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Abstract: Elevated phosphorus (P) loading from the watersheds draining into Lake Erie, particularly from agricultural (53%)

and urban (43%) sources, is identified as one of the main drivers of the severe eutrophication. In this study, we present a

comprehensive evaluation of 11 process-based models to characterize the water cycle as well as nutrient fate and transport

within a watershed context, and to find a robust and replicable way to optimize the modelling strategy for the Lake Erie

watershed. Our primary objective is to review the conceptual/technical strengths and weaknesses of the individual models

for reproducing surface runoff, groundwater, sediment transport, nutrient cycling, and channel routing, and to collectively

guide the management of the Lake Erie Basin. Our analysis suggested that the available models either opted for simpler

approximations of the multifaceted, nonlinear dynamics of nutrient fate and transport, and instead placed more emphasis

on the advanced representation of the water cycle or, introduced a greater degree of biogeochemical complexity but simpli-

fied their strategies to recreate the roles of critical hydrological processes. Notwithstanding its overparameterization prob-

lem, the MIKE SHE model provides the most comprehensive 3D representation of the interplay between surface and

subsurface hydrological processes with a fully dynamic description, whereby we can recreate the solute transport that infil-

trates from the surface to the unsaturated soil layer and subsequently percolates into the saturated layer. Likewise, the

physically based submodels designed to represent the sediment detachment and erosion/removal processes (DWSM, HBV-

INCA, HSPF, HYPE, and MIKE SHE), offer a distinct alternative to USLE-type empirical strategies. The ability to explicitly sim-

ulate the daily plant growth (SWAT and APEX) coupled with a dynamic representation of soil P processes can be critical

when evaluating the long-term watershed responses to various agricultural management strategies. Drawing parallels

with the (sub)surface and sediment erosion processes, a more complicated physically based approach, e.g., the dynamic

wave model provided by MIKE SHE (coupled with MIKE URBAN or MIKE HYDRO) and SWMM may be more appropriate for

realistically simulating the pressurized flow and backwater effects of water routing in both open channels and closed pipes.

While our propositions seem to favor the consideration of complex models that may lack the commensurate knowledge to

properly characterize the underlying processes, we contend this issue can be counterbalanced by the joint consideration of

simpler empirical models under an ensemble framework, which can both constrain the plausible values of individual pro-

cesses and validate macroscale patterns. Finally, our study discusses critical facets of the watershed modelling work in Lake

Erie, such as the role of legacy P, the challenges in reproducing spring-freshet or event-flow conditions, and the dynamic

characterization of water/nutrient cycles under the nonstationarity of a changing climate.

Key words: best management practices, model ensemble, uncertainty analysis, adaptive management implementation, Lake

Erie.

Résumé : La charge élevée de phosphore (P) provenant des bassins versants qui se déversent dans le lac �Erié, en particulier

du bassin versant de la rivière Maumee à prédominance agricole, est identifiée comme l’un des principaux facteurs de grav-

ité de l’eutrophisation. Dans cette étude, les auteurs présentent une évaluation complète de onze modèles fondés sur les

processus pour caractériser le cycle de l’eau, le devenir et le transport des nutriments dans un contexte de bassin versant,
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et pour trouver une façon robuste et reproductible d’optimiser la stratégie de modélisation pour le bassin versant du lac
�Erié. Leur objectif principal consiste à examiner les forces et les faiblesses conceptuelles ou techniques des différents mod-

èles pour reproduire le ruissellement de surface, les eaux souterraines, le transport des sédiments, le cycle des nutriments,

le tracé des canaux et pour guider collectivement la mise en œuvre de la gestion adaptative dans le lac �Erié. Leur analyse

suggère que les modèles disponibles ont soit opté pour des approximations plus simples de la dynamique complexe et non

linéaire du devenir et du transport des nutriments et ont plutôt mis l’accent sur la représentation avancée du cycle de

l’eau, soit introduit un plus grand degré de complexité biogéochimique, mais ont simplifié leurs stratégies pour recréer le

rôle des processus hydrologiques critiques. En dépit de son problème de surparamétrage, MIKE SHE fournit la représenta-

tion 3D la plus complète de l’interaction entre les processus hydrologiques de surface et de sous-surface avec une descrip-

tion pleinement dynamique, par laquelle il est possible de recréer le transport d’un soluté qui s’infiltre de la surface à la

couche de sol non saturée et percole ensuite dans la couche saturée. De même, les sous-modèles fondés sur la physique con-

çus pour représenter le détachement des sédiments et les processus d’érosion/ablation (DWSM, HBV-INCA, HSPF, HYPE et

MIKE SHE) offrent une option distincte aux stratégies empiriques de type USLE. La capacité de simuler explicitement la

croissance quotidienne des plantes (SWAT et APEX) couplée à une représentation dynamique des processus de P du sol peut

être critique lors de l’évaluation des réponses à long terme des bassins versants à diverses stratégies de gestion agricole. En

établissant un parallèle avec les processus d’érosion (sub)surface et sédimentaire, une approche physique plus complexe,

par exemple le modèle dynamique de vagues fourni par MIKE SHE (couplé à MIKE URBAN ou MIKE HYDRO) et SWMM, peut

être plus appropriée pour simuler de manière réaliste les effets de l’écoulement sous pression et du reflux de l’eau dans les

canaux ouverts et les conduites fermées. Alors que leurs propositions semblent favoriser la prise en compte de modèles

complexes qui peuvent manquer de connaissances adéquates pour caractériser correctement les processus sous-jacents, ils

soutiennent que ce problème peut être contrebalancé par la prise en compte conjointe de modèles empiriques plus simples,

dans un cadre d’ensemble, qui peuvent à la fois contraindre les valeurs plausibles des processus individuels et valider les

modèles à grande échelle. Enfin, cette étude aborde des aspects critiques du travail de modélisation des bassins versants du

lac �Erié, tels que le rôle du phosphore résiduel, les difficultés à reproduire les conditions de crue printanière ou d’écoule-

ment, et la caractérisation dynamique des cycles de l’eau et des nutriments dans le contexte de non-stationnarité d’un

climat changeant. [Traduit par la Rédaction]

Mots-clés : meilleures pratiques de gestion, ensemble de modèles, analyse d’incertitude, mise en œuvre de la gestion adaptative,

lac �Erié.

Introduction

Lake Erie, the shallowest of the Great Lakes, has been the most
severely impacted by eutrophication-related issues, including ex-
cessive harmful algal blooms (HABs) (Stumpf et al. 2012; Bertani
et al. 2016), dissolved oxygen depletion (Zhou et al. 2013; Rucinski
et al. 2014), and excessive growth of Cladophora in the eastern ba-
sin (Higgins et al. 2008; Depew et al. 2011; Watson et al. 2016). To
ameliorate the severity of these eutrophication phenomena, the
reduction of nutrient loading has been regarded as the primary
and most effective mitigation strategy (Maccoux et al. 2016). Not-
withstanding the multitude of factors (e.g., supply and chemical
speciation of nitrogen, iron availability, enhanced water clarity
in the nearshore zone mediated by dreissenid mussels, water col-
umn stability, and water temperature) involved in HAB forma-
tion (Chaffin et al. 2013), a popular concept is that cyanobacterial
blooms are more strongly associated with the phosphorus load-
ing in Lake Erie (Obenour et al. 2014; Bertani et al. 2016; Maccoux
et al. 2016). Interestingly, the increased frequency in HABs has
occurred without distinct trends in the total annual loading of
phosphorus (TP), but may be related to the timing, sources, and
increased bioavailability of TP inflows and (or) the increased fre-
quency of extreme flow events (Obenour et al. 2014; Scavia et al.
2014). The proliferation of Cladophora along the northern shores
of the eastern basin since the mid-1990s, has been primarily
attributed to the increased water clarity, the suitable substrate
following the colonization of the area by dreissenid mussels, and
an interplay between external phosphorus loading and nearshore–
offshore exchanges (Higgins et al. 2005). That is, apart from the
inflowing nutrient masses of the Grand River, the nutrient-rich
hypolimnetic waters transported to the nearshore zone through
upwelling events, excreted metabolic wastes, and (or) egesta of
non-edible algae by dreissenids could also be suppliers of nutrients
in the benthic environment (Wilson et al. 2006; Valipour et al.
2016).
Nonpoint sources are the dominant contributors (>70%) of

TP loading in Lake Erie, followed by point sources (�20%), and

atmospheric deposition or discharges from ungauged areas
(�10%) (Maccoux et al. 2016). The western part of Lake Erie basin,
comprising both the western basin and the Huron–Erie corridor,
is responsible for >60% of the external TP loading on an annual
basis (Fig. 1). Amongst all of the tributaries across the entire Lake
Erie basin, the Maumee River watershed is the primary contribu-
tor of TP loading (28%), followed by the Detroit–Windsor water-
shed (14%), Sandusky River (7%), Thames River (7%), and Grand
River (5%) (Maccoux et al. 2016). According to a recent loading–
source apportionment exercise, the diffuse losses from agricul-
tural areas account formore than 50% of all the external TP loading,
followedby effluents from treatmentplants (26%), andurban storm-
water runoff (17%) (Robertson et al. 2019). It is also important to note
that four watersheds (Maumee River, Sandusky River, Thames
River, andGrandRiver) deliver�65% of the TP loading from agricul-
tural land, while three watersheds are mainly responsible for the
nutrient loading delivery from urban point and nonpoint sources,
including the Detroit–Windsor (32%), Maumee River (16%), and
Cleveland (16%) watersheds (Robertson et al. 2019). TP export
from agricultural areas represent a dominant source (>48% of
delivered TP loading) in 15 out of 22major watersheds around the
Lake Erie drainage basin, whereas nutrient losses from urban
areas accounted for >50% in only 6 watersheds (Robertson et al.
2019).
The Maumee River watershed lies in the Huron–Erie Lake

Plains ecoregion and is characterized by a flat landscape (average
slope < 2%) and poorly drained soils (Gebremariam et al. 2014).
Whereas this watershed historically comprised a mixture of
forests and wetlands, urban (10%) and forested (6%) areas are cur-
rently patchily distributed, and agricultural land (73%) is instead
the dominant land use (Richards et al. 2010; Keitzer et al. 2016).
More than 90% of the agricultural land is drained by ditches and
subsurface drainage (Gebremariam et al. 2014; Culbertson et al.
2016), and 85% of phosphorus exports are reported to originate
from agricultural (e.g., fertilizer and manure) inputs. Alongside
the excessive agricultural inputs, the reduced flow velocity due
to the relatively flat watershed topography promotes nutrient
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enrichment within the Maumee River (Muenich et al. 2016). To
effectively control TP loading, agricultural management prac-

tices have been in place in the Maumee River watershed since the
early 1990s (Myers et al. 2000). As of 2012, nearly 63% of the agri-
cultural land has adopted conservation tillage methods to mitigate
TP loads due to erosion by reducing soil disturbances (USDA-NRCS

2016). In addition, concentrated-flow control practices during the
storm events are implemented in 40% of the agricultural land, to
control the impact of water erosion on gully formation, along with
edge-of-field practices, such as vegetated buffers and filter strips

(USDA-NRCS 2016).
Watershed process-based modelling has been considered an

indispensable tool for analyzing the causal linkages among hydro-

logical changes, agricultural management practices, and nutrient
loads (Borah and Bera 2003). A variety of mathematical watershed
models have been used in the Great Lakes area in this context, such
as the agricultural nonpoint source pollution model (AGNPS;

Kirnak 2002), distributed parameter large basin runoff model
(DLBRM; He and DeMarchi 2010), dynamic watershed simulation
model (DWSM; Borah et al. 1999, 2002), generalized watershed
loading function (GWLF and GWLF-E; Haith et al. 1992, Evans and

Corradini 2016), hydrologiska byråns vattenbalansavdelning – inte-
grated catchmentmodel (HBV-INCA; Crossman et al. 2013), hydrolog-
ical simulation program – Fortran (HSPF; Canale et al. 2010), MIKE
SHE (Refsgaard and Storm 1995), hydrological prediction for the envi-

ronment watershed model (HYPE; Lindström et al. 2010), and storm
water management model (SWMM; Rossman and Huber 2016a,
2016b). Given the immense diversity of watershed models, it is note-
worthy that SWAT (soil and water assessment tool) alone represents

more than >70% of the published modelling studies in the Great
Lakes literature, and even more so in Lake Erie (Arhonditsis et al.
2019a, 2019b). The preference for SWAT over otherwatershedmodels
may be attributed to its user-friendly interface and potential to facili-

tate continuous long-term simulations of hydrological changes and
phosphorus loads in predominantly agricultural watersheds (Arnold
et al. 1998; Neitsch et al. 2011). Interestingly, a recentmeta-analysis of
257 peer-reviewed published studies showed that SWAT tends to display

fairly higher performance relative to other commonly used process-
based models, but the different calibration practices in regards to
the number of stations used within a nested-basin context may be
an important confounding factor for this registered trend among

the spatially distributedmodels compared (Wellen et al. 2015).

Notwithstanding its conceptual or operational advantages,
SWAT is sensitive to the spatial resolution selected, as any model
with complex and spatially distributed nature, whereby the per-
formance increases when finer granularity is introduced and
remains relatively constant after an appropriate amount of spa-
tial detail is found (Chaplot 2005). It is also sensitive to the den-
sity of rain gauges used to force it (Chaplot 2005), and the most
sensitive parameters can vary with application site, or may not
be the same at water quality stations upstream of the basin outlet
(Cibin et al. 2010; van Griensven and Meixner 2006; Nossent and
Bauwens 2012). It is also important to recognize that environ-
mental management decisions relying upon a single model with
a single parameter specification can introduce considerable bias
and uncertainty (Arhonditsis et al. 2007; Ramin et al. 2012). Given
that there is no “perfect”model of an open environmental system,
but rather several adequate descriptions of different conceptual
bases and structures, the development of model ensembles is a
technique designed to explicitly account for the uncertainty inher-
ent in the model selection process. Instead of picking the single
“best-fit” model to predict future system responses, an ensemble
synthesizes over multiple competing watershed-process charac-
terizations, stemming from different model structures and (or)
parameter specifications (Raftery et al. 2005). The latter issue is par-
ticularly important with complex overparameterized models that
are typically characterized by the well-documented equifinality
(poor identifiability) problem in which several distinct choices of
model inputs lead to the same model outputs or many sets of pa-
rameters fit the model about equally well (Beven 2006; Cibin et al.
2010). This non-uniqueness ofmodel solutions undermines the very
basic premise of using mathematical models as inverse analysis
tools, i.e., any information on the levels and the spatiotemporal var-
iability of the dependent variables (flow, suspended solids, nutrient
concentrations) is used through the model calibration exercise to
infer themost likely values of independent variables (model parame-
ters) typically describing fundamental processes/fluxes of the water
budget and (or) nutrient cycles. The latter issue is critical when the
model is intended for the evaluation of best management practices
(BMPs), and thus for drawing predictions outside the domain used
during its calibration or even validation (Arhonditsis et al. 2019a,
2019b). In hydrology, ensemble strategies have been applied to eval-
uate the uncertainty of multimodel predictions (Breuer et al.
2009; Seiller et al. 2012; Velázquez et al. 2013), but only few studies
focused on watershed water quality (Schoumans et al. 2009;

Fig. 1. Contribution of total phosphorous (TP) loading sources to Lake Erie from (a) the major basins and (b) the tributaries within the

major basins. The spread of the box-plots and the error-bars represent the interannual variability of the various loading sources. Numbers

on the top of the box-plots and error-bars correspond to the percentage contribution of each basin or loading source relative to the total

exogenous TP load. TP loading estimates are based on supplementary data provided by Maccoux et al. (2016).
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Boomer et al. 2013; Sharifi et al. 2017), and even less so to exam-
ine policy-relevant, land-use management scenarios (Kronvang
et al. 2009; Beven and Lamb 2017).
In view of the documented uncertainties in selecting the opti-

mal set of models when addressing important societal issues, the
overarching goal of this study is to provide a comprehensive
review of the capacity of 11 watershed process-based models
regarding their strategies to capture surface runoff, groundwater,
sediment transport, nutrient cycling, and channel routing. Our first
objective is to examine the conceptual/technical strengths and
weaknesses of the individualmodels, evaluate their capacity to sim-
ulate nutrient loading reduction, and guide management imple-
mentation in the Lake Erie Basin. Together with the process-based
watershed modelling work, our study discusses the potential bene-
fits of data-driven (statistical)modelling and advocates their use as a
complementary tool for maximizing the learning opportunities
within an adaptive watershed monitoring and modelling frame-
work (Arnillas et al. 2021; Stow et al. 2020). Our thesis is that simple
empirical models not only can provide predictive statements con-
fined within the bounds of data-based parameter estimation, but
may also constrain processes/fluxes parameterized by mechanistic
models or even validate the corresponding nutrient loading reduc-
tion forecasts drawn with “post-audit” monitoring (García et al.
2016; Stowet al. 2020). In addition, our study identifies critical facets
of thewatershed functioning, such as the role of legacy P, the causes
and consequences of the increasing long-term trends in dissolved
reactive phosphorus loading, the challenges in reproducing spring-
freshet or event-flow conditions, and the dynamic characterization
of water/nutrient cycles under the nonstationarity of a changing cli-
mate. We believe that the lessons learned from this critical review
can be useful for the contemporary modelling practices to support
environmental policy decisions and guide adaptive management
implementation in Lake Erie and elsewhere.

Process-based watershedmodelling

Overview
Eleven process-based models designed to reproduce the vari-

ability in water quantity and quality within a watershed context
were reviewed in this study (Table 1). Their selection was based
on their popularity as depicted by the number of case studies
published in the peer-reviewed literature (Wellen et al. 2015;
Arhonditsis et al. 2019a, 2019b). All of these models are dynamic
and have distinct differences in terms of their temporal resolu-
tion, spatial granularity, watershed delineation, and complexity
to represent the hydrological and biogeochemical processes con-
sidered. All 11 models are capable of recreating the spatial hetero-
geneity by disaggregating the watersheds into multiple discrete
units, composed of homogeneous soils, land uses, and other land-
scape features or management practices (Table 1). These discrete
units can be homogeneous squares on a grid pattern, subsections
of a sub-basin in the watershed that lack a specific location in it,
such as Hydrological Response Units (HRUs), or idealized repre-
sentations of the sub-basin catchment patterns, such as cells in
AnnAGNPS (annualized AGNPS model) (Fig. 2). Hydrological and
biogeochemical mechanisms are mathematically represented
within each of the spatial units, which are then connected to a
final draining outlet via other spatial units, pipes, channels, or
rivers. Each spatial unit without specific location (HRUs) is im-
plicitly treated as being connected to a channel, in that the water
in it is not routed through adjacent spatial units but is discharged
directly to the channel. The latter simplification can limit the
capacity for spatial analysis of optimal BMP placements, and
nutrient-source tracking at the edge-of-field (EOF) and edge-of-
stream (EOS) levels (Arnillas et al. 2021). There is also a wide range
of vertical segmentations that have been used to accommodate
the functional properties of the different soil layers (Fig. 3). Most
models also include some type of fully mixed water body (pond,

reservoir, wetland), other models represent the rivers as the
main channel along with a flood plain, and few models also
allow the flow of water from channels back to the land (flooding).
The shape of the channels and the way the water is routed
throughout the system is another source of variability among the
models and is largely related to the original purpose of the models
(Table 1).
The basic premise of the examined models is to characterize

the processes associated with the water budget and biogeoche-
mical cycles that collectively modulate the fate of nutrients
until they reach the watershed outlet. Surface-, subsurface-, and
groundwater-transport processes determine the vertical distribu-
tion of nutrients within the soils and ultimately shape the pre-
dominant mode of their delivery into the receiving waterbodies.
Water or soil chemistry, and vegetation at any location are repre-
sented as state variables, which are then expressed as functions
of a suite of processes transporting or transforming water or
nutrients. In the following section, we briefly introduce each of
the 11 watershed process-based models by providing the purpose
and (or) rationale behind their original inception and subsequent
development.

Annualized agricultural nonpoint source pollution model
(AnnAGNPS)

AnnAGNPS is a watershed-scale modelling tool that aims to
evaluate the effect of different management practices on runoff
and water quality. AnnAGNPS is a continuous model that can
simulate runoff, sediment and nutrient transport, and chemical
oxygen demand (COD) for individual rainfall events (Young et al.
1989). AnnAGNPS was developed by the United States Deport-
ment of Agriculture (USDA) – Agricultural Research Service (ARS)
in collaboration with the Minnesota Pollution Control Agency
and the Soil Conservation Service. In AnnAGNPS, spatial water-
shed properties are represented with an irregular homogeneous
cell system, with characterization of land and soil properties that
bears resemblance to the HRUs of the SWAT model (see the sec-
tion below on Soil and water assessment tool). Land processes are
modelled in each cell, and surface runoff from each cell is calcu-
lated separately. The runoff is then routed from one cell to the
next based on flow directions prior to reaching the receiving
waterbody. AnnAGNPS has evolved from its predecessor, AGNPS,
to enable themodelling of watershed dynamics over several months
to years and to allow for a nonsquare representation of the spatial
units. Aside from these differences, both models use the curve
number (CN) method to quantify the surface flow, and the revised
Universal Soil Loss Equation (RUSLE) method to predict soil and
sediment loads (Bingner et al. 2018). AnnAGNPS can also use
RUSLE2, which has been endorsed by the Ontario Ministry of Agri-
culture, Food and Rural Affairs (OMAFRA), to estimate soil ero-
sion. RUSLE2 is considered a superior tool over the USLE and
MUSLE (modified universal soil loss equation) models for sheet
and rill erosion (see the section below on Sediment transport),
which are typically mitigated through a complex combination of
conservation practices. AnnAGNPS was the only reviewed model
with explicit ephemeral and classic gully erosion subroutines,
and its application in the Lake Erie basin suggested that gully ero-
sion could account for 85% of the total erosion in the watershed
comparedwith 15% for sheet and rill erosion (LimnoTech 2010, avail-
able from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/
nrcs144p2_028976.pdf). Even with AnnAGNPS though, the user
should specify the gully erosion locations after preliminary
landscape analysis; none of the reviewed models is capable of
predicting gully density (Bingner et al. 2010; Douglas-Mankin et al.
2020). Thus, the parameterization of gully processes might
require additional validation from regional empirical studies to
ensure correct delineation of landscape pathways of soil erosion and
defensible selection of conservation practices. Additionally, both
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Table 1. General description of the 11 watershed models reviewed in the present study.

Feature AnnAGNPS APEX DLBRM DWSM GWLF-E HSPF HYPE INCA MIKE SHE SWAT SWMM

General

Model focus Agriculture Agriculture Hydrology Hydrology Hydrology/

Nutrient

Hydrology/

Nutrient

Hydrology/

Nutrient

Nutrient Hydrology Hydrology/

Nutrient

Hydrology

Spatial representation Irregular,

homogeneous

Irregular,

homogeneous

Square grid Rectangular,

homogeneous

Irregular,

heterogeneous

Irregular,

homogeneous

Irregular,

heterogeneous

Irregular,

heterogeneous

Grid/irregular,

homogeneous

Irregular,

heterogeneous

Rectangular,

heterogeneous

Temporal scalea Dailya Daily Daily Sub-daily Daily/monthly Sub-daily/daily Daily Daily Sub-daily/daily Daily Sub-daily

Event/continuousb C C C E C E, C C C E, C C E, C

GIS interface * * * * * * *

Climate

Solar radiation * * * * * * * * * *

PETc 1 1,2,3,4,5 7 6 7 2,3,7 2 2,3,4 4,8

Precipitation input * * * * * * * * * *

Hydrology

Surface runoff * * * * * * *
g

* * *

Lateral/interflow * * * * * *
g

* *

Water table dynamics * *
f

* * * *

Tile drainage * *
g

*
g

*
g

* * *

Snowmelt * * * * * * * * * *

Stream routing * * * * * * * * *

Reservoir/Lake * * * * * * *

Fate and transportd

FEMA approved *
h

*

Sediment P, T P, T T P, T P, T P, T P, T P, T P, T P, T T

Nutrient P, T P, T T T T P, T P, T P, T P, Th P, T T

Toxin/Pesticides T P, T T T P, T P, T T

Managemente

Crop PB PB EF EF DR DR DR DR EFh PB EF

Tillage effects S, N S, N S N Nh S, N

Manure erosion *

Urban loading * * *
h

* *

Note: AGNPS, agricultural non-point source pollution model; AnnAGNPS, annualized AGNPS model; APEX, agricultural policy environmental extender model; DLBRM, distributed-parameter large basin runoff model;

DWSM, dynamic watershed simulation model; GWLF-E, generalized watershed loading functions–enhanced; HSPF, hydrological simulation program – Fortran; HYPE, hydrological prediction for the environment

watershed model; INCA, integrated catchment model; MIKE SHE, integrated surface water and groundwater model from DHI Group, based on SHE; SHE, Système Hydrologique Europeén (European hydrological system

model); SWAT, soil and water assessment tool; SWMM, stormwater management model.
aSimulation time steps may differ within a model based on themodelled component (i.e., hydrology, nutrient), e.g., AnnAGNPS uses sub-daily computation of soil moisture.
b
E, event-based model; C, continuous simulation model.

cEstimation method of potential evapotranspiration are listed as: (1) Penman, (2) Penman–Monteith, (3) Priestly–Taylor, (4) Hargreaves, (5) Baier–Robertson, (6) Hamon, (7) other estimation methods, (8) user defined

time-series of evapotranspirationmeasurements.
d
P: whenmodel represents processes, i.e., sediment erosion process, soil nutrient cycle, andmetal/toxin/pesticide transformation (volatilization, wash-off, built-up) processes. T: whenmodel represents transport of thematerial.

eDR, dynamic representation of crop seasonality; EF, externally forced plant/crop effects; PB, dynamic plant biomass simulation; S, effects of tillage on sediments (e.g., soil erodibility); N, effects of tillage on

nutrient redistribution;*, indicates the presence of process-based representation (i.e., manure erosion, fertilizer loss by urban build-up and wash-off).
f
Water table dynamics will be available in next HSPF v.12, which is currently under internal review by the Environmental Protection Agency (https://github.com/respec/FORTRAN/tree/master/f90apps).
gHydrological dynamics in INCA requires externally simulated time-series for Hydrologically Effective Rainfall (HER) and soil moisture deficit data. INCA also simulates conceptual a quick flow (primarily overland

flow and tile drainage), subsurface soil water and groundwater flows. Tile drainage in DWSM and HSPF was simulated by adopting effective parameters in subsurface flow.
h
Represents information from an add-on module DAISY (model for simulation of water and nitrogen dynamics and crop growth in agroecosystems) for MIKE SHE. MIKE 11 (which can be coupled with MIKE SHE) has

been approved by FEMA. Urban loading in stormwater pipe network can be simulated by coupling MIKE SHE with MIKE–URBAN.
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AnnAGNPS and AGNPS integrate other models to represent

processes such as stream flow evolution (CCHE1D; a 1D model

for simulations of unsteady flows, sediment transport, pollutant

transport, water quality, ecosystem, and ecotoxicology in dendritic

channel networks), pollutant transport (CONCEPTS; CONservational

Channel Evolution and Pollutant Transport System computer model

to simulate the evolution of incised streams and to evaluate the long-

term impact of rehabilitation measures to stabilize stream systems

and reduce sediment yield), plant growth (FAO; Food and Agriculture

Organization of the United Nations), and stream temperature

(SNTEMP; a mechanistic, 1D heat transport model that predicts

the daily mean and maximum water temperatures as a function of

streamdistance and environmental heatflux) (Bingner et al. 2018).

Agricultural policy environmental extender model (APEX)

The APEX model, developed by Texas A&M University as a tool

for managing whole farms or small watersheds, can represent

processes related to nutrient load generation, as well as crop pro-

ductivity (among others), and can use that information to esti-

mate economic benefits at the watershed level (Williams et al.

