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Abstract

Background: The study of human movement within sports biomechanics and rehabilitation settings has made

considerable progress over recent decades. However, developing a motion analysis system that collects accurate

kinematic data in a timely, unobtrusive and externally valid manner remains an open challenge.

Main body: This narrative review considers the evolution of methods for extracting kinematic information from

images, observing how technology has progressed from laborious manual approaches to optoelectronic marker-based

systems. The motion analysis systems which are currently most widely used in sports biomechanics and rehabilitation

do not allow kinematic data to be collected automatically without the attachment of markers, controlled conditions

and/or extensive processing times. These limitations can obstruct the routine use of motion capture in normal training

or rehabilitation environments, and there is a clear desire for the development of automatic markerless systems. Such

technology is emerging, often driven by the needs of the entertainment industry, and utilising many of the latest

trends in computer vision and machine learning. However, the accuracy and practicality of these systems has yet to be

fully scrutinised, meaning such markerless systems are not currently in widespread use within biomechanics.

Conclusions: This review aims to introduce the key state-of-the-art in markerless motion capture research from

computer vision that is likely to have a future impact in biomechanics, while considering the challenges with accuracy

and robustness that are yet to be addressed.

Keywords: Automatic analysis, Body model, Cameras, Discriminative approaches, Gait, Generative algorithms, Motion

capture, Rehabilitation, Sports biomechanics, Technique

Key Points

1. Biomechanists aspire to have motion analysis

tools that allow movement to be accurately

measured automatically and unobtrusively in

applied (e.g. everyday training) situations

2. Innovative markerless techniques developed primarily

for entertainment purposes provide a potentially

promising solution, with some systems capable of

measuring sagittal plane angles to within 2°–3° during

walking gait. However, accuracy requirements vary

across different scenarios and the validity of

markerless systems has yet to be fully established

across different movements in varying environments

3. Further collaborative work between computer

vision experts and biomechanists is required to

develop such techniques further to meet the unique

practical and accuracy requirements of motion

analysis for sports and rehabilitation applications.

Review
Background

Vision-based motion analysis involves extracting informa-

tion from sequential images in order to describe
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movement. It can be traced back to the late nineteenth

century and the pioneering work of Eadweard Muybridge

who first developed techniques to capture image se-

quences of equine gait [1]. Motion analysis has since

evolved substantially in parallel with major technological

advancements and the increasing demand for faster, more

sophisticated techniques to capture movement in a wide

range of settings ranging from clinical gait assessment [2]

to video game animation [3]. Within sports biomechanics

and rehabilitation applications, quantitative analysis of hu-

man body kinematics is a powerful tool that has been used

to understand the performance determining aspects of

technique [4], identify injury risk factors [5], and facilitate

recovery from injury [6] or trauma [7].

Biomechanical tools have developed considerably from

manual annotation of images to marker-based optical

trackers, inertial sensor-based systems and markerless

systems using sophisticated human body models, com-

puter vision and machine learning algorithms. The aim

of this review is to cover some of the history of the

development and use of motion analysis methods within

sports and biomechanics, highlighting the limitations of

existing systems. The state-of-the-art technologies from

computer vision and machine learning, which have

started to emerge within the biomechanics community,

are introduced. This review considers how these new

technologies could revolutionise the fields of sports

biomechanics and rehabilitation by broadening the

applications of motion analysis to include everyday

training or competition environments.

General Principles and Requirements of Vision-Based

Motion Analysis in Sports Biomechanics and

Rehabilitation

Optical motion analysis requires the estimation of the

position and orientation (pose) of an object across

image sequences. Through the identification of

common object features in successive images, dis-

placement data can be “tracked” over time. However,

accurate quantification of whole-body pose can be a

difficult problem to solve since the human body is an

extremely complex, highly articulated, self-occluding

and only partially rigid entity [8–10]. To make this

process more tractable, the structure of the human

body is usually simplified as a series of rigid bodies

connected by frictionless rotational joints.

Three-dimensional (3D) pose of rigid segments can be

fully specified by six degrees of freedom (DOF): three re-

lating to translation and three defining orientation. As

such, even for a relatively simple 14-segment human

body model, a large number of DOF (potentially as

many as 84 depending on the anatomical constraints

employed) need to be recovered to completely character-

ise 3D body configuration. From such a model, it is

possible to compute joint angles, and with the incorpor-

ation of body segment inertia parameters, the whole

body centre of mass location can be deduced, as in pre-

vious research in sprinting [11, 12], gymnastics [13] and

rugby place-kicking [14]. Moreover, kinematic and kinetic

data can be combined to allow the calculation of joint mo-

ments and powers through inverse dynamics analysis [15].

Such analyses have value across diverse areas from, for ex-

ample, understanding lower-limb joint power production

across fatiguing cycling efforts [16] to characterising joint

torque profiles following anterior cruciate ligament recon-

struction surgery [17]. However, obtaining accurate body

pose is an essential step before reliable joint moments (and

powers) can be robustly acquired, as inaccuracies in kine-

matic data will propagate to larger errors in joint kinetic pa-

rameters [18].

In certain cases within biomechanics, two-dimensional

(2D) analyses using relatively simple body models suffice.

Examples include when assessing movements which are

considered to occur primarily in the sagittal plane such as

walking [19] and sprinting [4], or when experimental con-

trol is limited, such as when ski jumpers’ body positions

were analysed during Olympic competition [20]. Con-

versely, when the movement under analysis occurs in mul-

tiple planes, a multi-camera system and a more complex

3D model are required; for instance, when investigating

shoulder injury risks associated with different volleyball

spiking techniques [21]. The more extensive experimental

set-ups for whole-body 3D analysis typically necessitate

controlled laboratory environments and a challenge is to

then ensure ecological validity (that movements accurately

represent reality).

The main differences between 2D and 3D analysis relate

to the complexity of the calibration and coordinate recon-

struction processes, and joint angle definitions. Planar (2D)

analysis can be conducted with only one camera, whereas

at least two different perspectives are required to triangu-

late 2D information into 3D real-space coordinates [22, 23].

The number of DOF that need to be recovered (and conse-

quently the number of markers required) in order to define

segment (or any rigid body) pose differs between 2D and

3D methods. In 2D analysis, it is only possible to recover

three DOF and this requires a minimum of two known

points on the segment. Conversely, for 3D reconstruction

of a rigid body, six DOF can be specified by identifying at

least three non-collinear points.

A wide range of motion analysis systems allow movement

to be captured in a variety of settings, which can broadly be

categorised into direct (devices affixed to the body, e.g.

accelerometry) and indirect (vision-based, e.g. video or op-

toelectronic) techniques. Direct methods allow kinematic

information to be captured in diverse environments. For

example, inertial sensors have been used as tools to provide

insight into the execution of various movements (walking
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gait [24], discus [25], dressage [26] and swimming [27]).

Sensor drift, which influences the accuracy of inertial sen-

sor data, can be reduced during processing; however, this is

yet to be fully resolved and capture periods remain limited

[28]. Additionally, it has been recognised that motion ana-

lysis systems for biomechanical applications should fulfil

the following criteria: they should be capable of collecting

accurate kinematic information, ideally in a timely manner,

without encumbering the performer or influencing their

natural movement [29]. As such, indirect techniques can be

distinguished as more appropriate in many settings com-

pared with direct methods, as data are captured remotely

from the participant imparting minimal interference to

their movement. Indirect methods were also the only pos-

sible approach for biomechanical analyses previously con-

ducted during sports competition [20, 30–33]. Over the

past few decades, the indirect, vision-based methods avail-

able to biomechanists have dramatically progressed towards

more accurate, automated systems. However, there is yet to

be a tool developed which entirely satisfies the aforemen-

tioned important attributes of motion analysis systems.

Historical Progression of Vision-Based Motion Analysis in

Sports Biomechanics and Rehabilitation

Manual Digitisation

Manual digitisation was the most widespread motion

measurement technique for many decades, and prior to

digital technologies, cine film cameras were traditionally

used [32, 34–36]. These were well-suited to the field of

movement analysis due to their high image quality and

high-speed frame rates (100 Hz in the aforementioned

studies). However, the practicality of this method was

limited by long processing times. With the advent of

video cameras (initially tape-based before the transition

to digital), cine cameras have become essentially redun-

dant in the field of biomechanics. Digital video cameras

are now relatively inexpensive, have increasingly high

resolutions and fast frame rates (consumer cameras are

generally capable of high-definition video at greater than

120 Hz, whereas industrial cameras are significantly fas-

ter), and are associated with shorter processing times.

