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A B S T R A C T

The current global issue of water scarcity has demanded for over-abstraction of conventional fresh-
water resources. The states of water scarcity are anticipated to worsen, as by 2050 the population 
is estimated to reach 9 billion worldwide. Desalination is considered a solution to solve the water 
scarcity issues, as it is considered a drought-proof water source, which does not depend on climate 
change, river flows or reservoir levels. Moreover, membrane fouling is still the main “Achilles heel” 
for the effective operation of desalination systems. This makes the technology chemically, energet-
ically and operationally intensive and requires a considerable infusion of capital. The application 
of an artificial neural network (ANN), the computing model inspired by the human brain, and its 
variants, have been developed that can optimize the operation of membrane-based desalination sys-
tem through analyzing the complex experimental and real-time data. This review paper presents 
the recent trends and developments focussed primarily on the modelling and simulation of reverse 
osmosis (RO) plant using ANN to solve the challenging problem in membrane-based desalination 
systems. The literature review suggested that ANN has a potential application in predicting linear, 
nonlinear, complicated complex systems with high accuracy and with better control, prediction of 
membrane fouling, cost analysis. Therefore, ANN considered a strong basis to attract and motivate 
the researchers to work in this field in the future.
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1. Introduction

The worldwide demand for fresh and usable water 
has increased over the past decades due to population 
growth, economic development as well as expanded irri-
gation schemes, etc., [1,2]. Around 2 billion people are 
expected to suffer from water scarcity, of which, 95% 
(1.9 billion) may live in developing countries [3]. Among 
the various alternative solution of water scarcity, desali-
nation is an ideal solution to fulfill the requirements of 

human, animals, and plants. Various desalination tech-
niques such as multistage flash (MSF), multi-effect dis-
tillation (MED), reverse osmosis (RO),vapor compression 
(VC), and electrodialysis (ED), etc., and their hybrids are 
being increasingly used for treating and converting saline 
water to freshwater. Alkaisi et al., 2017 [4] standards of 
living, and the rapid development of the agricultural 
and industrial sectors. Desalination seems to be one of 
the most promising solutions to the water problem; how-
ever, it is an intensive energy process. The integration of 
the renewable energy into water desalination systems 
has become increasingly attractive due to the growing 
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demand for the water and energy, and the reduction of 
the contributions to the carbon footprint. The intensive 
investigations on the conventional desalination sys-
tems, especially in the oil-rich countries have somewhat 
overshadowed the progress and implementation of the 
renewable energy desalination (RED) recently high-
lighted RO as the major technology used for water treat-
ment in desalination plants. There is about 10% average 
growth in capacity of desalination plants per year world-
wide, out of which membrane desalination accounts for 
2/3 of total installed capacity [3]. The total desalination 
capacity is about 80 Mm3/d, of which 75 % (~60 Mm3/d) 
is using RO (installed and projected 2018) [5]. 

Membrane fouling is still the main “Achilles heel” for 
the effective working of the membrane-related desalination 
plants [6]. Thus this technology is intensified energetically, 
chemically, and operationally and demands a considerable 
infusion of infrastructure, engineering expertise etc. [7]. The 
consequences of membrane fouling are increased operating 
pressure, decreased membrane permeability, increased fre-
quency of chemical cleaning and membrane deterioration 
[8]. Modelling and simulation of such techniques is an 
important key for improving water quality as well as opti-
mization of the process parameters.

During the last two decades, various soft computing 
methodologies have been used by researchers to modify 
the desalination process through modelling and simulation. 
Among several soft computing methodologies, probabilis-
tic reasoning (PR), genetic algorithm (GA), artificial neural 
network (ANN), fuzzy logic control (FLC), etc., assume 
tremendous significance to optimize the operation as well 
as the design of the desalination plant. The optimization of 
the plant performance using these tools can significantly 
reduce the overall chemical consumption, and thereby, 
lower the operational cost of the desalination plant. Fur-
thermore, these tools or methods also support in controlling 
the various critical issues such as prediction of water qual-
ity parameters, implementation of the online automation 
monitoring system, optimization, product recovery as well 
as salt reduction [9].