2015). APEX, initially released in the mid-nineties, is essentially a

multifield version of the EPIC model (environmental policy inte-

grated climate model; erosion productivity impact calculator)

(Sharpley and Williams 1990). APEX incorporates GLEAMS

(groundwater loading effects of agricultural management sys-

tems) (Leonard et al. 1987) to model pesticide fate, and HYMO

(problem-oriented computer language for HYdrologic MOdeling)

to represent the routing between individual fields (Williams and

Hann 1972). Operating with a daily time-step, APEX provides long-

term simulations (1–4000 years) for a multitude of water-, plant-,

nutrient-, and land-related processes, and can recreate the routing

of runoff water through farms or small watersheds, which in turn

are divided into several fields or subareas (<100). To assess nutrient

loading at the regional and national scales, APEX farm-scale esti-

mates from cultivated cropland can be integrated with modelling

outputs from SWAT for uncultivated land uses (Wang et al. 2011).

Themodel has been selected by the USDA to evaluate benefits from

conservation practices at the plot, field, and EOF scale (Williams

et al. 2015; Moriasi et al. 2020). APEX cropland assessment in CEAP

has also been coupled with SWAT to route the flows and nutrient

loads to the outlet of large river basins (Kannan et al. 2011; Santhi

et al. 2014).

Distributed-parameter large basin runoff model (DLBRM)

The DLBRM model has evolved from the large basin runoff

model (LBRM) from the National Oceanic and Atmospheric

Administration – Great Lakes Environmental Research Labora-

tory (NOAA–GLERL) (Croley and He 2005). LBRM was developed to

study the overall water balance of the watersheds draining towards

the Great Lakes during the mid-eighties, based on a rather coarse

gridwith spatial resolution of 1 km� 1 km. LBRMtreats awatershed

as a single unit with four land-water compartments (snow, upper

soil, lower soil, underground), one surface storage compartment,

and a basin outflow. DLBRM extends the logic of LBRM by dividing

Fig. 2. Spatial (horizontal) disaggregation strategies of watershed process-based models. Black arrows indicate water routing. Cluster 1 is a fully

distributed discretization with homogeneous square spatial units and water flow between adjacent cells. Cluster 2 represents each sub-basin as a

rectangle with homogeneous slope and land cover, which allows recreating flow velocities that are on par with those realized during storm events.

Cluster 3 is a semi-distributed approach with conceptual landscape units, such as agricultural fields, vegetative buffer strips, or grassed waterways.

Cluster 4 is a semi-distributed approach with homogeneous subwatersheds of irregular size or shape, with one or several property-based subclasses

of land with common land cover, soil types, slopes, and other landscape features; †, indicates models that can have more than one subclass of land;

*, indicates models that can represent reservoirs, sedimentation basins, and other structures with the potential to modify water flow properties.
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the watershed into gridded cells, applying a modified version of
LBRMmodel to each cell of the watershed, and allowing lateral flow
from one cell to the next one. Croley et al. (2005) extended DLBRM
to represent the runoff of pollutants using solute dilution and then
tracking themass balance of the solutes throughout thewatershed.

Dynamic watershed simulation model (DWSM)

DWSM was developed by the Illinois State Water Survey in
cooperation with USDA–ARS and the University of Illinois during
the late seventies, and was originally assigned the name SEDLAB
(SEDimentation LABoratory watershed simulation model; Borah
et al. 2002). DWSM is a storm-event model with physical descrip-
tion of surface and subsurface storm flow, soil erosion, and
sediment and chemical transport within a watershed context. To
simplify the mathematical representation, DWSM divides a
watershed into subwatersheds and then conceptualizes each sub-
watershed as two symmetric, one-dimensional, overland planes
from each side of a linear-channel segment, with area and
parameters equivalent to the original subwatershed (Fig. 2).
This spatial simplification allows the model to implement
approximate analytical solutions of the dynamic behavior of
water. DWSM comprises three major components: (i) DWSM-
Hydro for watershed hydrology simulation, (ii) DWSM-Sed for
soil erosion and sediment transport, and (iii) DWSM-Agchem
for nutrient and pesticide simulations.

Generalized watershed loading functions-enhanced (GWLF-E)

The GWLFmodel was developed to reproduce long-term responses
of water, sediment, and total and dissolved nitrogen and phosphorus
at the watershed scale, with monthly resolution (Haith et al. 1992;
Evans and Corradini 2016). ArcView GIS interface for GWLF
(AVGWLF) and MapShed (a GIS-based watershed modelling tool,
which replaced AVGWLF) were updated iterations of the original
GWLF model with user-friendly graphical user interface (GUI), and

GWLF-E is the most recent version. GWLF was designed as an opti-

mal balance between empirically estimated export coefficients and
complex physically based models (Haith and Shoemaker 1987). The

most recent version, GWLF-E, disaggregates the watershed surface

into several homogeneous areas but lumps the underground proc-

esses into a single unit. Urban pollution is described with a
buildup–runoff model, whereby GWLF-E first considers the pollu-

tant accumulation since the last rain (or cleaning) event for each

combination of pollutant and land use, while the amount of pollu-
tants released during a rainfall event increases with the amount of

water precipitating into the studied area. River channels, ponds,

and other water bodies are not modelled explicitly in the GWLF-E.
The public domain model code has been further adopted by Green-

land Consulting Engineers as the proprietary CanWET software.

More recently, GWLF-E has been extended to operate with daily
time-steps and simulate streambank erosion (Wu and Lin 2015;

Evans andCorradini 2016).

Hydrologic simulation program – Fortran (HSPF)

HSPF was developed by the United States Environmental Protec-

tion Agency (USEPA) to simulate short- and long-term hydrology
and water quality in watersheds of various sizes and complexities

(Bicknell et al. 1996). Through integration of multiple models in

tandem, HSPF can simulate water peaks as well as a wide range of
water quality descriptors, such as nutrients, biochemical oxygen

demand (BOD), dissolved oxygen (DO), phytoplankton, zooplankton,

and benthic algae. HSPFwas developed from the StanfordWatershed
Model and comprises three major components: (i) pervious

land; (ii) impervious land (where infiltration is neglected); and (iii)
water routing and biogeochemical processes within waterbodies.
It also provides great flexibility to the users by allowing them to

represent the watershed as a set of interconnected modules, which

are organized in a noncyclicalmanner, thereby disallowing the con-

sideration of feedback loops. Modules that can generate feedback

Fig. 3. Representation of vertical soil profiles among the 11 reviewed watershed models. The soil layers are colour-coded to represent the

unsaturated and saturated soil zones with brown and blue colours, respectively. The different shades of each colour represent model

segmentation with multiple layers within each zone. The different layers within the saturated soil zone/groundwater suggest that the

model can simulate the water table dynamics. Models with a plant at the soil surface have the capacity to recreate the vegetation effects

on water interception.
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loops have to be grouped together and act collectively as a single-
processing unit (e.g., pervious units may allow soil nutrients to
increase plant biomass, and plant biomass to decrease soil nutrients).
Differentmodules and different variableswithin eachmodule are con-
nected by simple or complex processes, depending on application
requirements and data availability. HSPF is one of the reviewed
models endorsed by the Federal Emergency Management Agency
(FEMA) for hydrological risk analysis, and by the Ontario Ministry
of Transportation for runoff simulation.

Hydrological predictions for the environment (HYPE)

The HYPE model is a daily resolution water quality model devel-
oped by the Swedish Meteorological and Hydrological Institute
(SMHI 2019) based on theHBVhydrologicalmodel, an elaborate con-
ceptual reservoir-based model (Bergström 1976; Lindström et al.
1997), and the HBV-NP water quality model (water quality model
based on HBV that simulates nitrogen (N) and phosphorus (P);
Andersson et al. 2005; Arheimer et al. 2005; Lindström et al. 2005).
HYPE uses a multibasin approach whereby river discharge and nu-
trient transport can be simulated simultaneously within each sub-
basin. Each sub-basin is composed of one or more classes, and each
class represents a noncontiguous region with similar hydrological
responses characterized by a combination of soil types, land uses,
and elevations (Lindström et al. 2010; Strömqvist et al. 2012). Water
from snow melt and precipitation is sequentially allocated to the
constituent processes of thewater cycle. The soil water content is the
first layer to befilled, followedby thewater distribution between sur-
face runoff and percolation towards the deeper soil layers. Once the
deeper soil layers are filled, water can fill the top layers, allowing for
saturated overland flow to occur. Evapotranspiration involves the
fraction of water content within the top two soil layers, which
then defines the plant-rooting depth. Thus, HYPE can simulate
stream flow and nutrient concentrations in rivers and lakes,
based on commonly available climate data (precipitation and
temperature), and some agricultural practices that can be incor-
porated with its parameters.

Integrated catchment model (INCA)

The INCA model was developed by the University of Reading,
UK, to identify the potential sources of nitrogen loading at the
watershed level (Wade et al. 2002a, 2002b). Access to the source
code can be requested from the authors of the model. INCA has
been continuously updated with the support of the European
Union. Extensions of INCA include INCA-Carbon (INCA-C),
focusing on the dynamics of dissolved organic carbon; and
INCA-P, which simulates overland organic and inorganic
phosphorus, and in-stream TP-concentrations. INCA requires
hydrologically effective rainfall (HER, rainfall minus actual
evapotranspiration) and soil moisture deficit data from exter-
nal meteorological models [e.g., MORECS (Meteorological Office
Rainfall and Evaporation Calculation System), Hough and Jones
1997; HBV, Tisseuil et al. 2008] or any other modelling frame-
works to estimate these inputs [e.g., PERSiST (rainfall-runoff
conceptual, bucket-type model), Futter et al. 2014]. Similar to
DBRLM, land grid discretization is based on a coarse resolution of
1 km2 cells, and the parsimonious model structure considers up
to six land-use classes.

MIKE SHE

MIKE SHE is a proprietary model developed from SHE, a fully
distributed three-dimensional hydrological and water quality
modelling tool that can represent waterflow processes within a
watershed context (Refsgaard and Storm 1995; DHI 2017a, 2017b).
SHE was collaboratively created during the early eighties by the
Danish Hydraulic Institute (DHI), the British Institute of Hydrology,
and the Société Grenobloise d’Etudes et d’Applications Hydrauli-
ques (SOGREAH, currently Artelia). After that, DHI released MIKE

SHE and has continuously updated themodelling software. Simula-
tions can either be based on cell grids, providing a full 3D descrip-
tion of the area, or on lumped areas with conceptual representation

of the processes occurring in them. A unique feature of MIKE SHE is
the ability to simulate both event-based and continuous (long-term)

hydrologic responses. To do so, MIKE SHE provides alternative
hydrological representations of a given watershed, which can be as
complex as different approximations of the Saint-Venant equations

that provide high resolution and detailed mathematical solutions
on high resolution 2D surfaces, or use simple approximations to

water routing in lumped subwatersheds, based on an empirical
relationship between flow depth and surface detention according
to the Stanford Watershed Model (DHI 2017a). MIKE SHE facilitates

simulation of overland and channel flowwith complex interactions
and hydrological feedbacks, such as floodplain inundation. MIKE

SHE allows different submodels to be representedwith various tem-
poral resolution in that overland flow can be modelled in minutes

or hours, while groundwater processes can be simulated with
longer time-steps. MIKE SHE can be linked sequentially with DAISY
(model for simulation of water and nitrogen dynamics and

crop growth in agroecosystems) (Abrahamsen and Hansen 2000;
Refsgaard and Hansen 2010), a dynamic water-soil-crop model, and

use as input estimates for the soil moisture, soil nutrients, plant
roots, and leaf area index; EUROSEM can be used to simulate the
spatial distribution of soil erosion/sedimentation. Owing to its

physically based 3D configuration, MIKE SHE can track the solute
transport that infiltrates from the surface to the unsaturated soil

layer and subsequently percolates into the saturated layer. MIKE
SHE can simulate solute transport through the unsaturated zone
both in the soil matrix with a one dimensional (1D) advective–

dispersion equation, as well as in themacropores with amechanis-
tic description of solute exchange between matrix and macropores.

The solute transport in the saturated zone is also governed by an
advection–dispersion equation with a third-order numerical solution
based on the quadratic upstream interpolation for convective

kinematics with estimated streaming terms (QUICKEST; Quadratic
Upstream Interpolation for Convective Kinematics with Estimated

Streaming Terms) scheme proposed by Leonard (1979) and updated
by Vested et al. (1992).

Soil and water assessment tool (SWAT)

SWAT is a continuous watershed model developed by the
USDA–ARS (Neitsch et al. 2011). SWAT incorporates models devel-

oped during the 1970s and 1980s, particularly CREAMS (Chemicals,
Runoff, and Erosion from Agricultural Management Systems

model; a field-scale model aimed to represent different edge-of-
field management practices); GLEAMS (which represents ground-
water loading of pesticides and nutrients); EPIC (a model that simulates

erosion at the field level); and the universal soil loss equation
(USLE; used to represent soil transport at the field level). Using a

daily time-step, SWAT employs a digital elevation model (DEM),
soils, land cover, and climate data (specifically, precipitation, tem-
perature, wind speed, solar radiation, and relative humidity) to

define HRUs that are nonspatially located in a sub-basin (Fig. 2). In
each HRU, SWAT reproduces water, plant, nutrient, and other land

processes; the water and eroded sediments are transferred to the
sub-basin outlet and routed from there throughout the basin
using variations of the kinematic wave flood method. Water flow

is then used to model the fate of sediments, nutrients, and other
water quality properties. As previously mentioned, SWAT may

be the most popular watershed model, likely due to its public
domain license (cc-zero), detailed documentation, computational
efficiency, parsimonious model structure for many subroutines,

and user-friendly GUI. Several improvements are regularly incorpo-
rated in the model by the development team based on suggestions

froman actively involved user community.
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Storm water management model (SWMM)

SWMM was first developed to represent short-term urban
water flow for the USEPA, with participation of the University of
Florida and other institutions in the USA (Rossman and Huber
2016a, 2016b; Rossman 2017). The USEPA started to lead the pro-
ject during the early 2000s, and obtained approval by FEMA in
2005 to use the model to draw flood-risk predictions for insur-
ance purposes. The Ontario Ministry of Transportation endorsed
the use of SWMM for estimating catchment runoff and stream
flows. SWMM is widely applied for nonpoint source pollutant
loading analysis in urban settings (Lee et al. 2017), but has also
been applied to non-urban areas (Talbot et al. 2016). SWMM was
the only reviewed model to simulate urban storm water hydraul-
ics in closed conduits as influenced by pumps, culverts, weirs,
and other drainage network features. The application of dynamic
wave routing method allows SWWM to simulate pressurized
flow, ponded overflows/flooding, backwater effects, reverse flows,
and tidal effects. The sediment and nutrient pollutants (i.e., sediment,
nutrient, pesticides,metals, organics) are described with event-mean
concentration or empirical nonlinear buildup–wash-off algorithms,
similar to urban area routines in GWLF, HSPF, and SWAT. The
SWWMmodel is typically applied in urban environments, but Talbot
et al. (2016) showcased its applicability for simplified BMP analysis
in agricultural catchments, without a detailed simulation of plant–
soil nutrient interactions, even though the authors underscored the
need for further validation of SWWM applicability in agricultural
catchments. Importantly, Talbot et al. (2016) selected SWWM for its
hydraulic capabilities to simulate backwater and reverse overland

flows in flat landscapes in the Great Lakes basin, as well as the flow

in pipes of municipal drain networks in Ontario, Canada. SWWM

has been approved by FEMA for hydrological risk analysis.

Watershed processes1

Plant growth-seasonality and succession

Land cover and associated vegetation play a predominant role

in shaping the water budget and nutrient cycles within a water-

shed context (Lohse et al. 2009). Specifically, leaf cover reduces

the impact of precipitation on the ground (Pearce 1976), reduces

soil water evaporation, and (or) increases transpiration (Ritchie

1972); roots maintain the soil cohesion (Gyssels et al. 2005) and

pump subsurface water to the atmosphere, capturing nutrients

in the process (Chapin et al. 2011); carbon fixed by plants provides

energy to microbial organisms that modify nutrient availability

(Gougoulias et al. 2014); leguminous plants can fix nitrogen;

plant growth produces litter (fallen branches and leaves), which

ultimately integrates into the soil as soil organic matter, and

subsequently shapes the water retention capacity, cationic

exchange capacity, and other soil chemistry properties (Chapin

et al. 2011).
The strength of the causal linkages between land cover and

watershed dynamics are influenced by the proportion of the area

covered by plants, the weather seasonality in the covered area,

the succession patterns of the plant community, the nutrient

inputs through fertilizers/manure implementation and litterfall

within a given area, and organic matter cycling. For instance,

Table 2. Effects of vegetation specified in the models (when relevant, the specific model used to describe the processes or the mechanisms

modelled is indicated).

Model AnnAGNPS APEX DLBRM DWSM GWLF-E HSPF HYPE INCA MIKE SHE SWAT SWMM

Water dynamics

Runoffa CN(CS) CN/GA CN/II CN(S/PP) Y(RD) Y Y Y(RD) CN/GA H/CN/GA

Water routingb Y Y Y Y Y Y Y

Interceptionc Y Y Y Y Y* Y**

Potential ET Y Y

Actual ETd B(bl) A-B(bl) Y B(bl) Y E1 Y A-B(bl) Y

Snow dynamics Y Y

Soil nutrient dynamics

Erosione U(C, P) U(C) Y U(C, P) U(P) Y U(C)

Litter accumulation Y Y Y Y Y

Nitrogen uptakef Y Y F/M/N Y Y (O)g Y

Nitrogen fixation Y Y Y

Phosphorous uptakef Y Y F/N Y Y (O)g Y

Soil temperature Y

Note: See Table 1 for details of the abbreviations. Y, direct effect of vegetation in the process is described using a model-specific parameterization; Y(ND),

vegetation impacts the process via nutrient deposition; Y(RD), vegetation impacts the process via root depth controls of subsurface flow volume; Y(ST), vegetation

impacts the process via soil temperature.
aMain runoff approaches (mechanisms indicated are detailed if they were mentioned in the documentation), CN/GA/H/II = alternative methods to estimate runoff:

curve number CN, Green (geospatial regression equation for the European nutrient lossesmodel) & Amptmethod (GA), Horton’s equation, interception–infiltration (II); curve

number CN(S,PP,CS), curve number affected by seasonality, S; recent precipitation, PP; changes in plant stage, CS.
b
Description for water routing via Manning’s roughness.

cDescription related to interception: *, only when using GAmethod; **, canopy interception can be represented as a “depression storage”.
dDirect impact of transpiration on soil moisture. (A and B) Effects of above-ground (cover) and below-ground (root depth or biomass). (B) Below-ground layer only

effects (bl): model accounts for different layers of the soil; E1, external dataset that included the effects of vegetation, originally estimated using MORECS.
e
Main approaches tomodel erosion, U(C, P): USLEmodel or one of its variations (RUSLE orMUSLE). It can affect the cover (C) or the practice (P) components of the USLE equation.
fMain approaches to model nutrient dynamics, F/M/N: Alternative methods to estimate solute uptake with first-order kinetics (F), Michaelis–Menten kinetics (M),

and NLEAP (N) (Shaffer et al. 1991); O, the process can be modelled using an extension of the core model.
g
Represents information from an add-onmodule, DAISY (model for simulation of water and nitrogen dynamics and crop growth in agroecosystems), forMIKE SHE.

1One of the critical issues during our review was the inconsistency in the terminology used for certain conceptual mechanisms in the documentation of

the selected 11 models. For a systematic comparison of the modelled processes, we used common definitions in the field of hydrology and soil sciences as

provided in the Supplementary data2, instead of the terms used in the model manuals and (or) by the authors.
2Supplementary data are available with the article at https://doi.org/10.1139/er-2020-0070.
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plant cover tends to be high in forest and meadows throughout
the year, decreasing during fall and winter when the plants drop
their leaves. Croplands are often more dynamic, with changes
driven by sawing and harvesting activities, rotation of crops among
years, the use of cover crops, fertilizers, and other management
decisions. In contrast, urban areas tend to have a larger proportion
of impervious areas than other land-cover classes, but the lawn
cover tends to be more stable within and among years (Hedblom
et al. 2017). Furthermore, the vegetation itself can be composed of
different layers (e.g., trees, shrubs, grasses, epiphytes), eachwith dif-
ferent species composition and seasonal succession patterns. These
species can either compete, or facilitate their coexistence, leading to
multiyear successional trends in natural conditions (McIntire and
Fajardo 2014), weed-management practices (Kiniry et al. 1992), or
intercropping (Duchene et al. 2017) inman-made environments.
Despite the critical role of vegetation dynamics in multiple

hydrological and biogeochemical processes, not all watershed
models are capable of capturing all of these aspects (Table 2).
There are three general strategies to accommodate the above-
mentioned vegetation effects: externally forced (either static or
dynamic); dynamic representations of the vegetation effects; and
explicit consideration of the plant biomass and community dy-
namics, which are essential to design watershed modelling stud-
ies suitable for assessing the impact of agricultural conservation
practices (Arnillas et al. 2021):

(1) The externally forced strategy is designed to capture the
wide range of vegetation effects through multiple parameters
assigned to different land-cover classes. For instance, land-cover
classes capture the spatial variability in nutrient loads in DWSM,
similar to the event-specific, mean nutrient concentrations in
SWMM. In these cases, the land-use layer and its associated prop-
erties capture the spatial variation of the vegetation effects on
the modelled processes. This approach is defensible when the
temporal variability is deemed irrelevant because the focus is on
short-term flooding events (DWSM) or is due to limitations of the
studied setting that make it unlikely for the vegetation to change,
such as in urban environment (SWMM). The temporal variability
in the vegetation effects is sometimes recreated by modelling
vegetation traits or effects outside of the watershed model. For
instance, leaf cover (represented as the leaf area index) and root
depth are inputted into MIKE SHE (e.g., DAISY can generate the
data needed), while AnnAGNPS considers external values of plant
height (Supplementary data, Table S12). INCA uses an external rainfall-
runoff model (i.e., HBV, MORECS) to estimate effective rain, in which
evapotranspiration changeswith the day of the year for different vege-
tation types. Besides these specific changes in parameters, some of the
models (i.e., AnnAGNPS, APEX, HSPF) offer the option to change land-
cover characteristics (Supplementary data, Table S22), like crop rota-
tion or urbanization, thereby allowing the user to represent changes
in the vegetation effects across the same area over time.
(2) The dynamic representation of the vegetation effects accom-

modates the seasonality within a given vegetation type through
the watershed model itself. For instance, HYPE represents changes
in evapotranspiration within each land cover type, as a sinusoidal
function of the day of the year, modified by temperature, soil thick-
ness, and other physical soil properties (Lindström et al. 2010).
HYPE also considers the seasonal variability in nutrient uptake as a
combination of two functions: one for spring, and one for autumn.
HYPE can simulate different plant stages using heat units or simply
the day of the year. Similarly, HSPF and INCA consider nutrient
uptake as a function of the day of the year. GWLF-E also incorpo-
rates smooth changes on evapotranspiration during the season,
but the associated mathematical formula is not described in the
user’s manual (Evans and Corradini 2016).
(3) Three models (AnnAGNPS, APEX, and SWAT) explicitly repro-

duce the plant biomass and community dynamics (Supplementary

data, Table S12), which can be an essential feature for reproducing
the accumulation of legacy nutrients in soils and assessing
the impact from conservation practices, such as phosphorus
drawdown (Zhang et al. 2020). AnnAGNPS incorporates a simple
model consisting of the FAO crop model to simulate aboveground
biomass (Allen et al. 1998) and the TETrans (Trace Element Transport
layer-equilibrium model of one-dimensional solute transport
through the vadose zone under transient-state conditions) model to
account for the one-dimensional, vertical movement of chemicals
through the vadose zone under transient conditions (Corwin 1995).
Feedback loops between vegetation, soil, and water availability are
limited in AnnAGNPS as well as in most of the models reviewed
here. This limitation occurs because most models are sequential
and have no way to represent, for instance, the amount of
nutrients in soil and vegetation simultaneously, or how plant
nutrient uptake changes for different environmental conditions.
SWAT andAPEX can represent feedback loops by a detailed descrip-
tion of the plant growth and soil conditions, thereby allowing the
integration of the positive effect of nutrients on crop yield, as well
as the effect of yield on nutrient depletion. Feedback loops are also
important to obtain continuous nutrient simulations, as seasonal
plant succession simultaneously affects soil chemistry and the
plant community (Lovett et al. 2018). Although HSPF does not
model plant growth, it considers the plant organic nitrogen pool
as part of the nitrogen cycle and accounts for the return of nitro-
gen into the soil layer (Bicknell et al. 1996).

SWAT and APEX can represent plant growth and its feedback
loops, and integrate them in a dynamic way to represent water
and nutrient fate, which is a critical requirement for assessing
the impact of field conservation practices, such as conservation
tillage and cover crops (Arnillas et al. 2021). Both models are
modifications of the erosion–productivity impact calculator (EPIC)
(Sharpley and Williams 1990) and use heat units and other atmo-
spheric drivers (Supplementary data, Table S22) to predict plant
growth and trait changes (Supplementary data, Table S12), which
in turn can be modulated by extreme temperatures, nutrient avail-
ability, and soil moisture. Both models describe the above- and
below-ground vertical profile of plants, and their local effect on the
environment. APEX and SWAT, since 2009, incorporate the model
ALMANAC (model to simulate crop growth, competition, light inter-
ception by leaves, biomass accumulation, partitioning of biomass
into grain, water use, nutrient uptake, and growth constraints such
as water, temperature, and nutrient stress) (Kiniry et al. 1992, 2008;
MacDonald et al. 2008) to allow for the incorporation of up to 10
competing species that interact within the same area that interact
within the same area. For interacting species, light interception is
the main driver of their competition. Species might also compete
with each other for the available nutrients and water. In APEX, alu-
minum can negatively affect root growth, and therefore reduce
plant biomass. Facilitative interactions are not included in SWAT
and APEX, limiting the capacity to model intercropping and other
situations, wheremore than one crop or plant species coexist. In ei-
ther case, a common practice for natural systems with several coex-
isting species is to lump the entire plant assemblage into a single
“idealized” species, and therefore the plant-growth effect on the
soil environment is not representative of a diverse community.
Modelling multiple species concurrently, or in other words, model-
ling biodiversity, could be particularly important to examine the
implications of watershed management for important ecosystem
services (van der Plas 2019). Plantmodelling is an important compo-
nent for predicting litter accumulation (e.g., dead leaves, stems)
and decomposition,which in turn is critical for accurately assessing
the likelihood of long-term accumulation and establishment of a
nutrient legacy pool. Many models do not explicitly consider litter
or humus variability in the soils (e.g., SWMM, INCA), or use fixed
parameters to represent the role of litter in nutrient availability
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(Table 2). HSPF and HYPE represent some of the changes in the
humic component of soil, but only APEX and SWAT have the poten-
tial to simulate litter variability as a function of biomass produc-
tion. However, litter mass is not necessarily well predicted by
productivity (O’Halloran et al. 2013) andmay require explicit repre-
sentation of the local diversity (Arnillas 2019), which in turn casts
doubt on the potential applicability of thesemodels.
To recap, despite the wide range of processes in which vegeta-

tion has a critical role at the watershed scale (Table 2), such as
linking water and nutrient cycles or acting as a bridge between
rural and urban development through food provisioning, most
models have a minimal (or completely lack) description of plant
community dynamics (Supplementary data, Table S12). Only
APEX and SWAT include plant-growth models that can recreate
crop production dynamics. The current configuration only allows
for the representation of a few competing species, and therefore
can be inherently inadequate for reproducing natural succession
patterns outside of fields (e.g., shift frommeadow to forest, Arnillas
et al. 2021). Notwithstanding the ability of SWAT andAPEX tomodel
actual changes in soil nutrient content due to plant growth, natural
vegetation dynamics are based on alternative routines that are of-
ten simpler than the default ones. For instance, even though
VFSMOD (vegetative filter strip modelling system) was used to de-
velop the effect of vegetative filter strips in SWAT (Neitsch et al.
2011), it is an event-based model that does not account for changes
in biomass nutrient content (Muñoz-Carpena et al. 1999).

