the form of 
sheets. The objective usually is to find the set of bins to accommodate all parts of the order list under minimisation 
of the total material used. Depending on the application, the sheets can be identical or have different size (Figure 
6).  

In the 1D case, bin packing is the allocation of items, whose width is identical to the ones of the bins. Hence, for 
the packing process only one dimension is important. Using items of different width results in 2D bin packing 
(Coffman et al., 1984). Regular bin packing is also frequent in three dimensions in the form of container and pallet 
loading. 

Figure 6: 2D bin packing problem 

In industrial applications bin packing appears in various forms. Depending on the objective several problem types 
are distinguished (Hinxman, 1980; Dowsland and Dowsland, 1992). Larger industrial problems can also appear as 
combinations of two or more of these basic types. 

• The trim-loss problem concerns the allocation of the order list onto the given stock sheets. The objective is to 
minimise the total cost of the stock sheets needed to fulfil the order. 

• The assortment problem involves the determination of the stock sizes necessary to fulfil the order list. The order 
list needs to be assigned to a supply of stock sheets such that the best selection of sheets is used. 

• The cutting stock problem is concerned with the cutting of pieces of a given order list from a set of stock sheets. 
This problem can be split into two sub-problems, an assortment problem (determination of the sheets to keep in 
stock) and a trim-loss problem (determination of the cutting pattern to minimise waste). 
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• In knapsack problems each of the order pieces has a given value. The objective is to pack the items into fixed 
stock objects such that the total value of the items packed is maximised (Martello and Toth, 1990). This type of 
problem often occurs as a sub-problem in other areas. 

• The loading problem describes the process of fitting a maximum number of boxes onto a pallet or into a 
container. The pallet loading problem can be regarded from the manufacturer’s viewpoint, where identical 
boxes have to be loaded onto a pallet, as well as from the distributor’s side, where the pallet has to be packed 
with non-identical items. Container loading is similar to pallet loading, though in practical applications the two 
variants of the loading problem can be distinguished by their constraints (Dowsland, 1985). 

2.5 Industrial Applications 

In industrial applications, a number of other factors determine the final layout apart from the objective of reducing 
the wastage to a minimum. Certain constraints regarding material properties, the cutting process, scheduling aspects 
and nesting requirements have an influence on the allocation process.  

Material Properties: 

In the sheet metal industry, the non-homogeneous properties of metal such as grain orientation limit the number of 
possible orientations of the items. If bending operations follow, the parts can only be rotated at a specified angle. 
Fabric also has certain directional properties and possibly a pattern, which restricts the orientation of the parts to 0° 
and 180°. It is not always possible to mirror the parts as fabric may have different properties at the other side. 
Natural materials such as leather consist of areas of various qualities. The quality difference can be due to defects 
and colour differences. The nesting process needs to match the required quality of the parts with the respective 
quality zones on the object.  

Cutting Process: 

The cutting technique used to obtain the parts has a great impact on the layout generation. Depending on the cutting 
technology (e.g. laser and plasma cutting, stamping) a minimum distance between the parts is required. This 
parameter is referred to as bridge width. In laser and plasma cutting the process operates with a certain width. In 
order not to damage the parts, a certain distance between neighbouring shapes is necessary. In stamping processes 
the material tends to slip at the cutting edges if the bridge width is too small. Another important parameter that 
determines the cutting process is the cutting length. Layouts can be optimised so that the cutting of all parts can be 
carried out under minimisation of the total cutting path. 

Scheduling: 

The sequence in which the parts are cut can be important for the subsequent manufacturing process. This is the case 
where parts need to be processed in different steps. If the layouts are large, a special allocation of the parts with 
respect to the sheets facilitates this. The sequence of the parts may also be important for packaging and shipping. 
Geometrical and weight constraints may require the parts to be packed in a certain order. Sometimes different order 
lists are nested in one layout to maximise material utilisation. Hence the order sequence of the parts also plays a 
role in despatching. 

Nesting Process: 

The parts to be nested can contain void areas, some of which may be large enough to be considered for the nesting 
of smaller items. This technique is referred to as in-hole-nesting and is very common in the shipbuilding industry. 
To reduce waste, the nesting algorithm needs to be capable of tracking and nesting into void areas of irregular 
shapes. Sometimes the current nesting task does not contain a sufficient number of comparatively small shapes. As 
the raw material is often too precious to be wasted certain filler parts can be designated and used instead. These are 
not part of the current order and therefore may not be required immediately, but are produced for stock. 
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Larger nesting tasks might involve material of different types, e.g. thickness. In the shipbuilding industry for 
instance sheets of different thickness can be involved in the nesting process. Whereas a number of parts require a 
certain sheet type, often several thicknesses are suitable for a subsection of the order list. Consequently, depending 
on the availability, the nesting algorithm needs to decide on the best allocation. 

2.6 Packing and NP-Completeness 

The rectangular packing problem, or rather its decision analogue, has been shown to be NP-complete (Fowler et al., 
1981). As the irregular and 3D versions of this problem are more complex, they can also be regarded as NP-
complete. Various constraints can be imposed on a packing problem depending on the application. Adding 
constraints may add to its complexity and thus the constrained versions can also be regarded as NP-complete.  

According to the definition the NP-complete class has the important characteristic, that all algorithms currently 
known for finding optimal solutions require a number of computational steps that grows exponentially with the 
problem size rather than according to a polynomial function (Gary Parker, 1995). It is not worthwhile to search for 
an exact (optimal) algorithm, since it does not appear that any efficient optimal solution is possible. Alternative 
approaches that are not guaranteed to find an optimal solution are considered instead. Thus, by giving up solution 
quality, computational efficiency can be gained. This point of view is often adopted in cutting and packing and has 
led to the development of approximation algorithms, i.e. heuristics.  

2.7 Solution Approaches 

In terms of solution methods a number of approaches were proposed depending on the type and the size of the 
problem. For less constrained, simpler packing tasks, exact algorithms were developed along with problem-specific 
heuristic procedures (Hinxman, 1980, Coffman et al., 1984). For more complex packing tasks, heuristic search 
methods have been applied successfully for their solution (Albano and Sappupo 1980; Oliveira et al. 2000). Their 
success can be explained by the great flexibility in taking into account problem-specific constraints. They also offer 
a good trade-off between solution quality and computational effort regarding the size of the search space.  

Since cutting and packing is an important issue in industrial applications, a substantial number of commercial 
packing software have become available recently. They are specially designed to meet industrial requirements and 
usually include a variety of features directed at the manufacturing process (Hopper, 2000).  

3. Surveys and Reviews  

Of a number of reviews published in the area of cutting and packing, two surveys attempt to cover the total area of 
cutting and packing. Dyckhoff and Finke (1992) developed a classification method, on which they based their 
analysis of the concrete and abstract packing problems (section 2.2). Sweeney and Paternoster (1992) chose the 
opposite approach and addressed the subject from the perspective of the solution approach. Their work covers more 
than 400 problems including books, dissertations and working papers and is the most exhaustive bibliography 
published in this area to date. Table 1 provides an overview of the more recent reviews and surveys in the area of 
concrete packing problems.  

Table 1: Reviews and surveys on packing problems in the literature 

This review concentrates only on a small section of cutting and packing - namely 2D regular and irregular strip 
packing problems. Since the geometric properties influence the complexity of the problem and the size of the 
search space, this paper distinguishes the various packing tasks according to their geometric features. The problems 
are grouped into regular or irregular packing problems.  
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4. Application of Genetic Algorithms to Packing Problems  

The first researcher who implemented genetic algorithms in this domain was Smith (1985) applying them to 2D 
rectangular packing problems. At the same time Davis (1985) summarised the techniques applied in genetic 
algorithms using the example of 2D packing. During the last ten years various types of packing problems were 
approached ranging from regular to arbitrary shapes in two or more dimensions (Hopper, 2000). Complex problems 
are commonly approached by a two-stage procedure, a so-called hybrid genetic algorithm. The genetic algorithm 
manipulates the encoded solutions, which are then evaluated by a decoding algorithm transforming the packing 
sequence into the corresponding physical layout. Since domain knowledge is built into the decoding procedure the 
size of the search space can be reduced. The packing strategy for instance may only generate non-overlapping 
configurations, which restricts the search space to valid solutions only. The need for a decoding heuristic excludes 
certain information about the layout from the data structures the genetic algorithms operate upon. Therefore not all 
the information concerning the phenotype is available to the genetic operators and may therefore not be transferred 
to the next generation.  

4.1 2D Regular Strip Packing Problems 

Regular packing problems are largely concerned with packing a set of rectangles onto a rectangular object of 
unlimited height (Figure 5). To date, only one approach has been described in the literature that uses other regular 
items (George et al., 1995). In all cases the aim is to find the arrangement of items minimising the height of the 
object.  