Regardless of the technology used to capture motion,

manual digitising requires the manual localisation of

several points of interest (typically representing the

underlying joint centres) in each sequential image from

each camera perspective. Providing a calibration trial has

been performed (where several control points of known

relative location are digitised in each camera view), the

position of the image body points can be reconstructed

into real-space coordinates, most commonly via direct

linear transformation [23]. Several software packages

exist to aid this process and allow accurate localisation

of points on rigid structures [37, 38]. Moreover, the re-

peatability of these methods has been supported by

reliability analyses, for example within sprint hurdle [39]

and cricket [33] research.

One of the primary advantages of manual digitising,

which has allowed this method to persist as a means to col-

lect kinematic data, is that the attachment of markers is not

necessarily required. As such, manual digitisation remains a

valuable tool particularly in sports biomechanics as it allows

analysis of movement in normal training [12, 40, 41] and

also competition [20, 30–33] environments without imped-

ing the athlete(s). Additionally, this methodology provides a

practical and affordable way of studying gait in applied ther-

apy settings [42].

Unfortunately, a trade-off exists between accuracy and

ecological validity when adopting field-based compared to

laboratory-based optical motion analyses [43]. Specifically,

the manual digitising approach can be implemented unob-

trusively in applied settings with relative ease. However, the

resultant 3D vector-based joint angles are difficult to relate

to anatomically relevant axes of rotation. Moreover, if angles

are projected onto 2D planes (in an attempt to separate the

angle into component parts) movement in one plane can be

incorrectly measured as movement in another, as discussed

in relation to the assessment of elbow extension legality dur-

ing cricket bowling [44]. Improvements to this early model-

ling approach are made by digitising external markers, such

as medial and lateral condyles, which provide more accurate

representations of 3D joint angles. However, certain draw-

backs remain including the fact that manual digitising is a

notoriously time-consuming and laborious task, and is liable

to subjective error. These limitations have provided motiv-

ation for the development of automatic solutions made avail-

able by the emergence of more sophisticated technologies.

Automatic Marker-Based Systems

A large number of commercial automatic optoelectronic

systems now exist for the study of human movement. The

majority of these utilise multiple cameras that emit invisible

infrared light, and passive markers that reflect this infrared

back to the cameras and allow their 3D position to be de-

duced. Although the specifications of these systems differ

markedly [45], the same underlying principles apply in the

sense that several points of interest are located in sequential

images, converted to real-space coordinates and used to

infer 3D pose of the underlying skeleton. However, the pri-

mary difference between methodologies is that optoelec-

tronic systems are capable of automatically locating large

numbers of markers, substantially improving the time effi-

ciency of this process. At least three non-collinear markers

must be affixed to each segment to specify six DOF. If only

two joint markers are used to define a segment, the same

challenges exist as those outlined above in relation to man-

ual digitisation. Increasing the number of markers attached

to each segment increases the system’s redundancy. How-

ever, extensive marker sets encumber the natural
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movement pattern and tracking marker trajectories can be-

come challenging if markers are clustered close to one an-

other or become occluded [45].

The accuracies of several widely utilised commercial

marker-based systems have been evaluated using a rigid, ro-

tating structure with markers attached at known locations

[45]. Root mean square errors were found to be typically

less than 2.0 mm for fully visible moving markers and

1.0 mm for a stationary marker (errors were scaled to a

standard 3-m long volume) indicating excellent precision

when markers are attached to a rigid body. However, the

exact placement of markers on anatomical landmarks is dif-

ficult to realise and markers placed on the skin do not dir-

ectly correspond to 3D joint positions. Various protocols

exist to locate joint centres and/or define segment pose

from markers placed on anatomical landmarks; however,

these different conventions produce varying out-of-sagittal

plane results when compared over the same gait cycles

[46]. In fact, there is also inevitable day-to-day and

inter-tester variability in marker placement, which reduces

the reliability of marker-based measurements, particularly

for transverse plane movements [47, 48].

It is well acknowledged that the rigid body assumption

(underlying marker-based motion analysis) can be violated

by soft tissue movement, particularly during dynamic activ-

ities [49]. This phenomenon has been consistently demon-

strated by studies which have compared marker-derived

kinematics with those using “gold standard” methods such

as fluoroscopy [50], Roentgen photogrammetric techniques

[51, 52] and intra-cortical bone pins [53–55]. As soft tissue

movement introduces both systematic and random errors

of similar frequency to the actual bone movement, this is

difficult to attenuate through data smoothing [56]. Over the

last two decades, careful design of marker sets [57] and the

use of anatomical calibration procedures [58] have some-

what alleviated this measurement artefact. For example, ini-

tial static calibration trials can be captured whereby joint

centres and segment coordinate systems are defined relative

to markers. It is then possible to remove certain markers

that are liable to movement during dynamic movement,

without compromising the deduction of segment pose

[59–61]. Moreover, the placement of marker clusters (typ-

ically three or four non-collinear markers rigidly affixed to

a plate) not only provides a practical method to define the

segment’s six DOF, but can also be strategically positioned

to reduce soft tissue artefact [49]. The development of

more sophisticated pose-estimation algorithms [62] and

joint angle definitions [43] has further advanced the accur-

acy of marker-based analyses.

Optoelectronic systems are also relatively sensitive to

the capture environment. In particular, sunlight, which in-

cludes a strong infrared component, can introduce un-

desirable noise into the measurements. In the past,

marker-based analysis has therefore been restricted to

indoor conditions (where light conditions could be strin-

gently controlled). However, innovative active filtering fea-

tures can alleviate these errors and have even allowed data

to be captured during outdoor snow sports [63].

It is, therefore, clear that optoelectronic systems

have made significant advancements in recent times

within the field of biomechanics. However, even

though careful methodological considerations can im-

prove the accuracy of the data acquired, several limi-

tations remain, including long participant preparation

times, potential for erroneous marker placement or

movement, and the unfeasibility of attaching markers

in certain settings (e.g. sports competition). Perhaps

one of the most fundamental problems is the physical

and/or psychological constraints that attached

markers impart on the participant, influencing move-

ment execution. These drawbacks can limit the utility

of marker-based systems within certain areas of sports

biomechanics and rehabilitation, and have driven the

exploration of potential markerless solutions.

Markerless Motion Analysis Systems

An attractive future advancement in motion analysis

is towards a fully automatic, non-invasive, markerless

approach, which would ultimately provide a major

breakthrough for research and practice within sports

biomechanics and rehabilitation. For example, motion

could be analysed during normal training environments

more readily, without the long subject preparation times as-

sociated with marker-based systems or the laborious pro-

cessing required for manual methods. Moreover, it could

provide a potential solution for a common dilemma faced

by biomechanists, which stems from the trade-off between

accuracy (laboratory-based analyses) and external validity

(field-based analyses).

Markerless methods are not yet in widespread use

within biomechanics, with only a small number of

companies providing commercial systems (details for

a selection of which are provided in Table 1). How-

ever, it remains unclear exactly what precision these

systems can achieve in comparison to the other, more

established motion analysis systems available on the

market. Certainly, the technology is under rapid de-

velopment with modern computer vision algorithms

improving the robustness, flexibility and accuracy of

markerless systems. A number of reviews [10, 64–67]

have been previously published detailing these devel-

opments, targeting specific application areas such as

security, forensics and entertainment. The aim of this

section is to introduce the biomechanics community

to the current state-of-the-art markerless technology

from the field of computer vision, and to discuss

where the technology stands in terms of accuracy.
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Recent Computer Vision Approaches to Markerless Motion

Capture

In marker-based motion capture, cameras and lighting are

specially configured to make observation and tracking of

markers simple. Where multiple markers are used, indi-

vidual markers need to be identified, and measurements

then taken either directly from the positions of the

markers, or from inferring the configuration of a skeleton

model that best fits the marker positions. Markerless sys-

tems have some similarity to this, with differences mostly

induced by the significantly more difficult process of gath-

ering information from the images.

The four major components of a markerless motion cap-

ture system are (1) the camera systems that are used, (2)

the representation of the human body (the body model), (3)

the image features used and (4) the algorithms used to de-

termine the parameters (shape, pose, location) of the body

model. The algorithms used to infer body pose given image

data are usually categorised as either “generative” (in which

model parameters can be used to “generate” a hypothesis

that is evaluated against image data and then iteratively

refined to determine a best possible fit) or “discriminative”

(where image data is used to directly infer model

parameters). In general, a markerless motion capture sys-

tem will have the form shown in Fig. 1. This consists of an

offline stage where prior data inform model design or train-

ing of a machine learning-based discriminative algorithm,

and then image data are captured, processed and input into

the algorithms that will estimate body pose and shape.