Hydrological processes on land surface

In theory, the application of watershed models should allow
natural-resource managers to simulate various hydrological path-
ways of nutrient losses, to target structural BMPs for optimal place-
ment and timing of nutrient reduction (Rittenburg et al. 2015). In
agricultural land without tile drainage, surface runoff in the form
of sheet and concentrated flow over the land surface represents a
major hydrological pathway of phosphorus losses from agricultural
fields into waterways (Reid et al. 2018). The hillslope hydrology dis-
tinguishes between two principal runoff generation mechanisms:
namely, the infiltration-excess and the saturation-excess overland
flow (Buda 2013). The reviewed watershed models mostly con-
sidered infiltration-excess (Hortonian flow), when precipitation-
driven runoff is initiated after the rainfall intensity exceeded the
infiltration rates of soils. Nonetheless, in humid continental cli-
mates, such as the Great Lakes drainage basin (Bailey 2014), the
saturation-excess surface runoff (or Dunne runoff) has been identified
as an equally important mechanism (Beven and Kirkby 1979). In the
latter case, the saturation overland flow is generated even when soil
infiltration rates are greater than rainfall intensity due to increase in
groundwater table, when subsurface water can exfiltrate as surface
runoff, while rain can fall on completely saturated soils (Beven and
Kirkby 1979). By definition, the saturation-excess runoff is not an
event-driven process, but rather a continuous process of complex
interactions of multiple environmental factors, such as precipita-
tion, evaporation, snow melt, infiltration, soil moisture storage,
and lateral shallow subsurface flow. Thus, the spatial extent of
completely saturated soils is a dynamic process that evolves in
time and space (“variable-source” area concept), which contrasts
the “constant-area” assumption in the majority of reviewedmod-
els, postulating that the entire watershed contributes to runoff
generation. The simulation of hydrologically sensitive and active
areas can be essential for guiding management decisions on tar-
geted BMP placement in critical source areas of soil erosion and
nutrient losses (Arnillas et al. 2021).
The surface runoff modelling strategies could be additionally

categorized into three types: (i) empirical; (ii) conceptual; and
(iii) physically based methods (Devia et al. 2015). Empirical models
include various statistical (e.g., regression)methods and data-driven
hydroinformatics, such as artificial neural networks, genetic

programming, support-vector machines, wavelets and fractal
analysis, and chaos theory (Sivakumar and Berndtsson 2010). The
empirical precipitation–runoff relationships downplay complex
surface–subsurface hydrological interconnections and can serve
as a complimentary approach preceding the application of more
complex models. The empirical methods allow for explanatory
data analysis of hydrological time series records, such as baseflow
separation in stream hydrographs (Granato 2012; Lott and Stewart
2016), hypothesis-driven improvement of the representation of hydro-
logical processes in more complex models (Gupta et al. 2014; Beven
2019), data assimilation to account for observational uncertainties
(Coustau et al. 2013), imputation of missing data (Gao et al. 2018),
upscaling/downscaling for boundary conditions and regionalization of
model parameters inmore complexmodels for cross-catchment trans-
ferability (Blöschl 2005; Smith et al. 2016), hydrological forecasting
(Babovic and Savic 2009), and approximation methods prior to the
application of more complex routines (Rossman and Huber 2016b).
The main disadvantages of empirical methods are their limited
extrapolation capacity to simulate hydrological processes outside of
the domain of collected data used for calibration,which can be criti-
cal for analysis of future and previously unobserved scenarios, e.g.,
extremeflooding events, climate-change conditions.
The Soil Conservation Service curve number (SCS-CN) is the

most commonly used empirical method, which facilitates specifica-
tion of the amount of precipitation that is allocated to infiltration-
excess, and then calculates surface runoff in the reviewed models
(AnnAGNPS, APEX, DWSM, GWLF-E, SWAT, and SWMM) as a func-
tion of the antecedent moisture conditions and hydrological
characterizations of the soil group (Table 3). The default method
assumes that 20% of the potential retention or total maximum
storage occurs as an initial abstraction (Ia). The SCS-CN method
lumps together all types of abstraction into Ia, including rainfall
interception, depression storage, and infiltration into the soil.
After Ia is subtracted from the total rainfall volume, the remain-
ing precipitation is inputted into an equation that estimates run-
off as a nonlinear regression function of an empirical curve
number (CN). Total precipitation volume must therefore exceed
Ia before any surface runoff can be generated, which allowed
Steenhuis et al. (1995, 2019) to extend the SCS-CN empirical
method in a saturation-excess context. Curve numbers for a
given day are updated to take the antecedent soil moisture into
account (Mishra and Singh 2003). Notwithstanding its wide range
of application and satisfactory overall agreement between
observed and predicted daily runoff, the SCS-CN approach has a
limited capacity to predict overland flow depths and stream peak
flows (Borah et al. 2007; Gassman et al. 2007). Several empirical
studies advocated to revisit the 20% cutoff threshold for Ia in
favor of a 5% level (Lim et al. 2006; Baltas et al. 2007), which
should allow for better simulations of frequently occurring lower
rainstorm depths, and climatic conditions with modest return
period rainfall (Woodward et al. 2003). Under the SCS-CN
method, the precipitated water is typically diverted to runoff
before assigned to evapotranspiration, infiltration, and other
processes, in contrast to alternative approaches whereby infiltra-
tion precedes the overland flow generation (APEX, DWSM, HSPF,
MIKE SHE, SWAT, SWWM).
Conceptual methods, as a combination of empirical and physi-

cally based runoff subroutines, tend to provide general descriptions
of watersheds based on prior knowledge and understanding of the
relationships among catchment features (e.g., size, slope, land
use/cover, soils, and geology). These conceptual methods employ
semi-empirical equations, and the values of the relevant effective
model parameters are subject to calibration against observations
(Devia et al. 2015). Models such as DLBRM, HSPF, INCA, and HYPE
implement conceptual reservoir strategies to simulate the proc-
esses pertaining to water cycle at the watershed scale (Table 3).
Minimally, two conceptual reservoirs are incorporated into the
models, in which the upper and lower reservoirs represent surface
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Table 3. Methods used to simulate surface, subsurface runoff, and sediment erosion in the 11 reviewed watershedmodels.

Model Infiltration/surface runoffa Subsurface flowb Sediment erosion modelc

AnnAGNPS SCS-CN Darcy’s equation (saturation zone) Ephemeral gully erosion, sheet and rill

erosion with RUSLE, HUSLE

APEX GA/SCS-CN Nonlinear storage routing and pipe flow

equations for vertical flow

USLE, USLE Onstad-Foster modification,

RUSLE, MUSLE, MUST, MUSS, MUSI;

ephemeral gully erosion is assessed by

subtracting MUSS from the MUSLE soil

erosion estimates

DLBRM Partial-area infiltration concept for the

supply and linear reservoir model for

the movement of surface runoff

Linear reservoir model Not included

DWSM Interception-infiltration method/GA to

describe rainfall excess and Kinematic

wave equations for surface flow routing/

SCS-CN

Kinematic storage model for lateral

subsurface flow

Raindrop erosion and sediment routing

based on sediment transport capacity

and continuity equations

GWLF-E SCS-CN Linear reservoir model USLE for pervious (rural) areas/

Exponential wash-off for urban areas

INCA Linear reservoir model with two

reservoirs in the reactive soil zone and

groundwater. The model simulates

conceptual quick flow, soil water flow,

and groundwater flow

INCA-sed, which includes splash

detachment, flow erosion, and sediment

transport capacity via quick flow

HSPF Philip’s equation (Philip 1957) for

infiltration; Chezy–Manning equation

and an empirical expression that

connects outflow depth to detention

storage for surface runoff simulation

Linear reservoir model (Stanford

watershedmodel IV) for saturated zone

outflow, interflow outflow, groundwater

outflow

Sediment erosion on pervious land

considers rainfall splash detachment

and scouring of the soil matrix to

represent gully erosion, while

impervious surfaces consider the rate of

accumulation of solid materials (buildup

and wash-off); equations for simulation

and transport of sediments follow

ARM and NPSmodels

HYPE Linear reservoir model with surface runoff

from infiltration-excess and as saturated

overland flow

Regional groundwater flowmodel/aquifer

mass-balance model

Default erosion transport model based on

raindrop erosion and surface runoff; an

optional model based on catchment

erosion index

MIKE SHE Richards’ equation/2-layer water balance

method/gravity flowmethod for surface

infiltration; 2-D diffusive wave/

Manning’s equation/ponded drainage

for the simulation and conceptual

reservoir model for the routing of

overland flow

3-D finite difference method/linear

reservoir method for groundwater flow

(saturated flow)

Soil erosion (SE) add-on (adapted

EUROSEM) simulates splash erosion and

flow detachment in inter-rills,

depressions, and rills

SWAT GA/SCS-CN Kinematic storage model for lateral

subsurface flow; perched water table;

exponential decay function for shallow

recharge; deep aquifer as a loss term

MUSLE for pervious areas/USGS linear

regression or exponential wash-off for

impervious (urban areas)

SWMM Horton equations/modified Horton/GA/

SCS-CN for infiltration; nonlinear

reservoir model with Manning’s

equation for overland volumetric flow;

optional approximation methods

include runoff coefficient method; SCS-

CN; unit hydrograph; externally

generated runoff data

Two-zone variable volumemodel for

unsaturated and saturated zones

Empirical equations for urban areas

(three options): (i) exponential wash-off;

(ii) rating curve wash-off (proportional to

flow); (iii) EMC wash-off

Note: See Table 1 for details of the abbreviations.
a
SCS-CN (USDA-SCS 1985); GA (Green and Ampt 1911); interception–infiltration procedure (Simons et al. 1975); Manning’s equation (Manning 1891); Philip’s

equation (Philip 1957); diffusive wave approximation (Saint-Venant 1871); semi-distributed approach (based on Manning’s equation); Horton’s equation (Horton 1933);

modified Horton equation (Akan and Houghtalen 2003).
bDarcy’s equation (Darcy 1856); Richards’ equation (Richards 1931); 3D Bousinesq equation (Yang et al. 2018); Kinematic storage model (Sloan et al. 1983).
cUSLE (Wischmeier and Smith 1978); USLE Onstad-Foster modification (Onstad and Foster 1975); RUSLE (Renard et al. 1997); MUSLE (Williams 1975a); MUST, MUSS,

and MUSI (Williams et al. 2015); MIKE SHE (DHI 2017a, 2017b).
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water and groundwater storage, respectively. These reservoirs are
interconnected by vertical groundwater flow through soil matrix
and macropores from unsaturated to saturated zone reservoirs.
The reservoirmodels assume that the outflow from each reservoir
is proportional to the reservoir storage. The reservoir concept can
allow for saturation-excess overland flow generation when the soil
water input (precipitation) is greater than what the soil can store
(HYPE), in contrast to infiltration-excess (HSPF) when inputs occur
at a rate greater than what the soil can absorb and (or) move verti-
cally. In this context, Chapi et al. (2015) showed that surface runoff
in Lake Erie catchment in Southern Ontario was generated by the
infiltration-excess mechanism during summer and fall (soil mois-
ture deficit), and the saturation-excess during the spring period.
Considering that a major fraction of nutrient loading in the Great
Lakes occurs during the spring freshet (OMECC 2017), the capability
of models to recreate the processes associated with saturation-
excess overland flow could be a primary criterion for model
selection. The ability of models to simulate saturation-excess is
intrinsically connected to spatiotemporal allocation of soil mois-
ture content and runoff generating areas (Giri et al. 2016), which
highlights the necessity to apply fully distributed models for ro-
bust management analysis of the Great Lakes watersheds (Johnson
et al. 2003). There are variations for SWAT and GWLF with
adequate gridded spatial discretization that warrants broader con-
sideration (Schneiderman et al. 2007; Rathjens and Oppelt 2012).
The semi-distributedmodels HSPF and SWWMcan potentially repli-
cate peak runoffs via the infiltration-excess runoff mechanism,
while HYPE and the DHI model of MIKE SHE can additionally use
the saturation-excess runoff generation.
Physically based models apply conservation laws for mass,

energy, momentum, and kinematics (Sitterson et al. 2017), such
as Saint-Venant shallow water mass conservation equations
for overland and channel flows, which has a robust theoretically
foundation (Rossman 2017). MIKE SHE considers the Saint-Venant
equations for overland water flow, whereas SWWM, MIKE HYDRO
RIVER (MIKE SHE coupled with MIKE HYDRO River), SWWRP-NPS
(based on incorporated nutrient and erosion subroutines into
FEMA-endorsed Gridded Surface/Subsurface Hydrologic Analysis
model GSSHA), and HEC-RAS (US Army Corps of Engineers Hydro-
logic Engineering Center’s river analysis system) for 1-D flood
routing in pipes, open channels, and streams. Application of the
Saint-Venant equation within the context of fully distributed spa-
tial representation serves to simulate the dynamics of runoff water
depth in neighboring cells, which ultimately allows representation
of the backwater conditions in overland flow and streams (MIKE
SHE coupled with MIKE HYDRO RIVER, SWWRP–NSM). Application
of the Saint-Venant equation for overland flow requires a numeral
solution for spatially distributed (2D) nonlinear partial differential
equations, which is achieved in MIKE SHE with a finite-difference
method with implicit and explicit solvers. 2D representation (in
X–Y Cartesian coordinates) of overland flow is a typical practice
in watershed modelling, whereas 3D strategies were previously
deemed redundant, or even infeasible due to computational chal-
lenges in desktop computers (Kampf and Burges 2007). The advent
of high performance computing (HPC) allows the shift from 2D
(grid-based) to 3D (volume-based) overlandflow simulations, which
can improve the characterization of complex infiltration and
overland flow generating mechanisms (Yusoff et al. 2009).
Another prospect could be the increase in complexity for solving
the Saint-Venant differential equations with HPC. Specifically,
MIKE SHE applies a diffusive wave approximation of 2D Saint-
Venant equations, which has demonstrated limited capacity for
timely prediction of backwater effects (Kampf and Burges 2007).
The latter feature could be critical for simulating nutrient fate and
transport in the Great Lakes floodplains during peak hydrological
events.
Rate of infiltration is a critical parameter in infiltration-excess

surface-runoff models, and depends upon the soil properties,

such as the unsaturated hydraulic conductivity, diffusivity, and
water holding capacity. In SWMM, infiltration can be estimated
using Horton’s and Modified Horton’s empirical infiltration
decay curves. Simplifications of the physically based Richards’
equation for infiltration, such as the Green–Ampt (GA) method
(APEX, DWSM, SWAT, SWWM) and Philip’s equation (HSPF, MIKE
SHE) have been incorporated in several models. The boundary and
initial conditions in these models are simplified with assumptions
of movement of water from the surface down through the deep soil
with a sharp wetting front, which separates upper saturated and
lower unsaturated zones. These assumptions reduce the data
requirements of soil properties for calculating numerical solu-
tions, but their applicability is inevitably limited under changing
initial and boundary conditions (Parlange et al. 1987). Most impor-
tantly, the simplification affects the capacity to simulate realistic
water table dynamics, which is a critical requirement for saturation-
excess overland flow generation and estimation of temporarily
and spatially variable source areas. HSPF uses Philip’s equation
to quantify the relationship between the infiltration rate and soil
moisture (Philip 1957). Specifically, the equation models runoff
as the amount of water that cannot be stored within a soil layer
nor can move towards a deeper layer, while evapotranspiration
is a function of storage. Additionally, HSPF incorporates linear
probability density to capture areal variations within a land seg-
ment, which may be fixed (e.g., soil permeability and land slopes)
or variable (e.g., soil moisture content and surface roughness).
The unsaturated vertical flow in MIKE SHE follows the physi-

cally based Richards’ equation, which is computationally inten-
sive and the most accurate when describing vertical movement
of water through unsaturated soils (vadose zone), based on the
Darcy’s Law (Richards 1931; DHI 2017b), whereby the vertical flow
rate through porousmedia is proportional to the hydraulic gradi-
ent and unsaturated hydraulic conductivity (Whitaker 1986).
Hydraulic conductivity in the unsaturated zone in MIKE SHE is a
dynamic term dependent on volumetric soil moisture and soil
water capacity (DHI 2017b). To achieve a realistic dynamic simula-
tion of vertical water percolation, MIKE SHE requires detailed
information on the vertical heterogeneity of soil properties. Another
limitation of Richards’ equation is its inability to account for macro-
pores, although existing evidence underscores their importance in
causing infiltration through preferential flow pathways, thereby
allowing for the verticalmovement of nutrients through burrow and
crack flow, and subsequent delivery to the tributaries of the Great
Lakes with lateral flow and tile drainage (Christiansen et al. 2004;
Allaire et al. 2011; Beven and Germann 2013). Compared with em-
pirical and conceptual models, the physically based models can,
in principle, improve the representation of storm events and sim-
ulate the impacts of rainfall intensity and duration. Physically
based methods are recommended when sub-daily precipitation
data are available. In the same context, although the majority of
the models explicitly (GA and Philip’s methods) or implicitly
(SCS-CN) presume that the dominant mechanism of surface
runoff is infiltration-excess, a key point to add is that runoff is
produced by saturation-excess processes in most watersheds
(Tilahun et al. 2013), which has been shown to produce more
accurate overland flow estimates (Croley and He 2005).
Another critical facet of the water cycle in snowmelt-dominated

watersheds, such as theGreat Lakes drainage basins, is characteriza-
tion of the snowpack and snowmelt processes (Fig. 4). In general,
themethods for modelling snowmelt are grouped into the “energy-
balance” and “degree-days”methods. The energy-balance approach
relates a change in snowpack heat content to the sum of all heat
fluxes, i.e., solar radiation, thermal radiation, sensible heat trans-
fer from air, latent heat of vaporization from condensation, or
evaporation/sublimation, conducted heat from underlying ground,
and advected heat from precipitation (USDA-NRCS 2004). The
energy-balance methods require multiple hydrometeorological
inputs (air temperature, wind, precipitation, humidity, cloudiness)
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and spatial descriptors (elevation, aspect, slope), as well as informa-
tion on vegetation, soil, land use/land cover. Recent advances in the
mathematical description of snow melt can also account for snow
drift, layered snow pack metamorphism, subsurface melt, and
dynamic changes in groundwater percolation. The HSPF snowmelt
subroutine considers long- and short-wave net radiation heat, con-
vection of sensible heat from air, latent heat transfer by condensa-
tion of moist air on the snow pack, heat from rain, latent heat from
rain freezing on the snowpack, and conduction of heat from the
ground. AnnAGNPS includes an option for calculating the energy
balance for each of the snowpack thermal layers. The consideration
of multiple snowmelt factors with energy-balance models allows
for the prediction of different snow-melt regimes under similar air
temperature conditions (e.g., rain-on-snow events) or for differ-
ent (shaded versus nonshaded, forested versus open-space) loca-
tions. An interesting study by Qi et al. (2017) showed that a SWAT
modification with an energy-balancemodule could achieve reliable
estimates of rain-on-snow events and snow depths, which in turn
can be essential for recreating the spring freshet dynamics in the
Great Lakes and elsewhere
Other watershed models (APEX, DLBRM, GWLF-E, HYPE, INCA,

MIKE SHE, and SWAT) follow a simplified conceptual degree-days
approach, which postulates that the amount of snowmelt is pro-
portional to the temperature difference between the air and
snowmelt threshold, with elaborate snowmelt factors to convert

degree-days into millimetres of water (mm H2O). As a result, the
threshold temperatures represent effective parameters that
include effects from (not explicitly defined) controlling factors.
By default, these models specify snowmelt parameters at the ba-
sin scale, and several models (AnnAGNPS, HYPE, SWAT) allow
adjustments for sub-basin elevation. Moreover, SWAT simulates
snowmelt dynamics with seasonally variable snowmelt conver-
sion factors and empirically defined snow-cover fractions based
on lumped basin-wide parameters. The existing evidence sug-
gests that the latter approach can be a challenge for multisite cal-
ibration in mixed catchments with both agricultural and urban
areas (Dong et al. 2019). Besides snowpack and air temperature,
there are also degree-day models that additionally consider soil-
surface temperature to specify hydrological conditions for frozen
soils. In particular, SWAT considers the soil as frozen only if the
temperature of the top soil layer drops below 0 °C, when runoff is
increased by adjusting the retention parameter S in the SCS-CN
runoff subroutine with an empirical exponential equation, while
prohibiting percolation, lateral flow, and tile drainage. To address
elevated runoff in SWAT due to precipitation on frozen soil, Fu
et al. (2014) assigned curve number (CN) values for impervious
areas to generate infiltration-excess and overland flow for top-
soil temperatures below zero. In the same context, Qi et al. (2016)
modified the SWAT module for soil temperature and improved
the simulation of freeze–thaw cycles in soils, which has been

Fig. 4. Surface, subsurface, and groundwater processes of the water cycle typically characterized by the spatially distributed watershed

models.
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recognized as a seasonal mobilization factor for elevated rates of
soil erosion and nutrient leaching in the Great Lakes (Wang
2015).
Several degree-day models estimate snow depth in water equiv-

alents (HYPE, INCA-P), which could provide an additional model-
endpoint for validation. The accuracy of snowmelt simulations
also depends on the spatial granularity of the models, and MIKE
SHE, with fully distributed discretization, has displayed improved
performance over SWAT with respect to the spatial characteri-
zation of snowpack distribution (Liu et al. 2016). Generally, the
reviewed models mostly simulate the temporal evolution of snow
storage within isolated spatial units without accounting for lateral
snow redistribution processes between these units, while the simu-
lation of wind-induced lateral transport of snow is treated as being
beyond the scope of the typical catchment-scale watershed model-
ling exercises.

Subsurface processes

Subsurface vertical flow pathways include: the infiltration of
water into the soil porous matrix, where it can be stored as mois-
ture in an unsaturated zone; downward movement through pref-
erential pathways in macropores (non-Darcy flow), where the
infiltrated water bypasses large portions of soil through burrows,
cracks, and fingers in soil without interacting with the soil ma-
trix (Allaire et al. 2011); percolation through an unsaturated
(vadose) zone downward to the water table, which separates un-
saturated from saturated zones; percolation to confined aquifers
(deep groundwater recharge); groundwater evaporation fromwater
table; uptake by plant roots, followed by reentry to the atmosphere
through plant transpiration. The subsurface horizontal flow path-
ways in the reviewedmodels typically include: lateral flow in an un-
saturated zone; horizontal flow of groundwater along a horizontal
hydraulic gradient in unconfined and confined aquifers (Darcy’s
Law regarding laminar flow in porous media with negligible iner-
tial forces); and artificial drainage through tile drains (Fig. 4).
By comparison with surface runoff, subsurface flow in a porous

soil matrix is slower, thereby allowing for consistent baseflow
supply (return flow) to streams during dry periods (Henshaw
et al. 2000). Generally, the subsurface component in all of the
reviewed models distinguishes between unsaturated (upper) and
saturated (lower) zones (Fig. 4). The dynamic representation of
the boundary between the two layers, defined as the (ground)
water table, is a critical model requirement for tile drainage sim-
ulation in agricultural lands in the Great Lakes (Table 1). The con-
ceptual representation of groundwater varied from simulation of
local (perched) water tables (AnnAGNPS), to conceptual simula-
tion of groundwater within spatial subwatershed boundaries
(SWAT), to representation of regional-scale dynamics of ground-
water with conceptual reservoir schemes, and to 3D flow dynam-
ics with partial differential equations in MIKE SHE (Table 3).
The unsaturated zone is typically subject to (subsurface) lateral

flow (APEX, AnnAGNPS, SWAT) in slope parallel macropores or
soil pipes (Weiler et al. 2006), which is also known as interflow
(HSPF, HYPE), or subsurface stormflow (Hu and Li 2018). AnnAGNPS
simulates subsurface lateral flow in saturated conditions with
Darcy’s equation, with the requirement that an impervious layer
is present within the soil profile. Horizontal groundwater flow in
Darcy’s equation is assumed to be the product of saturated
hydraulic conductivity and horizontal hydraulic gradient. The
current limitation of AnnAGNPS is the lack of dynamic simula-
tion of groundwater-fed baseflow, which requires model users
to perform preliminary hydrograph separation to estimate the
surface-runoff contribution for model calibration purposes.
Other models distinguish between subsurface lateral flow in the
vadose zone and groundwater table with lateral flow simulation
in the saturated zone. Specifically, SWAT incorporates a kine-
matic storage model developed by Sloan et al. (1983) and Sloan

and Moore (1984) to simulate lateral flow in the vadose zone. The
Sloan kinematic storage model is a water mass-balance equation
in which the subsurface flow path is conceptually represented as
a steep hillslope flow in a 2D cross-section parallel to the direc-
tion of the flow. For the groundwater system, SWAT simulates
two aquifers: the shallow aquifer (unconfined aquifer), and the
conceptual deep (confined) aquifer. It is assumed that only the shal-
low aquifer contributes to channel (stream) flow, whereas the deep
aquifer allows for water to flow outside of the watershed as an ulti-
mate loss in the catchment water balance (Neitsch et al. 2011).
SWMM similarly adopts the two-zone representation with the
upper (unsaturated) and lower (saturated) zones, but (unlike SWAT
and HSPF; see next section), the saturated zone is not further di-
vided. Conceptual reservoir models of different complexity are
implemented in DLBRM, GWLF-E, HSPF, HYPE, and INCA. In
HSPF, both lateral and groundwater flows depend on the volume
of stored water and user-specified recession rates. The saturated
layer in HSPF is divided into two storage reservoirs: active and
inactive groundwater, which are conceptually similar to the dis-
tinction between shallow and deep (confined) aquifers in SWAT.
Similar to SWAT, HSPF assumes that only the active groundwater
discharges contribute to the return channel (stream) flow, which
in turn are calculated with a simple proportional method based
on active groundwater storage, without taking into account the
hydraulic conductivity. In HYPE, subsurface flow only occurs
when the soil moisture content is greater than the field capacity,
while the amount reaching the stream is controlled by a reces-
sion coefficient. HYPE also accounts for groundwater flow: the
water in the aquifers is typically treated in a linear manner,
whereby outflows are proportional to storage. INCA offers a
parsimonious approach that distinguishes between: (i) quick
flow, comprising surface runoff (saturation and infiltration-excess),
tile drainage through soil cracks and macropores, and ditch flow;
(ii) soil water represented as an intermediate reservoir for soil
water drainage/retention; and (iii) conceptual groundwater flow
(Jackson-Blake et al. 2016).
Overall, MIKE SHE provides the most comprehensive represen-

tation of the interplay between surface and subsurface hydrologi-
cal processes (Table 3). MIKE SHE incorporates a physically based
3D saturated zone model, and therefore groundwater quality in
the overland, unsaturated, and saturated components can be ex-
plicitly modelled. The MIKE SHE 3D finite difference method
numerical engine is similar to MODFLOW (MODular 3D Finite-
Difference Ground-Water FLOW Model), an advanced 3D model
for recreating groundwater conditions and groundwater – surface
water interactions. The main difference between these two models
is thatMIKE SHE includes an unsaturated zone,whereasMODFLOW
only deals with a saturated zone. In MIKE SHE, the saturated
zone is influenced by all of the other water fluxes: overland flow,
unsaturated flow, channel flow, and evapotranspiration. Flow in
the unsaturated zone is calculated by the 1D Richards’ equation.
The governing equation for 3D flow in saturated porous media
for both MIKE SHE andMODFLOW is the 3D Boussinesq equation,
solved with finite difference methods. Simulation of the subsur-
face process with MIKE SHE incorporates saturated hydraulic
conductivity, wells, pumping, and drainage routing. MIKE SHE
can simulate rapidly changing groundwater levels, flow, and
two-way aquifer-channel seepage. It should be noted that several
watershed models have been coupled with dedicated ground-
watermodels to further improve the representation of groundwater
dynamics at regional scale, e.g., APEX, HSPF, SWAT, and SWWM–

MODFLOW, andMIKE SHEwith the subsurfacemodel FEFLOW.

