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Abstract

Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne 

epidemics and in immunocompromised hosts. Studies have also drawn attention to an 

underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and 

immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and 

mortality worldwide. Studies in low-resource settings and high-income countries have confirmed 

the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic 

tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often 

insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and 

molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy 

in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising 

therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and 

in animals are not well standardised. Partial immunity after exposure suggests the potential for 

successful vaccines, and several are in development; however, surrogates of protection are not 

well defined. Improved methods for propagation and genetic manipulation of the organism would 

be significant advances.

Introduction

Cryptosporidium was identified as a cause of human infection in 1976.1 During the early 

1980s, cryptosporidiosis was recognised as the major cause of chronic diarrhoea in patients 

with AIDS, as a cause of zoonotic and waterborne outbreaks of diarrhoea, and as a cause of 

diarrhoea in children.2–5 By the mid-1990s, cryptosporidium was known to be ubiquitous 

and was linked with childhood malnutrition and premature death in low-resource settings. A 

massive waterborne epidemic affected more than 400000 people in Milwaukee, WI, USA, in 

1993.6 Despite this knowledge, cryptosporidiosis is substantially under-recognised and 

underdiagnosed, treatments are suboptimum, and preventive measures are incomplete. Even 

in settings such as the USA where modern diagnostics are widely available, estimates state 

that only about 1% of cases are diagnosed and reported.7

Recent advances in knowledge are shifting opinions of the epidemiology of 

cryptosporidiosis, and have increased estimates of the global burden of disease.8 To identify 

potential gaps and opportunities for future studies, the US Foundation for the National 

Institutes of Health convened a group of experts to discuss advances in the epidemiology, 

diagnosis, therapeutics, and immunisation for cryptosporidiosis. In this Review, we 

summarise discussions of this meeting, and provide a more in-depth review of published 

research.
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Epidemiology

Disease burden

Protozoa of the genus Cryptosporidium have a global distribution. Early studies suggested 

that cryptosporidium is in 1% of stools of hosts who are immunocompetent in high-income 

countries and in 5–10% of stools of hosts in low-resource settings.9 Results of recent studies 

with PCR and antigen detection suggest that previous studies underestimated the frequency 

of infection, identifying cryptosporidium in 15–25% of children with diarrhoea.9–13 

Cryptosporidiosis is associated with longer duration of diarrhoea and greater childhood 

morbidity and mortality than are other causes,14,15 and is particularly associated with 

prolonged diarrhoea (7–14 days) and persistent diarrhoea (≥14 days).16,17 Results of a cross-

sectional study in Uganda showed that mortality was higher among children with diarrhoeal 

disease with cryptosporidium than among those without.12 Results of cohort studies have 

consistently shown that younger age was associated with high risk of infection. For example, 

in a multicentre study of children younger than 5 years in India,18 75% of cases were in 

children younger than 2 years. Many studies suggest that cryptosporidium infection is 

associated with malnutrition and growth deficits in children.19–22 Results of a cohort study 

of children in Peru23 showed that even asymptomatic infection was associated with poor 

growth. Symptomatic cryptosporidiosis stunted weight gain more than did asymptomatic 

infection, but asymptomatic infection was twice as common and might have a greater 

overall adverse effect on child growth.23

The Global Enteric Multicentre Study—which sought to assess the causes, burden, clinical 

syndromes, and adverse outcomes of moderate-to-severe diarrhoea in children at seven sites 

in sub-Saharan Africa and south Asia—identified cryptosporidium as one of the four major 

contributors to moderate-to-severe diarrhoeal diseases during the first 2 years of life at all 

sites.24 Cryptosporidium was second only to rotavirus as a cause of moderate-to-severe 

diarrhoea in children younger than 2 years. At a follow-up visit 2–3 months after enrolment, 

cryptosporidiosis was associated with a 2–3 times higher risk of mortality among children 

aged 12–23 months with moderate-to-severe diarrhoea than in controls without diarrhoea.