4.1.1 Non-Guillotineable Packing Problems 

Several researchers approached the non-guillotineable strip packing problem with genetic algorithms. Many of 
these methods are hybrid algorithms combining the genetic algorithm with a placement routine. In this two-stage 
approach a genetic algorithm finds the sequence, in which the items are to be packed with the aid of a placement 
routine (Table 2 and Table 3). A second group of genetic methods incorporates more layout information into 
chromosomes using a tree structure (Table 4). Some research concentrated on an entirely different genetic 
approach, which works without encoding, but manipulates the figures in the 2D layout directly. 

Hybrid Approaches: 

Smith (1985) developed an order-based approach experimenting with two heuristic decoding routines, one of which 
uses backtracking. The first one ('Slide') places the rectangle in one corner from where it 'falls' to the corner furthest 
away under orthogonal movements zigzagging into a stable position. The second procedure ('Skyline') tries all 
stable positions in the partial layout. Comparisons between the two hybrid approaches show that the combination 
with the more sophisticated procedure generates better layouts, but is computationally more expensive. The 
performance of the genetic algorithms is compared with a packing method that is based on heuristics and dynamic 
programming. According to the author the genetic algorithms achieve the same packing densities in less time. 

Table 2: Hybrid genetic algorithms for non-guillotineable 2D packing problems 

Jakobs (1996) uses the bottom-left heuristic (BL) to hybridise an order-based genetic algorithm. In order to reduce 
computational complexity the heuristic does not necessarily search for the lowest position available in the layout, 
but preserves bottom-left stability in the layout. Starting at the top-right corner of the object, each rectangle is 
moved as far as possible to the bottom and then the left in the partial layout. The initial population is seeded with a 
sequence in which the rectangles are sorted by decreasing width. During the reproduction process the worst 
individual in the population is identified and replaced with the offspring according to steady-state replacement. The 
hybrid concept of this genetic algorithm was extended to polygons using a modified placement rule (section 4.3.1). 

The work by Liu and Teng (1999) was aimed at improving the decoder used by Jakobs (1996). The improved 
bottom-left routine is based on a sliding principle and gives priority to the downward shifting of the rectangle. The 
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authors demonstrated the better performance of the new bottom-left placement routine by using the two packing 
problems of Jakobs' work.  

The order-based approach using a bottom-left packing routine has attracted particular attention over the recent 
years. Hopper and Turton (1997, 1999) applied a placement routine, which preserves the bottom-left stability in the 
layout (Table 3). The improved BL-algorithm can access enclosed areas in the partial layout and places the new 
item in the first BL-position with sufficient area. This packing routine was combined with genetic algorithms and 
simulated annealing. Simulated annealing generally achieved denser layouts but required longer run times. For 
certain problem sizes the improved BL-algorithm outperforms the layout quality achieved with genetic algorithms 
and simulated annealing using pre-ordered input sequences (Hopper, 2000). 

Leung et al. (1999) also developed a BL-placement routine, which can access enclosed areas in the partial layout 
and is called 'Difference Process Algorithm'. Every insertion of a new item in the layout creates two empty 
rectangular spaces at its top and right side. The algorithm keeps track of the newly generated spaces selecting the 
one that is closest to the bottom-left corner of the object and sufficiently large for the allocation of the next 
rectangle. In comparison to the sliding algorithms of Jakobs (1996) and Liu and Teng (1999) the Difference 
Process Algorithm generates better results, because it is capable of filling enclosing empty areas in the layout. 

Dagli and Poshyanonda (1997) used the genetic algorithm to generate an input sequence for the placement 
algorithm, which is based on a sliding method and combined with an artificial neural network (Table 3). The 
sliding routine places a new item next to the previously allocated one along the width of the object. If the space is 
not sufficient, a new row is formed. During the packing process the newly generated scrap areas are recorded and 
stored for subsequent allocations. Before an item is positioned onto the object, the available scrap areas are tested 
with an artificial neural network selecting the best match between the item and the empty areas. If no match can be 
found the item is allocated with the sliding routine. The matching process tries all admissible orientations of the 
item and is based on a matrix representation of the items and scrap areas using a grid approximation. 

Lai and Chan (1997) used an evolutionary algorithm, which is combined with a heuristic routine. This algorithm 
does not use any cross-over operator and is only based on selection and mutation processes. The heuristic decoder 
is similar to the bottom-left algorithm used by Leung et al. (1999) and places the item in the position that is closest 
to the lower-left corner of the object. The packing task used by Lai and Chan is a stock cutting problem. Since the 
area of the object is limited it may not be possible to allocate all items. In addition to the classic mutation operator, 
a hill-climbing operation is applied during the decoding process that rearranges the rectangles of the permutation. If 
an item in the sequence cannot be allocated on the stock sheet the corresponding element in the permutation is 
shifted to the end of the sequence. Comparisons with a mathematical programming algorithm show that the 
evolutionary approach is computationally more efficient, but generates patterns with slightly higher trim loss. 

Table 3: Hybrid genetic algorithms and evolutionary algorithm for non-guillotineable 2D packing problems 

Hybrid Algorithms Using Additional Layout Information 

The data structures of the hybrid algorithms summarised in Table 2 and Table 3 may not recognise characteristic 
features of packing schemes in the encoding as most of them are hidden in the placement algorithm. A second 
category of solution approaches involving genetic algorithms is therefore directed at incorporating some of the 
layout information in the encoding technique (Table 4). Two approaches described in the sequel are based on 
binary tree structures using some additional rules to fix the position in the layout. Another approach that deals with 
the manufacturer's pallet problem applies a representation technique, which contains all the information about the 
phenotype. 

The genetic algorithm by Kröger et al. (1991a, b; 1993) is based on a directed binary tree to encode the problem in 
which each node represents a rectangle. Two sets of edges identify those parts that are adjacent in the vertical and 
the horizontal direction. This representation fixes one dimension of the position of the current item in the partial 
layout. The second dimension is determined by the bottom-left condition. In order to generate a unique packing 
scheme each node is assigned a priority value, so that the rectangle with the highest priority is placed next in case 
of a conflict. The data structure encodes the set of rectangles and also contains information about orientation and 
priority. The fitness evaluation of a packing pattern considers the height and the width. The genetic operators have 
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been adapted to the problem with the mutation operators modifying the set of edges, the orientation and the priority 
values. The cross-over consists of taking a sub-tree from the first parent and placing it at the root position of the 
offspring. The missing rectangles are then taken from the second parent while the orientations are kept and the 
priority values are modified such that the packing sequence is maintained. Results show that the genetic algorithm 
outperforms the BL-heuristic.  

Herbert and Dowsland (1996) developed a 2D encoding technique for a manufacturer's pallet loading problem, 
which contains only identical rectangles. The layout is represented by a 2D matrix indicating available positions for 
vertical and horizontal placement, where the horizontal one has priority. Since this encoding contains all the 
information necessary to represent the geometrical layout, no decoding algorithm is required for the fitness 
evaluation of the layout. 

The boxes as well as the pallet are considered as checkerboards of unit squares. In a 1D model the binary strings 
are composed of all rows in the pallet, where every bit represents a possible placement cell for the box. In order to 
reduce the solution space, the authors developed a reduction technique to limit the placement positions to feasible 
co-ordinates that are integral combinations of box lengths and widths. The geometrical meaning of this 
representation can be seen best in connection with cross-over, which has the effect of cutting the layout 
horizontally. Hence the string representation reflects proximity in the horizontal direction within the same row, but 
not in the vertical direction. Vertically close box positions will appear widely separated on the string.  

This has been the motivation for developing a 2D matrix encoding. In order to consider the orientation of the items 
two rows are used in the matrix to encode each row of the pallet, with the one representing horizontal and the other 
one representing vertical positions. Two cross-over operators were developed cutting the layout horizontally and in 
a random fashion. This cross-over operation can lead to infeasible solutions, which either can be penalised in the 
fitness function or repaired. The authors experimented with both options investigating several fitness functions and 
a repair operator. After removal of overlapping boxes the optimal packing over the corresponding set of positions is 
calculated using a graph-theoretic model. This repair operator can be used to transform the solutions of the final 
population into valid layouts. An enhancement operator can also be applied throughout the search process. The 
enhancement operator optimally packs the removed boxes into the empty areas in the layout. Experimental results 
indicate it may be more profitable to remove overlap than to penalise it by the fitness function. For the small to 
moderately sized problems investigated 2D techniques did not have any advantages over the 1D ones. The authors 
concluded that their 2D approach might prove more beneficial in more complex problems. 

Table 4: Comparison of the genetic algorithms for non-guillotineable 2D packing problems - approaches with 
encodings including layout information 

Algorithms operating on the 2D layout 

The third type solution approach operates without encoding and solves the problem in the 2D space. So far, 
Ratanapan and Dagli (1997a, b; 1998) developed the only evolutionary approach in this area. Starting from an 
initial solution, the layout is manipulated by three groups of operators performing hill-climbing, mutation and 
recombination operations. 