Sediment transport

Sediment transport is a complex process comprising the detach-
ment, transportation, anddeposition of soil particles at some down-
slope location, as mediated by the action of raindrops and flowing
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water (Fig. 5). Erosion begins when raindrops strike the land sur-
face, creating loose and noncohesive sediments. Overland flow
(sheet, rill, gully, and in-stream erosion) provides a mechanism

for further detachment and transportation of the loosened soil par-
ticles to downslope locations (Li et al. 2019; Lu 2019). Soil detach-
ment through overland flow is the dominant process of soil erosion
(Zhang andWang 2017; Li et al. 2019), which in turn is regulated by
rainfall intensity (i.e., the more intense the rainfall event is, the
greater the detachment of soil particles and sediment transporta-
tion by overland flow). Within a watershed context, erosion occurs
at stream banks and stream beds, and therefore overland erosion
may be profoundly underestimatedwhenmodels fail to account for

bed and bank erosion (Gellis and Gorman-Sanisaca 2018). We dis-
cuss the importance of bed and bank sediment sources in the sec-
tion below on Water/sediment routing and instream processes, while
this section focuses exclusively on overland sediment sources. The
models used to simulate soil erosion can be divided into empirical
and physically based models, depending on the degree of sophis-
tication used for recreating detachment and transport processes
(Table 3). There is also significant diversity with respect to sedi-
ment particle-size class or soil types considered in conjunction

with the simulated watershed processes (Supplementary data,
Table S32). Additionally, the fidelity of the spatial characterization

of soil erosion can vary depending on the granularity of landscape

discretization considered, such as drainage density and related
hydrological connectivity (Hession et al. 1996; Gonzalez et al. 2016).
Models that can reproduce BMPs as spatial objects, instead of

spatially disconnected HRUs, could be expected to provide better
spatial characterizations of soil erosion processes, if properly sup-
ported by refined site-specific spatial information (Jetten et al.

2003).
SWMM encompasses a data-oriented approach based merely

on surface runoff and fixed or event-mean concentrations. The

model provides three simple options for wash-off estimation;
namely, the exponential relationship, the rating-curve approach,
and event-mean concentration wash-off, which reflect different

assumptions of the relationship between wash-off and overland
flow rate. In doing so, SWMM is mainly used to represent sedi-
ment transport patterns in urban catchments, as the spatiotem-

poral variability of erosive sediment concentrations is relatively
high in agricultural watersheds. AnnAGNPS, APEX, GWLF-E, and
SWAT are based on the empirical Universal Soil Loss Equation

(USLE) approach, which was developed by the USDA in the 1970s
to predict long-term sheet and rill erosion under different rain-
fall conditions, soil types, management practices, and topogra-

phy (Benavidez et al. 2018). GWLF-E uses the original USLEmodel,

Fig. 5. Sediment erosion processes reproduced by the spatially distributed watershed models. Definitions of sheet, rill, and gully erosion

are provided in the Supplementary data2 (glossary).
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where the annual average soil loss in USLE (A) displays a linear
relationship with the rainfall erosivity (R), soil erodibility (K), to-
pography factor determined by field slope length and steepness
(LS), covermanagement (C), and supporting practice (P) (Wischmeier
and Smith 1978). The annual soil erosion estimates obtained with
the original USLE formula do not account for the broader influence
of rainfall duration and intensity over themagnitude of soil erosion.
USLE was therefore updated to the computerized RUSLE1 model in
which the original USLEmathematical operations weremaintained,
but the estimates of many factors involved were improved based on
additional research, experiments, and data collection (Renard et al.
1997; Stone 2015). For instance, the K factor is expressed as a time-
varying parameter to address the seasonality of soil erodibility due
to freeze–thaw and soil moisture; the LS factor reflects the ratio of
rill to inter-rill erosion and also captures the variations in slope
shapes; the P factor considers the amount and location of deposition
in conservation planning (Renard 1991). Further enhancement of the
RUSLE1 model led to the development of RUSLE2, which is a com-
puter program that incorporates different mathematical integra-
tions from USLE and RUSLE1. Whereas USLE and RUSLE1 are based
on the product of average annual values for all of the aforemen-
tioned factors, RUSLE2 initially computes the products of daily factor
values and then sums up the estimated daily erosion values to yield
the annual erosion prediction (Foster et al. 2003). According to Foster
et al. (2003), this simple difference in the underlying calculations
may result in up to 20% variation in the average annual erosion esti-
mates between RUSLE2 and the USLE or RUSLE1 methods. Another
drawback of USLE and RUSLE1 is the inability to directly estimate
runoff, because rainfall and runoff factors are estimated based on
an erosion index. Consequently, the USLE and RUSLE1 models can-
not be used to simulate event-based, soil-loss responses. AnnAGNPS
adopts the refined RUSLE 1 and 2 approaches, along with the addi-
tional hydrogeomorphic USLE (HUSLE) model (Theurer and Clarke
1991). HUSLE is required to determine the delivery ratio of sheet and
rill erosion of each cell to the receiving reach, because RUSLE only
provides erosion estimates and not field deposition estimates
(Bingner et al. 2018). MUSLE is a modified form of USLE used in
APEX and SWAT to predict sediment yield by replacing the rainfall
factor R in USLE with a runoff factor (Sadeghi et al. 2014), thereby
allowing for the consideration of antecedent soil water content
and predictions of sediment losses driven by storm events. Despite
its ability to estimate individual storm erosions and work at large
spatial scales, some studies have noted that MUSLE still tends to
underestimate sediment yields for large events (Kale and Vadsola
2012; Sadeghi et al. 2014). By comparison with USLE, RUSLE and
MUSLE are more reliable at explicitly accounting for the temporal
variability in sediment erosion with higher resolution. However,
RUSLE2 is currently the most recommended soil-loss equation, and
can provide robust estimates of average annual sheet and rill ero-
sion across different land uses/covers, as well as soil and climate
conditions (Foster et al. 2003; Dabney et al. 2011).
In addition to sediment erosion, SWAT considers sediment

loading from lateral and groundwater flows to the main stream
channel; however, similar to SWMM, SWAT requires measured
data of inflowing sediment concentrations, and so does DLBRM,
which lacks any mechanistic foundation. DWSM, HBV-INCA, HSPF,
HYPE, and MIKE SHE explicitly consider the sediment detachment
and erosion/removal processes. The foundational concept of these
five physically based models is that the transport of detached par-
ticles is largely driven by overland flow. MIKE SHE and DWSM use
a mass-balance equation for dynamic simulation of soil erosion,
whereby sediment mass at a specific point and time is computed
using the runoff rate and sediment concentration in the flowing
water. MIKE SHE also accommodates explicit inter-rill and rill-
flow simulations (Morgan et al. 1999). The dynamic mass-balance
equation of DWSM and MIKE SHE is calculated with a numerical
solution. In contrast to the complex 2D dynamic simulations
with DWSM and MIKE SHE, sediment transport in HSPF, HYPE,

and INCA is calculated by a much simpler nonlinear equation.
HYPE deals separately with the effects of rainfall energy and sur-
face runoff on soil detachment, and the delivery into streams
involves a transport factor.
Generally speaking, the application of more complex and physi-

cally based sediment-erosion models should be accompanied by
more detailed spatial information to calibrate and validate different
contributing processes and to control uncertainty inmodel parame-
ters (Jetten et al. 2003). The practice of training watershed models
through a “judicious fiddling” of multiple sediment sources and
sinks against sediment loads at a single gauging station has been
criticized (Arnold et al. 2015). This practice could, in principle, lead
to satisfactory model performance by overpredicting upland ero-
sion and underpredicting channel erosion, which would ultimately
compromise our ability to evaluate the efficiency of soil conser-
vation measures. In the same context, Arnold et al. (2015) recom-
mendedmulticriteria calibration and validation of sediment budgets
with additional soft data, such as core dating, extrapolation of data
from neighboring locations, consideration of LIDAR mapping to
estimate soil erosion rates, analysis of aerial photographs for
active erosion, and sediment transport processes.

Nutrient cycles

Changes in land uses and intensity of agricultural practices can
induce significant changes to the fate and transport of nutrients
and pollutants (e.g., pesticides) within a watershed context (Fig. 6).
Carbon (C) is the main elemental constituent of living matter
generated by autotrophic photosynthesis and consumed by het-
erotrophic organisms. Carbon can be found in the soil as both or-
ganic (living or dead) or inorganic (carbon dioxide and bicarbonates
attached to clay-size particles) forms. Nitrogen (N) and phosphorus
(P) are two important macronutrients for the growth of primary
producers. Both nutrients exist in the soil as organic and inorganic
forms either associated with humus, held by soil colloids or dis-
solved in pore water. These nutrients can be introduced by fertil-
izers, manure, or plant residues, and may be subject to a multitude
of biogeochemical processes. They are lost from soil surface to
streams and subsurface waters through runoff and leaching,
respectively. Soluble inorganic forms of nutrients (NO�

3 , NH
þ

4 ,
and PO�3

4 ) may be removed from the soil through plant uptake.
Plant residues in turn may decompose and contribute to the or-
ganic pool of soil nutrients (Chapin et al. 2011). Microbial activity
could convert the organic nutrient pools to bioavailable inorganic
forms through mineralization, or transform inorganic nutrients
back to organic forms through immobilization. The rates of these
microbial activities are regulated by several environmental fac-
tors, such as soil moisture, temperature, pH, cation-exchange
capacity of soils, available nutrient levels, and stoichiometry
(C:N and C:P ratios). Phosphorus and nitrogen compounds can
also be deposited onto the land/water surface through adsorp-
tion to inorganic minerals in the rainfall and through direct
adsorption of the nutrient compounds to plants, soil particles,
rocks, and water molecules on the land surface.
The following three subsections provide the modelling strat-

egies used to simulate C, N, and P cycles in the reviewed water-
shed models. Generally, the models can be categorized into two
types in regards to the representation of nutrient fate and trans-
port: (i) process-basedmodelswith explicit nutrient biogeochemical
cycles, and (ii) runoff – mass-transport models. The former type
includes AnnAGNPS, APEX, HSPF, HYPE, and SWAT, which follow
the soil organic matter (SOM) concept to simulate the cycling of
nutrients (e.g., Neitsch et al. 2011; Bingner et al. 2018). The SOM
approach subdivides the soil organic matter into multiple pools
(or distinctive compartments) at different decomposition stages.
These pools include: (i) the fresh organic matter newly added to
the soil that contains plant tissue residues and animal excreta
(labile or active); (ii) organic residues that can be partially
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decomposed (slow); and (iii) humus, the most stable soil organic
matter (passive), which is subject to extremely slow decomposition

rates (Osman 2013). Nutrient transformations involve exchange
among the nutrient pools contained within the individual SOM

compartments. Thus, the turnover rate of organic soil nutrients is
closely linked to the characteristics of individual SOM types, which

in turn is a critical, and often overlooked, factor in our efforts to re-
create soil nutrient dynamics and subsequently determine the best

strategies to alleviate the environmental impact of agricultural

practices (Abrahamsen and Hansen 2000; Neitsch et al. 2011;
Williams et al. 2015; Bingner et al. 2018). Strictly speaking, HSPF

does not follow the SOMconceptualization but rather assigns differ-
ential kinetics to prespecified nutrient pools (Bicknell et al. 1996;

Lindström et al. 2010), and was thus categorized as a SOM-based
model for the purpose of this review. The latter type, categorized as

runoff – mass-transport models, includes DLBRM, DWSM, GWLF-E,
MIKE SHE, and SWMM, which simulate the generation of nutrient

loads primarily as a function of transport with surface and subsur-
face runoff, and also consider adsorption/desorption to soil par-

ticles (Borah et al. 1999; Croley and He 2005; Croley et al. 2005).

INCA generally follows the latter type by partitioning the nutrient
pools into solid and dissolved phases. Unlike the other runoff –

mass-transport model, independently developed INCAs for individual

nutrient element (i.e., INCA-C, INCA-N, and INCA-P) simulate both
organic and inorganic forms and associated biological/chemical
transformations (i.e., mineralization). INCA-P further partitions
the organic P into two pools (labile and inactive P) with different
turnover rates (Jackson-Blake et al. 2016). Although MIKE SHE is a
physically based runoff model originally developed to characterize
transport of nonreactive constituents (DHI 2017a), it can be coupled
with an add-onmodule (DAISY) that simulates C and N cycling within
the crop-root zone sequentially to the hydrological component
(Thirup et al. 2014), and therefore the following description will be
based on thatmodule.

Carbon cycle
Soil is themost stable reservoir for carbon, and changes in land

use and agricultural production intensity can significantly influ-
ence the degree of carbon sequestration, which in turn can con-
tribute to the variability of atmospheric carbon levels (CO2). The
presence of organic C in soil may also affect nutrient availability
(Haynes 2005). The nutrient stoichiometry (C:N and C:P) of micro-
bial biomass is also known to determine the demand for mineral-
ization (Sinsabaugh et al. 2008), thereby regulating the production
rate of transformedmaterial. The organic C fraction also affects the
physical properties of soils (e.g., soil aggregation) and thus their

Fig. 6. Major processes on the carbon, nitrogen, and phosphorus cycles (decomposition, humification, mineralization, immobilization,

soil respiration, adsorption, plant uptake, volatilization, leaching, runoff) typically characterized by the semi-distributed watershed

models in clusters 2, 3, and 4 (see Fig. 2).
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bulk density and water retention (Ramesh et al. 2019). Conse-
quently, understanding the mechanisms of C cycling has broader
implications for the accurate representation of water balance, N
and P cycling, and ultimately for the assessment of different
management strategies.
Despite the significant role of organic C in soil, there are only

five SOM-based watershed models that can simulate the C cycle:
AnnAGNPS, APEX, HYPE, SWAT, and an add-on module (DAISY)
available for MIKE SHE and INCA-C (Table 4), whereas HSPF uses
the SOM-based compartmentalization for organic N and P pools
(e.g., labile and refractory) but does not explicitly simulate the
soil C cycle. Generally, the aforementioned watershed models
have three pools for organic C: (i) active (plant residue/manure);
(ii) slow; and (iii) passive/stable fractions associated with humus
(e.g., Williams et al. 2015). APEX further splits plant residues/
manure into two types depending on the structure of organic bio-
mass: metabolic (or easily decomposable) and structural litter in
which the lignin fraction determines the transformation rate of
organic C (Abrahamsen and Hansen 2000; Williams et al. 2015).
By contrast, AnnAGNPS and SWAT aggregate the slow and pas-
sive pools of organic C, and explicitly treat the newly added plant
residue/manure C (Neitsch et al. 2011; Bingner et al. 2018). There
is also significant variation in the representation of transforma-
tion and transport processes among these models, depending on
how organic C pools are considered (Table 4). For example,

although both AnnAGNPS and SWAT consider a three-pool com-
partmentalization, distinguishing among plant residues, fertilizers/
manure, and organic soil C, the definition of the latter pool is
slightly different between the two models. AnnAGNPS represents
the soil organic C as “active humus”, which is subject to losses
through humification as well as through runoff of organic C
attached to clay particles in the top-soil layer (Bingner et al. 2018).
By contrast, SWAT treats the soil organic C pool as “passive”
humus, which receives an amount of decomposed plant resi-
dues (or fertilizers/manure) through humification, and a user-
specified C fraction is permanently lost by immobilization (Neitsch
et al. 2011). HYPE is one of the two models (along with INCA-C) that
simulate both solid (fast or slow) and soluble organic C phases along
with the associated transformation processes (Lindström et al. 2010).
C transformations are represented by decomposition, mineraliza-
tion/immobilization, and humification (SMHI 2019). This approach
simulates the loss of organic C by both surface runoff andpercolation
through the soil layers and allows the estimation of the contribution
of organic C to groundwaterflow (SMHI 2019).
Mechanistic descriptions of microbial transformations of

organic C, such as decomposition, mineralization, and humifica-
tion, are typically represented as first-order kinetics with environ-
mental correction factors due to the prevailing soil temperature
and moisture conditions as a combined, multiplicative effect (e.g.,
Abrahamsen and Hansen 2000; Neitsch et al. 2011). Some models

Table 4. Representation of the soil C cycle with the current generation of watershedmodels.

Model Phases Processes Sources to soil Loss pathways

AnnAGNPS Organic pool:

� Plant residue
� Soil

Decomposition, humification,

sediment sorption, decay

through soil layer by transport

Plant residues, fertilizer/

manure

Humification, sediment

erosion, soil respirationa,

transport decay

APEX Organic pool:

� Metabolic and

structural residue
� Active
� Slow
� Passive

Decomposition, humification,

mineralization/immobilizationb,

sediment sorption, leaching

Plant and roots residues (above

and below ground), manure

Soil respirationc, manure

erosion, leaching

HYPE Organic pool:

� Fast
� Slow (humus)
� Dissolved

Decomposition, mineralization

(degradation)/immobilization,

humification, leaching

Plant residues Surface runoff, interflow/

return flow

INCA-C Organic pool:

� Soil
� Dissolved

Inorganic pool:

� Dissolved

Decomposition, mineralization,

soil respiration (volatilization),

leaching

Litter fall (aboveground), roots

(belowground) as adsorbed

organic C only

Surface runoff, soil respiration,

interflow (diffuse runoff)

MIKE SHEd Organic pool:

� Crop
� Plant residue
� Microbial
� Humus

Decomposition, humification,

plant and soil respiration,

immobilization

Photosynthesis (crop C),

fertilizer/manure

Crop C harvest, plant and soil

respiration

SWAT Organic pool:

� Plant residue
� Manure
� Soil

Decomposition, humification,

mineralization

Plant residues, fertilizer/

manure

Mineralization

Note: See Table 1 for details of the abbreviations.
a
Soil respiration is assumed to be responsible for 50% of the losses of decomposed C.

bConceptual mineralization/immobilization rate calculated based on N demand, as derived from the N content in the organic pool for a given soil mineral N

availability.
c
Constant soil respiration allocation to CO2 is assigned to various soil organic pools.
dC cycle for MIKE SHE is based on the description of the add-onmodule DAISY (model for simulation of water and nitrogen dynamics and crop growth in agroecosystems).

MIKE SHE–DAISY follows the SOMmodel with two soil organicmatter pools (structural andmetabolic) with different turnover rates.
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Table 5. Representation of the soil N cycle with the current generation of watershed models.

Model Phases Processes Sources to soil Loss pathways

AnnAGNPS Organic pool:

� Plant residue
� Soil

Inorganic pool:

� Nitrate

Decomposition, humification, sediment

adsorption (Norg), denitrification, plant uptake,

leaching

Plant residue, fertilizer/manure Plant uptake, humification, soil

erosion, surface runoff,

interflow, tile drainage flow

APEX Organic pool:

� Metabolic and structural plant

residue
� Active
� Slow
� Passive

Inorganic pool:

� Nitrate, ammonium

Feedback of plant N to soil Norg, mineral sorption

to plant residue Norg, decomposition,

humification, mineralization/immobilizationa,

nitrification, denitrification, volatilization,

sediment adsorption (Norg), plant uptake, N2-

fixation, upward movement by soil moisture

evaporation (NO�

3 ), leaching

Plant residues, roots (above- and below-

ground), N2-fixation, fertilizer/manure,

wet atmospheric deposition

Crop harvest, denitrification,

volatilization, soil erosion,

surface runoff, interflow, return

flow, deep groundwater recharge,

manure erosion, tile drainage

HSPF Organic pool:

� Plant (above and below ground)
� Litter
� Labile and refractory (adsorbed/

dissolved)

Inorganic pool:

� Nitrate, ammonium

Feedback of plant N to soil Norg, decomposition,

mineralization, sorption/desorption (labile and

refractory Norg, NH
þ

4 ), immobilization,

nitrification, denitrification, volatilization,

plant uptake, N2-fixation, leaching

Two options:

1. User defined input to the storage

variables in surface and upper soil

layers

2. Dry and wet atmospheric deposition,

fertilizer/manure

Plant harvest, denitrification,

volatilization, soil erosion,

surface runoff, interflow, return

flow, deep groundwater

recharge

HYPE Organic pool:

� Fast
� Slow (humus)
� Dissolved

Inorganic pool:

� Dissolved

Decomposition (dissolution), mineralization,

plant uptake, denitrification, decay through soil

layers (Norg), leaching

Plant residues, dry and wet atmospheric

deposition, fertilizer/manure, rural

household load

Plant uptake, denitrification,

surface runoff, interflow, tile

drainage flow

INCA-N Inorganic pool:

� Nitrate, ammonium

Mineralization (forcing), immobilization, plant

uptake, nitrification, denitrification, N2-fixation

(forcing), leaching

Organic N (unlimited), N2-fixation,

fertilizer/manure, dry and wet

atmospheric deposition

Plant uptake, denitrification,

surface runoff, return flow, deep

groundwater recharge

MIKE SHEb Organic pool:

� Crop
� Plant residue
� Microbial
� Humus

Inorganic pool:

� Nitrate, ammonium

Feedback of crop N to soil Norg Decomposition,

mineralization (ammonification), immobilization,

plant uptake, nitrification, denitrification,

sorption/desorption (NHþ

4), leaching

Plant residues, fertilizer, dry and wet

atmospheric deposition

Crop harvest, denitrification,

leaching
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include additional factors to accommodate the impact of agricul-
tural operations and land-use types. For example, lower soil
temperatures andmoisture levels may reduce the degree of decom-
position, whereas an increased oxygen level due to cultivation and
tillage could instead increase the microbial transformation rates.
APEX and SWAT consider the combined effect of aeration, soil tem-
perature, andmoisture to assess the effects of agricultural practices
on nutrient cycles (Neitsch et al. 2011; Williams et al. 2015). Decom-
position rates of plant residues in AnnAGNPS are separately speci-
fied for “crop land” and “non-crop land” (Bingner et al. 2018). While
plant residues in non-crop land are assumed to be decomposed all
year round, exceptwhen soil temperature falls below0°C, the decom-
position of crop residues in the top-soil layer may not be considered
if they are removed from crop harvest (Bingner et al. 2018). In
AnnAGNPS, it is also assumed that 50% of C is lost as gas (CO2) to the
atmosphere during the decomposition process (Bingner et al. 2018).
One of the critical differences among the SOM-based watershed

models is the characterization of nitrogen and phosphorus
demand during the biological transformations. That is, the rate
of microbial mineralization is regulated by the stoichiometry (C:
N and C:P ratios) of crop residues or decomposing organicmatter.
If the organic matter contains enough N (i.e., low C:N ratio), then
the decomposition to simpler C compounds, such as glucose, will
be solely regulated by N contained in the plant residues to meet
the bacterial growth demand. On the other hand, if the N content
in the organic material does not meet the bacterial demands (i.e.,
high C:N ratio), then bacteria can use the available N in the soil
layer. MIKE SHE–DAISY is based on this simple concept, stipulating
a constant C:N ratio for the fresh organicmatter pool, i.e., plant resi-
dues or manure (Abrahamsen and Hansen 2000). AnnAGNPS and
SWAT use daily updated C:N ratios based on the predicted C- and
N-concentrations within each soil layer.Whereas AnnAGNPS pos-
tulates that the mineralization rate of C is proportional to that of
N (see the section on Nitrogen cycle) according to the computed
soil C:N ratio (Bingner et al. 2018), SWAT introduces a limitation
formula, assessing the relative deviation from a threshold C:N
ratio (Neitsch et al. 2011). APEX estimates the “potential” N demand
for the C transformation processes among the organic matter pools
considered, as the product of the corresponding “potential” reac-
tion rate with the organic C content, the lignin fraction, and N:C
ratio of the transformed substrate (Williams et al. 2015). The latter
ratio is expressed as a linear function of the nitrogen content in
the general decomposing material. The “potential” transforma-
tion rates are further regulated by soil temperature, moisture,
oxygen, tillage effects, and are only realized when the N supply
of the source pool exceeds the demand in the receiving compart-
ment material (Williams et al. 2015). The biological transforma-
tion rates in HYPE are expressed as a function of the nutrient
concentration in the individual pool and the effects of soil tem-
perature and moisture, whereas the stoichiometry is not a limit-
ing factor. A major challenge of the SOM-based strategy is that
the typical fractionation measurements do not match the physi-
cochemical characteristics used for the compartmentalization
of organic matter in models (Campbell and Paustian 2015). Thus,
notwithstanding the conceptual advantages of linking the vari-
ous organic matter fractions with specific mechanisms affecting
soil nutrient dynamics, there are tradeoffs between the degree of
simplification (to avoid overparameterization) and the actual
attributes of organic matter (Campbell and Paustian 2015). Selec-
tion of the suitable model may be largely influenced by the type
and available data.
Generally, the reviewed models consider C losses from each soil

layer through organic C export as suspended sediments, and (or)
dissolved organic/inorganic C with flowingwater (Futter et al. 2007;
Williams et al. 2015; Bingner et al. 2018). AnnAGNPS estimates
the total organic C loss from a given soil layer as the product of
the fraction of C attached to clay size sediments and the mass of
eroded sediments from that layer within a given point in time.T

a
b
le

5
(c
on
cl
u
d
ed
).

M
o
d
e
l

P
h
a
se
s

P
ro
ce
ss
e
s

S
o
u
rc
e
s
to

so
il

L
o
ss

p
a
th
w
a
y
s

S
W
A
T
c

O
rg
a
n
ic
p
o
o
l:

�
P
la
n
t
re
si
d
u
e

�
A
ct
iv
e

�
S
ta
b
le

In
o
rg
a
n
ic
p
o
o
l:

�
N
it
ra
te
,
a
m
m
o
n
iu
m

F
e
e
d
b
a
ck

o
f
p
la
n
t
N
to

so
il
N
o
rg
,
d
e
co

m
p
o
si
ti
o
n
,

m
in
e
ra
li
z
a
ti
o
n
(n
e
t)
,
a
d
so
rp

ti
o
n
(N

o
rg
),

n
it
ri
fi
ca
ti
o
n
,
d
e
n
it
ri
fi
ca
ti
o
n
,
v
o
la
ti
li
z
a
ti
o
n
,

p
la
n
t
u
p
ta
k
e
,
N
2
-fi
x
a
ti
o
n
,
b
a
ct
e
ri
a
l
re
m
o
v
a
l

(N
O

� 3
)
in

sh
a
ll
o
w
a
q
u
if
e
rs
,
u
p
w
a
rd

m
o
v
e
m
e
n
t

d
u
e
to

so
il
m
o
is
tu
re

e
v
a
p
o
ra
ti
o
n
(N
O

� 3
),
le
a
ch

in
g

P
la
n
t
re
si
d
u
e
s,
N
2
-fi
x
a
ti
o
n
,
fe
rt
il
iz
e
r/

m
a
n
u
re
,
d
ry

a
n
d
w
e
t
a
tm

o
sp

h
e
ri
c

d
e
p
o
si
ti
o
n

P
la
n
t
h
a
rv
e
st
,
d
e
n
it
ri
fi
ca
ti
o
n
,

v
o
la
ti
li
z
a
ti
o
n
,
so
il
e
ro
si
o
n
,

su
rf
a
ce

ru
n
o
ff
,
in
te
rfl

o
w

(l
a
te
ra
l

fl
o
w
),
ti
le

d
ra
in
a
g
e

N
o
te
:
S
e
e
T
a
b
le

1
fo
r
d
e
ta
il
s
o
f
th
e
a
b
b
re
v
ia
ti
o
n
s.

a
C
o
n
ce
p
tu
a
l
m
in
e
ra
li
z
a
ti
o
n
/i
m
m
o
b
il
iz
a
ti
o
n
ra
te

ca
lc
u
la
te
d
b
a
se
d
o
n
N
d
e
m
a
n
d
,
a
s
d
e
ri
v
e
d
fr
o
m

th
e
N
co

n
te
n
t
in

th
e
o
rg
a
n
ic

p
o
o
l
fo
r
a
g
iv
e
n
m
in
e
ra
l
N
a
v
a
il
a
b
il
it
y
in

so
il
.

b
N

cy
cl
e
fo
r
M
IK
E
S
H
E
is

b
a
se
d
o
n
th
e
d
e
sc
ri
p
ti
o
n
o
f
th
e
a
d
d
-o
n
m
o
d
u
le

D
A
IS
Y
a
lt
h
o
u
g
h
th
is

fe
a
tu
re

is
n
o
lo
n
g
e
r
su

p
p
o
rt
e
d
(P
a
tr
ic
k
D
e
la
n
e
y,

D
H
I
C
a
n
a
d
a
,
p
e
rs
.
co

m
m
.)
.
M
IK
E
S
H
E
–
D
A
IS
Y
fo
ll
o
w
s
th
e
S
O
M

m
o
d
e
l

w
it
h
tw

o
so
il
o
rg
a
n
ic
m
a
tt
e
r
p
o
o
ls
(s
tr
u
ct
u
ra
l
a
n
d
m
e
ta
b
o
li
c)
w
it
h
d
if
fe
re
n
t
tu
rn

o
v
e
r
ra
te
s.

c S
W
A
T
h
a
s
tw

o
o
p
ti
o
n
s
fo
r
N
cy
cl
e
:
(i
)
E
P
IC
-b
a
se
d
m
o
d
e
l
a
s
d
e
sc
ri
b
e
d
a
b
o
v
e
;
a
n
d
(i
i)
o
n
e
N
p
o
o
l
th
a
t
co

m
p
ri
se
s
th
e
e
n
ti
re

so
il
o
rg
a
n
ic
m
a
tt
e
r.

