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Introduction

Although compounds with antibacterial activities have
been known for centuries, antibiotics, or antibacterials,
evolved from the pioneering discoveries of penicillin by
Fleming in 1928 and sulphonamides in 1935.1 For two
decades, â-lactams, sulphonamides, with or without tri-
methoprim, macrolides and tetracyclines were the back-
bone of antibiotic therapy and it wasn’t until the 1960s that
development and research (basic and clinical) led to
extended-spectrum agents with broader ranges of anti-
bacterial activity, including cephalosporins, monobactams,
cephamycins, carbapenems, improved tetracyclines and
macrolides/azalides and quinolones.

The quinolones are a unique class of molecules in that
they act against both typical and ‘atypical’ bacterial
pathogens by inhibiting DNA gyrase, an enzyme that is
necessary for the replication of nucleic acid. These agents

were first described by Lescher et al.2 Since then, over
10,000 quinolone derivatives have been synthesized world-
wide, although few have entered into clinical development
and, currently, fewer than ten have been approved for clin-
ical use.3

The original quinolone was 1,8-naphthyridine-nalidixic
acid and the 4-quinolone synthetic compounds are ana-
logues of this original molecule.4 Nalidixic acid possesses
limited in-vitro activity against Gram-negative bacteria
and its use was restricted to oral treatment of patients with
urinary tract infections.

Modifications to this drug in the 1970s gave rise to simi-
lar compounds (oxolinic acid, rosoxacin, cinoxacin and
flumequine) which were also available only for use in
patients with urinary tract infections, but it was not until a
piperazine substitution at position 7 of the naphthyridine
core and fluorination at position 6 that molecules with
improved activities against Gram-negative and -positive
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pathogens respectively were produced; fluorination pro-
duced the fluoroquinolones.

Norfloxacin was the first of the fluoroquinolones and 
possessed increased activity against Gram-negative bac-
teria, including Pseudomonas aeruginosa.5 As with earlier
compounds, however, the use of norfloxacin was restricted
to the treatment of patients with urinary tract infections.
Two major pathways of quinolone development followed
from the original 1, 8-naphthyridine nucleus and with the 
6-fluoro, 7-piperazinyl modifications. The first pathway
involved substitution of a carbon atom for nitrogen,
thereby resulting in ciprofloxacin, a 1-cyclopropanyl, and
ofloxacin and levofloxacin, both 1, 8-cyclo compounds—all
three of which were classified as second-generation fluoro-
quinolones. Sparfloxacin and clinafloxacin, with improved
activities and pharmacokinetics,6 followed as extended-
spectrum second-generation agents and moxofloxacin,
resulting from a 7-azabicyclo modification which endowed
the molecule with enhanced antibacterial activity and phar-
macokinetic properties, is a third-generation quinolone.
Moxifloxacin also possesses an 8-methoxy side-chain—a
property it shares with gatifloxacin. Grepafloxacin is classi-
fied as a second-generation agent. The second major path-
way involved modification of the naphthyridine core,
giving rise to enoxacin and rosafloxacin, and a 7-azabicyclo
modification produced trovafloxacin—a third-generation
agent with enhanced antibacterial activity. It was not until
ciprofloxacin came on to the market that a broad-spectrum
quinolone became available for systemic use—initially as
an oral formulation and later an iv one. Ofloxacin and 
levofloxacin were also subsequently released for systemic
use.

Third-generation quinolones have enhanced activities
against Gram-positive bacteria and prolonged serum 
half-lives, thereby permitting od dosing. Current third-
generation quinolones include moxifloxacin and trova-
floxacin. Clinafloxacin, gatifloxacin and grepafloxacin,
which are regarded as second-generation agents, have
slightly weaker potencies against Streptococcus pneumo -
niae isolates, but also possess more favourable pharmaco-
kinetic properties than earlier fluoroquinolones.7

Respiratory pathogens, antimicrobial resistance
and the need for new agents

Antimicrobial resistance is a global concern. Resistant 
bacterial isolates have emerged and spread throughout the
world because of the genetic plasticity of microorganisms,
the selective pressures of antimicrobial use and the mobil-
ity of the world population.8 As a consequence, the emerg-
ence of multidrug-resistant pathogens has fuelled the
continual search for new compounds that are stable against
known mechanisms of resistance. Unfortunately, many
such compounds are closely related because they are 
members of the same class of agents or have similar basic

structures. While resistance to virtually all human patho-
gens and to at least one antimicrobial agent have been
recognized, the full impact of this emerging resistance has
not yet been fully appreciated.