Various layout modifications move one item only and are implemented in the form of hill-climbing accepting the 
layout change if the fitness value is better or remains the same. These operations include translation, rotation and 
relocation of an item. An operator rotates an item around the touch point with another item, then two operations 
perform translation and rotation simultaneously. The series of mutation operators aims at rearranging several items. 
One operator reallocates an item into a different region of the object to create room for the reorganisation of other 
items. If the target area is occupied the item is reallocated to the upper right corner of the partial layout. In case 
overlap is created in the target area, a mutation operation is performed which moves all overlapping parts out of 
this region. Whereas the hill-climbing and mutation operators involve one layout only, the recombination process 
works on two or more exchanging individual parts or a whole area. Since this can lead to invalid configurations, 
multiple occurrences of an item and overlap need to be eliminated. 

Experiments on rectangular packing problems showed that this approach could generate layouts of up to 97% 
packing density. A drawback is the complexity of the various modification operators involving overlap 
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determination and reallocation of partial layouts. Since no comparisons are made to other solution approaches in 
the literature it is difficult to establish the efficacy of this method. 

4.1.2 Guillotineable Packing Problems 

Guillotineable packing problems have been approached with genetic algorithms by four researchers. Three 
algorithms are based on tree representations applying various genetic operators. One method takes a different 
approach and uses a permutation and a heuristic decoder to generate guillotineable layouts (Table 5). 

The slicing tree representation proposed by Kröger (1995) ensures that the packing pattern is guillotineable. The 
relative arrangement of the rectangles stored in the leaf nodes is described with the aid of two operators at the node 
above indicating either a horizontal or a vertical combination. In order to preserve the knowledge stored in the sub-
trees, a special cross-over operator exchanges sub-trees. Only sub-trees with a certain packing density and at most 
four rectangles are transmitted to the offspring. After reducing the first parent to the sub-trees to be inherited, the 
sub-trees from the second parent are separately inserted into the new string together with a new cut-line. The 
offspring is completed by the insertion of single rectangles that are missing from the complete set. In terms of 
mutation five different operators are applied (Table 5). A hill-climbing strategy is implemented in the genetic 
algorithm aimed at improving the fitness of a recently mutated or recombined string. The solutions produced by the 
genetic algorithm are superior to those found by heuristic algorithms as well as random search and simulated 
annealing algorithm. Genetic algorithms and simulated annealing achieve significantly better results than the 
primitive heuristics, with the genetic algorithm being closer to the best-known solution.  

Hwang et al. (1994) tackled the strip packing problem with two methods. One approach is based on a directed 
binary tree that can be described in the form of a string in polish notation. An operator is assigned to each tree-node 
indicating either the vertical and horizontal combination of two rectangles. Before the cross-over operation, the 
polish expression is spilt into permutation and operator parts that are manipulated separately. Four different 
mutation operators are applied to the chromosome (Table 5).  

The second representation is order-based and applies a level-oriented packing procedure. The packing is 
constructed as a sequence of levels; each rectangle is placed left justified so that its bottom side rests on one of 
these levels. A level is defined as a horizontal line drawn through the top of the tallest rectangle on the previous 
level. A new level is started whenever the remaining width of any of the previous levels is too small. Two versions 
of this decoding algorithm were implemented placing the current rectangle into the level where it fits first (First Fit 
strategy, FF) or positioning it where it fits best (Best Fit strategy, BF) (Table 6). 

Comparisons between the two methods show that the order-based approach achieves better packing densities. The 
authors conclude that the penalty term is not sufficient to deal with the width constraint. 

The two genetic algorithms are compared to the First-Fit-Decreasing-Height heuristic (FFDH), which sorts the 
rectangles according to their height before placing them sequentially in the first available position. The two hybrid 
algorithms using the simple decoding routines perform equally well. Their performance is better than the one of the 
FFDH-heuristic. 

In order to reduce the complexity of the problem, Kröger (1995) introduces the concept of meta-rectangles, which 
describe a group of adjacent, densely packed rectangles that are combined to one large rectangle. In this way partial 
layouts are frozen yet the shape is still flexible enough to be grouped with other rectangles. In terms of 
recombination the cross-over operator has to ensure that the meta-rectangles are transmitted to the offspring. This 
produces a significant reduction in the run times and leads to an improvement in the average best solutions. 

The solution approach applied by Rahmani and Ono (1995) is based on a binary tree, where each leaf node 
represents a rectangle. The node at the hierarchy level above indicates whether two rectangles perform a horizontal 
or vertical combination. In order to preserve the feasibility of the offspring a special cross-over operator was 
developed. Unlike the classical genetic algorithm where a certain amount of the population is selected for the 
recombination process, each individual is considered for cross-over. Once an individual is selected for cross-over 
using a certain node, a suitable candidate is searched and crossed. Since only sub-trees are crossed the solution only 
needs to be evaluated partially during the fitness calculation. 
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András et al. (1996) used a tree representation for this problem, where each node is either further cut into two 
pieces or remains uncut. In order to encode this problem a data structure has been developed with each node 
containing information about the dimensions of the piece, the position and orientation and the occurrence of a cut. 
The fitness of the individuals is related to the packing density. A combined crossover - mutation operator 
exchanges sub-trees between two parent strings. It may be necessary to modify the offspring after the crossover to 
guarantee feasible solutions, which adds a mutational component to the operation. As the quality of the solutions is 
not measured against another method, the general performance of the genetic algorithm cannot be evaluated. 

Table 5: Comparison of the genetic algorithms for guillotineable 2D packing problems using tree 
representations 

Corno et al. (1997) developed a hybrid genetic algorithm to solve a trim-loss problem from the glass cutting 
industry. The problem involves a number of constraints such as guillotineable layout, maximal distance between 
parallel cuts and defect areas of the glass sheet. A heuristic algorithm was developed that considers all 
technological constraints. The chromosome consists of a permutation of the items and contains a sequence of 
genes. Each gene corresponds to one item describing the geometrical characteristics, the orientation and a 
placement criterion flag, which links the piece with its predecessor. The mutation operators work on these genes, 
changing the orientation and the placement flag. The layout constraints are left to the decoder that searches through 
the available objects and positions to find the best. Comparisons to commercial packages show that the 
performance of the genetic algorithm is equal or better, especially for larger packing tasks. 

Table 6: Comparison of the genetic algorithms for guillotineable 2D packing problems using order-based 
representation 

4.2 Packing of Regular Shapes other than Rectangles 

The only genetic algorithm designed to pack regular shapes other than rectangles was proposed by George et al. 
(1995). A hybrid genetic algorithm is combined with a heuristic method to pack different-sized circles into a 
rectangular area. During the packing process so-called position numbers are used to indicate possible locations for 
the remaining circles in the partial layout.  

The encoding technique of the genetic algorithm makes use of the position numbers, which are defined with respect 
to the sides of the object and the circles already placed. Instead of evaluating every possible position of a circle in 
the packing pattern, only an initial position is allocated to each circle. This serves as a default position and is only 
modified if it causes an infeasible packing configuration. The initial positions of all circles are stored in the 
chromosome, with the first cell containing the position of the first circle etc. As a measure of fitness the density of 
the circles in the rectangle is used. The genetic operators applied are proportional selection, one-point crossover 
and a mutation operator that generates a random position number. The decoding procedure attempts to place a 
circle at a position number contained in the string. If this position is not feasible or not defined, the position number 
is incremented until a feasible position is found.  

The genetic algorithm is compared to heuristic methods using the same decoding procedure. The comparison 
includes a heuristic method that generates the position number randomly. Performance comparisons for different 
problem types showed that genetic algorithms and random search outperformed the other heuristics, when a 
balance must be reached between quality and computational effort. The advantage of the data structure in George et 
al. (1995) is that domain information is implemented in the genetic algorithm as part of the procedure. The task of 
the decoder is to check the feasibility of the layout and eventually to find a new position.  

4.3 2D Irregular Strip Packing Problems 

This category of irregular problems includes the packing of polygons and arbitrary shapes on an object of fixed 
width and unlimited height (Figure 7). A number of researchers have approached the packing of polygons some 
including holes inside the shapes. Depending on the nesting algorithm, some approaches are only suitable for 
convex polygons. In most solution approaches the irregular items are either polygons or approximated by polygons 
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consisting of a list of vertices. Geometric algorithms are then required to determine feasible positions in the partial 
layout and eventually to calculate the overlap. A second shape description technique is grid approximation where 
items and objects are represented by a set of equal sized squares using 2D matrices. The nesting process therefore 
usually involves scanning of the various matrices and matching with empty cell clusters. An outline of the 
algorithms is given in Table 7 to Table 10. 

Figure 7: 2D irregular strip packing problem 

4.3.1 Packing of Polygons 

Fujita et al. (1993) proposed a hybrid approach combining an order-based genetic algorithm with local 
minimisation to solve a nesting problem involving convex polygons only. The local minimisation algorithm is used 
to optimise the position of an item in the layout, after initial placement in the leftmost-lowest position next to its 
preceding neighbour. This algorithm uses a Quasi-Newton method to manipulate the relative positions between the 
objects defined by a set of variables. The fitness of an individual is related to the waste and the distance of the 
polygons from the origin of the object and deals with the width and overlap constraint. Since the performance of 
the hybrid genetic algorithm was not compared to other methods, it is not possible to judge its efficiency.  