Neumann et al. 463

Published by Canadian Science Publishing

E
n
v
ir

o
n
. 
R

ev
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 c

d
n
sc

ie
n
ce

p
u
b
.c

o
m

 b
y
 1

0
6
.5

1
.2

2
6
.7

 o
n
 0

8
/0

9
/2

2
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Then, the attached organic C lost to the reaches is determined by
the amount of eroded clay in the modelled unit, travel time, and
half-life due to the collective effect of decay processes (Bingner
et al. 2018). Counter to the majority of the runoff – mass-transport
models (DLBRM, DWSM, GWLF-E, and SWMM) that do not simulate
soil C cycle (Table 4), INCA-C simulates the fate and transport of sur-
face andwithin-soil C to examine the impact of different land-cover
types and hydrological flows (Futter et al. 2007). Similar to HYPE,
INCA-C considers both solid- and dissolved-phase C contained
in three pools: solid-organic C (SOC); dissolved-organic C (DOC);
and dissolved-inorganic C (DIC). Owing to the consideration of
dissolved-phase C, INCA-C can also recreate the vertical soil C distri-
bution. Organic C is added as SOC through the litterfall to the
upper-soil layer, as well as through the death ofmicroorganisms or
the decomposition of below-ground (e.g., roots, plant tissues) or-
ganic C (Futter et al. 2007). In the lower soil, themain supplymech-
anism is the SOC decomposition to DOC. DIC can be lost from the
upper-soil layer through soil respiration (i.e., DIC transformation
toCO2). One of the features of INCA-C is the capacity to characterize
the sources and sinks of organic C in peat, forest soils, and streams
(Futter et al. 2007). Although the nutrient processes specific to wet-
lands and (or) riparian zone are available in some of the SOM-based
models such as AnnAGNPS, HYPE, and SWAT, the parsimonious
INCA-C makes it easier to constrain model parameters with the
typically available data (Futter et al. 2007).

Nitrogen cycle
Nitrogen is a critical element for plant growth and has the

most complex transport and transformation processes of all the
mineral elements in agricultural soils (Follett and Hatfield 2001).
Generally, watershed models that explicitly describe the nitro-
gen cycle (AnnAGNPS, APEX, HSPF, HYPE, MIKE SHE–DAISY, and
SWAT) consider both organic and inorganic N pools in soils (and
in some cases) subsurface and in-stream waters (Table 5). Similar
to the soil C cycle, each N pool is compartmentalized according
to the SOM conceptualization. Various N pools are identified
depending on the source (soil, plant residues, manure/fertilizer), N
form (NHþ

4 and NO�

3 ), solubility (dissolved and particulate), turn-
over rates (slow and fast), solubility, transportability (uptake) from
the plants, and chemical (active, labile, and refractory) characteris-
tics (Lindström et al. 2010). The most complex N models generally
consider two inorganic nitrogen forms (NHþ

4 and NO�

3 ) in each soil
layer, and three pools of organic matter: fresh organic N associ-
ated with crop residue/manure (active organic N), and two addi-
tional organic N pools that differ with respect to their turnover
rates (slow and passive/stable organic N) (Neitsch et al. 2011;
Bingner et al. 2018). AnnAGNPS and HYPE only consider one
aggregated inorganic N pool. Similar to the C cycle, there is some
variability in the compartmentalization of the organic N pools
among the models. While AnnAGNPS uses a general approach that
simulates a lumped soil organicmatter N poolwithin each soil layer
along with plant residue andmanure/fertilizers (fresh organic N) in
the topsoil (Bingner et al. 2018), SWAT has two options to simulate
soil N: one organic N pool like AnnAGNPS, and a multipool that
splits humic soil N into active and stable fractions (Neitsch et al.
2011). APEX includes two additional compartments for the plant-
residue N based on their lignin contents (i.e., metabolic and struc-
tural). HSPF does not consider the soil C cycle, but does simulate the
N cycle using the one of the most complex compartmentalizations,
which separates the plant-residue N into three pools; above-ground,
litter, and below-ground plant residues (Bicknell et al. 1996). HSPF
also considers both particulate and dissolved forms of labile and
refractory organic N in the soil particles and pore-waters, respec-
tively. HYPE considers fast-turnover and humic organic N with
different turnover rates (Lindström et al. 2010), and plant resi-
dues are treated as external inputs to the soil surface (SMHI
2019). INCA-N explicitly simulates inorganic N (NHþ

4 and NO�

3 ),

while the organic N pool is assumed to be an unlimited source
subject to mineralization (Wade et al. 2002a; Rankinen et al. 2013).
Both fertilizer and manure applications can supply the organic
and inorganic N pools, while atmospheric dry and wet deposition
are sources of inorganic N (Bicknell et al. 1996; Abrahamsen and
Hansen 2000; Lindström et al. 2010; Neitsch et al. 2011). HYPE also
considers the potential diffuse source from rural households,
whereby a fraction of inorganic N contributes directly to nearby sur-
facewaters and to bottom-soil layers in the catchment (SMHI 2019).
Transformations of organic N within soil layers described in

SOM-based models (AnnAGNPS, APEX, HSPF, HYPE, MIKE SHE–
DAISY, and SWAT) include processes associated with the decom-
position of plant-residue N, mineralization of organic N, and
immobilization of inorganic to organic N (Table 5). Similar to
what is described in the section on Carbon cycle, the biogeochemi-
cal processes with N pools are characterized by different turn-
over rates, as modulated by soil temperature andmoisture. These
models may thus be more sensitive to changes in environmental
conditions and could provide more defensible predictions under
future climate change scenarios. Decomposition/mineralization
algorithms are often referred to as “net mineralization”, in that
they also account for the microbial immobilization of plant-
available inorganic soil N to plant-unavailable organic N. SWAT
further differentiates between mineralization modulated by the
amount of N in plant residues and microbial activity, and miner-
alization in humic soils (humus mineralization), which convert
organic N unavailable for plant uptake into plant-available inor-
ganic N (e.g., Neitsch et al. 2011; Bingner et al. 2018). Themineraliza-
tion of N from plant residue, described in SWAT, is similar to the
approach used for organic C (Neitsch et al. 2011) and is regulated by
the N demand for microbial activity relative to the N supply of the
receiving pool in the soil (see contrasting C:N ratios in the section
on Carbon cycle). APEX also uses a similar approach to C cycle, in that
the N fluxes among the different N pools are determined by the C:N
ratios as well as the soil temperature and moisture (Williams
et al. 2015). APEX and HSPF offer two of the most complex com-
partmentalizations for organic N; APEX postulates a more con-
ventional characterization distinguishing among structural and
metabolic litter, active, slow, and passive N pools, whereas HSPF
considers both particulate- and dissolved-organic N which is
partitioned by adsorption-desorption reactions described by
equilibrium isotherms (Bicknell et al. 1996). Particulate labile
organic N is subject to mineralization to NHþ

4 , and conversion to
particulate refractory N. Along with the transport of particulate
organic N forms, HSPF simulates the loss of the two desorbed
(soluble) organic N forms via surface-runoff transport (Bicknell
et al. 1996). Other organic N transformations in HSPF are
simulated by first-order kinetics corrected by soil temperature
(Bicknell et al. 1996). HYPE also considers the organic N in soil
solution, which is determined by the difference between the avail-
able fast N pools and an equilibrium concentration (Lindström et al.
2010). Only the two aforementioned models consider organic N in
soil-porewater.
Nutrients can be lost from surface soil as dissolved forms through

runoff and leaching water, and as particulate forms attached to
eroded sediments through surface runoff. Particulate organic N is
primarily attached to clay particles (colloids), and thus the sediment
loads typically contain a significant portion of organic N (Neitsch
et al. 2011). Based on this assumption, AnnAGNPS estimates the
mass of organic N attached to sediment particles as a function
of the soil organic N concentration, fraction of clay in the total
composite soil, and the mass of sediment at the modelled unit
(Bingner et al. 2018). AnnAGNPS also accounts for the sediment
particle size, which can also be modified by the irrigation prac-
tices in the location studied. APEX and SWAT, however, intro-
duce the “enrichment ratio” to determine the fraction of organic
N transported by the suspended sediments (Neitsch et al. 2011;
Williams et al. 2015). The enrichment ratio (ER) is defined as the
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concentration of a given nutrient in the eroded sediment relative
to that in the soil. While both models base the ER estimates on
empirical logarithmic relationships with sediment concentra-
tion as described by Menzel (1980), their enrichment – sediment
concentration relationships for individual storm events are slightly
different. SWAT calculates the ER for each storm event using
only the sediment concentration (SED) in surface runoff
(ER = 0.78·SED–0.2468), and estimates the loss of organic N as a
function of the ER, the organic N concentration in the soil-
surface layer, and the sediment yield on a given day (Neitsch et al.
2011). APEX considers the upper and lower ER bounds to ensure
that the loss of attached organic N does not exceed the realistic
range of sediment loss at given peak runoff event (Williams et al.
2015). HSPF combines two types of organic N loss associated with
wash-off (fine sediment) and scoured material (coarse sediment)
using a user-specified potency factor parameter, reflecting how
strongly a particular constituent is attached to the eroding sedi-
ment and thus the ease that is removed from the surface (Bicknell
et al. 1996).
Sources of inorganic N pools are the N fertilizer/manure and

mineralization of organic N, whereas sinks (losses) from the sur-
face soil are the volatilization of NHþ

4 , denitrification of NO�

3 , and
plant uptake of NO�

3 (Table 5). All of the SOM-based models,
except AnnAGNPS, consider atmospheric depositions of inor-
ganic N pools (NHþ

4 and NO3
–) through rainfall and dry deposition

at the soil surface. NO�

3 on the soil surface is dissolved in the water,
and subsequently is either transported by runoff or infiltrates
through the soil profile. Ammonia volatilization is the gaseous
loss of NH3 that occurs when ammonia fertilizer or urea, (NH2)2CO,
is applied to calcareous soils. Soil NHþ

4 is also transformed to NO�

3

via bacterially mediated oxidation (i.e., nitrification). APEX, HSPF,
and SWAT explicitly simulate both transformations of NHþ

4 in the
soils, which are also dependent on soil temperature and moisture
content. INCA-N calculates the change in N-concentration in the
soil pool as a function of drainage and volume of retention water
(Wade et al. 2002a). That is, any process that contributes to the
change in the mass of both NO�

3 and NHþ

4 is calculated as the
amount of N relative to the retention water volume and soil at any
given time (Wade et al. 2002a). Volatilization is further regulated by
the depth and cation-exchange capacity, which can be assigned a
constant value in SWAT (Neitsch et al. 2011). APEX and HSPF also
require wind-speed data to estimate soil NHþ

4 loss via volatilization
(Bicknell et al. 1996; Williams et al. 2015). By contrast, AnnAGNPS
simulates the soil content of inorganic N (NHþ

4 and NO�

3 ) as a lump
sum, and thus it does not account for the loss of NHþ

4 through vola-
tilization, nor for the transformation of NHþ

4 to NO�

3 (Bingner et al.
2018). Two sink processes of NO�

3 (denitrification and plant uptake)
are considered from all the watershed models with an explicit N
cycle (see above and Table 5). Denitrification is a process mediated
by anaerobic bacteria, and is assumed to occur only whenmoisture
levels in the soil are high. For example, the denitrification process
in AnnAGNPS is set to be activated when the moisture content of
the soil is greater than 90% of soil porosity, and the rate is defined as
a function of soil temperature and organic C content (Bingner et al.
2018). While the mathematical description of denitrification is
rather consistent, plant N uptake can vary among the models with
respect to the differential uptake of the various inorganic nitrogen
pools. For example, plant uptake in HSPF, INCA-N, and MIKE SHE–
DAISY use both forms of inorganic nitrogen (NO�

3 and NHþ

4 ),
whereas other models either consider NO�

3 or the total inorganic
nitrogen content. NHþ

4 is generally considered to be adsorbed to
particles in most soil layers, and thus plants preferentially take up
NO�

3 (Thirup et al. 2014), but the difference in the outputs among
these models may be negligible. The amount of inorganic N lost
through plant uptake in AnnAGNPS, APEX, MIKE SHE–DAISY, and
SWAT is calculated by the nitrogen demand of the plant/crops, esti-
mated as the difference between the optimal mass of nitrogen
stored in plant tissues for a given growth stage, soil depth, and the

available inorganic N (Abrahamsen andHansen 2000; Neitsch et al.
2011; Williams et al. 2015; Bingner et al. 2018). By contrast, INCA-N
does not consider the above-mentioned regulatory factors of plant
uptake, and instead calculates the mass of inorganic N taken up
as a function of the degree of soil moisture saturation and season-
ality of plant growth (Wade et al. 2002a). HSPF differentiates the
plant uptake between NO�

3 and NHþ

4 and uses three optional meth-
ods: (i) first-order kinetics with temperature-correction factor; (ii) a
yield-based algorithm; and (iii) Michaelis–Menten kinetics (Bicknell
et al. 1996). The selection of each method determines the response
of the model to nutrient management strategies. The yield-based
method is less sensitive to soil-nutrient levels and fertilizer/
manure application rates, because the soil moisture conditions
can be a significant covariate of the nutrient uptake by plants
(Bicknell et al. 1996). Of all the models that consider plant N uptake,
APEX, HSPF, MIKE SHE–DAISY, and SWAT calculate the return of
plant N to soil organic pools through decomposition (see the section
belowon Plant growth: seasonality and succession).
Transport of inorganic N is generally described as the concen-

tration of inorganic N in the volume of flowing water in each
pathway such as runoff, leaching, and lateral flow (see the sec-
tions below on Surface runoff and Subsurface processes). A typical
assumption by the majority of models is that the prevalent form
of soil inorganic N in solution is NO�

3 as the retention (adsorp-
tion) of this anion by soil particles is minimal, whereas the trans-
port of NHþ

4 is considered to be negligible, owing to its strong
adsorption capacity (Abrahamsen and Hansen 2000; Neitsch et al.
2011; Williams et al. 2015). Loss of NO�

3 to the subsurface water
largely depends on the volume of mobile (percolating) water. For
example, AnnAGNPS uses the ratio of percolation loss to excess
soil-water content as a weight for quantifying the leaching of inor-
ganic N (Bingner et al. 2018). SWAT estimates the volume of perco-
lating water as a function of the excess soil water relative to the
time required to travel through the soil layer (Neitsch et al. 2011),
which in turn is multiplied by the predicted concentrations of
NO�

3 in the surface, lateral, and percolation waters to calculate the
mass of NO�

3 carried through the corresponding fluxes. APEX
allows for a user-specified ratio between horizontal and vertical
concentrations of NO�

3 , which are then multiplied by the corre-
sponding water flows to derive the associated NO�

3 fluxes. The ver-
tical flow also transports the inorganic N to the groundwater
storage. Apart from AnnAGNPS, watershed models estimate N in
the saturated soil layer (or groundwater) as the residual of the col-
lective losses through the vertical water transport, multiplied by
the corresponding concentrations (Williams et al. 2015). SWAT
simulates the transport of NO�

3 as the net output of recharge from
shallow to deep aquifers, transport with groundwater flow into
the main channel, or upward movement from shallow aquifers
into the soil zone due to water deficiencies (Neitsch et al. 2011).
SWAT also assumes that the time delay of aquifer recharge con-
tributes to the delays in themovement of NO�

3 from the soil profile
to aquifers (Neitsch et al. 2011). SWAT also accounts for inorganic N
losses in the shallow aquifers due to biological (bacterial) and
chemical (redox-potential) processes by postulating first-order
kinetics (Neitsch et al. 2011). Although AnnAGNPS does not have a
groundwater component, it does simulate the loss of inorganic N
to subsurface zone by two processes: loss to subsurface drainage
system (tile drainage), and loss to subsurface lateralflow. Inorganic
N estimated in HYPE is subject to denitrification in the aquifer, as
well as discharge to themain channel.
Among themodels that consider NHþ

4 as one of the inorganic N
pools (APEX, HSPF, INCA-N, MIKE SHE–DAISY, and SWAT), only HSPF
and MIKE SHE–DAISY provide explicit description of the adsorption/
desorption processes for NHþ

4 . HSPF uses first-order kinetics with
temperature-corrected reaction flux, or the Freundlich-isotherm
method, which postulates an instantaneous equilibrium among
dissolved and adsorbed NHþ

4 (Bicknell et al. 1996). MIKE SHE–
DAISY also provides the Langmuir isotherm, the linear isotherm,
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Table 6. Representation of the soil P cycle with watershedmodels.

Model Phases Processes Sources to soil Loss pathways

AnnAGNPS Organic P:

� Fresh
� Humic

Inorganic P:

� SRP (solution)
� Active (solid)
� Stable (solid)

Decomposition, humification, sorption/

desorption (Pinorg), plant uptake, leaching

Sorption/desorption: solution Pi with 3 empirical

PAIa equations for soil pH>7.8b, pH< 5 and

5< pH< 7.8

Slow adsorption rate constant 0.00076 days–1 for

calcareous soil (pH>7.8)c

Plant residue, fertilizer/manure Plant uptake, humification, soil

erosion, surface runoff

Leaching is not considered due to

lowmobility

APEX Organic P:

� Fresh
� Active

(microbial)
� Stable

Inorganic P:

� SRP (solution)
� Active (solid)
� Stable (solid)

Decomposition, mineralization, plant uptake,

sorption/desorption, leaching

Sorption/desorption: solution Pi with four

empirical PAIa equations for calcareousb and

noncalcareous slightly, moderately and highly

weathered soils; Langmuir isotherm for large

soil P-concentrations

Slow adsorption rate constant 0.0076 days–1 for

calcareous soil (pH>7.8)c

Fertilizer/manure, plant residues Plant uptake, soil erosion, surface

runoffd, leaching

HSPF Organic P:

� Soil

Inorganic P:

� SRP (solution)
� Adsorbed

(solid)

Mineralization, immobilization, plant uptake,

sorption/desorption, leaching

Adsorption/desorption: first-order kinetics or

Freundlich isotherm

Specification as changes to storage

variables and (or) as atmospheric

deposition

Plant harvest, soil erosion, surface

runoff, interflow, return flow,

deep groundwater recharge

HYPE Organic P:

� Fast turnover
� Slow turnover

Inorganic P:

� SRP (solution)
� Adsorbed

(solid)

Decomposition, mineralization, plant uptake,

decay through soil layers, sorption/desorption,

leaching

Sorption/desorption: Freundlich isotherm

Plant residues, fertilizer/manure,

dry and wet atmospheric

deposition, rural household load

Plant uptake, soil erosion, surface

runoff, tile drainage,

groundwater

INCA-P Organic P:

� Labile
� Inactive

Inorganic P:

� TDP=SRP+DOP

(solution)
� Labile (solid)
� Inactive (solid)

Mineralization, immobilization, plant uptake,

sorption/desorption, leaching

Sorption/desorption: Freundlich isotherm

Plant residue, fertilizer/manure,

dry and wet atmospheric

deposition

Plant uptake, soil erosion, surface

runoff, return flow
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or even no adsorption option, and the selection of each strategy
entails different trade-offs between accuracy and complexity
(Abrahamsen andHansen 2000). Additionalmovement of inorganic
N considered among the reviewed models is an upward movement
of NO�

3 via the evaporation of soil water. APEX and SWAT allows
NO�

3 to be transported from lower to upper soil layers aswater evap-
orates from the soil surface (Neitsch et al. 2011;Williams et al. 2015).
The amount of NO�

3 added to upper soil layer is estimated as a frac-
tion of water loss by evaporation relative to the water content in
the upper soil layer (Neitsch et al. 2011).
Runoff –mass-transportmodels, such as DLBRM, DWSM, GWLF-E

and SWMM, comprise three components: hydrology, soil erosion
and sediment transport, and hydrologically driven transport of
nutrients and pesticides. Biogeochemical transformations are not
considered and thus soil nutrient dynamics are tightly connected
with the surface runoff and sediment transport (Borah et al. 1999;
Croley andHe 2005; Croley et al. 2005). Nitrogen pools are classified
into two phases based on their solubility (dissolved N) and reactivity
(adsorbed to clay-size particle) in each modelled medium; soil, sub-
surface water, groundwater, and instream. Dissolved and adsorbed
phases of nitrogen are considered in equilibrium, governed by a
linear-adsorption isotherm, and mathematically expressed as first-
order kinetics (Borah et al. 1999). Transport of dissolved nitrogen is
then determined by the retention of soil and hydrological storage
(Croley andHe2005; Croley et al. 2005). DLBRMandDWSMsimulate
the daily N-concentrations in the flowingwater using themass con-
servation principle at each time step (Croley and He 2005; Croley
et al. 2005), whereas GWLF-E calculates monthly sediment and
nutrient loads based on daily water balance and empirical average
nutrient concentrations for each land use (Evans and Corradini
2016). GWLF-E considers urban nitrogen cycling as the net outcome
of nutrient “build-up” and “wash-off”, based on the potential accu-
mulation of nutrients on impervious urban surfaces from various
sources (atmospheric deposition, animal litter, street refuse) and
washed off by rainfall events (Evans and Corradini 2016). The advan-
tages of these runoff – mass-transport models are their parsimoni-
ous and ease-of-use mathematical structure. However, the lack of
consideration of the seasonal variability (i.e., temperature) of all the
major biogeochemical processes can significantly bias the predic-
tive outputs (e.g., nutrient concentrations, plant/crop productivity),
and thus their fidelity in assessing scenarios of climate change and
bestmanagement practices.

Phosphorus cycle
P is required for the synthesis of essential nucleic acids (e.g.,

DNA and RNA) and energy transfer, and has no substitute in agri-
culture to support high crop yields. P is a non-renewable mineral
that exists naturally in the Earth’s crust as phosphate rock (Liu
et al. 2008). The current world reserves of 70 000 million tons of
mineral ore (P2O5) can meet the needs of the world-mine produc-
tion of 270 million tons per year (U.S. Geological Survey 2019),
but the active mines in the US and planned mines in Canada are
expected to be depleted within the next 30 years (Ross and Omelon
2018). In pristine ecosystems, the P cycle is regarded as a “closed”
loop, with P flows occurring slowly, due to natural weathering
events, and P stocks in soils remain quantitatively stable. The inten-
sive agricultural practices, however, cannot be sustainably sup-
ported by the natural P pool, and therefore the application of
commercial fertilizers and manure plays an essential role in
maintaining high soil fertility with bioavailable P. Intensive agri-
culture and changes to the water cycle in urban areas has con-
verted the historically “closed” P cycle into a more open-loop
system (Liu et al. 2008; Zhou et al. 2016). This in turn has dis-
turbed the balance between P sources and sinks in watersheds,
and the elevated tributary P-loading fuels the primary productiv-
ity in the receiving waterbodies, thereby shifting their trophic
state from oligotrophic to mesotrophic or even eutrophic. TheT
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capacity of watershed water quality models to simulate external
P loading from agricultural and urban areas is thus critical for
watershed management. The reviewed models differ in terms of
the description of P inputs, speciation, transformation processes,
and pathways of hydrological transport, and, similar to the C- and
N-cycle models, can be grouped into two basic categories: runoff-
driven empirical (GWLF-E and SWWM) models, and dynamic soil
P-cycle models (AnnAGNPS, APEX, HSPF, HYPE, INCA-P, SWAT,
see Table 6).
Runoff-driven empirical models do not simulate soil P dynamics,

and instead require specification of the empirical P-concentrations
in soil (GWLF-E), groundwater (GWLF-E), and surface runoff (GWLF-E,
SWWM) to quantify P loading from predicted flows. The specifica-
tion of the empirical P-concentrations is similar in both GWLF-E
and SWWM models, but GWLF-E implements daily or monthly
average P-concentrations, whereas SWWM considers event-mean
P-concentration (EMC) values to relate individual rainfall events
with P loading. Given that the default EMCs in SWWM originated
from sampling studies performed in 1978–1983 (US EPA 1983), it is
recommended to assign updated region-specific values. Addition-
ally, the SWWM, GWLF-E, HSPF, and SWATmodels provide options
for estimating P-loading in urban impervious areas with empirical
nonlinear equations for P-buildup and wash-off. For that purpose,
MIKE SHE can be coupled with MIKE URBAN, which allows to simu-
late the effect of urban drainage and sewer systems on streamwater
quality.
Dynamic soil P models are primarily applied in pervious agricul-

tural areas, and consider different sources of P-forms and inputs,
transformation mechanisms, and pathways of hydrological trans-
port. P-inputs in the soil surface involve plant residues, mineral
fertilizers, and animal manure; HSPF, HYPE, and INCA-P addi-
tionally consider atmospheric deposition of P. EPIC-basedmodels
(AnnAGNPS, APEX, and SWAT) assign manure to the organic P
inputs; HYPE distinguishes between inorganic and organic P in
manure; and INCA-P distinguishes between liquid inorganic and
generic solid P (Table 6). None of the models distinguish between
manure slurry and liquid manure, nor do they consider biosolids
by default. APEX, as a field-scale agricultural model, includes
manure management subroutines for confined and unconfined
animals, as well as animal movement between grazing areas and
feeding lots. Incorporation of manure inputs can be an important
feature for any local modelling exercise, given that the applied
amount of manure in mixed agriculture in Ontario has been
increased to meet crop demands for N (van Bochove et al. 2010),
and therefore the likelihood of experiencing excessive input
of P (above crop requirements) is high (van Bochove et al.
2012). Consequently, our general recommendation is to con-
strain the Great Lakes watershed models with regional estimates
for the application rates of manure P based on reported crop yields,
crop N deficits, spatially variable livestock data, animal diets with
P-regulating supplements (phosphatase), and animal-specific N:P
ratios inmanure (Bruulsema et al. 2011; vanBochove et al. 2012).
The speciation of P in the soil in all of the models examined

distinguishes between soluble P, which is directly taken-up by
plants, and solid-phase P. INCA-P is the onlymodel to specify solu-
ble P as total dissolved P (TDP), comprising both chemically active
soluble reactive P (SRP) and dissolved organic P (DOP). AnnAGNPS,
APEX, HSPF, HYPE, and SWAT specify the soluble P pool as repre-
senting chemically active ions, H2PO4