Microbiology

Molecular methods have enabled characterisation of Cryptosporidium species, which differ 

in epidemiology.25 Although human infections have been noted with more than 15 species, 

most infections worldwide have been attributed to Cryptosporidium hominis and 

Cryptosporidium parvum. Genome sequences for both species26,27 are available on 

CryptoDB.28 C hominis was the main species causing childhood diarrhoea in studies from 

Peru, Brazil, Bangladesh, and India.29–32 In a study in the UK, C parvum was more common 

in rural populations, associated with animal exposure, and peaked in the spring, whereas C 

hominis was more urban, associated with young children, and peaked in the late summer and 

autumn.33 In Peru, infecting species did not differ with age of infection, socioeconomic 

status, or nutritional status. C hominis, especially subtype Ib, is associated with more oocyst 

shedding and symptoms including nausea, vomiting, and general malaise.29,34
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Risk factors

Environmental factors associated with cryptosporidium infection also need to be better 

understood. Results of a longitudinal study in India35 showed that the burden of infection 

was equally high in children who lived in households that used either bottled water or used 

municipal water for drinking, suggesting that most transmission does not involve drinking 

water. Seasonal patterns might also be associated with an increased transmission risk.19 In 

Kenya, investigators detected a higher number of oocysts in surface waters at the end of the 

rainy season and at the beginning of the dry season compared with other times, consistent 

with the seasonal peak in human cryptosporidiosis in east Africa.36 A meta-analysis 

examining the effects of seasonality37 showed that both high ambient temperature (more 

important in temperate countries) and high rainfall (more important in the tropics) were 

associated with an increased risk of cryptosporidiosis. Results of a study from Uganda38 

suggested the possibility of respiratory transmission in immunocompetent children.

Malnutrition in early childhood also increases the risk of diarrhoea with cryptosporidium. In 

a birth cohort in Bangladesh, stunting at birth was associated with subsequent 

cryptosporidium infection.39 Findings from a longitudinal study showed that children with a 

height-forage Z score of more than −1 SD less than the mean (ie, HAZ scores < −1SD) 

before infection were more likely to have persistent growth deficits a year later than were 

children with HAZ scores of at least −1 SD before infection, in whom growth defecits were 

transient.19 In Brazil, children infected with C hominis had a persistent decrease in HAZ 

score 3–6 months after infection.30 The intestinal damage caused by cryptosporidium can 

result in long-term cognitive deficits, impaired immune response, and reduced vaccine 

efficacy.40

Pathogenesis of malnutrition in cryptosporidiosis

The mechanism by which cryptosporidium affects child growth seems be associated with 

inflammatory damage to the small intestine.41 Impaired absorption and enhanced secretion 

might promote diarrhoeal disease and growth deficits. Mouse models further show a greater 

burden of infection and greater damage to the ileum in malnourished animals versus healthy 

animals.42 Results of studies in animals, children, and HIV positive people with diarrhoeal 

disease also suggest that alanyl-glutamine might enhance intestinal repair and absorption 

and prevent further growth deficits.43 The ApoE E4 allele has been associated with 

protection against growth deficits in children with severe diarrhoeal disease, and results of 

studies in animals suggest possession of the ApoE E4 allele is associated with reduction in 

parasitic burden and inflammatory damage.44

Diagnostics

Detection of cryptosporidium infection is based on analysis of stool samples by use of 

microscopy with tinctorial and fluorescent stains or via antigen and nucleic acid detection 

(table 1). In-vitro propagation of the organisms is not possible.45 For epidemiological 

studies, serological tests might also be used. Microscopy is an important diagnostic method 

because of the low cost of reagents, but good staining and visual skills are necessary. The 

modified acid-fast staining has about 70% sensitivity compared with immunofluorescent 
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antibody stains,46 but could miss more than half of cases compared with molecular methods. 

Technical improvements and cost reductions in fluorescence microscopy, such as light-

emitting diode light sources, enable testing with fluorescent stains such as auramine-

rhodamine that are more sensitive than is the traditional modified acid-fast stain, but 

problems with specificity can arise.

In the USA and Europe, reference laboratories often use immunofluorescence microscopy as 

a gold standard. Other antigen detection formats, such as enzyme immune assay or 

immunochromatographic methods, are also commercially available, have higher throughput, 

and are being increasingly used for diagnosis. However, diagnostic sensitivities are variable 

(70% to 100%).46–48,52 Some rapid tests have reduced specificity and sensitivity for species 

other than C parvum or C hominis,53,49 and confirmation of positive reactions is needed.49