Jakobs (1996) used an order-based genetic algorithm for nesting and extended the work on packing of rectangles 
(section 4.1.1) to polygons. The decoder only operates on the enclosing rectangles of the polygons during the 
evaluation stage. When the polygons are fed into the system they are first rotated into the position where the 
enclosing rectangle has the smallest area. The irregular aspect of the packing task is considered after the genetic 
algorithm has converged applying a shrinking-algorithm to the layout. This algorithm moves the polygons closer 
together shifting them as far as possible to the bottom and the left whilst avoiding overlap and also tests reflections 
of the original polygons. The shrinking-step reduces the height of the layout, and allows utilisation of the space 
“wasted” by the embedding process. Applying the shrinking-routine to the final layout has a major drawback. The 
polygons are repositioned sequentially, so empty areas in the layout may not always be reached, uniterated items 
can block the sliding motion of the current one. Since no comparison was made to other techniques for irregular 
nesting tasks, it is difficult to establish the overall performance of the method proposed. 

Table 7: Hybrid genetic algorithms for 2D irregular packing problems 

Dighe and Jakiela (1996) developed two genetic algorithms for the nesting task. The first approach is order-based 
and uses a sliding algorithm to move the irregular item into the partial layout in vertical direction. A low-level 
genetic algorithm is applied to find the best horizontal position at the upper side of the object from which to "drop" 
the item and its orientation for the sliding process.  

The second genetic algorithm uses a binary tree representation technique and is also hierarchical. The tree 
determines the way in which two items are clustered. The nesting process of the two polygons is controlled by a 
low-level genetic algorithm, which searches for the configuration with the smallest enclosing rectangular area. Both 
approaches avoid overlap during the nesting process. The two methods were tested on jigsaw puzzles with a known 
optimum solution and achieve packing densities between 69% and 72%. The major drawback of these techniques is 
the hierarchical structure using two genetic search processes. The low-level search is extremely wasteful in terms of 
computation time. 

Bounsaythip and Maouche (1997) applied a binary tree approach to a problem from the textile industry. Before the 
nesting step, the polygons are circumscribed by the bounding rectangles. The nodes in the tree contain two 
operators that determine the side at which the second rectangle is packed with the stationary one and its orientation. 
The actual nesting process is carried out by a low-level routine which finds the smallest enclosing rectangle of the 
cluster using a special encoding technique described in their earlier work (see below; Bounsaythip et al., 1995). A 
single tree in this approach does not necessarily represent the complete set of items, but rather a strip in the textile 
layout. The algorithm therefore has to deal with trees of different length. The cross-over and mutation operators are 
stated in Table 8. 

In an earlier approach, Bounsaythip et al. (1995) used a different genetic algorithm to address the textile problem. 
Instead of dealing with a complex marker layout they focus on the generation of one strip only in the layout. The 
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polygons are circumscribed by the bounding rectangles. The shapes are represented with a special encoding 
technique that describes the contour of the polygon relative to the enclosing rectangle using a set of integer values. 
For each of the four rectangle sides such a contour description is generated. This representation technique is very 
practical for nesting two shapes. Unlike many other genetic algorithms a single shape represents one individual in 
the population. The fitness of an individual is determined by the utilisation ratio of the bounding box. Cross-over 
and mutation operators are domain-specific and merge selected shapes. The performance of this genetic algorithm 
was enhanced through hybridisation with simulated annealing which slightly increases the packing density. 

Table 8: Comparison of the genetic algorithms for 2D irregular packing problems 

Petridis and Kazarlis (1994) developed a genetic algorithm, which does not require a decoding algorithm in the 
nesting process. Instead, the position of an item in the layout is encoded in the chromosome in form of two binary 
strings. The simplicity of the encoding technique, allows the traditional binary cross-over and mutation operators to 
be used. Furthermore, a set of mutation operations were defined to work directly on the phenotype swapping two 
shapes or repositioning shapes into gaps in the layout.  Overlapping configurations can occur because the position 
of the items is determined by the encoding. These are penalised in the fitness function. The fitness function is 
dynamic, increasing the penalty term gradually in order to drive population away from invalid solutions towards 
the end of the search. Similar to some simulated annealing approaches in the literature (section 5), the rationale 
behind the dynamic nature is to penalise overlap less at the beginning when it is important for the shapes to pass 
over one another in order to reach enclosed areas. A local search technique was applied to the best solution at fixed 
generation intervals. Petridis and Kazarlis (1994) tested their algorithms on jigsaw problems consisting of less than 
15 shapes. Comparisons showed that the optimal solution was more often found using the dynamic fitness function. 
The local search had a positive impact and accelerated the search process. 

4.3.2 Packing based on Grid Approximation 

Compared to the shape description based on geometric primitives such as polygons, fewer approaches use a 
digitised representation. Grid approximation offers the advantage that holes inside items or gaps in the partial 
layout can be easily described. Since the object is usually scanned for a suitable position these areas are 
automatically considered. One of the major advantages of this technique is that no additional routines are required 
to identify enclosed areas in the shapes or the partial layout. The different solution approaches are outlined in Table 
8 and Table 9. 

Ismail and Hon (1992) developed a genetic algorithm for the pairwise clustering of two identical polygons. After 
circumscribing the shape with the minimum enclosing rectangle, a grid is superimposed to convert the shape into a 
binary 2D matrix. When clustering two shapes, two parameters are used to describe their relative position to each 
other. Another four parameters are introduced to represent the mirroring of the shapes along the two axes. These 
parameters are combined to a binary multi-parameter string, defining a clustering solution. The fitness reflects the 
best orientation for maximising the material utilisation and includes a penalty for overlapping. Subsequent 
decoding of the string into a layout is straightforward. Comparisons to the performance of another clustering 
method that was developed by the authors earlier showed that the genetic algorithm produces denser packing of 
figures with concave features. This is mainly due to the limitations of the other method, whereas the solutions have 
been identical for other shape types.  

Ismail and Hon (1995) extended the clustering method proposed in (Ismail and Hon, 1992) to dissimilar shapes in 
combination with a heuristic rule. Applying the above representation technique, the shapes and the object are first 
digitised and represented as a 2D grid array. Two parameters describe the relative position of a shape to the others 
and three parameters define mirroring and rotation. The overall genetic string is a sequence of the encodings for 
each individual shape. This data structure can result in infeasible solutions, which are penalised in the fitness 
function. The decoder uses a complex set of parameters and rules to describe the relative positions and the 
placement of the polygons. 

Poshyanonda and Dagli (1993) extended the order-based genetic algorithm developed for rectangles to the nesting 
of irregular shapes (section 4.1.1). The decoder consists of an artificial neural network that matches an incoming 
shape with the available empty areas in the partial layout. For this purpose the items and the object are presented as 
binary 2D matrices. The algorithm selects the best match or triggers a sliding algorithm if no match is found. 
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Table 9: Hybrid genetic algorithms for 2D irregular packing problems 

Gwee and Lim (1996) studied a special type of irregular packing problem originating from the world of jigsaw 
puzzles. The items consist of rectilinear blocks, so-called polyominoes, which are placed onto a rectangular board. 
Since these puzzles have a known optimal solution, the performance of the genetic algorithm can be easily 
measured. The objective function considers three aspects, which are important in the search for the optimal 
configuration (Table 9). The set of polyominoes is represented as a permutation. The decoding stage uses a circular 
placement technique, which places the shapes in circular fashion starting at one corner of the board, and continues 
in anti-clockwise direction towards the centre of the board. Several orientations are tried selecting the one that 
yields to the highest number of contact edges. The idea of this technique is to build up good groupings of 
polyominoes starting from the corners. Comparisons with two hill-climbing techniques show that the genetic 
algorithm finds the optimal solution quicker, in particular when the problems consist of a higher number of pieces. 

Jain and Gea (1998) designed a special encoding method, which describes the complete layout as a 2D matrix. 
Before the encoding step, the items are digitised and consist of a cluster of unit squares. In the 2D matrix the 
corresponding cells are marked with the item number. In that way the phenotype is completely contained in the 
genotype making a decoding algorithm redundant. A set of problem-specific cross-over and mutation operators 
were developed to work on this representation scheme and are stated in (Table 10). Since these operations can 
easily result in overlapping configurations, repositioning of items is frequently required. In order to increase the 
density of the layout, subsequent compaction steps shift the items left and down in order to fill vacant positions. 

The method developed by Ratanapan and Dagli (1997b, 1998) is different from the other approaches described so 
far, since it does not make use of a data structure to represent the problem. The irregular items are represented 
using a grid approximation. After the initialisation process, which places all items into non-overlapping positions 
on the object, a series of genetic operators is applied consisting of hill-climbing, mutation and recombination 
processes. These operations are described in connection with their earlier work on rectangle packing in section 
4.1.1. 

Table 10: Genetic algorithms operating on the phenotype for 2D irregular packing problems 

Genetic algorithms are not the only meta-heuristic techniques that have been applied successfully to packing 
problems. A number of researchers experimented with simulated annealing, tabu search and neural networks.  