– and HPO4
�2, which is equiva-

lent to the SRP classification. A recent HYPE version additionally
introduced a particulate organic P pool in soil water. It should also
be noted that INCA-P users convert TDP to SRPwith constant empir-
ical SRP:TDP ratios. According to our recent event-based tributary
sampling in Wilton Creek, Ontario, the SRP and TDP fractions var-
ied significantly and, on average, accounted for 39% and 73% of the
total P loading in the tributary, respectively. Thus, the latter vari-
ability between TDP and SRP fractions should be handled with cau-
tion in any modelling exercise, because their bioavailability is

different and could potentially be one of the drivers of the recent
trend to re-eutrophications in Lake Erie. The definition of solid-
phase P differs among AnnAGNPS, APEX, HSFP, HYPE, INCA-P, and
SWAT. INCA-P lumps inorganic and organic P pools together,
whereas other models (AnnAGNPS, APEX, HSFP, HYPE, and SWAT)
separate solid-phase P into inorganic (Pinorg) and organic (Porg) pools
of different reactivity. HSPF employs an intermediate complexity
approach to solid-phase P speciation with single Pinorg and Porg
pools, whereas HYPE incorporates one solid-phase Pinorg pool and
two Porg pools of slow and fast reactivity. AnnAGNPS and APEX
implement a simplified P speciation comprising two solid-phase
Pinorg pools (active and stable) and Porg (humic/stable and fresh)
pools, whereas SWAT implements Jones et al.’s (1984) original P spe-
ciation with two Pinorg pools (active and stable) and three Porg
(active, stable, and fresh organic) pools. Manure inputs of P contrib-
ute to solid-phase active Porg in SWAT, and solid-phase humic Porg in
AnnAGNPS; HYPE and INCA-P also allow manure-P to replenish the
soluble-P pool. Recently, Collick et al. (2016) implemented the ma-
nure P subroutines in SWAT as described by Vadas et al. (2012),
which partitionedmanure-P inputs into four additional P-fractions;
namely, water-extractable and solid-phase Pinorg and Porg pools.
Collick et al. (2016) showed that the newmanure subroutines can
improve our predictive capacity, and thus recommended source
code augmentation for SWAT and other models. Importantly, the
Porg pools in all of the reviewed models are not constrained by
field measurements, which was the main reason for INCA-P to
lump organic and inorganic fractions together into a single generic
solid-phase P-pool (Jackson-Blake et al. 2016). Finally, the plant resi-
dues contribute to fresh solid-phase Porg pool in AnnAGNPS, APEX
and SWAT; fast and slow solid-phase Porg in HYPE; and generic solid-
phase labile P in INCA-P.
The design of soil-P models that are conceptually on par with

the actual measurable components represents one of the prob-
lems that needs to be rectified in the current watershed model-
ling practice (Tiessen et al. 1984; Jackson-Blake et al. 2017). In
particular, the conceptual definitions of solid-phase P in all models
does not match the sequential P fractionations in geochemistry,
such as the six Pinorg and three Porg pools proposed by Hedley and
Stewart (1982; see the Supplementary data, Table S42), which poses
challenges for the modelled P-pools to be properly constrained by
the available field measurements. In this regard, Muenich et al.
(2016) suggested that the sum of dissolved Pinorg and solid-phase
active Pinorg in SWAT could represent the agronomical soil test
phosphorus (STP). Based on the latter suggestion, other EPIC-based
models with similar soil-P subroutines (AnnAGNPS, APEX) could
also consider STP data for constraining inorganic soil P pools.
Although the actual measured STP data in Ontario are not publicly
available, van Bochove et al. (2010) published estimates of STP for
Canadian soil landscape polygons as part of the IROWC-P (Indicator
of Risk ofWater Contamination by Phosphorus) study.
Biogeochemical processes of P-transformations in soils include

sorption/desorption [on clays, Al and Fe (hydr)oxides, Ca], ion
exchange, and surface complexation; mineral dissolution and
precipitation reactions as Ca-, Mg- , Fe-, and Al-phosphates and
apatites; redox reactions of microbe-mediated mineralization/
immobilization (Horst et al. 2001). The mathematical formulation
of these P-transformation processes is simplified in all of themodels
examined relative to multicomponent, reactive-transport models
(RTM) for porous media (Holzbecher 2005). Many drivers of soil-P
reaction kinetics, such as physical (porosity and soil texture), chem-
ical (pH, redox potential, amount of organic ligands, buffering
capacity of the soil with Fe, Al, Ca, and Mg ions), and biological
(microbial activity and soil fauna) properties of the soil, are also
not explicitly considered. Moreover, the P-cycle is independently
simulated, postulating minimal interaction with C- and N-cycles,
whereas the biogeochemical reactions are mainly considered in
rapid equilibrium (between Pinorg pools) or as conceptual net
processes (between Porg pools). Furthermore, the redox reactions
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of organic matter mineralization do not affect soil pH, which in

turn controls P solubility, and thus all models effectively operate

under the assumption of a field pH within the recommended

range (6< pH< 7.5; Havlin et al. 1999).
As previously mentioned, MIKE SHE is the only model with a

generic RTM framework for nutrients, but counter to the exis-

tence of multiple studies on catchment N dynamics (Hansen

et al. 2009; Windolf et al. 2011; Vervloet et al. 2018), we could not

find MIKE SHE applications on soil-P. Generally, the broader

adoption of complex soil-P models is hindered by the limited

availability of spatial data (Beven 2019); incomplete understand-

ing of soil P cycles (Horst et al. 2001; Lewis and McGechan 2002;

Das et al. 2019); the mismatch between modelled soil P pools and

measurable soil P fractions (Tiessen et al. 1984; Das et al. 2019);

and high uncertainty of kinetic parameters resulting from lim-

ited field-scale experimental data (Holzbecher 2005; Das et al.

2019). Originally presented by Jones et al. (1984), AnnAGNPS,

APEX, and SWAT are based on empirical relationships that were

derived frommultiple plot/field studies and scaled up to recreate

plant-available soil-P in farms and large catchments. The capacity

of these subroutines to simulate soil P at a field level allowed

APEX to first estimate total-P losses at the subcatchment level

and then aggregate them to predict loading values at regional

scales in USA (Santhi et al. 2014; USDA-NRCS 2017). APEX and

SWAT, as models with the largest number of soil-P fractions,

defined the amount of plant-available dissolved Pinorg as the net

balance of plant uptake, sorption/desorption processes with

solid-phase active (labile) Pinorg, and net mineralization of or-

ganic matter from active and fresh Porg pools. By contrast, soil P

subroutines in HSPF, HYPE, and INCA-P were directly developed

as part of catchment-scale models without extensive validation

against plot/field data.
All of the models that explicitly consider solid-phase Porg

(AnnAGNPS, APEX, HSFP, HYPE, and SWAT) define the minerali-

zation rates of organic matter in conjunction with the C- and N-

cycles. The associated Pinorg flux represents the net output of the

catabolic reactions pertaining to microbial degradation (Berner

1980), but none of the models explicitly considers bacterial bio-

mass and dissolved Porg, such as exudates from roots (Lewis and

McGechan 2002). Moreover, none of the models explicitly distin-

guishes between dissolved Pinorg binding with Al and Fe (hydr)

oxides under lower soil pH (pH < 7) and with Ca minerals under

high pH (pH > 7), and instead consider a generic P sorption/

desorption on clays, Al and Fe (hydr)oxides, calcium carbonates

in acid, and neutral and calcareous soils. Except for HYPE and

HSPF, all of the models consider the precipitation and dissolution

of lumped secondary P minerals (Ca-, Mg- , Fe- and Al-phosphates)

and primary P-minerals (e.g., apatite, goethite), which in turn

are either defined as slow adsorption of solid-phase stable

Pinorg pools in AnnAGNPS, APEX, SWAT, or as generic inactive-

P weathering and immobilization in INCA-P (representing both

Pinorg and recalcitrant Porg).
EPIC-basedmodels (AnnAGNPS, APEX, SWAT) and HSPF consid-

ered rapid equilibrium between dissolved and active Pinorg with

first-order reaction kinetics. The Freundlich isotherm method

with iterative calculation of dissolved Pinorg is incorporated in

HSPF, HYPE, and INCA-P, and the Langmuir isotherm in APEX for

high soil P-concentrations. Owing to the conceptual differences

among the simulated P-pools, the parameters of the Freundlich

isotherm in HSPF, HYPE, and INCA-P may not be directly

Table 7. Representation of water, pipe, and sediment routing with the watershed models reviewed.

Model Stream (water) routing Pumps

Pipe

routing Channel erosion/sediment routing

AnnAGNPS Manning’s equation — — Amodified Einstein deposition equation and Bagnold’s

formula for transport capacity of flow

APEX Daily average flowmethod (daily water

yield)/VSC flood routing method

(dynamic streamflow)a

Yesb — Sediment routing is separate for channels and floodplains and

is estimated by a variation of Bagnold’s sediment transport

equation

DLBRM — — — —

DWSM Kinematic wave model — — Channel-bed scouring and sediment or eroded soil routing

based on sediment transport capacity and continuity

equations

GWLF-E — — — Watershed-specific lateral erosion rate for streambank

erosion estimates

INCAc Simple linear reservoir method — — Bagnold’s stream power model (Bagnold 1966)

HSPF Kinematic wave — — Deposition or scour calculated based on bed shear stress and

settling velocity for cohesive sediment, and transport

capacity and sediment availability for non-cohesive

segments

HYPE Peak delays and flow attenuation via linear

reservoir model

— — Particles undergo sedimentation and resuspension depending

on flow conditions, but no transportation in the stream

MIKE SHEd Kinematic wave/diffusive wave/dynamic

wave models

Yes Yes Erosion and deposition of both cohesive (described by

advection-dispersion equations) and non-cohesive

(described by multiple sediment transport models)

sediments

SWAT Manning’s equation for flow rate and

velocity, and the variable storage

method/Muskingummethod for water

routing

— — Stream/bed erosion estimated by excess shear stress equation;

Transport capacity predicted by four stream power models:

Bagnold’s stream power model, Kodatie model, Molinas and

Wumodel, and Yang sand and gravel model

SWMM Steady flow/kinematic wave/dynamic wave Yes Yes The 1D advection dispersion equation

Note: See Table 1 for details of the abbreviations.
a
VCS (Variable Storage Coefficient flood routingmethod, Williams 1975b).

b
Model allows for pumping in lagoons.

cDescription of INCA includes all the variation (i.e., HBV-INCA, INCA-C, INCA-N, and INCA-P).
dMIKE SHE is coupled withMIKE HYDRO to simulate channel/river processes including pumping structures, and withMIKE URBAN to simulate flow in pipe networks.
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comparable, and in reality, the calibrated values have no physical
meaning (Jackson-Blake et al. 2016). The subroutines in EPIC-
based models establish a rapid equilibrium between dissolved
and solid phase Pinorg using an empirical soil- and year-specific
partitioning coefficient (P availability index, PAI), where a default
PAI of 0.4 reflects a 40% increase in dissolved Pinorg after initial
100% soil fertilization and 6-month incubation. Similar to the pa-
rameter-estimation practices followed for the Freundlich iso-
therm, EPIC-based models typically estimate PAI as part of the
calibration exercise without experimental validation. Vadas and
White (2010) proposed two additional empirical PAI formulations to
account for spatial variability of the binding capacity of P in weath-
ered and calcareous soils, which considered the percentages of clay,
organic C, dynamic dissolved Pinorg concentration (for weathered
soils), and the percentage of CaCO3 (for calcareous soils). The latter
PAI augmentation for weathered soils was incorporated in SWAT,
whereas APEX and AnnAGNPS considered changes in P-binding in
calcareous soils with CaCO3. Importantly, SWAT, by default, defines
PAI at the basin scale, which assumes a uniform binding capacity
for P across all soils within the basin, with an option to empirically
estimate year-specific PAI from empirical regression for weathered
soils. Moreover, because EPIC-based models do not account for
the degree of soil P saturation a dynamic PAI formulation may
be critical for simulating P-accumulation (Muenich et al. 2016;
Scavia et al. 2017). To simulate legacy-P with Freundlich iso-
therms, Jackson-Blake et al. (2016) advocated the use of dynamic
formulations of dissolved Pinorg at equilibrium concentration, at
which no adsorption or desorption occurs. Finally, notwithstand-
ing the presence of elaborate dissolved Pinorg formulations, none
have been validated against empirical data in Ontario soils, which
appear to display a change-point in their buffering capacity for
soil-P (Wang 2015).

Water/sediment routing and instream processes

Open channel flow is defined as the flow of water through a
canal or waterway with an open surface to the atmosphere (e.g.,
flow in streams, rivers, and pipes). The hydraulics of open chan-
nels are complex because the principles of channel flow involve
complicated nonlinear equations, and therefore solutions of flow
rates are highly dependent on shape and structure (Chiu and
Tung 2002). Natural channels are usually characterized by irregu-
lar shapes, varying from parabolic to trapezoidal, as well as by
strong interactions between the channel water and surrounding
environment, including the transportation of solid materials, air
and water mixing, and chemical dispersal (Chanson 2004). In
addition, channel morphology can be modified over time by sedi-
ment inputs from upslope reaches (i.e., sediment supply), the
ability to transport these loads to reaches downslope (i.e., transport
capacity), and vegetation effects on channel processes. Examples of
channel modifications include changes in the width, depth, bed
slope, roughness, velocity, and sediment size (Montgomery and
Buffington 1998). Considering the differences in morphology,
channels share the following fundamental processes: water rout-
ing, sediment routing, and instream-P. Apart from DLBRM, the
watershed models can simulate channel processes (Table 7); how-
ever, the following sections will highlight that not all models can
represent all of the fundamental processes, and even when they
are able to do so, the models differ significantly in terms of their
complexity.

Water routing
Channel routing is not considered with GWLF-E because it

models processes in a single, lumped stream segment, and there-
fore its applicability in large catchments is limited. Water rout-
ing simulation strategies in the remaining watershedmodels can
be divided into the following four strategies, based on their com-
plexity: (i) full dynamic wave model; (ii) diffusive wave model; (iii)

kinematic wave model and variations; and (iv) other methods
(Table 7; see also Glossary). The full dynamic wave model, known
as the Saint-Venant equations, is the basic flow-governing model
comprising the continuity andmomentum equations for shallow
water flow (Tayfur et al. 1993). The full dynamic wave model is
widely recognized as the most complex physically based water-
routing representation. Given the difficulty in obtaining analytical
solutions for the Saint-Venant equations, numerical approxima-
tions are used, with inevitably increased computational demands
and numerical errors (Garcia and Kahawita 1986). The diffusive
wave model, derived from the full dynamic wave equation, uses
simplifiedmomentum equations by omitting the local and convec-
tive acceleration. Similar to the dynamicwavemodel, the solutions
of the diffusivewavemodel are usually approximatedwith numeri-
cal approaches (Santillana and Dawson 2010). The kinematic wave
model uses the most simplified momentum equation, which
ignores the pressure gradient and acceleration terms (Miller 1984),
but this model cannot describe pressurized flow and backwater
effects. The kinematic wave model has an analytical solution,
which makes it easier to use relative to the complex full dynamic
and diffusive models. MIKE SHE (coupled with MIKE HYDRO or
MIKE URBAN) and SWMM, the only two models incorporating the
full dynamic wave model, can simulate water routing in both open
channels and closed pipes, and include pumps for flood protection.
SWAT provides the option of selecting two variations of the kine-
matic wave model for water routing: the variable storage method
based on a continuity equation, and theMuskingummethod based
on the continuity equation and an empirical linear storage equa-
tion (Neitsch et al. 2011). APEX offers twomethods forwater routing
through channels and floodplains: a daily time step with an aver-
aged-flow method and a short (0.1–1.0 h) time interval, and a vari-
able storage coefficient (VSC) flood-routing method (Williams
1975a; Williams et al. 2015). When deciding between the twometh-
ods, if the main goal is to simulate long-term water yields from
agricultural farms, then the daily time stepmethodmay be amore
appropriate choice because it can provide realistic estimates with-
out requiring heavy computational demands. For areas where
flooding is a concern, VSC is recommended because it can recreate
dynamic streamflow andmay therefore providemore robust pollu-
tant transport estimates. HYPE and INCA reproduce the storage
effects with a simple linear reservoir model, which has been
modified to account for flows from sewage treatment plants
(INCA) or to attenuate flow (HYPE). Nonetheless, apart from
MIKE SHE and SWMM, which are based on the full dynamic wave
model, the watershed models generally ignore backwater
effects, are not capable of simulating pressurized flow, and can
potentially underestimate river discharge during flood events
(Zhao et al. 2017). There is also a large heterogeneity in the way
that the different models describe the channels: from models
like INCA that does not require a shape to be defined; to SWAT,
which forces a trapezoidal shape for the channel (0.5 slope on
the edge) and floodplain (0.25 slope on the edge), to SWMM that
allows for the selection of a pre-defined channel shape that is
more suitable for the system beingmodelled.

Channel erosion/sediment routing
The simplified Bagnold’s equation is the default method in

SWAT, whereby the sediment transport capacity is estimated
based on the peak flow rate (Bagnold 1977). The ratio of the average
to peak flow is determined by hydrologic records or calibration.
When Bagnold’s equation is selected, bank andbed erosions are not
partitioned (although sediment originating from the stream is
distinguished from sediment derived from overland sources),
nor is particle size distribution taken into account, because the
equation assumes silt size particles only. Streambank erosion in
GWLF-E is estimated using an empirically derived lateral erosion
rate (LER), which is specific to the site of interest and is calculated
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based on the percentage of developed land in the watershed, ani-
mal density, average curve number value, average soil erodibility
factor value, and mean topographic slope of the watershed
(Evans and Corradini 2016). Sediment load generated via stream-
bank erosion for the watershed is computed as the product of
LER, the total stream length (m), average streambank height (m),
and average soil bulk density (kg/m3). SWAT also provides three
other more complex options for calculating transport capacity,
i.e., Kodatie, Molinas andWu, and the Yang sand and gravel mod-
els (Seo et al. 2014). The model also estimates the band and bed
erosion rate using the methods of Hanson and Simon (2001) and
Eaton and Millar (2004) for potential and effective excess shear
stress. AnnAGNPS also employs the Bagnold’s equation to esti-
mate transport capacity, which is integrated with Einstein’s
modified deposition equation (Pease et al. 2010). HSPF divides
sediments into two categories: non-cohesive (sand), and cohesive
(silt and clay) solids. Resuspension and settling of cohesive solids
is simulated based on settling velocity and critical shear stress,
whereas the ability to be transported with a particular flow is
first computed for noncohesive solids and then resuspension or
settling is simulated based on the difference between particles in
suspension and the carrying capacity of the system (Bicknell
et al. 1996). MIKE SHE uses MIKE HYDRO for 1D to 3D sediment
transport processes, which is conceptually analogous to the
approach introduced by HSPF. HYPE simulates sediment routing
with a Bagnold-type approach, where the transport capacity is esti-
mated using the daily flow proportion of bankfull flow. HYPE
assumes that suspended particles are not removed. and instead
are only redistributed between the sediment and water column
over time. The particles are collected in a sediment pool through
sedimentation under low water flows and resuspended back to the
water column under high flow conditions. Sediment routing in
DWSM is governed by the mass for the sediment load and material
on the channel bed (Borah et al. 1999). Most of the models in our
review can simulate sediment routing based on different sediment
size groups, but the group-division methods may differ. For
instance, SWAT and AnnAGNPS incorporate five particle-size
classes (i.e., sand, large aggregates, small aggregates, silt, and clay)
whereas APEX only considers three sediment groups, including
sands (200 lm), silt (10 lm), and clay (2 lm) (Supplementary data,
Table S32). More subtle divisions of sediment groups could

contribute to a more accurate representation of the diverse rout-
ing patterns of suspended solids, such as the routing patterns for
different sediment groups in HSPF. For instance, the net output
from settling and resuspension for silt and clay is calculated by
considering the shear stress at the sediment–water column inter-
face, as opposed to sand, where the difference between suspended
material and transport capacity with a given flow is considered.

Instream P
Among the reviewed models, SWMM and DWSM use a 1D

advection–dispersion equation for chemical transport, whereas
AnnAGNPS adopts a simple first-order equilibrium model. In
AnnAGNPS, GWLF-E, and DWSM, instream chemicals are divided
into dissolved and particulate phases. HSPF, HYPE, SWAT, and
INCA-P are not only capable of tracking physical processes within
the P-cycle, but also consider instream P processes through the
growth and decay of algae. In SWAT, the death of phytoplankton
transforms intracellular-P to organic-P, which can undergo min-
eralization to form soluble-P that can be taken-up again by algae
or be removed from the stream flow. SWAT, however, does not
consider interactions between dissolved-P and P in suspended
sediments. In INCA-P, TDP can be converted to particulate phos-
phorus (PP) through sorption reactions and back to TDP from PP
through desorption in the instream water column, stream bed,
and sediments. Loss of instream-P from the water column can
occur through TDP uptake by biological components (epiphytic
algae, phytoplankton, or macrophytes), TDP exchange to the
streambed and sediments, or settling of PP. Gain of P back to the
water can occur through TDP exchange or resuspension of PP.
The death of biological components contributes to the PP-pool in
the sediments and in the river bed. Similar to INCA, HSPF includes a
comprehensive representation of the instream-P processes by tak-
ing into account the benthic release of dissolved P, sorption/
desorption rates for suspended sediments depending on particle
size fraction, settling of the suspended sediment, sediment
scouring of the river bed and bank, and P-uptake by benthic algae
or phytoplankton together with the release of inorganic P by zoo-
plankton. In comparison, instream processes are poorly modelled
in GWLF-E and are limited to transformation between dissolved
and particulate P during low-flow conditions. Despite their greater
complexity relative to AnnAGNPS, DWSM, and GWLF-E, the

Fig. 7. Classification of data-driven models into (i) risk-based, (ii) material and substance flow analysis, (iii) statistical, and (iv) hybrid

semi-empirical models.
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approaches taken by HSPF, INCA-P, and SWAT are still simplified,
especially for the simulation of in-stream algal dynamics. With
INCA-P, in-stream algal growth is only dependent on temperature
and ambient P, and ignores light requirements and the concentra-
tions of other nutrients (Jackson-Blake et al. 2016). HSPF also
includes a module for simulating the grazing and death of zoo-
plankton, which can predominantly shape the nature of phyto-
plankton assemblages, but does not take into account the uptake
by and death of benthic algae (Reddy et al. 1999). Generally, the
main factors modulating P-dynamics are assumed to be biologi-
cal, and therefore the sorption/desorption processes are down-
played. These mechanisms may exert significant influence on P-
transformations in streams, which in turn could downplay
instream-P dynamics in the winter when biological activity is
minimal (Green et al. 1978; Zafar et al. 2016; Tang et al. 2017).
Lastly, coupling MIKE HYDRO with MIKE ECO Lab can offer a cus-
tomizable aquatic ecosystem modelling tool to describe water
quality and eutrophication dynamics.

Data-driven watershedmodelling

In the Great Lakes area, the watershed-management paradigm
has predominantly relied upon deterministic projections reflec-
tive of a “predict-then-act” mindset (Lempert et al. 2004). None-
theless, critical viewpoints advocate the broader adoption of
adaptive-management frameworks as a pragmatic strategy that
not only acts as a hedge against the ubiquitous uncertainty sur-
rounding the study of open environmental systems, but also
paves the way for the dual pursuit of management and learning
(Arhonditsis et al. 2019a, 2019b). The emerging support for adapt-
ive implementation of remedial measures in the Great Lakes
stems from the appeal of the iterative monitoring–modelling–
assessment cycles, whereby scientific learning progressively advan-
ces from research,monitoring,modelling, and impartial evaluation
of the outcomes of past and on-going management actions. Our
analysis of the available spatially distributed models reinforced the
notion that the current generation of water quality, process-based
models can be classified into two categories: (i) simpler approxima-
tions of the multifaceted, nonlinear dynamics of nutrient fate and
transport that place more emphasis on the advanced representa-
tion of the water cycle; and (ii) explicit biogeochemical models that
are founded upon simplified strategies to recreate the role of criti-
cal hydrological processes (Li et al. 2017; Jain and Singh 2017; Bao
et al. 2017; Li 2019). With either category, the significant disparity
between what we want to tease out from these models and the
amount of data required to constrain them with the appropriate
spatiotemporal granularity undermines their ability to be used for
extrapolative tasks (Beven 2019). Thus, until the data that are neces-
sary to characterize critical watershed processes with physically
based models become available, the design of mitigation strategies
of urban and agricultural nonpoint sources should be viewed in
terms of “decision making under deep uncertainty” or DMDU
(Polasky et al. 2011).
In our view, embedding DMDU principles into an adaptive

watershedmanagement framework requires coupling mechanis-
tic watershed models with comprehensive exploratory analysis
(Marchau et al. 2019). This implementation of exploratory analy-
sis during the planning stage can be mainly realized with data-
driven (or empirical) watershedmodels that represent an appealing
complementary tool for process-based modelling. In particular,
more parsimonious empirical models would provide a statistically
rigorous means to identify overlooked or newly appeared nutrient
“hot spots” or “hot moments” and potential critical pathways
(Kovacs et al. 2012; Long et al. 2015). Outputs of data-driven water-
shed models can also be used to highlight the necessary improve-
ments in subroutines of complex overparameterized models and
pinpoint the information required to constrain, validate, and verify
them (Arhonditsis et al. 2019a, 2019b). Taking into account the

diverse range of data-driven models and underlying techniques, we
can classify the empirical watershedmodelling tools into fourmain
categories (Fig. 7): (i) risk-based, (ii) material- and substance-flow
analyses, (iii) statistical, and (iv) hybrid semi-empirical models.
Below we will provide an overview of these models and their
applicability for adaptivewatershedmanagement.

Risk-basedmodels
Risk-based models serve to evaluate the risk of nutrient losses

from agricultural fields, based on existing empirical relation-
ships. This type of models represents a deductive reasoning pro-
cess when setting BMPs in a particular location based on
empirical equations with a set of relevant predictors, e.g., soil
texture, hydrological soil groups, carbon content, residual soil-P
content, catchment slope, degree of soil mixing, and agricultural
practices. These models can either assess the risk of contaminant
losses through specific pathways (tile drainage, surface runoff,
splash, sheet, rill or gully erosion), estimate the risk of potential
nutrient losses with P index (PI) models (Reid 2011; Reid et al.
2018), or quantify potential edge-of-field nutrient export with the
Annual Phosphorus Loss Estimator (APLE) tool (Vadas et al. 2012;
Benskin et al. 2014). The major advantage of these models is their
capacity to support analysis with high-resolution spatial data at
the level of individual farms, thereby allowing the engagement
of farmers to share their private data and empirical knowledge
that would otherwise be unavailable for watershed planning.
The revised Ohio PI represents an exemplary case of a region-

specific risk index supported by long-term (3 year) and edge-of-
field (>2000 field samples) monitoring studies (Williams et al.
2017). Based on APLE application, the Ohio PI considers the poten-
tial for soil-erosion, site-specific soil tests for P, agricultural-soil
disturbances from different crop-management practices, and
manure application from animal operations, and supersedes
more complex models in their capacity to quantify potential
losses of reactive-dissolved and sediment-bound particulate-P,
both in surface runoff and tile drainage. This risk-based approach
has three advantages: (i) the parsimonious model structure pro-
vides the flexibility to iteratively revise parameters based on new
findings, such as limiting manure application on fields with
insufficient ground cover (Cela et al. 2016); (ii) ability to incorporate
nonlinear relationships with environmental thresholds/change-
points, such as the relationship between dissolved reactive phos-
phorus (DRP; same as SRP) in surface runoff, and water-extractable
P in soils, soil-P tests, degree of soil-P saturation, and P-buffering
capacity (PBC) (Beaudin et al. 2008; van Bochove et al. 2010; Wang
et al. 2016). For example, the Canadian risk indicator of water con-
tamination by phosphorus considers a higher risk of P-desorption
in acidic to neutral soils with a degree of soil-P saturation > 25%,
and a lower risk with levels of water-extractable P in soils below 4
ppm (van Bochove et al. 2010). The empirical studies in calcareous
Ontario soils identified a similar critical PBC threshold, when DRP
in runoff increased significantly in soils with a PBC < 0.3 L·mg�1

(Wang et al. 2016); and (iii) the uncertainty or variability associated
with predictions from field-based empirical studies can be easily
incorporated into PImodels (Sharpley 2013b). Ultimately, the identi-
fication of breakpoints and long-term patterns in nutrient losses
allows for their subsequent integration in more complex process-
basedmodels, such as the adoption of time-dependent phosphorus
partitioning coefficient in SWAT (Dalo�glu et al. 2012).