ANN is the most vibrant tool that attracts the attention 
of machine learning due to its capability in predicting lin-
ear, nonlinear and complex systems with high precision and 
accuracy. ANN can be also be used to support operations of 
diverse engineering as well as medical applications at opti-
mum conditions. It can help to operate the plant with high 
profitability with efficiency to govern almost every aspect 
of the desalination plant.

El-Hawary [10] presented the possible applications 
in desalination using ANN. It efficiently supports fault 
detection, alarm processing, control applications, load 
forecasting, operations, security assessment, and opera-
tional optimization. Special advantages offered by ANN 
include the ability to work with incomplete knowledge, 
its information storing capability, fault tolerance, decision 
making, parallel processing, etc. However, it does present 
some disadvantages such as long training time, hardware 
dependence, unexplained behavior, difficulty in locating 
the problems in the network, etc.

The exhaustive aim and objective of this review article 
are to understand the possibilities of design and imple-
mentation of various perspectives of RO using ANN. RO 

is most efficient in terms of separation performance as 
well as salt rejection and has lower energy consumption 
per unit of treated water. The RO applications in desalina-
tion further involve sub-technologies such as seawater RO 
(SWRO), brackish water RO (BWRO), low-pressure RO 
(LPRO), RO electrodeionization (RO-EDI) and RO demin-
eralizer (RO-DM). Hybrid technologies based on RO such 
as RO-MSF, RO-FO, NF-RO-MED, UF-SWRO, etc. have 
been also developed for further enhancing the productiv-
ity of freshwater productivity. ANN provides an appro-
priate controlling strategy and simulates the controlled 
process. Hence, significant outcomes of its utilization 
in modeling and simulation are: increased high impact 
research, useful simulation results to enable the industry 
to avail benefits of effective decision making for process 
optimization and control, reduced labor and maintenance, 
and thereby, increased operational time of the RO based 
desalination plants and their productivity.

The organization of this review article is as follows: Sec-
tion 2 details the theory of ANN and RO used in desali-
nation processes; Section 3 presents the extensive survey 
of literature and sketches the efforts in modelling of RO 
based desalination processes using ANN from 1995–2018 to 
highlight its increasing significance in the area. The future 
aspects and perspective work methodology are discussed 
in Section 4, and finally, in Section 5 we summarize and pro-
vide conclusions.

2. Theory

2.1. Artificial Neural Network 

ANN mimics the behavior of biological neurons in the 
human brain. It can learn from datasets (patterns of data), 
test the trained network using new sets of data, corrects the 
error in prediction followed by a final validation. In line 
with this, the three phases of ANN are called training or 
learning (learning period of the network), recall (testing 
of new data by training phase) and generalization (subject 
to minor change or error corrections). Its basic founda-
tion lies in the artificial neuron, also called node. Murthy 
et al. [11] presented the anatomy of a processing element 
(PE) of a single neuron which is shown in Fig. 1. It has four 
basic components: inputs and outputs, internal thresholds, 
weight factors, and functional forms.

Fig. 1. Anatomy of a processing element (PE) of a single neuron. 
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It is a function of the difference between 
the input function and the internal 
threshold. Such a function may be chosen 
from the root, log or sigmoidal form. A 
sigmoid function as:

f x
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Various method/algorithms are used for training 
of ANN such as error correction learning, Back prop-
agation (BP) algorithm, etc. BP algorithm frequently 
employed a method to train the networks in desalina-
tion and chemical engineering fields. It predicts RO per-
formance by defining the three layers; input, hidden, 
output, for ANN. The evolution of such a BP network is 
presented in Fig. 2.
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BP algorithm requires an ANN such as ‘Perceptron’ 
which has feed forward interlayer connections and each 
layer feeds sequentially into the next layers. It has no intra-
layer, recurrent or feedback connections. Nodes may have 
any value depending upon the applications. It attempts to 
map the system properly to set inputs with expected out-
puts through minimization of SSE chosen as the error func-
tion. Various steps are shown in Fig. 3 and subsequently, the 
BP algorithm to perform particular applications has been 
presented.
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where, f( ) is the sigmoid function

4. The output from layer C is estimated using:
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where, f( ) is another sigmoid functionFig. 2. Three-layered back propagation network.
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5. kth component of the output error, e
k
, for each node in layer 

C is calculated using:
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The convergence may be if a momentum term is included 
and weight changed are smoothed by:
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Where, α is the momentum term (0 < α < 1) and n 
represents the iterative step.