PCR is increasingly used for detection of cryptosporidium and other enteric pathogens in 

research laboratories, and affords excellent sensitivity.50,54 Amplification of 

cryptosporidium gene encoding 18S rRNA is widely used for this purpose, but other genes 

have also been targeted. Molecular analysis is essential to discriminate Cryptosporidium 

species. PCR with sequencing of about 800 base-pair fragment of the gene encoding 18S 

rRNA is commonly used for speciation.55,56 Real-time assays based on smaller fragments 

have been described.50,53 Because C hominis and C parvum are similar (>96%) at the DNA 

sequence level,57 sequencing of the gp60 gene has been used for subtyping within species.58 

Multilocus methods are desirable but have not been standardised.59 Disruption of oocysts by 

bead-beating, freeze-thaw, boiling, or chemical lysis is necessary before DNA 

extraction.51,60 However, point-of-care molecular tests are in development that can use 

simplified extraction methods.61 Multiplexed molecular diagnostics for enteropathogens 

often show that multiple infections are common in resource-poor settings both in individuals 

with diarrhoea and in healthy control individuals.62 Some data suggest quantitative load of 

cryptosporidium63 might correlate with increased disease severity, thus quantitative assays 

will be important for future studies and for assessment of drug regimens.

Serological assays for cryptosporidium are an important device for epidemiological studies 

because specific antibody responses develop after both symptomatic and asymptomatic 

infection. Whereas IgA responses are generally short-lived, IgG responses can persist for 

several months. Antibody to Cp23 seems to correlate with distant infection, whereas 

responses to Cp17 (also called gp15) suggest recent infection, and responses to P2 are 

associated with repeated infection.64 These assays, adapted to a Luminex-based 

serodiagnostic platform, can be done with finger-prick blood collected on filter paper,65 or 

with oral fluid.66

Therapeutics

Antiparasitic treatment for cryptosporidiosis is suboptimum.67 For individuals who are 

immuno-compromised, improvement in cellular immune function is a key priority for 

management of cryptosporidiosis (eg, combination antiretroviral therapy for 

cryptosporidiosis in AIDS).67,68 However, substantial mortality occurs during initial 

treatment.69
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Various drugs have been described with activity against cryptosporidium in vitro, in animal 

models, and in patients (table 2). Spiramycin, azithromycin, and immunoglobulin have not 

been efficacious in controlled trials in patients with AIDS.67 Results of two randomised, 

placebo-controlled trials of paromomycin showed little effect on symptoms and oocyst 

shedding,75,76 but the small sample sizes prohibited definitive conclusions.67 Nitazoxanide 

is FDA-approved for treatment of cryptosporidiosis. Findings from randomised studies have 

shown a beneficial effect in adults and children without HIV,70–72 with significant reduction 

in mortality in malnourished children treated with nitazoxanide.72 However, cessation of 

diarrhoea was recorded in only 56% of patients receiving nitazoxanide compared with 23% 

of patients receiving placebo.72 Moreover, results of three controlled trials involving 

patients with HIV not on effective antiretroviral therapy72–74 did not show overall 

improvement. Findings from in-vitro and animal studies suggest that drug combinations 

might have some efficacy.77 In the management of patients with HIV or AIDS, clinicians 

should consider symptomatic therapy, optimisation of antiretroviral therapy, and, perhaps, 

the inclusion of nitazoxanide or paromomycin.67,68

The availability of genome sequence and functional genomics data for C hominis, C parvum, 

and other species has provided researchers with new devices with which to explore unique 

metabolic pathways as targets for chemo-therapy.26–28,78,79 For example, the calcium-

dependent protein kinases are a conserved family of enzymes in plants and some 

apicomplexan parasites, including cryptosporidium.80,81 Structural analysis shows that 

apicocomplexan calcium-dependent protein kinases have a glycine as a gatekeeper residue 

for the ATP binding site, which makes a hydrophobic region more available for inhibitors 

active against C parvum in human cell lines and SCID/beige mice.81–83

Microtubule formation is another potential drug target. Dinitroanilines, including trifluralin, 

are herbicides that block microtubule formation and inhibit cryptosporidial growth in vitro 

and in vivo.84–86 Furthermore, the development of hybrid compounds based on albendazole 

and trifluralin led to the identification of analogues with excellent in-vitro efficacy and 79–

81% reductions in oocyst shedding in mice (Thompson RCA, unpublished).