Material- and substance-flow analysis (MFA/SFA) models
Material- and substance-flow analysis (MFA/SFA) models facilitate

the depiction of the entire mass flow of nutrients at global (Chen
and Graedel 2016; Lun et al. 2018), national (Antikainen et al. 2005;
Cordell et al. 2013; Sipert and Cohim 2019), or administrative/
divisional scales (Bruulsema et al. 2011; Senthilkumar et al. 2012)
that can be further downscaled to subregional levels (Bolinder
et al. 2000; Van Bochove et al. 2012). TheMFA/MSAmodels provide a
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detailed inventory of nutrient supplies, consumptions, and accu-
mulated stocks,which is essential information for the development
of long-term plans for sustainable nutrient cycles within the water–
energy–food nexus (Scholz et al. 2013). The MFA/SFA models typi-
cally represent interdisciplinary analyses of nutrient sources and
sinks within the context of economic, social and environmental
factors (Sutton et al. 2013; Reddy et al. 2018), such as the large-scale
MFA studies of food production/consumption systems which identi-
fied a disbalance in P between agricultural inputs and the levels in
harvested crops of 200Gg·year�1 (1 Gg = 106 kg) in the conterminous
USA, 660 Gg·year�1 in Europe, and 46 Gg·year�1 in Canada during
the 2002–2010 period, or net P-accumulation in agricultural soils of
1.46, 2.78, and 1.39 kg P·ha�1·year�1, respectively (van Dijk et al.
2016;Metson et al. 2017; Lun et al. 2018).
A characteristic example of how process-based modelling can

benefit from MFA studies is the recent identification of a continu-
ous P buildup in the croplands of Ontario,Michigan, andOhio prior
to the 1990s, followed by a P-deficit after the 1990s (Bruulsema et al.
2011). The recent decline in estimated soil-P levels in the Lake Erie
basin coincided with contemporaneous increase in crop productiv-
ity with elevated P-uptake by the crops, which suggests that soil-P
processes should be characterized in a way that allows models to
recreate long-term, non-steady-state trends in agricultural soil-P
stock (Chen and Graedel 2016), and therefore the current calibra-
tion practices that are based on <5-year windows under a steady-
state assumption for P-stock is likely problematic. Likewise, MFA
studies highlighted the significant spatial heterogeneity in Lake
Erie basin for P-inputs, such as livestock manure production
of 23.5 kg P·ha�1 in the Upper Grand, 11.8 kg P·ha�1 in the Lower
Grand, and 5 kg P·ha�1 in the Lower Thames (Agriculture and
Agri-Food Canada and Statistics Canada 2016), and therefore the
typical practice of constraining watershed models with average lit-
erature or province-wide application rates is clearly erroneous.
Moreover, long-termMFA estimates of legacy P can assist in compar-
ative assessments of environmental impairment, such as the IPNI
(2014) finding that the cumulative soil-P surplus of 85 kg P·ha�1

between 1972 and 2013 in Ontario, under an average agricultural
nutrient export rate of 0.25 kg P·ha�1 (Winter and Duthie 2000), is
equivalent to 340 years of nutrient impairment. Similarly, the MFA
estimates of accumulated P stock (8.5 tons of phosphorus per square
kilometre inOntario between 1972 to 2013) can lead to the identifica-
tion of empirical breaking points in watershed buffering capacity
(2.1 tons of phosphorus per square kilometre in the LaurentianGreat
Lakes) that separate sustainable from nonsustainable watershed
functioning (Goyette et al. 2018).
Statistical models encompass a wide range of statistical techni-

ques to quantify measures of central tendency and uncertainty
analysis with event-mean concentrations (Lee et al. 2011); assemble
databases of average nutrient-export coefficients per land use/land
cover (Reckhow et al. 1980; Harmel et al. 2008; Hertzberger et al.
2019); test BMP effectiveness with analysis of variance (ANOVA)
(Maniquiz et al. 2010a); conduct concentration-discharge analysis
with linear regression techniques to identify chemostatic and che-
modynamic patterns, threshold responses, and hysteresis effects
(Moatar et al. 2017); employ multivariate statistical methods for
source identification (Mudge 2007; Chen et al. 2013); develop multi-
ple linear regressions, spatial-stream networks, and geographically
weighted regression models to identify which landscape metrics
correlate with nutrient pollution (Isaak et al. 2014; Scown et al.
2017); relate event-mean concentrations to rain intensity (Maniquiz
et al. 2010b); compute daily, monthly, seasonal, annual, and decadal
nutrient loads (Lee et al. 2016); conduct socio-geospatial modelling
studies (Wilson 2015); investigate the disparity between overall nu-
trient loading reduction and a lack of improvement in ecological
status of water bodies with regression trees for clustered data, com-
positional linear mixed models, and ordinary linear mixed models
(Glendell et al. 2019); test multiple working hypotheses to investi-
gate causality between main stressors and environment with

structural equation modelling (Fan et al. 2016; Ryberg 2017); apply
Bayesian Belief Networks to reproduce nonlinear impacts from
implementation of BMP and generate cascade effects on ecosystem
services (Nash andHannah 2011; Landuyt et al. 2013).
The hybrid semi-empirical models occupy a unique intermedi-

ate position in our model classification exercise by combining
parsimonious structures of nonlinear regression models with
extensive 2D spatial coverage, and dissect the watershed behav-
ior into a small subset of fundamental processes (Supplementary
data, Fig. S12). These models can incorporate major sources and
sinks of point and nonpoint sources, simulate delivery fluxes
from sources to tributaries, and predict subsequent downstream
fate and transport within hydrological networks from headwater
stream reaches to basin outlets. They are specifically designed to
assimilate tributary water quality data from entire networks of
monitoring stations, which permit researchers to draw inference
regarding the source apportionment between point and nonpoint
sources. The advanced capacity of these models to characterize spa-
tial patterns of nutrientfluxes is traded for their coarser temporal re-
solution, whereby daily nutrient loading outputs are replaced with
long-term average, annual, or decadal estimates of nutrient fluxes.
This category of models includes NEWS (Global Nutrient Export
from WaterSheds model; Seitzinger et al. 2005), MESAW (Matrix
Equations for Source Apportionment on Watershed; Kaur et al.
2017), and SPARROW (SPAtially ReferencedRegressionsOnWatershed
attributes model; Smith et al. 1997) as well as its multiple augmenta-
tions over time (Grizzetti et al. 2005; Wellen et al. 2012; Dupas et al.
2015; Kimet al. 2017).
Owing to their parsimonious structure, these models can sup-

port statistically rigorous parameter identification from col-
lected tributary water quality data and prior information of
nutrient-mass input (and subsequently export) from different
land uses, land-to-water coefficients, and instream attenuation
rates (Zobrist and Reichert 2006; Kim et al. 2017). Depending on
the quality of spatial–temporal data, nutrient inputs per land use
could be either represented as the total annual amount of
applied mineral fertilizers, manure, and atmospheric deposition
(Robertson and Saad 2011), as the annual difference between
applied and nutrients taken up by crops (Grizzetti et al. 2005), or
as the area occupied by specific land use/land cover (Kim et al.
2017). The land-to-stream delivery coefficient can account for the
unexplained spatial variability of nutrient fluxes due to land-
scape characteristics, and therefore the selection of the suitable
predictors requires an iterative exploratory analysis of landscape
covariates, such as catchment slope, soil permeability, texture,
or even the mean expected mitigation effect of the implemented
BMPs (Robertson and Saad 2011; García et al. 2016). Settling losses
and, more generally, attenuation rates within the stream net-
work of nested catchments can vary depending on the runoff
rates, stream-channel sizes, stream-bed erodibility, and other
factors (Behrendt and Opitz 1999; Alexander et al. 2000; Benoy
et al. 2016). Thus, owing to their capacity to characterize nutrient
fate and transport along the catchment-river continuum, semi-
empirical hybrid models have adequate mechanistic basis to
offer complementary tools in guiding decisions on delineating
priority management areas (Robertson et al. 2009; Wellen et al.
2014a; Kim et al. 2017). The spatial structure of semi-empirical
models allows to compare their nutrient flux estimates against
those from process-based models. Specifically, the nutrient
delivery can be compared at the edge-of-streams, within nested
catchments along the stream network, and as delivered to the
downstream outlets (Supplementary data, Fig. S12). The recent
augmentation of SWAT+ to accommodate a tier-based approach
from conceptual to more detailed analysis at the level of individ-
ual fields allowed for direct comparison of the nutrient export
coefficients and delivery ratios between semi-empirical models
and SWAT+ (Bieger et al. 2017). In terms of the post-implementa-
tion control of agricultural and urban BMPs, García et al. (2016)
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advocated the comparison of data-driven models against predic-
tions from field-scale analysis, by drawing parallels between pre-
dicted edge-of-stream nutrient loading reductions from APEX
and the landscape delivery factors derived from SPARROW (Sup-
plementary data, Fig. S12).
In terms of scalability, the semi-empirical models, like SPAR-

ROW, have been applied to both small- and large-scale watersheds
(Alexander et al. 2004; Qian et al. 2005; Wellen et al. 2012; Kim et al.
2017). Watersheds are first divided into subwatersheds, each of
which drains to a water quality monitoring station. Each subwa-
tershed is then disaggregated into reach catchments drained by a
particular stream segment, and the attributes of each reach catch-
ment are used as predictor variables for water quality in-stream
and downstream.Maximum likelihood andbootstrappingmethods
have been typically used to obtainmean estimates of the governing
watershed processes along with the associated uncertainty (Alexander
et al. 2002;McMahon et al. 2003; Robertson and Saad 2011). Bayesian
inference techniques have recently introduced significant concep-
tual and operational advancements in the SPARROW practice, such
as the control of the covariance effect of model parameters on the
inference drawn; the characterization of the spatial structure of
model residuals due to autocorrelated forcing factors, e.g., climate,
soils, agricultural practices, and year-to-year variability; the use
of prior knowledge on parameter values in assisting model calibra-
tion; the propagation of the error/uncertainty associated with
model calibration data (Qian et al. 2005; Wellen et al. 2014a).
Regarding the significance of the parameter covariance problem,
Qian et al. (2005) provided compelling evidence by showing that
three of the SPARROW parameters were highly correlated and con-
centrated around a narrow “banana shaped” region of the exam-
ined parameter space. The uncertainty pertaining to calibration
datasets along with the challenges for supporting predictions in
areas that have been modestly monitored is another topic of great
practical importance, given that most watersheds of management
interest are understudied, and existingmean annual load estimates
are often obtained by rating curves with considerable associated
errors (Cohn et al. 1989; Cohn et al. 1992; Alexander et al. 2004;
Moatar and Meybeck 2005). To overcome the latter issues, Bayesian
techniques confer a major advantage through a series of statistical
(measurement error) formulations that explicitly consider the ana-
lytic uncertainty, sampling error, interannual variability or even
the uncertainties stemming from the use of noncontemporaneous
measurements of flow and concentration (Carroll et al. 2006;
Wellen et al. 2014a; Kim et al. 2017).

Challenges and next steps for the watershed

modelling in Lake Erie

During the initial stage of adaptive management, the applica-
tion of watershed models offers a first approximation of the
benefits of already implemented or newly proposed conserva-
tion practices at the basin scale. In the next phase, the collec-
tion of tributary data allows researchers to reflect on critical
knowledge gaps and erroneous assumptions that are intricately
linked with the predictive uncertainty and to redesign the field
work/experimentation accordingly. Based on our experience
thus far from Lake Erie, we summarize how this iterative pro-
cess can improve our capacity to design a strategy to reduce
nutrient loading.

Is the use of multiple applications of the samemodel the
answer?
Notwithstanding the diverse range of process-based models

presented in the international literature, the characterization of
water budgets and nutrient cycles in the major catchments of
Lake Erie has been overwhelmingly based on the use of the SWAT
model. In particular, the watershedmodellingwork in theMaumee
River Watershed comprised five independent SWAT applications,

reflecting different input assumptions and process characterizations,
to determine the watershed attributes and functioning that modu-
late P loading export (Scavia et al. 2017). Being based on the same
mathematics (i.e., SWAT equations), this strategy bears conceptual
resemblance to a sensitivity analysis, wherebywe typically evaluate
how parametric uncertainty shapes the predictions of a given com-
plex model regarding the environmental management problem at
hand. Thus, even though the practice of basing environmental fore-
casts onmultiple applications of the samemechanistic model devi-
ates from the typical definition of an ensemble tool, we believe that
it represents a prudent first step to delineate the uncertainty band
associated with the equifinality problem. Consistent with the gen-
eral findings of this review, Arhonditsis et al. (2019b) asserted that
the next iteration of the watershed modelling framework in Lake
Erie should consider the different strengths of the available pro-
cess-basedmodels, and therefore SWAT could be complemented by
the modules of other watershed models, especially for surface run-
off, groundwater, and sediment-erosion processes. Modellers can
further capitalize on the availability of multiple options and
modifications of SWAT/SWAT+ source codes, and (or) consider the
application of several alternative models to enrich the structural
complexity of model ensembles. The spatial granularity should
also shift from lumped approaches in BMP analysis, such as HRU
in SWAT, towards field-level analysis of geographically fixed
BMPs in order predict the post-implementation trends in tribu-
tary water quality. Some of the critical processes for modelling
nutrient losses in individual watersheds in the Great Lakes can
include simulation of runoff in subfield areas (e.g., MIKE SHE,
SWAT–VSA in Easton et al. 2008), tracking nutrient losses at EOF
and EOS nodes (APEX, AnnAGNPS, SWAT+), representing field-
and farm-level structural BMPs as spatial objects (APEX, AnnAGNPS,
MIKE SHE, SWAT+, field-scale SWAT in Merriman et al. 2018),
improved representation of groundwater and surface water
interactions in tile-drained landscapes with high water tables
(HYPE, MIKE SHE, SWAT+), and related simulations of nutrient
losses associated with tile-drainage (e.g., SWATDRAINmodification in
Golmohammadi et al. 2016), consideration of spatiotemporally
explicit soil erosion routines (SWAT modification by Qi et al. 2017;
AnnAGNPS, MIKE SHE), augmentation of reactive nutrient transport
dynamics in agricultural land, such as the modified SWAT in Collick
et al. (2016) or themodifiedEPIC inWang et al. (2019).
Prior to invoking any additional complexity by introducing al-

ternative conceptual or mathematical representations of water-
shed processes with other models, there are several interesting
lessons learned from the recent modelling work in the Maumee
River that could offer meaningful pointers for future improve-
ment of the SWAT-ensemble strategy (Arhonditsis et al. 2019a,
2019b):

� The five SWAT applications were characterized by nearly excel-
lent goodness-of-fit against monthly flow rates and phospho-
rus loading empirical estimates based on a single downstream
station, but little evidence was provided with respect to their
ability to reproduce the hydrological or nutrient loading con-
ditions with a finer (daily) temporal resolution, and even less
so in capturing the impact of episodic/extreme precipitation
events (see also following discussion). The five SWAT applica-
tions coalesced in their projections of the northwestern and
southern parts of the Maumee River watershed as high-risk
areas with greater propensity for TP export and downstream
delivery rates, as well as the tendency of the predominantly agri-
cultural central areas for higher DRP export rates. However,
these spatial projections require further ground truthing by con-
sidering multiple sites across the Maumee River watershed to
recalibrate the models. Regarding the practice of calibrating
spatially distributed models against data from the basin
outlet alone, Wellen et al. (2015) cautioned that likely leads
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to an overconfident assessment of our ability to constrain over-
land and (or) in-stream fluxes of water and waterborne pollu-
tants. A characteristic example is the recent comparison of a
multisite SWAT calibration strategy using flow-discharge data
from three tributaries and six gauging stations vis-à-vis two
single-site applications of the same model in the Hamilton
Harbour watershed (Wellen et al. 2014a; Dong et al. 2019).
While the model fit after the training phase was similar
between the two studies, the multi-site exercise led to dis-
tinctly higher performance within the validation domain. It is
thus important to bear inmind that watershed-process characteri-
zation, derived frommultiple sources of information that explic-
itly accommodate the variability in time and space, may
render greater predictive capacity and could thus be more
effective for evaluating land-use management scenarios and
source attributions (Vaze and Chiew 2003; Shrestha et al.
2016; Bai et al. 2017).

� Considering the main reason of using multiple applications of
the same mechanistic model is to accommodate the lack of
unique characterization of the major hydrological and nutrient
transport/transformation processes, Arhonditsis et al. (2019a, 2019b)
showed that this endeavor may be confounded by the uncertainty
arising fromdifferent data inputs used and assumptionsmade (e.g.,
fertilizer/manure application rates, agricultural tile drainage net-
work, land-use/land-cover data) across the five SWAT applications
in the Maumee River watershed. In the next iteration of the
modelling framework, it is important to distinguish between
the targeted variability that ensembles (or ensemble-like) aim to
introduce into the decision making process (i.e., uncertainty en-
velope stemming from the inherent under-determination of
complex mathematical models) and the “nuisance” factors asso-
ciated with the mischaracterization of boundary conditions and
forcing functions from a subset of the members of a model
ensemble.

� Another plausible way for reducing the model uncertainty
involves maintaining consistency among critical parameters
for which empirical estimates can be derived from the study
site. In this regard, one of the interesting lessons learned from
the sensitivity analysis exercises conducted in neighboring
watersheds (Maumee River, Sandusky River, Rock Creek, Honey
Creek) in Lake Erie has shown that the parameter ranking
according to their sensitivity to flow, sediments, and nutrient
loading predictions can differ depending on the location mod-
elled, parameter values assigned during the model training
phase, and input data used (Confesor et al. 2011; Scavia et al.
2016). Nonetheless, there are several parameters that are consis-
tently identified as being particularly influential (e.g., thresh-
old water level in shallow aquifer for baseflow and (or) revap,
Manning’s roughness for the main channel, effective hydraulic
conductivity, CN for antecedent runoff condition II (CN2), depth
to subsurface tile drain, snow melt temperature, initial organic
and soluble phosphorus in soil, and the coefficient of soil parti-
tioning for P between the surface soil and surface runoff), and
several of those can be directly measured in the field or experi-
mentally quantified.

� As discussed in the previous section, coupled with the current
(or future) mechanistic models for theMaumee River watershed,
empirical (SPARROW-like) models parameterized to depict
basin-specific (rather than continental or regional) nutrient
export rates can offer a multitude of complementary benefits,
such as delineation of the actual uncertainty of processes/fluxes
pertaining to nutrient export from different land uses, land-to-
water delivery, and in-stream attenuation rates; validation of the
hot-spots with higher susceptibility for nutrient export; and der-
ivation of predictive statements constrained within the
bounds of data-based parameter estimation (Arhonditsis et al.
2019a, 2019b).

Legacy nutrients: linking past management practices with
future water quality conditions
Nutrient dynamics and the build-up of legacy pools within a

given watershed are dependent upon a suite of input, transport,
storage, and removal processes operating along the terrestrial–
aquatic continuum (Chen et al. 2018). Driven by the need to meet
the energy and food demands of an increasingly urbanized pop-
ulation, anthropogenic nutrient inputs (i.e., fertilizer/manure
application) have dramatically increased, and their soil accumu-
lation is further accentuated by hydrologic and biogeochemical
legacy effects (Sattari et al. 2012; Condron et al. 2013). The former
effects refer to the travel time required for nutrient delivery
from the original terrestrial sources to the receiving waters
through a multitude of surface and subsurface hydrologic path-
ways (Van Meter and Basu 2015; Chen et al. 2018). Major biogeo-
chemical processes that drive nutrient cycles within and among
soil/sediment, water, and biota, thereby resulting in long turn-
over times and legacy nutrient accumulation, are the litter or
decomposition by plant roots, uptake by plants and soil microbial
community, ammonification of the organic matter in soils, nitrifi-
cation/denitrification, mineral precipitation/dissolution, sorption/
desorption, andmolecular diffusion (Seitzinger et al. 2006; Sharpley
et al. 2013a; Chen et al. 2018). In the same context, Frossard et al.
(2000) showed that the unique facet of P biogeochemistry is that the
high sorption (ironoxyhydroxides) or the potential for co-precipitation
with minerals (calcium carbonate) and clay particles is several
orders of magnitude greater than the corresponding concentra-
tion of P dissolved in pore waters. Overall, the increasing pres-
ence of “residual” nutrients in soils can lead to the prevalence of
inorganic forms and distinct shifts in the elemental ratios of C,
N, and P delivered into downstream waterbodies, which in turn
can shape the nature of the autotrophic assemblages (Dodds
et al. 2010; Sharpley et al. 2013a; Haygarth et al. 2014). Currently
the issue of legacy nutrients has become a cornerstone for the de-
velopment of sustainable agroecosystem management plans,
and many skeptics have cast doubt on the capacity and expected
timing of the on-going water quality remediation measures to
provide tangible improvements in Lake Erie and more broadly in
the Great Lakes (Arhonditsis et al. 2019a, 2019b; Mohamed et al.
2019).
Considering the emerging evidence on the importance of

legacy nutrients, the current generation of watershed models
should improve our ability to quantify the underlying hydrologi-
cal and biogeochemical processes in order to design and put in
place efficient nutrient-management practices at the watershed
scale. However, both data-driven and process-based models gen-
erally lack one or other important mechanisms or use simple
assumptions to recreate the legacy nutrient dynamics and deliv-
ery lags (Meals et al. 2010; Wellen et al. 2012; Kleinman et al.
2015). Lumped or statistical watershed models postulate that the
nutrient cycles are in a steady state over the course of varying
time windows (e.g., 1 or 5 year averaged nutrient-export coeffi-
cients), but the specification of the optimal length of a multiyear
period that reasonably satisfies the steady-state assumption can
vary significantly, depending on the watershed considered (Chen
et al. 2018). For example, Van Meter and Basu (2015) showed that
the lag time between anthropogenic N inputs to a watershed and
riverine export associated with biological and hydrological proc-
esses can be significantly longer than the typical time-averaging
windows used by the vast majority of lumped and statistical mod-
els. Likewise, legacy effects are also not suitably addressed and
mathematically formulated by the majority of the commonly uti-
lized process-based models, which do not consider critical bio-
geochemical mechanisms to either account for such nutrient
legacies or to predict time-lags in both urbanized and agricul-
tural landscapes (Grizzetti et al. 2005; Chen et al. 2014). Most cur-
rent models are not capable of representing the mechanisms
responsible for P wash-off (incidental transfer) rates, soil stratification
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and accumulation of nutrients at the soil surface layer, in-stream
stores, and sinks (Vadas et al. 2013; Haggard et al. 2007; Dalo�glu et al.
2012). Consequently, several fundamental processes modulating the
nutrient legacy dynamics (e.g., nutrient vulnerability to runoff from
the soil surface layer) are approximated by a small number of param-
eters, such as the soil partitioning coefficients (i.e., the ratio of the
soluble nutrient concentration in the soil surface layer to that in sur-
face runoff), P availability index, nutrient percolation coefficients,
and initial concentrations in the surface soil layer (Radcliffe et al.
2009; Vadas and White 2010). Wellen et al. (2015) argued that the
primary weakness of mechanistic models stems from the uncer-
tainty surrounding the characterization of the various compo-
nents of the water cycle (e.g., evapotranspiration, groundwater
flow, overland flow, and return flow), given that the typical prac-
tice involves calibration solely against stream flow data, and
therefore their ability to realistically reproduce the hydrological
residence times and nutrient lag delivery effects is unclear.

Long-term trends in dissolved reactive phosphorus loads:
causes and consequences
Recent empirical evidence suggests increasing DRP loading

trends in several major tributaries of Lake Erie (e.g., Maumee,
Sandusky, and Raisin rivers), although the TP-concentrations
have been relatively stable (Baker et al. 2014; Stow et al. 2015).
Interestingly, the same constant (or even decreasing) trend has
been registered with respect to the application rates of P fertil-
izer in the area (Han et al. 2012). Likewise, a SWAT multimodel
exercise evaluated the achievability of the March–July DRP and
TP loading targets of 186 and 860 metric tonnes in the Maumee
River watershed (Scavia et al. 2017), which providedmore promis-
ing predictions for the TP loading threshold relative to the one
for DRP under a series of BMP scenarios (Arhonditsis et al. 2019a).
This increasing DRP trend has been attributed to both direct and
synergistic effects of a suite of mechanisms, including (i) the
increased frequency of storm events, especially during the fall
and spring seasons; (ii) the timing of fertilizer/manure applica-
tion, in that fertilizers applied in the fall would have longer expo-
sure to precipitation and subsequently to runoff; (iii) the gradual
establishment of preferential (macropore) flow pathways media-
ting the hydrological connectivity between labile P at the soil
surface and subsurface drainage; and (iv) implementation of man-
agement practices (reduced tillage, increased tile drainage) that
appear to increase soil stratification and P accumulation at the
soil surface (Dalo�glu et al. 2012; Baker et al. 2017; Jarvie et al.
2017). In the same context, an important “unknown” is the role
of legacy P as an important determining factor of the DRP-
concentrations in the soils. As previously mentioned, historical
applications of P fertilizer can result in accumulated legacy P,
which can elevate the amount of dissolved P either by being
released into the soil solution over time (direct effect) or by shap-
ing the nature of the microbial reactions and ultimately promot-
ing the rapid transformation of the contemporary P fertilizer
inputs from labile into available pools (indirect effect) that are
more susceptible to losses (King et al. 2017). In light of this
evidence, one particularly challenging aspect for the evaluation
of scenarios with the current generation of process-based models
is the proper consideration of legacy P (e.g., initialization that
accommodates the spatial variability of P in soil, sufficient model
warm-up period, parameter specification that reproduces the
gradual P build-up in the soils, active microbial transformation)
and its broader implications for DRP loading.
The pattern of increasing DRP loading could be further exacer-

bated by the adopted best management practices aiming to
reduce sediment erosion from agricultural fields, i.e., conservation
tillage and no-till practices (Dalo�glu et al. 2012). Notwithstanding
the reduction in flow-adjusted concentrations of suspended solids
and particulate phosphorus in Lake Erie tributaries (Richards et al.
2008), no-till practices togetherwith surface application (broadcasting)

of P fertilizers and manure can increase soil stratification and the
accumulation of residual fertilizer P at the top of the soil profile, and
potentially intensify DRP runoff (Sharpley et al. 2013a; Jarvie et al.
2017). Because this prospect casts doubt on management prac-
tices intended to reduce top-soil levels of P, periodic soil inver-
sion tillage to thoroughly mix the soil in the plow layer and (or)
consistent subsurface placement (instead of broadcast) P fertilizer
application has been suggested, thereby eliminating the develop-
ment of stratification increments (Baker et al. 2017). Another
challenge with the existing watershed management practices in
Lake Erie is the recent evidence that no-till practices coupled
with the increased tile drainage can increase labile P fractions at
the soil surface and transport of soluble P via subsurface drainage
(Smith et al. 2015), although the latter pattern can differ signifi-
cantly depending on the rainfall amount/intensity and anteced-
ent soil moisture conditions (i.e., greater and more rapid tile
drainflows are generated by greater rainfall amounts/intensities
and wet soils), soil texture (i.e., greater drainflows typically occur
on coarse-textured soils due to higher permeability, but fine-
textured soils may also result in preferential flow pathways),
cropping and tillage practices (i.e., greater tile drainflows occur
from grassland and no-till cropland owing to the prevalence of
preferential flow pathways), and drainage system design (i.e.,
shallow drains tend to respond more quickly to precipitation
than deep drains, while drainage volume tends to be lower from
shallow andwide-spaced designs) (Moore 2016). Thus, another im-
portant facet of the local modelling work to draw reliable DRP
predictions is the capacity to reproduce all of the critical hydro-
logical and biogeochemical transformation mechanisms that
shape P distribution between surface and subsurface layers, and
will ultimately determine the future TP versus DRP loading
trends in the area. Yet, we cannot identify any of the available
mechanisticmodels as properly equipped to reproduce themajor
pathways operating in artificially drained fields (Radcliffe et al.
2015).