Camera Systems for Markerless Motion Capture

Two major families of camera systems are used for mar-

kerless motion capture differing by whether or not a

“depth map” is produced. A depth map is an image where

each pixel, instead of describing colour or brightness,

describes the distance of a point in space from the camera

(Fig. 2). Depth-sensing camera systems range from

narrow-baseline binocular-stereo camera systems (such as

the PointGrey Bumblebee or the Stereolabs Zed camera)

to “active” cameras which sense depth through the projec-

tion of light into the observed scene such as Microsoft’s

Kinect. Depth information can help alleviate problems

that affect traditional camera systems such as shadows,

imperfect lighting conditions, reflections and cluttered

backgrounds. Active, depth-sensing camera systems (often

termed RGB-D cameras where they capture both colour

Fig. 1 General structure of a markerless motion capture whether using generative (green) or discriminative (orange) algorithms

Table 1 A selection of commercially available full-body markerless systems

Company Cameras Capture environments Integration with other
biomechanical tools

Real-time
capacity

Captury Studio Ultimate
The Captury
www.thecaptury.com

Unlimited number with
combination of resolutions

No specific background necessary.
Can handle dynamic scenes and illumination
changes, as long as sufficient contrast.

None. Applications primarily
within entertainment

Yes

BioStage
Organic Motion
www.organicmotion.com

8–18 (120 fps in real-time) Laboratory-based Force plates and
electromyography

Yes

Shape 3D
Simi
www.simi.com

Up to 8 high-speed colour
cameras

Can operate outdoors but stable background
with good contrast is required

Force plates,
electromyography and
pressure sensors

No

Information obtained from company web-pages (accessed July 2017)
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and depth) have proven effective for real-time full-body

pose estimation in interactive systems and games [68, 69].

The devices most commonly use one of two technologies:

structured light or time-of-flight (ToF). Structured light

devices sense depth through the deformations of a known

pattern projected onto the scene, while ToF devices meas-

ure the time for a pulse of light to return to the camera.

The two technologies have different noise characteristics

and trade-offs between depth accuracy and spatial reso-

lution [70]. The most well-known active cameras are

Microsoft’s original structured light “Kinect”, and the re-

placement ToF based “Kinect For Xbox One” (often re-

ferred to as the Kinect 2), which are provided with body

tracking software designed for interactive systems. The per-

formance of this tracking system has been analysed for both

versions of the cameras [71], but clearly falls well below the

accuracy required for precision biomechanics (it could be

speculated, however, that a tracking system not dedicated

to interactive systems may achieve greater accuracy using

these devices). Active cameras have been applied to sports

biomechanics [72, 73] using bespoke software, but current

hardware limitations (effective only over short range, max-

imum 30 Hz framerates, inoperability in bright sun light,

and interference between multiple sensors) are likely to

limit their application in sports biomechanics for the fore-

seeable future.

Body Models

The body models used by markerless motion capture are

generally similar to those used by traditional marker-based

approaches. A skeleton is defined as a set of joints and the

bones between these joints (Fig. 3). The skeleton is parame-

terised on the lengths of the bones and the rotation of each

joint with pose being described by the joint angles. For dis-

criminative approaches, this skeleton model can be enough,

but generative approaches will also require a representation

of the person’s volume.

In earlier works, the volume of the model is represented

by simple geometric shapes [74] such as cylinders. Such

models remain the state-of-the-art within computer vision

in the form of a set of “spatial 3D Gaussians” [75] attached

to the bones of a kinematic skeleton (Fig. 4). The advan-

tage of this representation has been to enable fast, almost

real-time fitting in a generative framework using passive

cameras and a very simple set of image features.

In general though, the trend has been to use 3D triangle

meshes common in graphics and computer games, either

created by artists, as the product of high-definition 3D

scans [76], or more recently, by specialising a generic stat-

istical 3D shape model [77–79] (Fig. 5). Statistical body

shape models allow a wide range of human body shapes

to be represented in a relatively small number of

Fig. 2 Example of a depth map. Brighter pixels are further away

from the camera. Black pixels are either too far away or on objects

that do not reflect near infrared light

Fig. 3 Example of a poseable skeleton model. “Bones” of a pre-specified length are connected at joints, and rotation of the bones around

these joints allows the skeleton to be posed. The skeleton model is commonly fit to both marker-based motion capture data and

computer vision-based markerless systems
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parameters and improve how the body surface deforms

under joint rotations. However, because these models focus

on the external surface appearance of the model, the under-

lying skeleton is questionably representative of an actual

human skeleton and as such, care must be taken should

these models be used for biomechanical measurements.

The parameterisation of the human body used by motion

capture models is always a simplification, and although cap-

able of a realistic appearance, can also represent physically

unrealistic shapes and poses. If the algorithms are not care-

fully constrained, these solutions can appear optimal for the

available data. To ensure only physically realistic solutions

are produced, the algorithms must be supported by con-

straints on the body model such as explicit joint limits [80]

or probabilistic spaces of human pose and motion deduced

by machine learning [81]. In either case, there exists a

balance between enforcing the constraints and trust-

ing the observed data to achieve a solution that is

both plausible and precise.

Image Features for Markerless Motion Capture

A digital image, fundamentally, is a 2D grid of numbers

each representing the brightness and colour of a small

region, or pixel. The process of determining how pixels re-

late to objects is a fundamental task in computer vision,

and there have been many proposed approaches to extract-

ing “features” from an image that are meaningful. It is the

great difficulty of this task that marker-based systems have

been developed to avoid.

For motion capture, the primary aim is to determine the

location and extents in the image of the person being cap-

tured. The earliest and one of the most robust approaches

to this task is termed chroma keying. This is where the

background of the scene is painted a single specific colour,

allowing the silhouette of the person (who is dressed in a

suitable contrasting colour) to be easily segmented (Fig. 6).

For environments where chroma keying is not possible,

there are a large number [82] of background subtraction al-

gorithms. However, these can all suffer from problems with

shadows, lighting changes, reflections and non-salient mo-

tions of the background (such as a crowd or other athletes).

Image silhouettes are also inherently ambiguous and pro-

vide no information on whether the observed subject is fa-

cing towards or away from the camera (Fig. 6). This

ambiguity can only be reduced by the use of extra cameras

or more sophisticated image features. Where large numbers

Fig. 4 Sum of Gaussian body model from Stoll [75]. A skeleton (left) forms the foundation of the model, providing limb-lengths and body pose.

The body is given volume and appearance information through the use of 3D Spatial Gaussians arranged along the skeleton (represented by

spheres). The resulting information allows the model to be fit to image data

Fig. 5 Skinned Multi-Person Linear Model (SMPL) [79] body model. This model does not have an explicit skeleton. Instead, the surface of a person

is represented by a mesh of triangles. A set of parameters (learnt through regression) allows the shape of the model to be changed from a

neutral mean (left) to a fatter (middle) or thinner, taller, or other body shape. Once shaped, the centres of joints are inferred from the neutrally

posed mesh, and then the mesh can be rotated around these joints to produce a posed body (right)
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of cameras are available, silhouettes can be combined into a

3D representation known as a visual hull [83], which is an

approximation of the space occupied by the observed per-

son (Fig. 7). More sophisticated 3D reconstructions can also

be carried out [84]; however, any added accuracy must be

traded off against increased computational complexity. Im-

proving the reconstruction does not fully resolve all fitting

difficulties, however, and extra information that identifies

which regions of the silhouettes correspond to which re-

gions of the body are often needed to completely resolve all

possible confusion [85]. Nevertheless, silhouettes have

formed a key aspect of many markerless motion capture

works including the work of Corazza et al. [86], which has

reported some of the most accurate results for automatic

markerless body motion capture, and Liu et al. [87], which

enables the kinematic motion analysis of multiple persons.

The trend, however, has been to move away from the use

of image silhouettes to improve robustness, reduce ambigu-

ities, reduce the number of cameras and simplify capture

procedures. In this regard, the work of Stoll et al. [75] is sig-

nificant for enabling the body model to fit to the image

using only a simple colour model, while the advent of deep

learning [88] and its provision of robust and fast body-part

detectors has made dramatic improvements on what can

be done outside of laboratory conditions [89, 90], including

recognising body pose of many people from a single uncali-

brated and moving camera [91].