7. At the last repeat steps, 2 to 6 until the SSE is 
appropriately small or zero.

2.2: Reverse osmosis

RO is the most versatile membrane-based desalina-
tion technology used across the world. It has assumed 
this popularity because of its collective advantages, such 
as operation at very high pressure, ease of installation, 
clean, flexibility to use several membrane types, easy to 
troubleshoot and high recovery. Fig. 4 illustrates the basic 
principle of osmosis and reverse osmosis. Osmosis is the 
targeted diffusion of water through a semipermeable 
membrane, which permits water molecules passage while 
the larger molecules such as salt particles and others are 
not permitted. This movement of molecules is inevitable 
and creates the natural known as osmotic pressure. RO 
is a pressure driven processes, that forces solvent from 
a region of more solute concentration through a semi-
permeable membrane to another region with less solute 
concentration by applying a higher pressure (excess of 
osmosis pressure). Therefore, the direction of water flow 
reversed, and hence, called reverse osmosis, presented by 
Fritzmann et al. [12] water scarcity is being recognised as 
a present or future threat to human activity and as a con-
sequence, a definite trend to develop alternative water 
resources such as desalination can be observed. The most 
commonly used desalination technologies are reverse 
osmosis (RO). 

Mahadeva et al. [9] presented a generalized block 
diagram of RO desalination plants as shown in Fig. 5. In 
such a desalination plant, primarily seawater is stored 
in a storing chamber using an external low-pressure 
pump. A core RO system is made up of 4 basic com-
ponents: pre-treatment, external pressure, membrane, 
and post-treatment. Initially, pre-treatment removes the 
excess turbidity and suspended solids followed by filtra-
tion. Then, the high-pressure pump applies the osmotic 
pressure to remove the brine at the membrane outlet. 
Further, membrane assemblies such as fine hollow-fiber, 
spiral-wound and tubular are used to resist high tem-
perature, for high permeability, for high salt rejection and 
to ensure long and reliable life. Finally, the product water 
requires post-treatment prior to storage and transmission 
to the customer.

When the RO desalination plant has been installed, the 
most vital point for the RO system is that its parameters 
(fluxes, salt rejection, recovery, etc.) must be tested well 
before transmission of purified water to the user. Therefore, 
some basic transport equations and operational variables 
used in the plants generally and also used elsewhere [13] are:

Fig. 3. A flow diagram showing the implementation of back-
propagation technique.
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2.2.1. Basic transport equations

Water flux, J
1 
(m3/m2/s), through membrane is given by-

J K P1 1= ∆ − ∆( )π  (13) 

where ∆π and ∆P are the osmotic and hydraulic pressure 
differential across the membrane (atm). K

1 
is the pure water 

transport coefficient, defined as water flux through the 
membrane per unit driving force. It is dependent on mem-
brane properties, temperature of the system and chemical 
composition of salt solution.

K K
A

W1 =
τ

 (14)

where K
w 

is the membrane permeability coefficient of water, 
A and τ are the membrane area and thickness (m).

π = MRT  (15)

where M is the molarity of solution (mol/L), R is univer-
sal gas constant (0.08206 L atm mol–1 K–1) and T is the feed 
water temperature (K).

 

Fig. 4. The basic principle of osmosis and reverse osmosis. 