Antimicrobial resistance amongst bacterial respiratory
tract pathogens is an area of particular concern. The 
predominant causes of lower respiratory tract infections
are: Haemophilus influenzae, Moraxella catarrhalis and 
S. pneumoniae and much emphasis has recently been
placed on these three pathogens and the increasing inci-
dences of resistance amongst them to antimicrobial agents
commonly used in the outpatient setting. The following is a
review of the roles of the three pathogens in respiratory
tract infections and current levels of antimicrobial 
resistance.

Woodhead9 recently reviewed the incidences of microb-
ial pathogens in community-acquired pneumonia and
reported the following: S. pneumoniae, 30–75%; Myco -
plasma pneumoniae, 5–18%; H. influenzae, 4–5%; and 
others, including Legionella pneumophila, Staphylococcus
a u r e u s, C h l a m y d i a spp., Coxiella burnetii and M. catarrhalis,
0–10%. Similarly, Mandel10 suggested that the incidence 
of pneumococcal pneumonia is decreasing, but that 
S. pneumoniae is still the single most common pathogen,
with rates ranging from 8 to 34%. Differences in reported
incidences may arise from the use of pneumococcal
polysaccharide capsular antigen testing in some studies, the
ability to obtain appropriate sputum samples and whether
or not patients were taking antimicrobials at the time of
specimen collection.

Ball11 reviewed the prevalences of major respiratory
pathogens in patients with acute exacerbations of chronic
bronchitis. Evaluation of seven studies revealed that the
prevalences of H. influenzae were 30–58%, M. catarrhalis
3.3–22.5% and S. pneumoniae 15–25%. Collectively, H.
influenzae, M. catarrhalis and S. pneumoniae account for
70% of all exacerbations and 85–95% of all bacterial 
exacerbations.

Gwaltney12 recently reviewed the aetiology of com-
munity-acquired sinusitis and reported that S. pneumoniae
was associated with 26–31% of episodes, H. influenzae with
21–26%, S. aureus with 4% and M. catarrhalis and Strepto -
coccus pyogenes with 2% each.

M. catarrhalis was, for many years, an under-recognized
pathogen in patients with respiratory tract infections.
Catlin13 reviewed its role as a disease-causing microorgan-
ism and, in the past few years, numerous surveillance 
studies have characterized the susceptibilities of this patho-
gen to amoxycillin and many broad-spectrum agents. Fig-
ure 1 illustrates the percentages of â-lactamase-producing 
M. catarrhalis strains isolated in Canada, Europe and the
USA. Currently, .85% of all strains produce â-lactamase,
this being the principal mechanism of resistance in this 
bacterium.

H. influenzae is one of the commonest respiratory tract
pathogens. â-Lactamase-producing strains were first recog-
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nized in the mid-1970s and, since then, their incidences
have increased to .30–35% of isolates in North America
and .15–20% in Europe. Unlike M. catarrhalis, for which
little regional variation in susceptibility to amoxycillin has
been observed, H. influenzae isolates have exhibited wide
geographical variation in terms of resistance to this drug.14

Figure 2 shows the percentages of â-lactamase-producing 
H. influenzae isolates in studies carried out in Canada,
Europe and the USA. Doern et al.15 studied H. influenzae
isolated from 30 medical centres in the USA and found that
the percentage of â-lactamase-positive strains varied from
17 to 68.3%. Similarly, Scriver et al.16 reported that the inci-
dence of â-lactamase-positive isolates from nine Canadian
provinces varied from 11 to 45.5% and Felmingham et al.17

described regional variation of 4.3% to 23.4% in 12 regions
of the UK. Regional variation has also been observed in
Europe, with incidences ranging from 1.8 to 26% (Felming-
ham, D., personal communication).