Generative Algorithms

In generative motion capture approaches, the pose and

shape of the person is determined by fitting the body

model to information extracted from the image. For a

given set of model parameters (body shape, bone lengths,

joint angles), a representation of the model is generated.

This representation can then be compared against the fea-

tures extracted from the image and a single “error value”

calculated, which represents how much the hypothesis dif-

fers from the observed data. In one possibility, the 3D tri-

angle mesh resulting from the predicted parameters can

be projected into the 2D image, and the overlap of the

mesh and the silhouette of the person can be maximised

[92]. Alternatively, the 3D body model can be compared

against a 3D reconstruction such as a visual hull by mini-

mising the distances between the 3D vertices of the model,

and the 3D points of the visual hull [86, 93] through a

standard algorithm known as iterative closest point.

A key factor of generative approaches is the appropriate

definition of the function that compares a specific hypoth-

esis with the information available in the images. If this is

not carefully considered, then the search for the optimal

set of model parameters can easily fail, resulting in poor

estimates or nonsense configurations where joints bend at

unrealistic angles and limbs penetrate inside the body.

Constructing a cost function that is robust to image noise

and to unrealistic model configurations is difficult mean-

ing generative models often need a reliable initial guess of

the model parameters. In extremes this would mean for-

cing the person being captured to assume a specific pose

at the start of tracking. If the fitting then becomes con-

fused by occlusions, image noise or other failure, tracking

will not be able to correct itself without manual interven-

tion. Researchers have attempted to address this situation

using improved searching algorithms [92], extra informa-

tion derived from robust body part detectors [90] and

Fig. 6 Silhouette on the right from chroma keying the image on the left. When seen as only a silhouette, it is not possible to infer if the

mannequin is facing towards or away from the camera
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recent pose-recognition algorithms [94–97], or by coup-

ling generative methods with discriminative methods [98].

Discriminative Approaches

Discriminative algorithms avoid the process of iteratively

tuning the parameters of a body model to fit the image and

as such they are also often referred to as model-free algo-

rithms. Compared with generative approaches, they will

often have a much faster processing time, improved robust-

ness and reduced dependence on an initial guess. However,

they can have reduced precision, and they require a very

large database of exemplar data (far more than is required

even for constructing the statistical body shape models used

by generative algorithms) from which they can learn how

to infer a result.

Discriminative approaches have two major families. One

approach is to discover a mapping directly from image fea-

tures to a description of pose, such as by using machine

learning-based regression [99, 100]. In this way, it is

possible to “teach” the computer how to determine the

pose of a simple skeleton model using only the image data.

The most recent approaches in this family use deep learn-

ing to train a system that can identify the body parts of

multiple people, the probable ownership of joints, and then

quickly parse this to determine skeletons [91]. Alternatively,

a database of pose examples can be created and then

searched to discover the most similar known pose given the

current image, as used in previous studies [101–103].

The main difficulty in the use of discriminative algo-

rithms is the creation of the exemplar data. If the avail-

able data is insufficient, then poses, physiques and even

camera positions that were not suitably represented will

lead to false results as the system will not be able to gen-

eralise from what it “knows” to what it “sees”. This will

also affect the precision of the result because the algo-

rithm is restricted to giving solutions close to what it

“knows” about, so small variations may not be fully rep-

resented in the results. As a result, discriminative

Fig. 7 The generation of a visual hull, which is a type of 3D reconstruction of an object viewed from multiple cameras. Top row: images of an

object are captured as 2D images from multiple directions. Middle row: these images are processed to produce silhouette images for each

camera. Bottom left: the silhouettes are back-projected from each camera, resulting in cone-like regions of space. Bottom right: the intersection of

these cones results in the visual hull
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approaches are used as initial guesses for generative ap-

proaches [98].

Summary of Markerless Approaches

The current state-of-the-art shows the computer vi-

sion community aiming to develop solutions to mar-

kerless motion capture that are applicable and

reliable outside of laboratory conditions. Although

carefully calibrated silhouette-based algorithms using

sophisticated subject-specific body models have

shown the most accurate results to date, they have

been limited to laboratory conditions using a large

number of cameras [86]. By taking advantage of modern

technologies such as improved solvers [92], advanced image

features and modern machine learning [100], recent works

are providing solutions that reduce the required number of

cameras [104], allow moving cameras [105], increase the

number of people that can be tracked and provide robust

detection and fitting in varied environments [91]. The abil-

ity to do this without knowledge of camera calibration fur-

ther improves the potential ease of use of future systems;

however, calibration is likely to remain a necessity where

precise measurement is needed such as in biomechanics.

Accuracy of Current Markerless Motion Capture Systems

There are distinct differences in the accuracy requirements

between motion analysis techniques in the fields of com-

puter vision and biomechanics, which must be taken into

account when attempting to apply computer vision

methods more broadly across other disciplines. For in-

stance, accuracy within computer vision (primarily enter-

tainment applications) is typically assessed qualitatively and

is primarily evaluated based on appearance. Conversely, in

biomechanical settings, it is fundamental that any motion

analysis system is capable of robustly quantifying subtle dif-

ferences in motion, which could be meaningful from a

musculoskeletal performance or pathology perspective.

Nonetheless, there is no general consensus regarding the

minimum accuracy requirement of motion analysis systems

and the magnitudes of the inevitable measurement errors

will vary depending on the context (laboratory vs. field), the

characteristics of the movement and the participant, the ex-

perimental setup and how the human body is modelled.

As previously described, marker-based approaches are

currently the most widely used systems in biomechanical

laboratories. However, a prominent source of measurement

error in marker-based systems is skin movement artefact

[56], which violates the rigid body assumption underlying

these methods. Reports suggest that errors due to soft tis-

sue movement can exceed 10 mm for some anatomical

landmarks and 10° for some joint angles when compared to

more precise, yet invasive, methods (e.g. intra-cortical bone

pins) [106]. However, these errors in joint angle measure-

ments may be reduced to 2°–4° by using more sophisticated

pose-estimation algorithms such as global optimisation (in-

verse kinematics) with joint constraints [62]. As the “gold

standard” methods are inappropriate in many contexts, and

marker-based systems are the most frequently utilised mo-

tion analysis technique in the field, agreement between

markerless and optoelectronic systems would be considered

to provide evidence for the validity of markerless motion

analysis techniques.

There are already studies which have attempted to evalu-

ate the accuracy of markerless systems (summarised in

Table 2) by comparing the kinematic output variables

against those obtained using marker-based optoelectronic

systems [10, 86, 93, 107–109] or manual digitisation [110].

These validations mostly study relatively slow movements

(typically walking gait), whereas to verify the utility of these

approaches in sports applications, much quicker move-

ments need to be thoroughly assessed. One clear observa-

tion from these results is that transverse plane rotations are

currently difficult to extract accurately and reliably by mar-

kerless technologies [107, 110].

In the computer vision community, it is common prac-

tice to advance technology by establishing benchmark data-

sets against which many authors can rank their algorithm’s

performance. Two such benchmarks are the widely used

HumanEva dataset [111] and the more recent Human

3.6M dataset [112]. These datasets provide video of people

performing actions (walking, jogging, boxing etc.) while also

being tracked with marker-based tracking systems. Table 3

shows a sample of published comparison results for the

HumanEva dataset. These results show that precision of

markerless techniques remains too low to be applicable for

biomechanics analyses. However, the video data and mo-

tion capture data in the HumanEva dataset are themselves

of limited quality. For example, videos are low resolution

and camera placement is sub-optimal, while markers are

limited and sub-optimally located (often on relatively loose

clothing) with no marker clusters to aid tracking (Fig. 8).

For comparison, the results of Corazza et al. [86] on Huma-

nEva have a mean joint centre position error of 79 ±

12 mm, while on the authors’ own higher resolution data

with better camera and marker placement, a much smaller

15 ± 10 mm error was achieved.