Fig. 5. Generalized reverse osmosis (RO) desalination plant. (Source: Mahadeva et al., Modelling and simulation of desalination 
process using artificial neural network : a review [9]).
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However, salt flux, J
2 

(kg/m2/sec), an indicator of the 
membrane effectiveness in removing salts, is proportional 
to the concentration difference, ∆C, across the membrane 
and given by:

J K C2 2= ∆  (16)

where K
2 

is coefficient of salt transport (m/s) and
∆ = −C Cf Cp  (where, C

f
 and C

p
 are the salt concentration of 

feed and product respectively (kg/m3)).
The ability of membrane towards salt rejection is 

expressed as 

Salt rejection
Product concentration

Feed concentra
  

 

 
%( ) = −1

ttion
%







× 100  (17)

Product water recovery is expressed in terms of flow 
rates of product and feed as follows:

Recovery R
Q

Q

p

f

( ) %= ∗100

 

(18)

where Q
p 
and Q

f
 are the product and feed flow rates (m3/day).

2.2.2. Operational variables

Monitoring of the operational variables and data are 
an important step in the RO plant used to check its per-
formance periodically. The variable, permeate flux, is the 
volume flowing through the membrane per unit area per 
unit time. Since it is important to maintain constant and 
controlled during operation. Another variable, permeate 
conductivity is essentially used in RO plant to estimate the 
quality of the produced water but is affected by changes in 
pH, temperature, pressure, etc. The major requirement in 
such a plant is to maintain mentioned parameters so as to 
ensure good control of quality as well as the quantity of the 
product water. 

A basic step by step algorithm of modelling and simula-
tion of RO desalination technique using ANN is illustrated 
in Fig. 6. In the presented algorithm, BP method is proposed 
as a useful ANN learning technique. This is the generalized 
algorithm for RO desalination plants. 

In this section, we have summarized ANN theory 
including its advantages, main component of PE and learn-
ing BP algorithm in detail. Furthermore, basic principles of 
RO and step by step algorithm to employ ANN for mod-
elling a generalized desalination plant has been presented. 

3. Progress in ANN applications to RO modelling in  
literature 

The basic elements of ANN utilized in RO desalination 
are the prediction and adaptation which can decrease the 
degradation of the membrane to enhance overall plant’s 
efficiency. ANN is the most effective machine learning tool 
in prediction and optimization problems associated with 
small as well as large-scale desalination plants. The mod-
elling and simulation of desalination plants using ANN 
have been exhaustively explored and analyzed by vari-
ous scientists and academicians. Initially, Niemi et al. [14] 
developed a feed-forward neural network system for the 

separation of acetic acid and ethyl alcohol from water by 
using RO. It involves input variables such as; flow veloc-
ity, solute concentration, temperature, and pressure, as well 
as output variables such as; rejection and permeates flux. 
Levenberg-Marquardt (L-M) method is used to determine 
the weights in the network, as it was found easy to use and 
required less computational time for processing. The results 
were compared with conventional mass transfer method 
(as a finely porous model). It observed that the permeate 
flux and rejection of ANN model were better than the finely 
porous model.

Jafar et al. [15] proposed a neural network model based 
on adaptive radial basis function (Adaptive RBF) algorithm 
for RO plants. An adaptive RBF produced better error 
norms of permeate prediction (1.73) than BP algorithms 
(2.084) but required more computational effort. The error 
norms of total dissolved solids (TDS) prediction of adaptive 
RBF model (2.32) was also better than BP algorithms (3.41). 
Al-Shayji et al. [16] modeled of large-scale commercial (MSF 
(1,81,760 m3/d) and RO (56,800 m3/d)) desalination plants 
located in Kuwait and Saudi Arabia through two methods: 
model-based process simulation and data-based neural net-
work. The authors found a close match between the simu-
lated and actual plant results. Murthy et al. [11] developed 
a model for the separation of sodium chloride using ANN 
through L-M method. The system involves input parame-
ters of feed concentration (1,000–30,000 ppm), pressure (20–

Fig. 6. Algorithm followed during ANN modelling of an RO 
process.
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100 atm), and feed rates (300–1500 mL/min). The predicted 
error range was within ±1%. 