5. Application of Simulated Annealing 

Simulated annealing is a meta-heuristic search method whose design was inspired by the metallurgical process of 
annealing. Eglese (1990) investigated the application of simulated annealing as a tool in operational research. 
Simulated annealing was applied to rectangular and irregular packing tasks, a selection of which is described 
below.  

5.1 Regular Packing Problems: 

Only few researchers have applied simulated annealing to 2D rectangular packing problems (Table 11). One of the 
first researchers working on simulated annealing and packing problems was Kämpke (1988). He applied simulated 
annealing to 1D bin packing comparing different cooling strategies.  

Dowsland (1993) experimented with simulated annealing on pallet loading problems involving identical as well as 
non-identical boxes. In the identical case, the number of feasible positions is reduced to the co-ordinates, which are 
multiples of the item length. The neighbourhood is defined as the set of solutions, which is obtained, when each 
item is moved to any other position with some restrictions. Since these movements lead to overlapping patterns, 
this constraint has been dealt with in the objective function. In the extension to non-identical boxes, the condition 
for the feasible position is that it needs to be at a valid combination of lengths and widths of the other item types 
starting from the container edge. The results indicate that simulated annealing is only capable of producing near 
optimal solutions, which could be improved by other optimisation routines. 
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Faina (1999) developed a hybrid simulated annealing algorithm for guillotineable and non-guillotineable stock 
cutting problems. The set of items is represented as a permutation indicating the order of packing. Two heuristic 
decoders are used to pack the objects whilst taking into consideration the guillotine constraint. The algorithm for 
the non-guillotineable layout places the current item either at the top-left or the bottom-right corner of the 
previously positioned rectangle. The choice between the two insertion points is random. In the guillotineable case, 
the algorithm keeps track of the remaining empty areas in the layout. After placing a rectangle, two empty areas are 
created at the top and the right side, which are stored and treated as objects in the subsequent packing processes. 
Although the placement algorithms are formulated for a stock cutting problem, the performance evaluation only 
involves one object of unlimited height (i.e. strip packing). Comparisons show that the algorithm for non-
guillotineable layouts achieves much higher packing densities than the algorithm developed for non-guillotineable 
problems due to the better nesting technique. 

Leung et al. (1999) also applied the order-based approach developed for use with genetic algorithms to simulated 
annealing (section 4.1.1). Their results indicate that genetic algorithms outperform simulated annealing.  

Table 11: Comparison of the simulated annealing approaches for 2D rectangular packing problems 

5.2 Irregular Packing Problems 

Most simulated annealing approaches for irregular packing tasks do not make use of any encoding technique. The 
packing problem is represented as an allocation of 2D items, which must be compacted. Usually, overlap is 
permitted during the search process and penalised in the evaluation function. The representation technique for this 
approach differs from the ones involving genetic algorithms. With one exception (Ratanapan and Dagli, 1997b, 
1998) the genetic methods from the literature operate on encoding. Overlap is usually avoided through the 
application of placement rules and only permitted in few approaches. A number of 2D nesting tasks have been 
approached with simulated annealing (Table 12).  

Jain et al. (1988) addressed a blank nesting problem from the metal cutting industry, where two congruent items are 
nested for continuous strip stamping applications. The blanks have arbitrary shape and are approximated by 
polygons. In order to accommodate interlocking shapes it is necessary to allow the shapes to move over one 
another producing intermediate overlap. Overlap is penalised in the fitness function consisting of two terms: the 
wasted area and a penalty for the total overlap.  

Marques et al. (1991) developed a simulated annealing algorithm for the packing of polygons and applied it to a 
problem from the textile industry. A neighbourhood move is achieved by translation, rotation or reflection of an 
item whilst only accepting valid configurations. The quality of the layout is described by the sum of three 
components: the area of smallest enclosing rectangle and parameters indicating the distance of each item from the 
centre of the object and proximity of the items to each other. In order to reduce the processing time for the 
verification of the layout legality, only the overlap between corresponding enveloping circumferences of the items 
is tested initially. 

The efficiency of the search process conducted by simulated annealing largely depends on careful construction of 
the cooling schedule. Theodoracatos and Grimsley (1995) experimented with polynomial-time cooling schedules 
and showed their impact on computational efficiency. The authors applied simulated annealing to the packing of 
circles and polygons. In addition to that, an adaptive penalty function was proposed to penalise overlapping 
configurations to a minor extent at the beginning when items need to slide over each other in order to find feasible 
positions in the partial layout. 

The simulated annealing algorithm in Han and Na's work (1996) is used to improve an already existing layout 
created by an artificial neural network (ANN). The irregular items are first approximated by polygons and 
circumscribed by a minimum enclosing rectangle. The polygon is then described as a composition of basic 
geometric shapes i.e. rectangles and circles that are placed in the void areas within the enclosing rectangle as well 
as within the item itself. A move to a neighbouring solution consists of translation, rotation or a swap of two items. 
Since these operations can result in invalid configurations the fitness function considers the overlap constraint in 
the form of a penalty. In order to achieve dense layouts a second parameter describes a force driving an item 
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leftwards and downwards. The neighbourhood move achieved through translation is implemented in two ways. The 
large perturbation within the entire object area is directed at the global optimisation of a layout whereas the small 
perturbation in the lower leftward direction is used to optimise the layout locally. Low starting temperatures were 
used in this approach, since the starting solution obtained from the ANN has already generated a reasonably good 
quality. It is difficult to judge the merits of these hybrid approaches involving two intelligent search processes due 
to the lack of comparisons with other methods.  

Burke and Kendall's work (1999) is different from the approaches described above, since the neighbourhood moves 
are not performed directly in the layout. Instead the problem is represented as a permutation. A neighbouring 
configuration is reached through one of the re-ordering techniques stated in Table 12. As a consequence a 
placement routine is required to transform the list of items into the layout. The authors developed an algorithm, 
which nests two polygons in turn using the No Fit Polygon (NFP, Adamowicz and Albano, 1976) and local search 
to determine the best position. Before a new polygon is placed, all positions along the vertices of the NFP are tried 
and the cluster with the smallest convex hull is used. In case the configuration exceeds the bin width a new 'row' is 
started. Results show that the simulated annealing technique produces better results than hill-climbing and there is a 
difference between the various neighbourhood operators. 

Table 12: Comparison of the simulated annealing approaches for 2D irregular packing problems 

6. Application of Other Meta-Heuristic Search Methods 

6.1 Tabu Search 

Tabu search is a search technique that is guided by the use of adaptive or flexible memory structures. It is different 
to heuristic methods such as simulated annealing and genetic algorithms, tabu search contains some in-built 
memory mechanisms that prevent the search algorithm from returning to recently executed moves for a number of 
iterations. A tabu list is maintained which contains all moves, which are not allowed in the current iteration step. 
The search is guided by an objective function in order to find the best admissible move in a neighbourhood 
(Reeves, 1993; Glover and Laguna, 1993). With respect to packing problems, fewer solution approaches with tabu 
search have been proposed than with genetic algorithms and simulated annealing. The first work in this area was 
perfomed by Blazewicz and his co-researchers in the early 90's.  

The only investigation into the application of tabu search to rectangular problems was presented by Lodi et al. 
(1999) who focused on 2D bin packing. The two constraints that are imposed on the packing process concern the 
fixed orientation of the items and the layout, which has to be guillotineable. The initial layout is generated by a 
simple heuristic algorithm, which is then improved by tabu search. The tabu search algorithm is based on two 
possible neighbourhood moves. The first one attempts to remove an item from the worst bin redistributing it among 
the other used bins. In the latter move the algorithm tries to accommodate the item by recombining the items of two 
other bins. The bin layout is generated with a heuristic level-oriented algorithm. The performance of the tabu 
search is better than any one of the two bin packing heuristics and comparable to a branch-and-bound algorithm. 

Blazewicz et al. (1993) were the first to apply tabu search to irregular packing problems. Starting with a feasible 
layout solution, which is produced by a simple placement procedure, a tabu search process is used to further 
improve the existing layout. After selecting a single item, several new positions are tried and the best one is kept. 
The move describes a change of the allocation of one item from one position to the other, prohibiting overlapping 
configurations. Items that have changed their position during recent iterations are members of the tabu list. The best 
admissible move is determined by the objective function aiming at placing the rightmost elements into the void 
areas of the layout. In comparison with Albano and Sapuppo’s (1980) heuristic search algorithm, the tabu search 
achieved better results. 
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6.2 Artificial Neural Networks 

In some approaches to rectangular and irregular packing problems, neural networks have been used. They were also 
applied in combination with other meta-heuristic methods where they either served to generate the initial layout or 
to perform the nesting process. Two examples are briefly described below. 

Dagli and Poshyanonda (1997) used a neural network in combination with a genetic algorithm for a rectangular 
packing problem (section 4.1.1). The genetic algorithm is used to generate an input sequence, which is decoded 
into the layout by the neural network. Every time a new item is placed into the partial layout all new scrap areas are 
recorded and stored for subsequent nesting processes. Before an item is allocated the neural network searches 
through all empty areas and returns the best match. If no match is found the item is allocated next to the partial 
layout using a sliding algorithm. The matching process is based on a grid description of the items and scrap areas. 