Doern et al.15 also identified strains of H. influenzae that
were â-lactamase-positive, but resistant to co-amoxiclav.
These isolates also exhibited increased MICs when their
susceptibilities to cefaclor, loracarbef, cefprozil, cefuro-

xime and cefpodoxime were determined, thereby demon-
strating cross-resistance. A subsequent evaluation of the
same isolates by Jacobs & Bajaksouzian18 showed that the
higher MICs of co-amoxiclav could be accounted for by
variations in inoculum, the presence of spheroplasts and/or
a difference in the potency of amoxycillin and/or clavulanic
acid. Our laboratory (unpublished data) investigated 10–12
isolates of H. influenzae with increased MICs of co-amoxi-
clav. Should H. influenzae isolates resistant to co-amoxi-
clav emerge and spread, there would be considerable
implications for the future use of many currently available
oral antimicrobial agents, particularly the cephalosporins.
In a further worrying development, Vali et al.19 described
an enzyme, VAT-1, in isolates of H. influenzae which
exhibited cephalosporinase activity and resistance to â-
lactamase inhibitors such as clavulanic acid, sulbactam and
tazobactam.

The dramatic increase in the incidence of isolates of 
S. pneumoniae with reduced susceptibility to penicillin is a
cause of particular concern. Until 1991, the incidence of
such strains was ,5% in Canada and 5–10% in the USA,
while in Europe, rates varied from ,1% to .30%; most of
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Figure 1. Percentages of M. catarrhalis isolates producing â-lactamase in studies from the USA (m), Europe ( ) and Canada (M).

Figure 2. Percentages of H. influenzae isolates producing â-lactamase in studies from the USA (m), Europe ( ) and Canada (M)
between 1976 and 1997.
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these isolates exhibited intermediate susceptibility. Today,
however, the picture is very different (Figure 3). Simor et
al.20 recently reported that 11.7% of 1089 pneumococcal
isolates from across Canada exhibited reduced susceptibil-
ity to penicillin: 8.4% intermediate susceptibility and 3.3%
resistance. Resistance rates varied from 7.4% in Atlantic
Canada to 10.3% and 16.1% in central and western Canada
respectively. Doern et al.21 reported that 23.6% of pneumo-
coccal isolates from 30 medical centres in the USA showed
reduced susceptibility to penicillin: 14.1% intermediate
susceptibility and 9.5% resistance; overall rates amongst
the centres varied from 2.1% to 52.9%, with rates of inter-
mediate susceptibility and resistance varying from 2.1% to
29.5% and from 0% to 23.5% respectively. Thornsberry et
al.22 reported that 33.5% of 9190 pneumococcal isolates
exhibited reduced susceptibility to penicillin (19.9% inter-
mediate susceptibility and 13.6% resistance, with regional
variation ranging from 28.6% to 40.4%. Felmingham et al.17

investigated the incidence of reduced susceptibility to peni-
cillin amongst pneumococci in the UK and identified 7.1%
of isolates as falling into this category: 3.4% intermediate
susceptibility and 3.7% resistance. Regional variation
ranged from 0 to 38.5% overall and from 0 to 18.7% and 0
to 23.1% for isolates showing intermediate susceptibility
and resistance respectively. For Europe, the ranges for
strains exhibiting intermediate susceptibility and resistance
were 0.2% to 20.4% and 0 to 47.5%, respectively for 1995
and 4% to 18.4% and 0 to 32.1%, respectively for 1996.
Resistance rates in France and Spain were higher than
those in Italy, Germany and the UK (Felmingham, D., per-
sonal communication).