Abbas et al. [17] attempted a feed forward neural 
network model using the L-M algorithm to predict the 
permeate rate of RO plants. They used a FilmTech SW30 
membrane, where the permeate rate increased with increas-
ing temperature and pressure and decreased with increas-
ing concentration of feed. Zhao et al. [18] proposed a model 
for calculating NF/RO water quality through a modified 
solution-diffusion model and two ANN models. The first 
model was multilayer perceptron (MLP) based which was a 
feed-forward neural network employs a sigmoid function. 
The second ANN model used was normal RBF composed 
of a feed-forward neural network by a single hidden layer 
using a softmax function. These models predicted the per-
meate TDS more accurately than existing models. They 
have also compensated the effects of system flux, recovery 
and feed water quality on solute mass transfer coefficient. 
Al-Alawi et al. [19] developed an ANN-based prototype 
controller for the optimum use of power supply and photo-
voltaic diesel system. It consisted of a diesel generator (DG), 
photovoltaic modules and battery bank for RO desalination 
plant. It was able to control DG On/Off status, maintain 
minimum loading levels with high accuracy, reduced fuel 
dependency, engine wear, tear and helped cut down green-
house gas emissions.

Lee et al. [20] and was then applied to the simulation 
of feed water temperature. The model consists of five input 
parameters (i.e., feed temperature, feed total dissolved sol-
ids (TDS presented an ANN model to predict the perfor-
mance parameters of SWRO desalination plant. It involved 
of 5 input parameters (trans-membrane pressure, feed 
temperature, feed flow, feed TDS and time) and 2 output 
parameters (flow rate and permeate TDS). Fujairah SWRO 
plant located in the United Arab Emirates producing 454,000 
m3/d of drinking water in one year is a hybrid plant consist-
ing of MSF and SWRO ensuring 62.5% + 37.5% fraction of 
water production. A variant of the feed water temperature 
and trans-membrane pressure created to have a significant 
effect on permeate TDS and flow rate. Libotean et al. [21] 
developed a model with BP and support vector regression 
(SVR) algorithms for forecasting RO performance and possi-
ble use for operational diagnostics located at Port Hueneme, 
California. It includes the concept of the short-term memory 
time interval to capture the time-variability of plant perfor-
mances. An actual state of the plant and 2 types of forecast-
ing models (sequential and matching) have been developed 
for real-time RO performance. The models show noble 
predictive accuracy for short-term memory time intervals 
in ranged 8–24 h. The ability of forecasting of plant perfor-
mance would provide additional flexibility to process con-
trol approach and an early warning scheme for membrane 
cleaning, adjustment of pressure and flow rates, etc.

Khayet et al. [22] proposed an analytical model for 
simulation and optimization of RO using response surface 
methodology (RSM) and ANN. RSM model was valid for a 
specific range of feed salt concentration while the latter was 
valid over the complete range. RSM model was carried out 
for low brackish and seawater high salt feed concentrations. 
RSM and ANN models have the ability to solve linear and 
nonlinear multivariate problems. To test the significance of 
both models they have been analyzed by analysis of vari-

ance (ANOVA) method. All objective functions given by 
ANN and RSM have been optimized by Monte Carlo simu-
lation methods. Moradi et al. [23] presented an ANN model 
using BP feed-forward network and modified surface force 
pore flow model for RO membrane performance. Prediction 
parameters are: total flux, separation factor and pure sol-
vent flux which are predicted well than the others. The pre-
dicted values have been compared with experimental data 
and achieved mean square error < 0.0007 and correlation 
coefficient of 0.99. 