Han and Na (1996) used a neural network to produce an initial solution for a 2D irregular problem. After a ‘good’ 
initial solution is obtained the non-overlapping layout is further improved by simulated annealing (section 5). The 
learning algorithm of the neural network is based on a Kohonen network. At the beginning of the nesting process 
all shapes are allocated around the centre of the object by assigning small random values to their position vectors 
describing the distance to the centre. The position vectors, which indicate the direction of the motion for the items, 
are modified by the neural network. The finite position is determined such that the overlap of the items is minimal 
using leftmost-lowest placement. The cost function is a combination between a penalty term for the overlap and the 
moments of area driving items to the left and to the bottom side of the object. 

6.3 Other Heuristic Search Techniques 

One of the main characteristics of meta-heuristic search processes as opposed to local search is that they contain a 
means of escaping local minima. Whereas optimisation with hill-climbing terminates when a locally optimum 
solution is found, meta-heuristics can escape this situation by temporarily accepting solutions of lower quality. 
Some researchers used the concept of these uphill moves and implemented new meta-heuristic search principles in 
addition to the standard methods like genetic algorithms and simulated annealing.  

Healy and Moll (1996) proposed a minimisation algorithm for a 2D rectangular packing problem. The algorithm is 
a variant of a hill-climbing technique and designed such that it allows moves in the other direction in order to 
escape local minima. 

Pargas and Jain (1993) developed a stochastic optimisation algorithm, which borrows some principles from hill-
climbing and genetic algorithms. The method was applied to a 2D irregular packing problem. Stochastic 
optimisation operates on a population of solutions manipulating them with the aid of a mutation operator. Unlike in 
genetic algorithms, only one solution is modified at a time. A new state in the search process can be obtained in 
two ways. The first one selects a solution from the population using ranking and generates a certain number of 
neighbouring states as in steepest-ascent hill-climbing. The best solution of the neighbourhood compared with the 
current solution is taken. If its fitness is better, it replaces the current one in the population. With a probability of 
around 10% the second method generates a new state randomly in order to maintain diversity in the population. 
The termination criteria are based on convergence or a maximum number of iterations. 

In the implementation for an irregular packing problem the items are represented as a permutation. A grid 
approximation technique is applied. The allocation routine scans the object for the first leftmost-uppermost cell, 
which allows a valid configuration. If overlap occurs the item is rotated by 90°. Unfortunately, the authors did not 
compare this approach to other meta-heuristic techniques. Therefore relative performance in terms of solution 
quality and speed are not known. 

7. Summary 

Meta-heuristic search methods have been implemented for the solution of a large variety of 2D packing problems. 
The solution space of combinatorial problems is enormous and increases rapidly with the complexity of the 
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problem, in particular with the geometry of the objects to be allocated. With most of the packing problems being 
NP-complete, heuristic search procedures are used, since exact algorithms cannot solve the problem efficiently; 
their time function is described by a polynomial. During recent years, researchers have proposed an increasing 
number of meta-heuristic approaches for the solution of rectangular and irregular packing tasks that offer the ability 
to search large and complex solution spaces in a systematic and efficient way. 

7.1 Solution Approaches 

The major features of the existing solution approaches with respect to encoding technique, shape representation and 
algorithm design are briefly summarised in the following section, which highlights their major advantages as well 
as disadvantages.  

7.1.1 Encoding 

The strength of genetic algorithms lies in the ability to search large and complex solution spaces in a systematic 
and efficient way. Not being dependent on a particular problem structure allows the user to utilise different 
methods for the encoding of the genotype. The performance of a search process is strongly related to the 
representation of the packing problem. It is important that the encoding technique, which describes possible 
packing patterns, utilises characteristic features in the packing schemes. It may be advantageous to design the data 
structure such that sub-structures of layouts are accessible and can easily be manipulated. For packing problems, 
order-based chromosomes can be used to represent packing sequences. An appropriate modification of the data 
structure may maintain certain efficient sub-structures of the layout. At the same time the genetic operators need to 
be adapted to the encoding technique, so that they support the inheritance of important layout features, which are 
meaningful and effective for the packing objective. 

7.1.2 Type of Approach 

With respect to the packing problems described three types of solution approaches involving genetic algorithms can 
be distinguished (see below). The common feature of genetic algorithms developed for packing problems is their 
two-stage approach. The genetic algorithm is used to explore and manipulate the solution space, and a second 
procedure is used to evaluate the solutions. The phenotype needs to be constructed in order to check quality and 
feasibility of packing scheme.  

In the first group the genetic algorithm is only used to determine the sequence of packing. Therefore a placement 
routine is then needed to find the allocation of the items on the object. A heuristic decoder can limit the genetic 
algorithm. It may not support the inheritance of certain features by the offspring since the domain knowledge is 
hidden in the placement routine. In order to avoid the dependency of the performance of the genetic algorithm on 
the decoding method, it seems beneficial to develop a data structure that calculates the fitness from the genotype 
rather than the decoded phenotype. A second category of solution approaches attempts to incorporate more layout 
information into the data structure of the genetic algorithm. Some additional rules are still needed to fix the position 
in the layout. The third group of genetic solution methods resolved this matter by transferring the genetic search 
process into the 2D layout domain. Since the genetic operations are performed directly on the 2D shapes this 
method does not require an encoding technique.  

The concept of performing a search process entirely in the layout domain has long been applied in simulated 
annealing and tabu search (Marques et al., 1991; Blazewicz, 1993) and is common to most approaches in this area. 
Applying an indirect optimisation process via the use of an encoding is a very recent idea (Faina, 1999; Burke and 
Kendall, 1999). 

The benefits of an operation in the 2D space are evident, since it enables a meaningful implementation of the 
abstract meta-heuristic principles and operators describing concepts such as neighbourhood and neighbourhood 
moves as well as features of the phenotype, cross-over and mutation. The operation on the layout rather than an 
encoded data structure raises a number of other issues, such as overlap. Overlapping configurations are invalid 
solutions and need to be resolved either by rejecting, correcting or temporarily accepting them. Rejection wastes 
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precious computation time and may result in less dense layouts for highly irregular shapes, since the slightest 
change in position or rotation could lead to invalid configurations, which will no longer contribute to the search 
process. Correcting invalid configurations seems a better option, since often only minor re-positioning is necessary 
to obtain a valid solution. This contributes to the computation time, especially, if the re-positioning task turns out to 
be more complex.  

Accepting an invalid configuration temporarily offers a balance between these two measures.  Often a series of 
moves will result in a valid solution. This is beneficial when shapes pass over each other in order to reach enclosed 
areas in the layout or other shapes. The acceptance of an invalid layout requires a penalty term in the evaluation 
function. The penalty expression needs to be carefully designed balancing between layout compaction and overlap 
generation. According to Davis (1991) penalties are a less efficient guide to the search than a decoding algorithm 
that avoids producing constrained results.  

When the search process operates on an encoding the packing rules applied by the decoding algorithm guarantee 
that all solutions considered in the search process are valid. There has been much speculation on whether this is 
beneficial with respect to the transmission of specific layout to the next generation and the next state in the 
neighbourhood respectively. The literature is reluctant so far to give a satisfactory answer to this problem. The 
different solution approaches have not been compared with each other. Since much of their performance strongly 
depends on the packing task with respect to the formulation of the objective and the shapes involved it is not 
sufficient to judge their performance purely on the basis of the packing densities achieved. This emphasises the 
need for commonly accepted benchmark tests and problems (section 7.3). 

7.1.3 Computation Time 

The decoding method has a great influence on the computational effort of the hybrid algorithm. The importance of 
computation time in a certain nesting task depends on the respective application. Meta-heuristics are 
computationally very expensive due to the high number of function evaluations. This results in long run times 
especially in irregular problems, where geometric computations required for the nesting process are time intensive. 
Type and implementation of geometric algorithms contribute to the computation time, especially when a high 
accuracy for the shape approximation and description is used. 

7.1.4 Shape Representation 

The representation of the shapes to be placed is strongly related to the strategy chosen to tackle the nesting task. 
Two main methods can be distinguished in the irregular examples in the literature. In approaches where the 
allocation in the object is found on the basis of a scanning process, shapes are represented as matrices. The second 
option is the description in the form of geometric primitives such as polygons and circles and implies that 
geometric routines are used to compute the relation between items in the layout. The approximation of arbitrary 
items as they occur in the textile and metal industry by concave polygons or the convex hull raises the issue of 
accuracy. For instance, a popular method in the nesting process is the clustering of two polygons using the convex 
hull or some outer boundary of the configuration in the subsequent nesting steps (Burke and Kendall, 1999). The 
convex hull is not an accurate description of the partial layout, but might be sufficient for the generation of a layout 
of acceptable quality. The basic question to resolve in this context is how much accuracy is needed in terms of 
layout quality and how much is affordable in terms of computation time.  