The discrepancies observed by Corazza et al. [86] be-

tween the validation results against the HumanEva bench-

mark and the more rigorously captured marker-based data

show the difficulties of treating marker-based motion cap-

ture as the criterion method. In fact, although these bench-

marks are useful for showing the general performance of

different algorithms, neither the marker-based nor manual

digitising methods used to validate markerless technologies

can provide exact “true” body pose due to experimental ar-

tefacts that are inevitably introduced. Additionally, ensuring

a close match between the body model applied to both sys-

tems is a challenge, which may necessitate “off-line” stages

Colyer et al. Sports Medicine - Open  (2018) 4:24 Page 10 of 15



perhaps involving imaging, as in previous work [76]. Add-

ing markers to the validation images might also unduly bias

the performance of a markerless system under test, if the

algorithm detects the markers and uses them for its benefit

or if the markers adversely affect the performance of the

markerless algorithm (altering silhouette shapes, for ex-

ample) [107]. As such, alternative methods of validating the

performance of markerless systems have also been consid-

ered, such as utilising force plate data to analyse centre of

mass movement [113] and creating virtual environments

(synthesised images) in which a predefined model moves

with known kinematics [93]. Although synthesised images

can be invaluable for developing an algorithm (synthetic

images were used for generating training images for

Table 3 Selection of published validation results against the HumanEva datasets

Publication 3D joint position error (mm) Standard deviation of error (mm)

Corazza et al. [86] 79.0 11.5

Amin et al. [94] 54.5

Belagiannis et al. [95] 68.3

Saini et al. [92] 45.7 5.3

Guo et al. [103] 46.8

Elhayek et al. [90] 66.5

Rhodin et al. [98] 54.6 24.2

Bogo et al. [89] 79.9

Table 2 Overview of studies comparing markerless with conventional motion analysis systems

Publication Movement(s)
analysed

Markerless system description Procedure/
system for
comparison

Number of
cameras

Outcome

Trewartha et
al. [110]

Starjump,
somersaults

Gen-locked video cameras (50 Hz),
subject-specific model

Manual
digitising
(TARGET
system)

3 RMS differences for three movements ranged
from 10 mm and 30 mm for pelvis location
and between 2° and 8° for body configuration
angles.

Corazza et al.
[93]

Walking Visual hull construction and a priori
subject-specific model

Virtual
environment
(Poser
software)

16 RMS errors of hip, knee and ankle angles
ranged from 2.0° (hip abduction/adduction) to
9.0 (ankle dorsi/plantar flexion)

Mündermann
et al. [10]

Walking Video cameras (75 Hz), visual hull
construction and a priori subject-
specific model

Qualisys
(120 Hz)

8 Average knee joint angle deviation: 2.3°
(sagittal plane) and 1.6° (frontal plane).

Corazza et al.
[86]

Walking Video cameras (120 Hz), visual hull
construction and a priori subject-
specific model

Qualisys
(120 Hz)

8 Average deviations between joint (hip, knee,
ankle, shoulder, elbow and wrist) centres:
15 mm mean absolute error (ranged from 9
to 19 mm)

Choppin and
Wheat [72]

Reaching,
throwing,
jumping

Microsoft Kinect (30 Hz) Motion
Analysis
Corporation
(60 Hz)

1 Kinect, 12
optoelectronic

Flexion/extension and abduction/adduction of
hip, knee, elbow and shoulder; shoulder plane
and elevation studied. Maximum abduction
error: 44.1° and 13.9°. Maximum flexion error:
36.2° and 19.5° (NITE and IPIsoft tracking
algorithms, respectively)

Ceseracciu et
al. [107]

Walking BTS
SMART-D
(100 Hz)

BTS
SMART-D
(200 Hz)

8 Maximum RMS differences range: 11.0° (ankle
dorsi/ plantar flexion) to 34.7° (hip internal/
external rotation)

Sandau et al.
[108]

Walking Monochrome cameras (75 Hz),
unconstrained articulated model fit
to 3D point clouds (aided by full
body patterned suit)

Ariel
Performance
Analysis
System

8 RMS differences in lower limb 3D angles
ranged between 1.8° (hip abduction/
adduction) and 4.9° (hip internal/external
rotation)

Ong et al.
[109]

Walking and
jogging

Point Grey cameras (25 Hz) Motion
Analysis
Corporation
(100 Hz)

2 markerless,
8 marker-
based

RMS differences ranged from 0.2° (knee
abduction/adduction of jogging) to 1.0° (ankle
dorsi/plantar flexion of walking). Significant
differences between markerless and marker-
based for the ankle joint angles.

RMS root mean square
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Microsoft’s Kinect pose tracker [68]), the idealised image

data is unlikely to capture the noise and error sources of

real imagery.

Future of Markerless Approaches to Analyse Motion in

Sports Biomechanics and Rehabilitation

It is clear that a broad range of markerless technologies

have emerged from computer vision research over recent

times, which have the potential to be applied across di-

verse disciplines and settings. The priorities and require-

ments for a markerless motion capture system will

depend on the research area and the unique capture envir-

onment, and are thus non-uniform across disciplines. In

sports biomechanics and rehabilitation applications, mo-

tion analysis systems must be highly accurate in order to

detect subtle changes in motion, as well as being adapt-

able, non-invasive and unencumbering. With these system

requirements in mind, the current progression of tech-

nologies suggests that the future of practical markerless

motion capture will lie with techniques such as those pre-

sented by Elhayek et al. [90], which fuse together a

discriminative approach (to get good initialisation and ro-

bustness) with a robust silhouette-free kinematic model

fitting approach for precision.

A fast, approximate pose estimation system has previ-

ously been combined with a slow, more-accurate tech-

nique in order to provide basic parameters to athletics

coaches and inform training in real-time [76]. This type of

system may have utility in the applied field by allowing

some of the primary, “top-level” biomechanical determi-

nants (for example, step frequency and step length in gait)

to be fed-back during normal training or rehabilitation sit-

uations. Importantly, the more complex and computation-

ally expensive kinematic variables (such as 3D joint

angles, which require modelling of the body) may still be

acquired. However, the likelihood is that more

time-consuming, offline processing will be necessary. This

two-part approach could help address the apparent dis-

connect between sports science research and practice

[114] as short participant preparation times and timely

feedback from the system may increase the perceived (and

actual) value of such studies to those operating in the ap-

plied field. Importantly, the more complex kinematic in-

formation could still be computed and communicated to

applied practitioners across longer time frames, but

equally these data can be used in research studies to con-

tinually progress our scientific understanding of human

movement.

It should be noted that resolution (both spatial and tem-

poral) will affect the accuracy of markerless systems in the

same way as it does for marker-based systems. However,

video-based automatic systems must also consider the fact

that the size of the data captured will be considerably larger

and thus, markerless systems may need to compromise ac-

curacy to make a deployable, fast system feasible. Such a

system requires large amounts of video data to be handled

efficiently and effectively, which is likely to necessitate the

purchase of an expensive (perhaps specially engineered)

video-based system (e.g. machine vision).

Conclusions
Vision-based motion analysis methods within sports and

rehabilitation applications have evolved substantially over

recent times and have allowed biomechanical research to

contribute a vast amount of meaningful information to

these fields. However, the most widespread kinematic data

capture techniques (marker-based technologies and manual

digitisation) are not without their drawbacks. Considerable

developments in computer vision have sparked interest in

markerless motion analysis and its possible wider applica-

tions. Although this potential is promising, it is not yet clear

exactly what accuracy can be achieved and whether such

systems can be effectively and routinely utilised in

field-based (more externally valid) settings. Over the com-

ing years, collaborative research between computer vision

Fig. 8 An example image from the HumanEva dataset used to

validate markerless systems within computer vision. White dots

indicate the location of tracked reflective markers and the cyan lines

represent the defined skeleton model fit to the marker data.

Although useful as an early benchmark for markerless tracking

systems, the dataset has clear limitations for assessing the quality of

any markerless tracking results, especially in the context of

biomechanics. Notice that the markers are attached to clothing,

marker clusters are not utilised, and the joint centres inferred from

the fitted skeleton are not closely aligned with how the person

appears in the image (e.g. right elbow and hip joints). See further

information in the text
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experts and biomechanists is required to further develop

markerless techniques so they are able to meet the unique

practical and accuracy requirements of motion analysis

within sports and rehabilitation contexts.

Abbreviations

2D: Two-dimensional; 3D: Three-dimensional; DOF: Degrees of freedom;

RMS: Root mean square; SMPL: Skinned Multi-Person Linear Model

Funding

This review was funded by CAMERA, the RCUK Centre for the Analysis of

Motion, Entertainment Research and Applications, EP/M023281/1.

Authors’ Contributions

SC, ME, DC and AS all participated in planning the conception and design of

this review article. SC and ME completed the majority of draft writing. DC

and AS provided critical revisions for the manuscript. All authors provided

the final approval for the final submitted version and agreed to be

accountable for all aspects of the work.