Garg et al. [24] developed a small-scale BWRO plant 
using RSM (with center composite design) and ANN (using 
BP) methodology. The results were compared and found to 
be optimal inside the acceptable range with a water recov-
ery of 19.18%, TDS rejection of 89.21% and specific energy 
consumption of 17.60 kWh/m3. It was also observed that 
the energy consumption of the plant was significantly mini-
mized. Barello et al. [25] expressed through a model that the 
water permeability constant (K

w
) carries high significance 

in any desalination plant. The authors developed a time-de-
pendent ANN model based on correlation to predict K

w 
in 

desalination process under fouling conditions and observed 
that, the model was competent to predict K

w 
values for any 

operating pressure, any membrane type and any feed salin-
ity within a wide range. Aish et al. [26] developed a forecast 
RO desalination plant performance model (at 5 small and 
large-scale BWRO plants in Gaza strip) to predict the next 
week values (TDS and permeate flow rate) using ANN. The 
MLP and RBF based networks were trained with the given 
performance parameters. Both networks showed highly 
satisfactory and better results compared to conventional 
methods. It was found that MLP based results were bet-
ter than RBF. In adding, multiple linear regression model 
was also used to compare the predicted results (using MLP 
and RBF). Salgado-Reyna et al. [27] presented a mem-
brane-based can-manufacturing waste-water treatment 
plant using 4-layer feed forward ANN through BP algo-
rithms. It included pre-treatment processes such as filters, 
settling tank, coagulation and flocculation reactor, sand 
activated carbon, and polishing filters. The results showed 
a 96.1% acceptable removal of TDS and 72% effluent recov-
ery. The predicted and experimental flow data were nobly 
correlated. Madaeni et al. [28] developed an optimized 
data-driven system for predicting the performances of 3 
RO plants (located at Fars Province, Iran), finding control 
strategies using ANN (using BP algorithms) and long-term 
forecasting (next 5,000 h) of process performance. GA was 
used to find feed flow rate, TMP and control process in a 
specific period of time. 

Salami et al. [29] proposed a simple mathematical equa-
tion and ANN model (using BP) to simulate 8 types of 
SWRO membranes (SW30-2540, SW30HRLE-4040, SW30-
4040, SW30-3031, SW30HR-380, SW30HRLE-440i, SW30 
HRLE-400i, SW30 HRLE-1725). ROSA software was used to 
generate feed data. Both models were found to be highly 
reliable, accurate and provided optimized results. The cor-
relation coefficients of the ANN model (0.97) were found to 
be better than the mathematical equation (0.96). Iranmanesh 
et al. [30] implemented the RBF model for the estimation 
of RO membrane performance based on the modified sur-
face force pore flow model. It includes total flux, separation 
factor, and pure solvent flux. The predictive ability of the 
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RBF technique and experimental data were evaluated. The 
mean square error for total flux (0.00009 and 0.00012), for 
separation factor (0.00009 and 0.00016) and for pure solvent 
flux (0.00013 and 0.00013) were observed. Cabrera et al. [31] 
presented models for handling the process of a small-scale 
prototype SWRO desalination plant (using ANNs as control 
strategy) located at Gran Canaria, Spain. The work helps 
them manage varying available electrical power. Cabrera et 
al. [32] again used the three machine learning techniques 
(ANN, SVM, and RF) to the study the performance of 
wind-powered SWRO desalination plant. The work high-
lighted two outcomes: first, SVM and random forest (RF) 
had a better prediction than ANN, and second, variable 
pressure and flow rate operate more continuously than the 
constant pressure and flow rate.

In this section, we have reviewed extensively recent 
trends and developments in the modelling and simulation 
of RO related plants using ANN that help solve the chal-
lenging problem of increasing productivity, improving 
water quality and enhancing process efficiency. A short 
summary of relevant research contributions around RO 
desalination technologies using ANN/Hybrid ANN tech-
niques by researchers is presented in Table A1 (Appendix).

Fig. 7 illustrates the research contributions of research-
ers based on modelling and simulation of RO desalination 
processes using ANN from 1995 to 2018. The analysis of 
recent trends shows that research contributions using ANN 
have increased significantly in the last six years from 2013 
to 2018.

The description in section 3 enables the understanding 
that ANN machine learning tool is very effective in predict-
ing the parameters and proficient of managing the linear, 
nonlinear and complicated complex problems. However, the 
accuracy of an ANN model depends on the suitable selec-
tion of input variables and methodology. It also depends 
on the wide range of available datasets from desalination 
plants. It can manage noisy data more efficiently than oth-
ers. However, the ‘overtraining’ of the network may lead to 
an incorrect prediction.