Effects of changing climate on runoff, sediment, and
nutrient export along the watershed–aquatic continuum
The Great Lakes are experiencing long-term climatic trends

consistent with the projected human-induced climate change.
Annual temperatures are rising at both rural and urban locations,
more frequent extremeheatwaves bring record high temperatures,
and the growing season is becoming longer (Palecki et al. 2001;
Robeson 2002; Hayhoe 2010). Evapotranspiration is a major compo-
nent of the water balance, and warmer temperatures are expected
to increase the associated water losses (Marshall and Randhir 2008;
Wallace et al. 2017). Increased frequencies of heavy rainfall events
alongwith a general declining trend in ice and snow cover/duration
are indicative of a profound hydrologic response to warming cli-
mate, whereby snowmelt and runoff shift to earlier in the year and
subsequently affect the magnitude and timing of runoff volume,
soil erosion, and nutrient export at the watershed scale (Kunkel
et al. 1999; Argyilan and Forman 2003; Hayhoe 2010). In Southern
Ontario, it has been hypothesized that nutrient loadingmay change
from a bimodal delivery pattern in cold winters, when a quiescent
period is followed by intense spring freshet, to a more continuous
tributary response and nutrient export pattern during warm win-
ters (Long et al. 2014, 2015). Climate warming could thus increase
the vulnerability of soils to erosion in winter (snowpack decrease,
early onset of spring snowmelt, frequent rainfall events, and snow-
melt episodes), and consequently the contemporaneous sediment
and nutrient loadings relative to current levels (Bosch et al. 2014;
Verma et al. 2015). While this empirical evidence is on par with
recent modelling projections, other hypotheses suggest that ele-
vatedwinter air temperatureswould likely lead to increased surface
permeability (as opposed to an impermeable frozen surface), result-
ing in a greater potential for infiltration and (or) recharge and
not necessarily to an increase in runoff and (or) erosion events
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(Gombault et al. 2015). Given the wide range of possibilities
regarding the impact of climate change on water quantity and
quality from the Lake Erie watershed, it is critical to improve our
understanding of the potential changes in the interplay among
catchment state, land use, and nutrient export patterns induced
by a changing climate, and communicate the associated uncer-
tainty accordingly (Woznicki and Pouyan Nejadhashemi 2014;
Arhonditsis et al. 2019a).
General circulationmodels (GCMs) are popular numerical tools

for simulating the effects of increasing concentrations of green-
house gases on the climate system (Tzabiras et al. 2016), but the
associated projections are subject to uncertainties originating
from model, scenarios, and intrinsic system variabilities, and
their relative importance varies among variables of interest, loca-
tion, lead time, and temporal scales (Hawkins and Sutton 2009;
Giuntoli et al. 2018). Model (also known as response) uncertainty
refers to the projection of distinct climate responses by different
GCM models, despite being driven by identical external forcing.
This difference in GCM outputs stems from the model structure
and parameterization constrains that are postulated in light of
incomplete knowledge of the geophysical processes underlying
global change (Hingray and Saïd 2014). Scenario uncertainty
arises from our incomplete understanding of the external condi-
tions that influence the climate system, such as the unpredictable
future trajectories of greenhouse gases, land-use changes, and strato-
spheric ozone concentrations (Giuntoli et al. 2018). Intrinsic variabili-
ty (or climate noise) is the natural variability in the climate system
that results from nonlinear dynamic and stochastic processes per-
taining to the atmosphere, ocean, and the coupled stratosphere–
troposphere system. Model and scenario uncertainties become domi-
nant sources at longer time scales for both regional and larger spatial
domains, whereas internal variability generally becomesmore signifi-
cant within shorter time spans and smaller spatial scales (Hawkins
and Sutton 2009). Recognizing the significant uncertainties associ-
ated with any climate forecasting exercise, several weighted ensem-
blemethods have been used to combine projections of a wide range
of GCMs to reduce the likelihood of Type I (a valid alternativemodel
may be omitted from the decisionmaking process) or Type II (use of
an erroneous mathematical construct that we failed to reject in an
earlier stage) model errors (Dayon et al. 2018; Her et al. 2019; Beigi
et al. 2019). A common feature of all the conventional GCM weight-
ing strategies is their dependence upon the assessment of model
performance against historical records of multiple climatic varia-
bles (Colorado-Ruiz et al. 2018). From a watershed hydrology per-
spective, this approach pose challenges limitations because climate
models usually serve for awide range offield applications (e.g., risks
of floods and droughts, projections of water quality), and therefore
the localmodelling community should determine the focal variable
(s) for the GCM error assessment or even the establishment of
performance standards for the same variable(s) based on research
goals, prior experience, and knowledge of the system (Fig. 8).
A great deal of the investigations into climate-induced changes

on watershed hydrology have revolved around the characteriza-
tion of the flow discharge – nutrient concentration relationships
depending on the watershed physiography, land-use patterns,
and antecedent soil moisture conditions (Green et al. 2007; Godsey
et al. 2009; Long et al. 2014, 2015). TP concentrations correlate
strongly with flow, because particulate constituents are generally
transported by overland flow or via soil macropores to tile drains,
and can be remobilized from the streambed/bank (Green et al.
2007; Macrae et al. 2007; Vidon and Cuadra 2010). Dissolved forms
of phosphorus have also been linked to overland flow, but the
registered concentrations display a weaker relationship with
stream discharge during high-flow regimes (Tesoriero et al. 2009;
Meybeck and Moatar 2012). Counter to our understanding of P
fate and transport, an overarching flow-concentration paradigm
for N is less clear, given that a greater fraction of TN is found in
the dissolved phase. Owing to their high solubility, nitrite/nitrate

can be transported by overland, subsurface, or groundwater
flow pathways and typically display chemostatic behavior, i.e.,
apparent stability of the concentrations relative to the flow vari-
ability (Godsey et al. 2009; Long et al. 2014). Other N species
(ammonium, total Kjeldahl nitrogen) are relatively insoluble
and (or) less amenable to subsurface leaching because of immo-
bilization by clay or other soil chemical constituents, and levels
may therefore be distinctly higher during precipitation and
snowmelt events (Long et al. 2014). Given that the relative con-
tribution of different N species from the major subwatersheds
in Lake Erie (e.g., Grand, Maumee, Sandusky, and Raisin rivers)
is likely to be one of the regulatory factors of the downstream
water quality conditions, e.g., the composition of the phyto-
plankton community (Bosch et al. 2014; Verma et al. 2015), it
is important to establish the nature of the N concentration–
discharge relationships as well as to improve the characteriza-
tion of the processes associated with the N cycle under a chang-
ing climate.
In the same context, another challenge with the existing process-

based watershed modelling work in Lake Erie is the aforementioned
underestimation of the event-flow rates and associated nutrient
loading.The characterization of surface runoff and subsurface proc-
esses duringflow events is particularly critical, in light of recent evi-
dence that both TP and phosphate loads can vary by three orders of
magnitude between wet and dry conditions, with storm events and
spring freshets driving peak daily loads in urban and agricultural
watersheds, respectively (Long et al. 2014, 2015). One of the research
priorities to rectify the misrepresentation of event-flow conditions
should thus be the design of high frequency, event-based, water qual-
ity sampling coupledwithwater-stable isotope analysis (18O and 2H)
to distinguish between baseline and extreme-event conditions,
especially if the frequency of such meteorological events will
continue to increase with climate change (Klaus and McDonnell
2013; Long et al. 2015). A number of recent studies have advocated
the finer granularity of this framework to effectively integrate
across the different scales of interest between climate and water
quality research (Michalak 2016; Ockenden et al. 2017). From a
modelling standpoint, the fact that different surface and subsurface
runoff generation mechanisms underlie extreme and “regular”
stream flows has been proposed as a mechanistic explanation of
why calibration exercises rarely find an “ideal” parameter vector
(i.e., process characterization) that will simultaneously recreate
both conditions (e.g., Cibin et al. 2010; Zhang et al. 2011). In partic-
ular, small runoff events are typically associated with slow flow
through the soil-matrix continuum (McDonnell 1990), whereas
macropore-driven processes regulated by several controlling factors
(e.g., antecedent wetness, rainfall intensity, vegetation, soil stability)
appear to prevail during larger events (Zehe et al. 2001). Depending
on the magnitude of storm events, macropore flow may account for
11%–50% of the total water movement at tile-drained field sites (Vidon
and Cuadra 2010), where water enters the preferential flow paths
from the soil matrix once the threshold of soil-water capacity is
exceeded (Klaus andMcDonnell 2013).
There are two major strategies that have been proposed to

accommodate threshold behavior in watershed models (Zehe
and Sivapalan 2009). The first strategy is explicit through the
introduction of a two-domain conceptualization of soil water
movement into numerical watershed models, whereby flow
through the soil matrix or macropore flow is responsible for
small- and large-runoff events, respectively (Zehe et al. 2001). The
second approach posits that the watershed operates in multiple
states or modes of behavior, the identification of which is a com-
ponent of the model calibration process (Ali et al. 2013). A charac-
teristic example of the latter strategy is the Bayesian hierarchical
calibration methodology presented by Wellen et al. (2014b),
which postulated that the watershed response to precipitation
occurs in distinct states, and thus a threshold of precipitation
exists above which the watershed is characterized by different
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Fig. 8. Examination of the effects of a changing climate on runoff, sediment, and nutrient export with an ensemble of climate and

watershed models. Ensemble modelling is the process of running two or more related models with respect to their conceptual/structural

characterization and input specification, and then synthesizing the results into a single score or spread to improve the accuracy of

predictive analytics and data mining applications. Recognizing the significant uncertainties associated with any analysis of climate

scenarios (inset diagram), several weighted ensemble methods have been used to combine projections of global circulation models

(GCMs). A common feature of all the conventional GCM weighting strategies is their dependence upon the model performance

assessment against historical records of multiple climatic variables. Given that climate models usually serve for a wide range of field

applications (e.g., risks of floods and droughts, water quality projections), one of challenges of the modelling community is to determine

the focal variable(s) for the GCM error assessment or establishment of performance standards for the same variable(s) based on research

goals, prior experience, and system knowledge.
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parameter values relative to those used to reproduce the water-
shed below the threshold. However, the values of a particular pa-
rameter are not independent among the watershed states or
modes of behavior but are characterized by a covariance struc-
ture to be identified during model calibration. This calibration
framework was operationalized with the SWAT model by intro-
ducing a precipitation threshold, above which the watershed is
characterized by a different CN2 value relative to the one used
below the threshold. In doing so, Wellen et al. (2014b) identified
precipitation thresholds that trigger shifts to alternative watershed
states with a higher propensity for runoff generation. Considering
the well-documented structural deficiency of SWAT for reproduc-
ing critical hydrological and sediment processes in urban settings,
the two-domain process characterization, as determined by a pre-
cipitation-based breakpoint, could be a more suitable strategy for
the latter land-use category. In agricultural catchments however,
Dong et al. (2019) presented an alternative calibration strategy that
based the identification of the different modes of behavior on the
landscape changes occurring between the growing and dormant
seasons. In particular, they showed that the value assigned to the
CN2 parameter reflecting the dormant season was 45% higher than
the value specified for the growing season, which is indicative of a
greater conversion of rainfall to surface runoff during the dormant
period of the year (Dong et al. 2019).

Building an ensemble of watershedmodels in Lake Erie
Notwithstanding the various differences in their conceptual

and structural foundation, the watershed models examined can
be broadly classified into two categories, based on the degree of
sophistication of the critical hydrological (empirical or semi-em-
pirical versus physically based) and biogeochemical (empirical
versus explicit reactive-transport) processes. Within a given

setting (e.g., catchment features, predominant land uses, data/
empirical knowledge available, intended use of the model), each
model category displays different strengths and weaknesses in
realizing a robust characterization of the watershed attributes
and functioning. It has thus been postulated that the mean pre-
dictions and associated uncertainty envelope derived from an en-
semble strategy provide a better framework for evaluating the
efficiency of alternative BMP scenarios (Scavia et al. 2017). In this
context, Arhonditsis et al. (2019a) highlighted the importance of
three critical steps related to the development of multimodel
ensembles, involving (i) identification of the conceptual or struc-
tural differences of the available models, thereby ensuring that
the prospective ensemblemembers are actually diverse; (ii) deter-
mination of the most suitable calibration/validation domain for
evaluating model performance in time/space, and synthesize the
predictions among different models based on their ability to be
used for extrapolative tasks, i.e., forecast conditions distinctly
different from those currently prevailing in the watershed mod-
elled; and (iii) establishment of an optimal weighting scheme to
assign weights to each ensemble member, when integrating over
the individual predictions, and determine the most likely out-
come along with the associated uncertainty bounds.
In reviewing the pertinent literature, our study showed that

there are models with more sophisticated strategies for repre-
senting surface runoff, groundwater, and sediment erosion proc-
esses than those in SWAT (Wellen et al. 2015; Arhonditsis et al.
2019b). Assuming that local empirical knowledge is available to
constrain the additional parameters, MIKE SHE provides the
most comprehensive 3D representation of the interplay between
surface and subsurface hydrological processes with a full
dynamic description, whereby we can recreate the solute trans-
port that infiltrates from the surface to the unsaturated soil layer

Fig. 9. Ensemble of complementary watershed models with a three-level hierarchical structure. The first level aims to provide large-scale

approximations or exploratory analysis of the studied watershed (nutrient export, land-to-water delivery, in-stream attenuation) with

coarse spatial (reach, subwatershed) and temporal (year) resolution using empirical models (SPARROW) or simple hydrological nutrient

models (GWLF-E). The second level is designed to assist with the hot-spot delineation and best management practices assessment within a

watershed context, based on models that can accommodate finer spatial (km2) or temporal (days) resolution, like SWAT, INCA, HYPE,

MIKE SHE. The third level comprises complex models with sophisticated physical, chemical, and biological components and fine

granularity in time (hour) and space (m2) that are intended to recreate specific facets of watershed functioning, such as the underlying

processes at the farm level (AnnAGNPS, APEX) or extreme flow events (DWSM, HSPF, MIKE SHE, SWMM).
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and subsequently percolates into the saturated layer. Likewise,
the physically based submodels designed to dynamically repre-
sent the sediment detachment and erosion/removal processes
(DWSM, HBV-INCA, HSPF, HYPE, andMIKE SHE) offer a distinct al-
ternative that could be combined with a USLE-type empirical
strategy under a model-ensemble construct. We also note the
advantage of SWAT for explicitly simulating daily plant growth,
which in turn facilitates the reproduction of soil P dynamics as
the net balance of sources (fertilizers, manure, and plant resi-
dues) and sinks (plant uptake, water flow, and soil erosion). This
mechanistic augmentation should be combined with dynamic
representation of the impact of chemical and physical soil prop-
erties (e.g., pH and temperature) or the soluble-P concentrations
on adsorption/desorption processes (Wade et al. 2002b; Vadas
andWhite 2010). The consideration of dynamic P subroutines can
be quite critical when evaluating the long-termwatershed responses
to various agricultural management strategies (Arhonditsis et al.
2019b). Drawing parallels with the (sub)surface and sediment erosion
processes, a more complicated physically based approach, e.g., the
dynamic wave model provided by MIKE SHE and SWMM (Refsgaard
and Storm 1995; Rossman andHuber 2016a),may also bemore appro-
priate to realistically simulate pressurized flow and the backwater
effects of water routing in both open channels and closed pipes.
While all of our propositions seem to favor the inclusion of more
complex models that can in principle exacerbate the equifinality
problem, we believe that this issue can be counterbalanced by the
consideration of simpler empirical models that can either constrain
the plausible values of individual processes (e.g., see “statistical mod-
els” in the section above on Data-driven watershed modelling), improve
the characterization of land use versus runoff/nutrient export
patterns (e.g., risk-based models derived from edge-of-field studies),
and validate macroscale processes (e.g., land-to-water delivery or in-
stream attenuation estimates provided by hybrid semi-empirical
models).
In terms of model diversity, the existing watershed modelling

work in the Maumee River watershed, comprising five applica-
tions of the same complex mathematical (SWAT) model, repre-
sents an attempt to capture the uncertainty of the model input
(parameter values assigned, assumptions made regarding critical
forcing functions, e.g., manure/fertilizer application rates), but
the predictions drawn are effectively shaped by the same struc-
tural foundation, and thus can only partly advance our under-
standing of watershed dynamics. A true ensemble should instead
consist of a wide range of data-driven and process-based models
to ensure that adequate structural model diversity is in place
(Fig. 8). In the same line of reasoning, Arhonditsis et al. (2019a)
contended that the true diversity of a model ensemble is not
solely determined from the complexity of the mathematics or
the number of system components simulated, but also from the
characterization of the ecosystem processes, as determined by
the parameter values assigned during the calibration and valida-
tion phase of the individual models, which ultimately determine
the forecasts derived to guide the policy-making process. In this
context, we propose the development of an ensemble of comple-
mentary watershed models with a three-level hierarchical struc-
ture that spans a wide range of spatiotemporal scales and
granularity in the study of the interplay among physical, chemi-
cal, and biological components (Fig. 9). The first level would pro-
vide large-scale approximations or exploratory analysis of the
studied watershed (nutrient export, land-to-water delivery, in-
stream attenuation) with coarse spatial (reach, subwatershed) and
temporal (year) resolution using empirical models (SPARROW) or
simple hydrological nutrient models (GWLF-E). The second level is
designed to assist with delineating hot-spots and assessing BMP
within a watershed context, based on models that accommodate
finer spatial (km2) or temporal (days) resolution, such as SWAT,
INCA, HYPE, and MIKE SHE. The third level would comprise com-
plex models with sophisticated physical, chemical, and biological/

mechanistic foundations and fine granularity in time (hours) and
space (m2) that are intended to recreate specific facets of watershed
functioning, such as the underlying processes at the farm level
(AnnAGNPS, APEX) or extreme flow events (DWSM, HSPF, SWMM).
The proposed ensemble of complementary models would offer a
comprehensive framework with a logical flow, starting with sim-
pler and gradually undertaking more complex research questions,
which is also on par with the typical advancement of our knowl-
edge in any given watershed. In doing so, we also put in place a
more effective strategy for controlling the uncertainty in a model-
based watershed management process, rather than opting for
unjustifiably complex models that cannot be constrained by the
local empirical knowledge and data. The resource constraints for
establishingmodel ensembles can be partly overcome by relying on
currently developed catchment models, such as SWAT and HYPE
applications through the Great Lakes Runoff Intercomparison Pro-
ject (Gaborit et al. 2017) and by establishing partnerships between
active watershed modelling groups in the area from governmental
agencies, universities, and industry (Scavia et al. 2016, 2017).
Consistent with the practice followed in the Maumee River

watershed, the use of identical validation time periods across all
the ensemble members is desirable, as it (partly) insures compa-
rability for the purposes of a post-hoc ensemble synthesis (Scavia
et al. 2017). In terms of the consideration of space, even though a
basin-outlet calibration strategy may be reasonably defensible
for the western Lake Erie watershed, as it encompasses very ho-
mogenous landscape with a flat and predominant agricultural
land (Daggupati et al. 2015), it should be cautioned that the likeli-
hood to get “good results for wrong reasons” is much higher than
with a spatial-explicit calibration strategy (Dong et al. 2019). In
particular, recent research has shown that calibrating distrib-
uted, process-based models against data from multiple stations
within a nested basin context can reduce the uncertainty of the
water quality predictions and also improve the accuracy at the
upstream stations (Pettersson et al. 2001; Jiang et al. 2014). Like-
wise, Wellen et al. (2015) showed that the metrics of fit tend to be
higher when calibrating only to the basin outlet, but the associ-
ated results likely offer an overconfident assessment of a distrib-
uted model’s ability to reproduce the internal dynamics of the
basin as well as the delineation of areas with high risk of nutrient
export. Thus, using information frommultiple locations in space
to constrain model predictions is an important step to improve
the credibility of the source attributions and land use scenarios
(Dong et al. 2019). An alternative (but not mutually exclusive)
strategy is to use the derived spatial patterns of nutrient export
from empirical (SPARROW-like) models geared to depict basin-
specific (rather than continental or regional) nutrient loading
conditions. This can offer a multitude of complementary bene-
fits, such as validating the spatial delineation of hot-spots
with higher propensity for nutrient export, narrowing down the
uncertainty of processes/fluxes parameterized by mechanistic
models, and obtaining predictive statements constrained within
the bounds of data-based parameter estimation (Arhonditsis
et al. 2019b).
On a final note, one of the critical decisions from a technical

standpoint involves the selection of the averaging scheme to
objectively synthesize the predictions of multiple models (Wilks
2002; Raftery et al. 2005; Roulston and Smith 2003). Some of the
outstanding challenges involve the development of ground rules
for the features of the calibration and validation model domain
(Ramin et al. 2012), the inclusion of penalties for model complex-
ity that will allow building forecasts upon parsimonious models
(McDonald and Urban 2010; Paudel and Jawitz 2012), and per-
formance assessment that does not exclusively consider model
endpoints but also examines the plausibility of the values
derived for major processes of the water budget and biogeochem-
ical cycles (Wellen et al. 2015). Generally, our thesis is that model
ensembles should not be based merely on simple averaging of
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individual model predictions, but should also consider their
goodness-of-fit and bias (Arhonditsis et al. 2019a). Not only do we
stress the importance of considering the error of the individual
models as a weighting factor to determine their corresponding
influence on the ensemble predictions, but we also argue that
their skill assessment should be done separately against baseline
and event conditions. A promising advancement towards a rigor-
ous synthesis of multiple model predictions is the Bayesian
averaging framework used by Scavia et al. (2017), whereby the
weights of each of the SWATmodels for the Maumee River water-
shed were based on their predictive performance either for TP or
DRP loading over a selected validation dataset. In our recent
work (Ramin et al. 2012), we have also opted for a strategy that
considers performance over all the model endpoints rather than
the variables more closely related to the environmental manage-
ment problem at hand. While this approach may entail the risk
of downplaying the impact of the best performing model for a
particular variable, we believe that a fair assessment of the value
of all the models integrated in an ensemble environmental fore-
cast should strive for balanced performance over their entire
structure. This approach aims to penalize the likelihood of cali-
bration bias, whereby the maximization of the fit for a specific
variable (e.g., flow, suspended solids) may be accompanied by
high error for other variables (dissolved or particulate phosphorus),
and thus avoids forecasts founded upon models with misleadingly
high weights that conceal fundamentally flawed representations
of the watershed behavior. Future efforts to develop weighting
schemes suitable for the synthesis of watershed model predic-
tions should also factor in the model complexity either expressed
as the number ofmodel state variables or as the “effective” number
of parameters that have been used during the calibration exercise
(Ramin et al. 2012).

Conclusions

Watershed process-based modelling has been an indispensable
tool to shed light on the causal linkages among hydrological
changes, agricultural management practices, and downstream
nutrient delivery. Our examination of eleven spatially distributed
models is suggestive of a tradeoff between the representation of the
water cycle and the associated biogeochemical processes within a
watershed context; namely, either simpler approximations of the
nutrient fate and transport are combined with advanced represen-
tation of the hydrological processes, or a greater degree of realism
with the simulated biogeochemistry is counterbalanced by a simpli-
fied representation of the role of critical hydrological and (or)
sediment-erosion processes. Recognizing that there is no “perfect”
watershed process-based model, but rather several adequate
descriptions of different conceptual basis and structure, the
adoption of a multi-model framework is specifically designed to
address the uncertainty inherent in the model selection process.
Nonetheless, the presence of multiple models on its own cannot
ensure that the decision-making process is reliably supported, as
there are several methodological steps required in order (i) to
identify the conceptual or structural differences of the existing
models, and thus determine the actual diversity (or rule out
the likelihood of “pseudo-replication”) collectively characteriz-
ing a multi-model ensemble; (ii) to determine the most suitable
calibration/validation domain and resolution for evaluating
model performance in time and space; and (iii) to establish an
optimal weighting scheme to assign weights to individual mod-
els, when integrating over their corresponding predictions, and
subsequently determine the most likely outcome along with the
associated uncertainty bounds.
Notwithstanding the popularity of SWAT, owing to its concep-

tual and operational advantages, our study showed that it could
be complemented by the modules of other watershed models,
especially for surface runoff, groundwater and sediment erosion

processes. In particular, MIKE SHE seems to be more up-to-date
with respect to the hydrological and sediment mechanisms con-
sidered, assuming that local empirical knowledge is available to
constrain the additional parameters. It should also be noted that
the applicability of MIKE SHE is predominantly constrained
to the evaluation of structural BMPs with limited capacity to assess
the potential mitigation effects of non-structural conservation
practices (Liu et al. 2016; Singh and Bhattarai 2019). Regarding
the simulated P cycle, SWAT has the advantage in explicitly simu-
lating the daily plant growth, but it could be further improved by
adopting a dynamic P equilibrium concentration. MIKE SHE and
SWMM are superior to SWAT in channel routing because of their
capability to realistically simulate pressurized flow and back-
water effects of water routing in both open channels and closed
pipes. Our propositions are admittedly in favor of the inclusion
of more complex models that can in principle exacerbate the
equifinality problem, but we believe that this issue can be offset
by the consideration of simpler empirical models that can either
constrain the plausible values of individual processes by statistical
models, improve the characterization of land use versus runoff/
nutrient export patterns from edge-of-field studies, and validate
macroscale processes against estimates provided by hybrid semi-
empirical models. Critical facets of the watershed functioning,
such as the role of legacy P, the causes and consequences of the
increasing long-term trends in dissolved reactive phosphorus
loading, the challenges in reproducing spring-freshet or event-
flow conditions, and the dynamic characterization of water/
nutrient cycles under the non-stationarity of a changing climate,
will require special attention from the on-going watershed mod-
elling work in Lake Erie. Our companion paper by Arnillas et al.
(2021) addresses a complementary topic pertaining to the
capacity of the current generation of process-based models to re-
create the potential structural and functional changes in the
water/nutrient cycles, along with the associated uncertainties,
induced by the implementation of candidate BMPs in Lake Erie.
Although BMP implementation is typically based on the stipula-
tion that both short- and long-term effectiveness are guaranteed,
emerging evidence is suggestive of moderate water quality
improvements in many watersheds and significant variability in
their performance, often much lower compared to the specs of
the original design from experimental studies. Given this uncer-
tainty in regard to the BMP life-cycle performance, we contend
that another challenge of the contemporary modelling practice
is to introduce more pragmatic methods to assess the likelihood
of the achievability of the proposed nutrient loading reduction
goals.
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