Authors’ Information

SC has a PhD and is a Post-Doctoral Research Associate in the CAMERA project

(see funding above) with expertise in analysing athletes’ technique. ME has a

PhD and is a Post-Doctoral Research Associate in the CAMERA project with

expertise in computer vision with time spent in the computer industry before

joining back to academia. DC has a PhD and is a Professor in Computer Science

specialising in computer vision. He is the principal investigator and the director

of the CAMERA project. AS has a PhD and is a Reader (Associate Professor) in

Sports Biomechanics with expertise in analysing athletes’ technique. He

is a co-investigator in the CAMERA project.

Ethics Approval and Consent to Participate

Not applicable

Competing Interests

The authors Steffi L. Colyer, Murray Evans, Darren P. Cosker and Aki I. T. Salo

declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1CAMERA—Centre for the Analysis of Motion, Entertainment Research and

Applications, University of Bath, Bath BA2 7AY, UK. 2Department for Health,

University of Bath, Bath BA2 7AY, UK. 3Department of Computer Science,

University of Bath, Bath BA2 7AY, UK.

Received: 23 January 2018 Accepted: 22 May 2018

References

1. Muybridge E. Complete human and animal locomotion (all 781 plates from

the 1887 animal locomotion). In: Cappozzo A, Marchetti M, Tosi V, editors.

Biolocomotion: a century of research using moving pictures. Rome:

Promograph; 1979. p. 69.

2. Cimolin V, Galli M. Summary measures for clinical gait analysis: a literature

review. Gait Posture. 2014;39(4):1005–10.

3. Cosker D, Eisert P, Helzle V. Facial capture and animation in visual effects. In:

Magnor MA, Grau O, Sorkine-Hornung O, Theobalt C, editors. Digital

representations of the real world: how to capture, model, and render visual

reality. Boca Raton, FL: CRC Press; 2015. p. 311–21.

4. Bezodis NE, Salo AIT, Trewartha G. Relationships between lower-limb

kinematics and block phase performance in a cross section of sprinters. Eur

J Sport Sci. 2015;15(2):118–24.

5. Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in the kinematics of

unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37(1):124–9.

6. Devita P, Hortobagyi T, Barrier J. Gait biomechanics are not normal after

anterior cruciate ligament reconstruction and accelerated rehabilitation.

Med Sci Sports Exerc. 1998;30(10):1481–8.

7. Sjödahl C, Jarnlo G-B, Söderberg B, Persson BM. Kinematic and kinetic gait

analysis in the sagittal plane of trans-femoral amputees before and after

special gait re-education. Prosthetics Orthot Int. 2002;26(2):101–12.

8. O'Rourke J, Badler NI. Model-based image analysis of human motion using

constraint propagation. IEEE Trans Pattern Anal Mach Intell. 1980;2(6):522–36.

9. Leung MK, Yang Y-H. First sight: a human body outline labeling system. IEEE

Trans Pattern Anal Mach Intell. 1995;17(4):359–77.

10. Mündermann L, Corazza S, Andriacchi TP. The evolution of methods for the capture

of human movement leading to markerless motion capture for biomechanical

applications. J Neuroeng Rehabil. 2006; https://doi.org/10.1186/1743-0003-3-6

11. Bezodis IN, Kerwin DG, Salo AIT. Lower-limb mechanics during the support phase

of maximum-velocity sprint running. Med Sci Sports Exerc. 2008;40(4):707–15.

12. Churchill SM, Salo AIT, Trewartha G. The effect of the bend on

technique and performance during maximal effort sprinting. Sports

Biomechanics. 2015;14(1):106–21.

13. Hiley MJ, Yeadon MR. Achieving consistent performance in a complex whole

body movement: the Tkatchev on high bar. Hum Mov Sci. 2012;31(4):834–43.

14. Bezodis NE, Trewartha G, Wilson C, Irwin G. Contributions of the non-kicking-side

arm to rugby place-kicking technique. Sports Biomechanics. 2007;6:171–86.

15. Winter DA. Biomechanics and motor control of human movement. 2nd ed.

New York: Wiley; 1990.

16. Martin JC, Brown NAT. Joint-specific power production and fatigue during

maximal cycling. J Biomech. 2009;42(4):474–9.

17. Devita P, Hortobagyi T, Barrier J, Torry M, Glover KL, Speroni DL, et al. Gait

adaptation before and after anterior cruciate ligament reconstruction

surgery. Med Sci Sports Exerc. 1997;29(7):853–9.

18. Camomilla V, Cereatti A, Cutti AG, Fantozzi S, Stagni R, Vannozzi G.

Methodological factors affecting joint moments estimation in clinical gait

analysis: a systematic review. Biomed Eng Online. 2017;16(106); https://doi.

org/10.1186/s12938-017-0396-x.

19. Matsas A, Taylor N, McBurney H. Knee joint kinematics from familiarised

treadmill walking can be generalised to overground walking in young

unimpaired subjects. Gait Posture. 2000;11(1):46–53.

20. Schmölzer B, Müller W. Individual flight styles in ski jumping: results obtained

during Olympic Games competitions. J Biomech. 2005;38(5):1055–65.

21. Seminati E, Marzari A, Vacondio O, Minetti AE. Shoulder 3D range of motion

and humerus rotation in two volleyball spike techniques: injury prevention

and performance. Sports Biomechanics. 2015;14(2):216–31.

22. Zhang Z. Camera calibration. In: Ikeuchi K, editor. Computer vision: a

reference guide. Boston: Springer US; 2014. p. 76–7.

23. Abdel-Aziz YI, Karara HM, Hauck M. Direct linear transformation from

comparator coordinates into object space coordinates in close-range

photogrammetry. Photogramm Eng Remote Sens. 2015;81(2):103–7.

24. Mayagoitia RE, Nene AV, Veltink PH. Accelerometer and rate gyroscope

measurement of kinematics: an inexpensive alternative to optical motion

analysis systems. J Biomech. 2002;35(4):537–42.

25. Ganter N, Krüger A, Gohla M, Witte K, Edelmann-Nusser J. Applicability of a

full body inertial measurement system for kinematic analysis of the discus

throw. Michigan: Proceedings of the 28th conference of the International

Society of Biomechanics in Sports; 2010.

26. Eckardt F, Münz A, Witte K. Application of a full body inertial measurement

system in dressage riding. J Equine Vet Sci. 2014;34:1294–9.

27. de Magalhaes FA, Vannozzi G, Gatta G, Fantozzi S. Wearable inertial sensors in

swimming motion analysis: a systematic review. J Sports Sci. 2015;33(7):732–45.

28. Dadashi F, Crettenand F, Millet GP, Aminian K. Front-crawl instantaneous

velocity estimation using a wearable inertial measurement unit. Sensors.

2012;12(10):12927–39.

29. Atha J. Current techniques for measuring motion. Appl Ergon. 1984;15(4):245–57.

30. Salo AIT, Grimshaw PN, Marar L. 3-D biomechanical analysis of sprint hurdles at

different competitive levels. Med Sci Sports Exerc. 1997;29(2):231–7.

31. Manning ML, Irwin G, Gittoes MJR, Kerwin DG. Influence of longswing

technique on the kinematics and key release parameters of the straddle

Tkachev on uneven bars. Sports Biomechanics. 2011;10(3):161–73.

32. Lees A, Graham-Smith P, Fowler N. A biomechanical analysis of the last

stride, touchdown, and takeoff characteristics of the men’s long jump. J

Appl Biomech. 1994;10:61–78.

33. Portus MR, Rosemond CD, Rath DA. Cricket: fast bowling arm actions and

the illegal delivery law in me’s high performance cricket matches. Sports

Biomechanics. 2006;5(2):215–30.

34. Procter P, Paul JP. Ankle joint biomechanics. J Biomech. 1982;15(9):627–34.

Colyer et al. Sports Medicine - Open  (2018) 4:24 Page 13 of 15

https://doi.org/10.1186/1743-0003-3-6
https://doi.org/10.1186/s12938-017-0396-x
https://doi.org/10.1186/s12938-017-0396-x


35. Ericson M. On the biomechanics of cycling. A study of joint and muscle load

during exercise on the bicycle ergometer. Scand J Rehabil Med. 1986;16:1–43.

36. Bobbert MF, Huijing PA, van Ingen Schenau GJ. A model of the human triceps

surae muscle-tendon complex applied to jumping. J Biomech. 1986;19(11):887–98.

37. Wilson DJ, Smith BK, Gibson JK, Choe BK, Gaba BC, Voelz JT. Accuracy of

digitization using automated and manual methods. Phys Ther. 1999;79(6):558–66.

38. Scholz JP, Millford JP. Accuracy and precision of the PEAK performance

technologies motion measurement system. J Mot Behav. 1993;25(1):2–7.