4. Future aspects of ANN in modelling and simulation of 
RO desalination plants 

Various research and engineering possibilities in the 
area of modelling and simulation of RO desalination plants 
using ANN have been discussed in the literature survey. 
We notice and express a few important and relatively unex-
plored prospectives as follows:

Firstly, with growing requirement of freshwater for 
humans, animals, and plants, the attention in using renew-
able energy (solar, wind, etc.) for desalination in the des-
ert/remote areas has increased but needs more extensive 
attention and efforts. Shahzad et al. [33] proposed a state of 
art review based on renewable energy and future aspects in 
this regards. It helps to save energy as well as protect the 
environment to achieve sustainable goals. Verma et al. [34] 
presented a comprehensive review of source of renewable 
energy and its optimization in MSE using dynamic model-
ling and simulation.

The second possibility is the use of process optimiza-
tion. Many researchers in their previous articles (1995–2018) 
have used BP algorithm, L-M method, RBF neural network, 

MLP, SVM, etc. The models may be simulated extensively 
with other optimization techniques as well such as particle 
swarm optimization (PSO), deep neural network (DNN) or 
a combination of above to explore further improved results. 
The structure of the neural network may also be modified 
with different possibilities such as hidden layers and nodes 
variations to meet the required goals.

Another possibility is the use of more number of input/
output variables for deep learning. Most of the research-
ers till date have analyzed only the RO modules input/
output variables in the modelling. In addition to the RO 
modules, pre-processing and post-processing also play an 
essential role in the desalination process. We can, therefore, 
involve all input/output variables including those in pre- 
and post-processing for the improvement of overall perfor-
mance. 

Other relatively unexplored area is the use of mainte-
nance and control strategy. Alatiqi et al. [35] presented a 
newly developed strategy for process control and instru-
mentation in desalination plants. They included various 
controllers such as proportional integral derivative (PID) 
and fuzzy-logic based systems to improvise the process 
control. Cabrera et al. [31] well defined the use of control 
strategy in their research, managing the operation using 
ANNs for a small scale SWRO desalination plant located at 
Gran Canaria, Spain. 

Another less explored area in RO is impact of membrane 
fouling. Modelling and simulation of membrane fouling is 
also an important parameter for operating RO desalination 
plants efficiently. Roehl et al. [36] presented a membrane 
fouling mechanism using ANN for a large scale RO desali-
nation plant. They have developed two models, theoretical 
as well as ANN, to simplify and define the fouling process. 
Both models were tested under steady-state conditions at 
pilot and laboratory scales with interesting results. 

Another area of future interest could involve the use of 
the right number (in %) of data used for training, testing 
and validating. Moradi et al. [23] have randomly divided 
experimental datasets into 3 parts, 70% applied for training, 
15% for validation and the remaining 15% for testing. Some 
other researchers have used a different weightage of such 
datasets for different plants. 
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Fig. 7. Research contribution of researchers using ANN from 
1995 to 2018 (based on Table A1 in the appendix).
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Another area of future research could involve hybrid-
izing efficient technologies. The choice of water treat-
ment equipment depends upon the quality and quantity 
requirements of water. Many researchers have used single 
technology (RO, MSF, MED etc.) for water treatment. The 
modelling and simulation of hybrid technologies (RO-MSF, 
RO-MED, etc.) to explore improved operating parameters 
and outputs could also provide remarkable results in this 
field. Salehi et al. [37] proposed modelling of waste brine 
NF process through the neuro-fuzzy system and ANN. This 
model predicted proficiently the sodium chloride rejection 
of waste brine and permeate flux.

Further, many conventional mathematical models 
such as solution diffusion, Kimura-Sourirajan analysis, 
finely porous model, surface force pore flow model, etc. 
have nicely predicted the performance of the desalination 
process. We can use conventional mathematical concepts 
with efficient solution algorithms for solving the models of 
desalination plants. 