The increasing incidence of penicillin resistance amongst
pneumococci is clearly a major cause of concern, but
equally or more worrying is the marked cross-resistance to
other agents. Based on data from Simor et al.20 and Doern
et al.21, as well as breakpoints recommended by the
National Committee for Clinical Laboratory Standards

(NCCLS),23 36% of isolates exhibiting intermediate 
susceptibility were resistant to cefuroxime, 1–8% to 
cefotaxime/ceftriaxone, 8–20% to macrolides, 17–21% to
tetracycline and 40–54% to co-trimoxazole. Similarly, for
isolates that were fully resistant to penicillin, 100% were
resistant to cefuroxime, 32–78% to cefotaxime/ceftriaxone,
17–49% to macrolides, 25–43% to tetracycline and 80–97%
to co-trimoxazole. While the results of in-vitro susceptibil-
ity tests do not invariably correlate with clinical outcome,
the trend toward higher resistance rates suggests that the
incidences of therapeutic failure will also increase in the
future.

To date, resistance to vancomycin amongst pneumococci
has not been described. Another important observation is
that the MICs of the quinolones—both current and investi-
gational—are unaffected by the reduced susceptibility of
pneumococci to penicillin. This status has implications 
for the future use of quinolones, particularly those with
enhanced potencies against pneumococci, as treatment of
patients with respiratory tract infections.

In-vitro activities of new quinolones

Tables I–III summarize the in-vitro activities of six quino-
lones (ciprofloxacin, gatifloxacin, grepafloxacin, levo-
floxacin, moxifloxacin and trovafloxacin) and six
non-quinolone antibiotics (azithromycin, clarithromycin,
amoxycillin, co-amoxiclav, cefuroxime and co-trimoxa-
zole) against Gram-negative, Gram-positive and ‘atypical’
human pathogens respectively. The MIC data were
extracted from studies published in peer-reviewed journals
or from the abstracts of papers presented at recent inter-
national meetings. The data have not been standardized in
terms of methodology, but, in general, the techniques used
to determine in-vitro susceptibility included the micro-
broth dilution, agar dilution and Etest methods.
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Figure 3. Percentages of S. pneumoniae isolates exhibiting intermediate (I) or high-level (HL) resistance to penicillin in studies
carried out in the USA (I, ; HL, ), Europe (I, ; HL, ) and Canada (I, ; HL, ) between 1987 and 1997.
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Gram-negative pathogens (Table I)

Of the quinolones tested, ciprofloxacin is the most active
overall against Enterobacteriaceae, with MIC90s ranging
from ,0.15 mg/L to 2 mg/L. Azithromycin and clarithro-
mycin are not, for the most part, active against Enterobac-
teriaceae and all of the quinolones are more potent than
amoxycillin, co-amoxiclav, cefuroxime and co-trimoxazole.
Ciprofloxacin is the quinolone with the most potent activity
against P. aeruginosa (MIC90s 0.25–4 mg/L), followed by
levofloxacin (MIC90s 0.5–.4 mg/L). The MIC90s of the
remaining quinolones for the P. aeruginosa isolates 
range from 0.25 to 8 mg/L; the non-quinolones tested have
no activity against this bacterium. Against the more fastid-
ious bacteria (H. influenzae, M. catarrhalis and Neisseria
spp.), all of the quinolones are highly active (MIC90s for H.
influenzae, 0.015–0.47 mg/L, for M. catarrhalis, 0.015–0.094
mg/L and for Neisseria spp., 0.004–0.06 mg/L) and are 
unaffected by â-lactamase production. Azithromycin is
four- to 24-fold more active than clarithromycin against the
H. influenzae isolates and up to 64-fold more active against
the M. catarrhalis isolates. â-Lactamase-positive strains are
resistant to amoxycillin (MIC90s, 8–128 mg/L), but suscep-
tible to the other drugs tested.

Gram-positive pathogens (Table II)

Ciprofloxacin is the least active of the six quinolones
against the Gram-positive pathogens; the MIC90s of this
drug for all but the Enterococcus spp., Staphylococcus 
epidermidis and methicillin-resistant S. aureus (MRSA)
isolates ranged from 0.5 to 2 mg/L. All of the agents tested
were uniformly active against the S. pyogenes strains.