39. Salo AIT, Grimshaw PN. An examination of kinematic variability of motion

analysis in sprint hurdles. J Appl Biomech. 1998;14:211–22.

40. Bezodis I, Salo A, Kerwin D. A longitudinal case study of step characteristics

in a world class sprint athlete. In: Kwon Y-H, Shim J, Shim JK, Shin I-S,

editors. . Seoul: Proceedings of 26th international conference on

biomechanics in Sports; 2008.

41. Bezodis NE, Salo AIT, Trewartha G. Choice of sprint start performance measure

affects the performance-based ranking within a group of sprinters: which is

the most appropriate measure? Sports Biomechanics. 2010;9(4):258–69.

42. Churchill AJG, Halligan PW, Wade DT. RIVCAM: a simple video-based

kinematic analysis for clinical disorders of gait. Comput Methods Prog

Biomed. 2002;69(3):197–209.

43. Elliott B, Alderson J. Laboratory versus field testing in cricket bowling: a

review of current and past practice in modelling techniques. Sports

Biomechanics. 2007;6(1):99–108.

44. Elliott BC, Alderson JA, Denver ER. System and modelling errors in motion

analysis: implications for the measurement of the elbow angle in cricket

bowling. J Biomech. 2007;40(12):2679–85.

45. Richards JG. The measurement of human motion: a comparison of

commercially available systems. Hum Mov Sci. 1999;18(5):589–602.

46. Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al.

Quantitative comparison of five current protocols in gait analysis. Gait

Posture. 2008;28:207–16.

47. Growney E, Meglan D, Johnson M, Cahalan T, An K-N. Repeated

measures of adult normal walking using a video tracking system. Gait

Posture. 1997;6(2):147–62.

48. Tsushima H, Morris ME, McGinley J. Test-retest reliability and inter-tester

reliability of kinematic data from a three-dimensional gait analysis system. J

Japan Phys Ther Assoc. 2003;6(1):9–17.

49. Cappozzo A, Catani F, Leardini A, Benedetti MG, Della Croce U. Position and

orientation in space of bones during movement: experimental artefacts.

Clin Biomech. 1996;11(2):90–100.

50. Stagni R, Fantozzi S, Cappello A, Leardini A. Quantification of soft tissue artefact

in motion analysis by combining 3D fluoroscopy and stereophotogrammetry:

a study on two subjects. Clin Biomech. 2005;20(3):320–9.

51. Maslen BA, Ackland TR. Radiographic study of skin displacement errors in

the foot and ankle during standing. Clin Biomech. 1994;9:291–6.

52. Tranberg R, Karlsson D. The relative skin movement of the foot: a 2D

roentgen photogrammetry study. Clin Biomech. 1998;13(1):71–6.

53. Fuller J, Liu L-J, Mann RW. A comparison of lower-extremity skeletal

kinematics measured using skin- and pin-mounted markers. Hum Mov Sci.

1997;16(2–3):219–42.

54. Benoit DL, Ramsey DM, Lamontagne M, Xu L, Wretenberg P, Renström P.

Effect of skin movement artifact on knee kinematics during gait and cutting

motions measured in vivo. Gait Posture. 2006;24(2):152–64.

55. Reinschmidt C, van den Bogert AJ, Nigg BM, Lundberg A, Murphy N. Effect

of skin movement on the analysis of skeletal knee joint motion during

running. J Biomech. 1997;30(7):729–32.

56. Leardini A, Chiari L, Della Croce U, Cappozzo A. Human movement analysis

using stereophotogrammetry: part 3. Soft tissue artifact assessment and

compensation. Gait Posture. 2005;21(2):212–25.

57. Manal K, McClay I, Stanhope S, Richards J, Galinat B. Comparison of surface

mounted markers and attachment methods in estimating tibial rotations

during walking: an in vivo study. Gait Posture. 2000;11(1):38–45.

58. Cappozzo A, Catani F, Della Croce U, Leardini A. Position and orientation in

space of bones during movement: anatomical frame definition and

determination. Clin Biomech. 1995;10(4):171–8.

59. Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors

associated with tibial stress fracture in female runners. Med Sci Sports Exerc.

2006;38(2):323–8.

60. Chmielewski TL, Rudolph KS, Fitzgerald GK, Axe MJ, Snyder-Mackler L.

Biomechanical evidence supporting a differential response to acute ACL

injury. Clin Biomech. 2001;16(7):586–91.

61. Snyder KR, Earl JE, O'Connor KM, Ebersole KT. Resistance training is

accompanied by increases in hip strength and changes in lower extremity

biomechanics during running. Clin Biomech. 2009;24(1):26–34.

62. Lu TW, O'Connor JJ. Bone position estimation for skin marker co-ordinates

using global optimisation with joint constraints. J Biomech. 1999;32(2):129–34.

63. Nedergaard NJ, Heinen F, Sloth S, Hébert-Losier K, Holmberg H-C, Kersting UG.

The effect of light reflections from the snow on kinematic data collected using

stereo-photogrammetry with passive markers. Sports Eng. 2014;17:97–102.

64. Moeslund TB, Hilton A, Krüger V. A survey of advances in vision-based human

motion capture and analysis. Comput Vis Image Underst. 2006;104:90–126.

65. Poppe R. Vision-based human motion analysis: an overview. Comput Vis

Image Underst. 2007;108:4–18.

66. Holte MB, Tran C, Trivedi MM, Moeslund TB. Human pose estimation and

activity recognition from multi-view videos: comparative explorations of

recent developments. Select Topics Signal Process. 2012;6:538–52.

67. Yang SXM, Christiansen MS, Larsen PK, Alkjær T, Moeslund TB, Simonsen EB,

et al. Markerless motion capture systems for tracking of persons in forensic

biomechanics: an overview. Comput Methods Biomechanics Biomed Eng:

Imaging Visual. 2014;2(1):46–65.

68. Shotton J, Fitzgibbon A, Blake A, Kipman A, Finocchio M, Moore R, et al.

Real-time human pose recognition in parts from a single depth image.

Colorado: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition; 2011.

69. Ye M, Zhang Q, Wang L, Zhu J, Yang R, Gall JA. Survey on human motion

analysis from depth data. In: Grzegorzek M, Theobalt C, Koch R, Kolb A,

editors. Time-of-flight and depth imaging sensors, algorithms, and

applications. Berlin, Heidelberg: Springer; 2013. p. 149–87.

70. Sarbolandi H, Lefloch D, Kolb A. Kinect range sensing: structured-light versus

time-of-flight kinect. J Comput Vision Image Understand. 2015;139:1–20.

71. Wang Q, Kurillo G, Ofli F, Bajcsy R. Evaluation of pose tracking accuracy in

the first and second generations of Microsoft Kinect. IEEE Int Confer Healthc

Inform (ICHI). 2015:380–9.

72. Choppin S, Wheat J. The potential of the Microsoft Kinect in sports analysis

and biomechanics. Sports Technol. 2013;6(2):78–85.

73. Schmitz A, Ye M, Boggess G, Shapiro R, Yang R, Noehren B. The

measurement of in vivo joint angles during a squat using a single camera

markerless motion capture system as compared to a marker based system.

Gait Posture. 2015;41:694–8.

74. Gavrila DM, Davis LS. 3-D model-based tracking of humans in action: a

multi-view approach. San Juan, Puerto Rico: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition; 1996.

75. Stoll C, Hasler N, Gall J, Seidel HP, Theobalt C. Fast articulated motion

tracking using a sums of Gaussians body model. Barcelona: Proceedings of

the international conference on computer vision; 2011.

76. El-Sallam A, Bennamoun M, Sohel F, Alderson J, Lyttle A, Rossi R. A low cost

3D markerless system for the reconstruction of athletic techniques. Tampa:

IEEE Workshop on Applications of Computer Vision; 2013.

77. Allen B, Curless B, Popović Z. The space of human body shapes: reconstruction

and parameterization from range scans. ACM Trans Graph. 2003;22(3):587–94.

78. Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J. SCAPE: shape

completion and animation of people. ACM Trans Graph. 2005;24(3):408–16.

79. Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ. SMPL: a skinned

multi-person linear model. Proc of SIGGRAPH Asia. 2015;34(6):1–16.

80. Akhter IB, Black MJ. Pose-conditioned joint angle limits for 3D human pose

reconstruction. Boston: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition; 2015.

81. Holden D, Saito J, Komura T, Joyce T. Learning motion manifolds with

convolutional autoencoders. SIGGRAPH Asia Tech Briefs. 2015;18; https://doi.

org/10.1145/2820903.2820918.