Desalination plant cost, which includes the cost of instal-
lation, maintenance, labor, instruments as well as training, 
is one of the key parameters that needs serious analysis. 
Ruiz-Garcia et al. [38] implemented an ANN-based model 
after considering operating and maintenance cost as weigh-
ing parameters in SWRO plant located in Fuerteventura 
(Canary Islands). It involved the specific cost of the car-
tridge filter, chemicals, membrane replacements, staff and 
maintenance and was verified with the good estimation.

Use of efficient simulation tools may enable accurate 
prediction of plant performance. For example, MATLAB 
neural network toolbox is the most versatile toolbox for the 
machine learning community and is used in solving many 
research problems. Some researchers have also used ASPEN 
PLUS (Process simulation software), SAS Enterprise Miner 
(data mining software), NeuroShell Simulator, ANOVA, 
ROSA software, Monte Carlo simulation method, etc. for the 
simulation of desalination plants. We can implant a plant 
optimization strategy by using another toolbox available in 
MATLAB such as global optimization toolbox, statistics, and 
machine learning toolbox. In addition to aforementioned 
software, other software such as Smooth Particle Hydro-
dynamics (SPH), Laboratory Virtual Instrument Engineer-
ing Workbench (LabVIEW), etc., may be employed in real 
time environments for better visualization, optimization of 
the process, control and maintenance of desalination plants. 
The success of SPH in hydraulics as explained earlier by Vio-
leau et al. [39] stated in their vision paper that challenging 
applications are required to consolidate SPH codes for engi-
neering purposes. The modelling of membrane fouling and 
optimization, considering particle deposition and its effect 
on the membrane’s performance, is a suitable application 
for SPH numerical approach, which can cope with multiple 
fluid-structure interaction phenomena. Complex geometries 
are no issue because SPH is a meshless method. SPH can 
easily deal with multiphase flows, efficiently handle mul-
tiple species, the three phases gas, liquid, solid, and tran-
sitions between these (liquefaction, vaporization, and vice 
versa). Still concerning solids: elastic and plastic deforma-
tion (including fracture) can also be simulated through SPH 
as demonstrated earlier by Zisis [40]. Initially developed in 
the field of astrophysics and applied to fluid dynamics in 
engineering during the last two decades, SPH has recently 

been adapted and effectively used for the description of 
hydraulic transients in pipe flow by Hou et al. [41] and Kor-
zilius et al. [42]. Additionally, NI software LabVIEW is a 
powerful graphical versatile software for measurement and 
control and offers more flexibility to programmers to simply 
view and adjust data or control inputs. 

In section 4, we have thus presented the possible future 
aspects in terms of different unexplored or less explored 
possibilities in modelling and simulation of RO desalina-
tion plants. 

5. Conclusion

Modeling and simulation have been proposed to predict 
the performance of membrane-based desalination systems 
such as SWRO, BWRO, LPRO, RO-EDI, RO-DM, RO-MSF, 
RO-FO, NF-RO-MED, UF-SWRO, RO renewable energy, etc. 
The literature survey suggested that it can be combined with 
deterministic models that comprise hybrid models (neu-
ro-fuzzy and the like). An artificial neural network model, 
the computing model inspired by the human brain, and its 
variants, that have been developed and can optimize the 
operation of membrane-based desalination system, effective 
decision making, better design, etc. are expected by analyz-
ing the complex experimental and real-time data. Based on 
the reviewed literature of the ANN-based modelling and 
simulation approaches applied to RO desalination processes, 
ANN has an improved capability to predict linear, nonlin-
ear, complicated complex systems with high accuracy and 
with better control. Its prediction ability has attracted several 
researchers to work in this field and to solve diverse engi-
neering problems. ANN behave like a MIMO system with 
the capability to handle many independent input-output 
variables. An exhaustive future perspective of ANN in RO 
desalination plants involving specific applications related 
to renewable energy, process optimization, improved main-
tenance and control, predicting and eliminating membrane 
fouling, cost analysis, etc., forms a strong basis to attract and 
motivate the researchers to work in this field in future.
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