The methicillin-susceptible S. aureus (MSSA) isolates
are highly susceptible to the quinolones, with MIC90s of all
but ciprofloxacin of 0.06–0.25 mg/L. The MIC90s of the
macrolides and â-lactams ranged from 0.05 to 8 mg/L. 
Moxifloxacin and trovafloxacin are two-fold more active
then gatifloxacin and grepafloxacin and eight-fold and up
to 64-fold more active than levofloxacin and ciprofloxacin
respectively against the MRSA isolates.

Gatifloxacin, grepafloxacin, moxifloxacin and trova-
floxacin are all more active against the S. pneumoniae
isolates (MIC90s 0.06–0.5 mg/L) than ciprofloxacin and 
levofloxacin (MIC90s 1–2 mg/L). The MICs of the quino-
lones are unaffected by reduced susceptibility to penicillin,
the MIC90s being the same, irrespective of whether the 
isolates are susceptible, of intermediate susceptibility or
resistant to penicillin. However, this does not apply to the
other antibiotics tested, with the MIC90s for the isolates
exhibiting intermediate susceptibility to penicillin being
higher than those for the isolates that are susceptible and
those for the resistant isolates being higher still. Overall,
the activities of moxifloxacin and trovafloxacin were equiv-
alent and slightly greater than those of grepafloxacin and
gatifloxacin.
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Enterococcus spp. are becoming increasingly important
pathogens. Against Enterococcus faecalis , ciprofloxacin is
the least active quinolone (MIC90s of 2–64 mg/L, compared
with MIC90s of 0.05–8 mg/L for the other five). Moxi-
floxacin and trovafloxacin are up to six-fold more active
than grepafloxacin against Enterococcus faecium and 
two- to .32-fold more active than gatifloxacin. The
quinolones evaluated here are unlikely to make significant
contributions to the therapeutic dilemma resulting from
the emergence of vancomycin-resistant enterococci.

Atypical pathogens (Table III)

Gatifloxacin, grepafloxacin, moxifloxacin, trovafloxacin,
azithromycin and clarithromycin are highly active against
Chlamydia spp. and M. pneumoniae, with MIC90s ranging
from 0.008 to 1 mg/L. Levofloxacin is slightly less active, 
followed by ciprofloxacin. All of the quinolones are highly
active against L. pneumophila (MIC90s 0.008–0.12 mg/L).

Discussion

The development and release on to the market of the 
fluoroquinolones in the late 1980s represented a landmark
in antimicrobial therapy. These compounds offer a unique
mechanism of action, favourable side-effect and safety 
profiles, favourable pharmacokinetic properties (some
agents being available as both oral and iv formulations) and
broad-spectrum activity against Gram-negative and -posi-
tive pathogens. Early fluoroquinolones possess enhanced
activities in vitro against Gram-negative bacteria and
although less potent against Gram-positives, the MIC90s of
these drugs are still within ranges that make them useful for
treating patients with clinically important infections caused
by S. aureus and S. pneumoniae; same atypical pathogens
are also susceptible.

Newer fluoroquinolones represent advances in the 
evolution of this class of compounds. Agents such as 
gatifloxacin, grepafloxacin, moxifloxacin and trovafloxacin
have enhanced activities against Gram-positive and atypi-
cal pathogens and anaerobes, while retaining potencies and
broad-spectrum cover against Gram-negative organisms
that are comparable to those of their earlier congeners

While â-lactamase production by M. catarrhalis and 
H. influenzae isolates has limited the efficacies of first-line
â-lactams, there are several agents (co-amoxiclav, cephalo-
sporins, extended-spectrum macrolides, co-trimoxazole
and quinolones) that retain activity against these organ-
isms. This is not the case, however, with penicillin-resistant
pneumococci, against which all of the aforementioned
drugs, with the exception of the quinolones, exhibit marked
degrees of resistance. Given that most antibiotics are pre-
scribed empirically and given the prominent role of the
pneumococcus in respiratory tract infections, novel fluoro-
quinolones are likely to assume increasing importance in
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the treatment of patients with infections caused by these
bacteria.
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