82. Bouwmans T. Traditional and recent approaches in background modeling

for foreground detection: an overview. Comput Sci Rev. 2014;11-12:31–66.

83. Laurentini A. The visual hull concept for silhouette-based image

understanding. IEEE Trans Pattern Anal Mach Intell. 1994;16(2):150–62.

84. Furukawa Y, Hernández C. Multi-view stereo: a tutorial. Found Trends

Comput Graphics Vision. 2015;9(1–2):1–148.

85. Kanaujia A, Kittens N, Ramanathan N. Part segmentation of visual hull for 3D

human pose estimation. Oregon: IEEE Conference on Computer Vision and

Pattern Recognition Workshops; 2013.

86. Corazza S, Mündermann L, Gambaretto E, Ferrigno G, Andriacchi TP.

Markerless motion capture through visual hull, articulated ICP and subject

specific model generation. Int J Comput Vis. 2010;87:156–69.

Colyer et al. Sports Medicine - Open  (2018) 4:24 Page 14 of 15

https://doi.org/10.1145/2820903.2820918
https://doi.org/10.1145/2820903.2820918


87. Liu Y, Gall J, Stoll C, Dai Q, Seidel HP, Theobalt C. Markerless motion capture

of multiple characters using multiview image segmentation. IEEE Trans

Pattern Anal Mach Intell. 2013;35(11):2720–35.

88. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

89. Bogo F, Kanazawa A, Lassner C, Gehler P, Romero J, Black MJ. Keep it SMPL:

automatic estimation of 3D human pose and shape from a single image.

Amsterdam: Proceedings of the European Conference on Computer Vision; 2016.

90. Elhayek A, de Aguiar E, Jain A, Tompson J, Pishchulin L, Andriluka M, et al.

Efficient ConvNet-based marker-less motion capture in general scenes with

a low number of cameras. Boston: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition; 2015.

91. Cao Z, Simon T, Wei SE, Sheikh Y. Realtime multi-person 2D pose estimation

using part affinity fields. Comput Vision Pattern Recogn. 2016; https://doi.

org/10.1109/CVPR.2017.143.

92. Saini S, Zakaria N, Rambli DRA, Sulaiman S. Markerless human motion

tracking using hierarchical multi-swarm cooperative particle swarm

optimization. PLoS One. 2015;10(5):1–22.

93. Corazza S, Mündermann L, Chaudhari AM, Demattio T, Cobelli C, Andriacchi TP. A

markerless motion capture system to study musculoskeletal biomechanics: visual

hull and simulated annealing approach. Ann Biomed Eng. 2006;34(6):1019–29.

94. Amin S, Andriluka M, Rohrback M, Schiele B. Multi-view pictorial structures

for 3D human pose estimation. British Machine Vision Confer. 2013; https://

doi.org/10.5244/C.27.45.

95. Belagiannis V, Amin S, Andriluka M, Schiele B, Navab N, Ilic S. 3D pictorial

structures for multiple human pose estimation. Ohio: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition; 2014.

96. Burenius M, Sullivan J, Carlsson S. 3D pictorial structures for multiple view

articulated pose estimation. Oregon: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition; 2013.

97. Kazemi V, Burenius M, Azizipour H, Sullivan J. Multi-view body part

recognition with random forests. Br Machine Vision Confer. 2013; https://

doi.org/10.5244/C.27.48.

98. Rhodin H, Robertini N, Casas D, Richardt C, Seidel H-P, Theobalt C. General

automatic human shape and motion capture using volumetric contour

cues. In: Leibe B, Matas J, Sebe N, Welling M, editors. . Amsterdam:

Proceedings of the European Conference on Computer Vision; 2016.

99. Agarwal A, Triggs B. Recovering 3D human pose from monocular images.

Pattern Anal Machine Intelligence. 2006;28:44–58.

100. Hong C, Yu K, Xie Y, Chen X. Multi-view deep learning for image-based

pose recovery. Hangzhou: Proceedings of the IEEE 16th International

Conference on Communication Technology; 2015.

101. Chen C, Yang Y, Nie F, Odobez J-M. 3D human pose recovery from image by

efficient visual feature selection. Comput Vis Image Underst. 2011;115(3):290–9.

102. Babagholami-Mohamadabadi B, Jourabloo A, Zarghami A, Kasaei S. A

Bayesian framework for sparse representation-based 3-D human pose

estimation. IEEE Signal Proc Lett. 2014;21(3):297–300.

103. Guo Y, Chen Z, Yu J. Supervised spectral embedding for human pose estimation.

Suzhou: Proceedings for the 5th International Conference of Intelligence Science

and Big Data Engineering Image and Video Data Engineering; 2015.

104. Mehta D, Sridhar S, Sotnychenko O, Rhodin H, Shafiei M, Seidel H-P, et al.

VNect: real-time 3D human pose estimation with a single RGB camera. ACM

Trans Graph. 2017;36(4): https://doi.org/10.1145/3072959.3073596.

105. Elhayek A, Stoll C, Kim KI, Theobalt C. Outdoor human motion capture by

simultaneous optimization of pose and camera parameters. Computer

Graphics Forum. 2015;34(6):86–98.

106. Peters A, Galna B, Sangeux M, Morris M, Baker R. Quantification of soft tissue

artifact in lower limb human motion analysis: a systematic review. Gait

Posture. 2010;31:1–8.

107. Ceseracciu E, Sawacha Z, Cobelli C. Comparison of markerless and marker-

based motion capture technologies through simultaneous data collection

during gait: proof of concept. PLoS One. 2014;9(3):e87640. https://doi.org/

10.1371/journal.pone.0087640

108. Sandau M, Koblauch H, Moeslund TB, Aanæs H, Alkjær T, Simonsen EB.

Markerless motion capture can provide reliable 3D gait kinematics in the

sagittal and frontal plane. Med Eng Phys. 2014;36(9):1168–75.

109. Ong A, Harris IS, Hamill J. The efficacy of a video-based marker-less tracking

system for gait analysis. Comput Methods Biomechanics Biomed Eng. 2017;

20(10):1089–95.

110. Trewartha G, Yeadon MR, Knight JP. Marker-free tracking of aerial

movements. In: Müller R, Gerber H, Stacoff A, editors. . Zürich: Proceedings

of the 18th congress of the international society of Biomechanics; 2001.

111. Sigal L, Balan AO, Black MJ. HumanEva: synchronized video and motion

capture dataset and baseline algorithm for evaluation of articulated human

motion. Int J Comput Vis. 2010;87:4–27.

112. Ionescu C, Papava D, Olaru V, Sminchisescu C. Human3.6M: large scale

datasets and predictive methods for 3D human sensing in natural

environments. IEEE Trans Pattern Anal Mach Intell. 2014;36(7):1325–39.

113. Corazza S, Andriacchi TP. Posturographic analysis through markerless

motion capture without ground reaction forces measurement. J Biomech.

2009;42(3):370–4.

114. Bishop D. An applied research model for the sport sciences. Sports Med.

2008;38(3):253–63.

Colyer et al. Sports Medicine - Open  (2018) 4:24 Page 15 of 15

https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.5244/C.27.45
https://doi.org/10.5244/C.27.45
https://doi.org/10.5244/C.27.48
https://doi.org/10.5244/C.27.48
https://doi.org/10.1145/3072959.3073596
https://doi.org/10.1371/journal.pone.0087640
https://doi.org/10.1371/journal.pone.0087640

	Abstract
	Background
	Main body
	Conclusions

	Key Points
	Review
	Background
	General Principles and Requirements of Vision-Based Motion Analysis in Sports Biomechanics and Rehabilitation
	Historical Progression of Vision-Based Motion Analysis in Sports Biomechanics and Rehabilitation
	Manual Digitisation
	Automatic Marker-Based Systems

	Markerless Motion Analysis Systems
	Recent Computer Vision Approaches to Markerless Motion Capture
	Camera Systems for Markerless Motion Capture
	Body Models
	Image Features for Markerless Motion Capture
	Generative Algorithms
	Discriminative Approaches
	Summary of Markerless Approaches
	Accuracy of Current Markerless Motion Capture Systems

	Future of Markerless Approaches to Analyse Motion in Sports Biomechanics and Rehabilitation

	Conclusions
	Abbreviations
	Funding
	Authors’ Contributions
	Authors’ Information
	Ethics Approval and Consent to Participate
	Competing Interests
	Publisher’s Note
	Author details
	References