The issue of shape representation reflects on the encoding technique. In a hybrid algorithm the domain knowledge 
is stored outside the meta-heuristic part, since an additional procedure is used for decoding into the phenotype. In 
approaches, that do not involve a decoding algorithm, the geometry of the figures necessarily needs to be 
considered in the data structure (e.g. Jain and Gea, 1998). 

7.2 Meta-heuristics 

Despite some comparisons with problem-specific search processes and local optimisation methods such as hill-
climbing, only a few attempts have been made so far to compare the performance of various meta-heuristics in the 
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area of packing. Burke and Kendall (1999) and Leung et al. (1999) carried out some research in this area. The first 
work indicated that tabu search and simulated annealing outperform genetic algorithms. Leung et al. (1999) 
implemented a genetic algorithm which was better than their approach with simulated annealing.  

Most researchers in the area of genetic algorithms seem to take a successful search process of their particular 
implementation for granted. The operation of the genetic operators with respect to the outcome of the search 
process is hardly verified. This is of paramount importance where novel encoding structures and problem-specific 
operators are proposed. A verification step would normally be quite straightforward and easy to implement. As 
most genetic algorithms make use of both genetic operators, omitting the cross-over operation reveals its impact on 
the final outcome and on the course of the search process. Despite the simplicity, this technique is not a part of the 
‘standard test tools’ researchers use in this area. So far, it was only applied by Falkenauer (1996) and is referred to 
as naïve evolution.  

A second, at least as powerful tool for the performance evaluation of genetic algorithms, is random search. 
Executed over the same number of iterations as the meta-heuristic algorithm, it allows the quality of the search to 
be established. Since the genetic operators as well as the neighbourhood moves are intended to guide the search 
process to good solution areas in the extremely large solution space, the outcome of a search, which conducts a 
pure random exploration reveals how well this objective has been met.  

7.3 Benchmarks 

The discussion of performance comparison reveals the lack of comparisons with known benchmarks. Despite some 
effort by two on-line libraries (Hopper, 2000), there is no test suite available which could enable comparisons 
between algorithms intended for packing problems. Although some researchers acknowledge and regret this fact in 
their work, no further work has been done in this area. Performance evaluation mainly continues to only consider 
'self-made' test problems, which are not publicly available in most cases. A commonly agreed test suite benefits the 
development of algorithms as well as the industrial user, who has to select the most appropriate packing method 
considering various criteria. Solution quality and computation time, are only two out of many criteria to be 
considered. 

A number of standard packing methods is also of advantage for performance comparison, especially in the area of 
rectangular packing, a large number of simple heuristics exist which could be applied as such a standard method for 
this purpose. Simple heuristics are easy to implement and achieve very dense layouts under certain conditions. 
Meta-heuristics are expected to perform comparatively better in terms of solution quality. Therefore it may seem to 
be a waste of time. However, even a relative comparison to a standard method is a useful and valid measure for 
comparisons between more complex algorithms. Although the task of determining a benchmark method may be 
more difficult in irregular packing, some of the heuristic search techniques (Albano and Sappupo, 1980; Oliveira et 
al., 2000) have proved to be flexible and extremely powerful on a variety of test cases. Therefore even a benchmark 
method for irregular packing could be established.  

In order to keep test problems flexible regarding parameters such as problem size, aspect ratio of items or 
availability of known optimum solution, a further task is the design and implementation of problem generators 
(Hopper, 2000). Whereas this is certainly simpler for the rectangular strip and bin packing problems, a careful 
consideration of parameters to determine the irregular packing task in certain applications is necessary for the 
irregular case.  

8. Conclusions 

Evolutionary algorithms are the most widely investigated meta-heuristics in the area of cutting and packing. The 
work done to date almost exclusively uses order-based and tree-structure representations. Comparisons as far as 
they have been possible given the limited number of benchmark problems in the area have shown, that order-based 
genetic algorithms achieve layouts of similar density as the approaches that include layout information into the 
encoding structure.  
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Simulated annealing approaches concentrate on irregular packing problems. A considerable quantity of work 
remains to be done in the area of tabu search.  

Due to the lack of benchmarking, it is difficult to decide which method is better suited to approach packing 
problems. To-date only a few attempts have been made to compare meta-heuristic techniques. 

At present meta-heuristic techniques are usually not benchmarked against efficient heuristic methods. Where this 
has been done, the indications are that the heuristic techniques perform very well. Consequently, such comparisons 
should be regarded as necessary for further research in this field. 

An alternative method for a provisional assessment of a meta-heuristic would be to use one of the commercial 
nesting packages. However, commercial organisations do not make the algorithms available and therefore they are 
not suitable for publication purposes in the academic literature. 

A simple, but effective method to check to successful performance of meta-heuristic search processes is to compare 
them against random search. The performance gain achieved over random sampling of the search space could be 
used as an indicator for the effectiveness of the intelligent search algorithm. At the same time it should become 
standard practice to test novel cross-over operators through the application of naïve evolution. 

Rotation is rarely considered for any of the irregular packing problems other than 90° steps. This is mainly due to 
the constraints imposed by the industrial application, e.g. textile and metal industry. However, a study into the 
impact of the rotation interval on the layout quality could be useful in a theoretical context. 
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Figure 1: Irregular packing problem from the textile industry 

 

 

 

Figure 2: Non-orthogonal layout 
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Figure 3: Guillotineable layout 

 

 

Figure 4: Non-guillotineable layout 

 

 

Figure 5: 2D strip packing problem 
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Figure 6: 2D bin packing problem 

 

 

Figure 7: 2D irregular strip packing problem 
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Table 1: Reviews and surveys on packing problems in the literature 

authors topic classification of packing problems 
Dyckhoff and Finke (1992) analysis of large variety of problems  Dyckhoff classification 
Sweeney and Paternoster 
(1992) 

more than 400 problems including 
books, dissertations and working 
papers 

dimension, solution methodology, 
special topics 

Golden (1976) 2D cutting stock problems solution methodology 
Hinxman (1980) 2D trim-loss and assortment problems dimension, solution methodology 
Rayward-Smith and Shing 
(1983) 

1D and 2D bin packing dimension 

Sarin (1983) 2D cutting stock problems solution methodology 
Coffman et al. (1984) bin packing type of bin packing, dimension 
Dowsland (1985) 2D and 3D rectangular problems problem type, dimension 
Coffman and Shor (1990) 2D regular packing problems on-line, off-line; probabilistic 

analysis 
Haessler and Sweeney 
(1991) 

1D and 2D cutting stock problems dimension, solution methodology 

Dowsland (1991) 3D problems solution methodology 
Dowsland and Dowsland 
(1992) 

2D and 3D packing problems, mainly 
regular 

problem type, dimension 

Whelan and Batchelor 
(1993)  

industrial implementations of 
automated packing systems for 2D 
irregular packing problems 

application, focus on leather 
industry 

Dowsland and Dowsland 
(1995) 

2D, irregular packing problems methods for clustering, packing, 
computational geometry 

Hopper and Turton (1997) 2D and 3D, regular and irregular 
packing problems and genetic 
algorithms 

geometric characteristics of items, 
dimension 

 

Table 2: Hybrid genetic algorithms for non-guillotineable 2D packing problems 

 Smith (1985) Jakobs (1996) Liu and Teng (1999) 

problem packing of single closed 
bin; 90° rotation 

strip packing 
90° rotation 

strip packing 
90° rotation 

objective maximise number of items 
in the bin 

minimise height  minimise height  

representatio
n 

permutation permutation permutation 

fitness ratio of packed to unpacked 
area 

remaining area and height remaining area and height 

cross-over OX (1point) OX (1point) OX (2point) 

mutation random reordering of 
string; rotation  

inversion, swap of 2 
elements, rotation  

inversion, swap of 2 
elements, rotation  

decoder Slide algorithm 
Skyline algorithm 

BL-algorithm1 improved bottom-left 
algorithm2 

                                                      

1 BL = Bottom Left heuristic; based on sliding principle 
2 based on sliding principle; referred to as BLLT-routine throughout this  
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Table 3: Hybrid genetic algorithms and evolutionary algorithm for non-guillotineable 2D packing problems 

 Hopper and 
Turton (1999, 
2000) 

Leung et al.  
(1999) 

Dagli and 
Poshyanonda (1997) 

Lai and Chan  
(1997) 

algorithm GA GA GA EA 

problem strip packing;  
rotation 

strip packing;  
no rotation 

strip packing;  
90° rotation 

packing of a single 
closed bin; no 
rotation 

objective minimise height  minimise trim 
loss  

minimise height minimise trim loss 

representatio
n 

permutation permutation permutation permutation 

fitness trim loss, height trim loss height, width trim loss 

cross-over PMX (2 point) PMX, CX, 
OBX,  
OX (1, 2 point) 

OX none 

mutation swap of 2 elements swap of 2 
elements 

inversion swap of 2 
elements; hill-
climbing during 
allocation process 

decoder 'Bottom-Left-Fill 
Algorithm' 

'Difference 
Process 
Algorithm' 

sliding algorithm and 
ANN to match free 
areas with item  

placement closest 
to the bottom-left 
corner  

 

Table 4: Comparison of the genetic algorithms for non-guillotineable 2D packing problems - approaches with 
encodings including layout information 

 Kröger et al.  
(1991a, b; 1993) 

Herbert and Dowsland 
(1996) 

Herbert and Dowsland 
(1996) 

problem strip packing  
90° rotation 

pallet loading; 
90° rotation 

pallet loading; 
90° rotation 

objective minimise height  maximise number of boxes 
placed 

maximise number of boxes 
placed 

re-
presentation 

directed binary tree 1D binary string  2D binary matrix  

fitness height, width number of boxes placed; 
penalty for overlap 

number of boxes placed; 
penalty for overlap 

cross-over problem-specific  uniform (1 and 2 point) problem-specific 

mutation variation of set of edges, 
orientation, priority 

bit change bit change 

decoder encoding structure + BL-
condition 

none none 
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Table 5: Comparison of the genetic algorithms for guillotineable 2D packing problems using tree 
representations 

 Hwang et al.  
(1994) 

Kröger  
(1995) 

Rahmani and Ono 
(1995) 

András et al. 
(1996) 

problem strip packing  
90° rotation 

strip packing; 
90° rotation 

packing of a single 
closed bin; 
no rotation 

packing of a 
single closed bin;
no rotation 

objective minimise height minimise height minimise waste minimise area  

re-
presentation 

directed binary tree string representing 
tree structure 

tree representation tree 
representation 

fitness bounding rectangle to 
be close to square; 
excess width 
penalised 

height  utilisation ratio packing density 

cross-over PMX and uniform exchange of sub-trees 
under certain 
conditions 

exchange of sub-
tree under certain 
conditions 

exchange of sub-
trees 

mutation rotation, swap of two 
items; move of 
operator, complement 
of operator 

swapping of sub-
trees, inversion of cut-
line or rectangle 
orientation, rotation 
of rectangle 

inversion of cut-
line; shifting of a 
cutting position 

combined with 
cross-over: repair 
of infeasible 
configurations 

decoder combination of 2 
items: position in 
containing larger 
rectangle is bottom-
left justified 

none none none 

 

Table 6: Comparison of the genetic algorithms for guillotineable 2D packing problems using order-based 
representation 

 Hwang et al. (1994) Corno et al. (1997) 

problem strip packing 
90° rotation 

packing of a single closed bin; 90° rotation; constraints: 
defects, distances, etc. 

objective minimise height  maximise utilisation 

representation permutation permutation with flags for orientation, placement, geometry 

fitness height utilisation ratio 

cross-over PMX OBX 

mutation rotation, swap of 2 elements swap of 2 elements, flip rotation, flip placement criterion 
flag 

decoder level-oriented FF3 and BF4 heuristic algorithm that considers all technological 
constraints 

 

                                                      

3 FF = First Fit heuristic  
4 BF = Best Fit heuristic  
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Table 7: Hybrid genetic algorithms for 2D irregular packing problems 

 Fujita et al.  
(1993) 

Jakobs  
(1996) 

Dighe and Jakiela 
(1996) 

Dighe and Jakiela 
(1996) 

problem convex polygons 
only; free rotation 

polygons; 
90° rotation 

polygons; 
free rotation 

polygons;  
free rotation 

objective minimise waste minimise height maximise density minimise height 

re-
presentation 

permutation permutation binary tree permutation 

fitness waste, distance to 
origin, width; 
penalty for overlap 

height, remaining 
area 

packing density height 

cross-over OX (1point) OX (1point) exchange of sub-
trees 

OX (1 point) 

mutation random removal 
and reinsertion of 
one element 

inversion; 
exchange of 2 
elements; rotation  

none random removal and 
reinsertion of 1 element 

decoding placement in 
leftmost-lowest 
position; 
local minimisation 
algorithm 

placement of 
enclosing 
rectangles in BL-
position; then shift 
algorithm; overlap 
omitted 

determined by low-
level GA: pairwise 
clustering of nodes 
items;  
overlap omitted 

determined by low-
level GA: vertical 
sliding from top of 
object into partial 
layout; overlap omitted 

 

Table 8: Comparison of the genetic algorithms for 2D irregular packing problems 

 Petridis and 
Kazarlis (1994) 

Bounsaythip and 
Maouche (1995) 

Bounsaythip and Maouche  
(1997) 

problem polygons; 
no rotation 

irregular items from textile 
industry; considering one 
strip only; 90° rotation 

irregular items from textile industry; 
90° rotation 

objective minimise height minimise length of strip minimise waste 

representation binary string 
encoding position in 
layout 

string consisting of 4 sub-
strings; 
represents a single shape or 
cluster 

binary tree 

fitness dynamic;  
overlap, used area;  
x-position of shapes 

packing density density of the strip layout formed by 
each tree in relation to the overall 
layout 

cross-over multi-point, binary interchange of sub-strings exchange of sub-trees 

mutation binary swap of sub-string within 
one individual 

change of operator; swap of 2 
elements; deletion of 1 element 

decoding none  none best relative position of 2 clusters 
determined by low-level algorithm 
together with operator info in tree; 
overlap omitted 
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Table 9: Hybrid genetic algorithms for 2D irregular packing problems 

 Poshyanonda and Dagli 
(1993) 

Ismail and Hon  
(1995) 

Gwee and Lim  
(1996) 

problem irregular items;  
90° rotation 

rectilinear shapes;  
90° rotation 

polyominoes;  
90° rotation 

objective minimise height minimise area used optimal solution 

representation permutation multi-parameter string 
including relative position and 
rotation of both items; binary 

permutation 

fitness height density of packing, penalty for 
overlap 

number of boundary edges; 
number of void and 
overlapping cells; number 
of items without overlap 

cross-over OX  binary (1point) PMX 

mutation inversion bit change  

decoding ANN to match scrap 
areas with item + sliding 
algorithm; overlap 
omitted 

set of heuristic rules circular placement starting 
from the centre of the 
object 

 

Table 10: Genetic algorithms operating on the phenotype for 2D irregular packing problems 

 Jain and Gea  
(1998) 

Ratanapan and Dagli 
(1997b, 1998) 

problem irregular items 
90° rotation 

strip packing;  
free rotation  

objective minimise layout area minimise height  

representation 2D matrix 2D geometric objects 

fitness used area; total moment of inertia packing density 

cross-over exchange of items in sub-area of 
matrix 

none 

mutation rotation; swap of 2 items;  
random new position for 1 item 

series of hill-climbing, mutation and 
recombination operations 

decoding none none 
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Table 11: Comparison of the simulated annealing approaches for 2D rectangular packing problems 

 Dowsland (1993) Faina (1999) Leung et al. (1999) 

problem pallet loading with identical 
and non identical boxes; 
90° rotation 

strip packing; guillotineable 
and non-guillotineable; 
no rotation 

strip packing; 
no rotation 

objective finding a feasible 
arrangement of a fixed 
number of boxes 

minimise area used minimise trim loss 

representation position in layout; 
overlap allowed 

permutation permutation 

fitness minimise number of 
overlapping boxes 

packing density height 

neighbourhood 
move 

set of position composed of 
width and length of boxes 

swap position of two elements swap position of two 
elements 

cooling 
schedule 

geometric geometric geometric 

decoder none left-justified routines 
considering guillotine 
constraint 

'Difference Process 
Algorithm' 

 

Table 12: Comparison of the simulated annealing approaches for 2D irregular packing problems 

 Jain et al. 
(1988) 

Marques et al.  
(1991) 

Theodoracatos 
and Grimsley 
(1995) 

Han and Na  
(1996) 

Burke and 
Kendall  
(1999) 

problem polygons; 
clustering of 2 
and 3 identical 
shapes; free 
rotation 

polygons;  
textile industry;  
90° rotation 

1. circles; 
2. polygons;  

free rotation 

circles, polygons 
with enclosures; 
improvement of 
existing layout 
90° rotation 

polygons;  
strip packing 

objective minimise 
waste 

minimise area maximise number 
of circles 

minimise height minimise height 

repre-
sentation 

2D layout 
overlap 
permitted 

2D layout 
overlap omitted 

2D layout 
overlap permitted 

2D layout 
overlap 
permitted 

permutation 
overlap omitted 

fitness waste; 
penalty for 
overlap 

area of enclosing 
rectangle; sum 
of distances 
from centre; 
proximity to 
neighbours 

waste; 
penalty for 
overlap 

overlap area; 
moment of area 
in the bottom-
left direction 

area used by each 
'row' in layout 

neigh-
bour-
hood 
move 

translation, 
rotation  

translation, 
rotation: 
large and small 
perturbation; 
reflection 

1. translation 
2. translation and 

rotation 

translation, 
rotation; swap of 
2 elements  

swap 2 adjacent 
items; swap 2 
random items; 
re-order polygons 
according to type 

cooling 
schedule 

geometric geometric polynomial-time geometric linear; 
geometric 

decoder none none none none routine using NFP 
and local search 

 