Cryptosporidium has little ability to synthesise nutrients de novo, including aminoacids, 

nucleosides, and fatty acids.87 Many genes associated with metabolism have been lost, 

including apicoplast pathways, the mitochondrial respiratory chain, and hypoxanthine-

xanthine-guanine phosphoribosyl transferase.26 Cryptosporidium relies on glycolysis to 

produce ATP, producing lactate, ethanol, and acetate end products. Thus, inhibitors of 

hexokinase and lactate dehydrogenase have some efficacy.88 Additionally, several proteins 

involved in fatty acid metabolism have been found on the parasitophorus vacuole 

membrane.89–91 For example, Triacsin C and other drugs inhibit fatty acyl-CoA-binding 

protein and fatty acid-CoA synthetase, and show a reduction in C parvum oocyst production 

in vitro and in mice.91–93 A parasite cysteine protease inhibitor was also effective in vitro 

and in an animal model.94

Molecular evidence suggests lateral gene transfer from bacteria, providing potential targets 

for cryptosporidium chemotherapy.95,96 The catalysis of inosine monophosphate to 

xanthosine monophosphate via inosine-5′-monophosphate dehydrogenase (IMPDH) is a key 
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rate-limiting step in guanine nucleotide synthesis.97 By contrast with other apicomplexans, 

cryptosporidium IMPDH genes are prokaryotic.98 High-throughput screening identified 

selective potential inhibitors of cryptosporidium IMPDH by targeting the highly divergent 

cofactor binding site.99 A subsequent optimisation yielded single-digit nanomolar inhibitors 

with six different frameworks, with greater than 10³-fold selectivity for Cryptosporidium 

IMPDH.99–103 Two compounds reduced the oocyst burden in an interleukin-12 knockout 

mouse model of cryptosporidiosis. One compound surpassed paromomycin in a multiple-

dosing regimen.103 Possible future directions include ensuring of increased drug 

concentrations in the gut, and improvement of animal models to investigate the efficacy of 

potential compounds.103

Drug repurposing is the novel use of approved drugs. Cell-based screening assays, followed 

by in-vitro methods to prioritise leads, were developed.104 Automated imaging and image 

analysis were then used to identify potential leads in vitro for future in-vivo studies. A 

screen of 727 compounds104 yielded 16 confirmed selective inhibitors, including HMG-CoA 

reductase inhibitors that target the host enzyme. Further screening with and without low-

dose nitazoxanide for synergistic drug combinations is underway.

Immune response and vaccine development

Several strands of evidence suggest that development of a vaccine to prevent 

cryptosporidiosis is feasible:105 increased susceptibility and severity of disease in 

immunocompromised hosts; adults in highly endemic areas are partly immune to 

reinfection; and human challenge studies show that previous infection or exposure leads to a 

higher infectious dose [ID50].106,107 However, the protective immune responses necessary 

for an efficacious vaccine are incompletely understood.108 The human immune response of 

clearing infection and preventing reinfection seems to involve separate innate and adaptive 

immune responses.

The innate immune response is crucial to provide an early response while activating the 

adaptive immune system.109 Mannose-binding lectin has a key role in the innate response. 

Children and HIV-infected adults with mannose-binding lectin deficiency have increased 

susceptibility to cryptosporidiosis and more severe disease.110–112 Polymorphisms in the 

mannose-binding lectin gene were strongly associated with cryptosporidium infections, 

especially recurrent infection.110 Mannose-binding lectin might activate complement to 

mediate parasite clearance.113 Toll-like receptors on the host cell surface trigger key 

responses to the organism. C parvum infection increases production of antimicrobial 

peptides (LL-37 and human β-defensin 2).114,115 Results of in-vitro and in-vivo studies 

show that knockout of TLR/MyD88 genes results in reduced production of defensins and 

greater parasite burden.116 Results from in-vivo studies showed the presence of exosomes in 

the gut lumen, and exosomes carrying antimicrobial peptides from the epithelial surface help 

eliminate cryptosporidium.117 MicroRNAs (miRNAs) have an important role in post-

transcriptional regulation and modulation of the innate immune response to 

cryptosporidium.118–121 For example, variation in miRNA expression has shown an 

association with changes in C parvum burden.121,122
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Natural killer cells contribute to clearance of infection in some murine models. In mice, 

interferon γ is crucial for both the innate and acquired immune responses.123 By contrast, 

human infection in naive hosts is associated with production of interleukin 15, which can 

activate natural killer cells to clear infection in vitro.124,125 In other models, macrophages 

seem important for the innate host response.126,127 The CD154-CD40 ligand receptor pair 

also has a key role in clearance of infections. Severe, chronic infection with biliary 

involvement is common in human hyper-IgM syndrome, associated with mutations in CD40 

ligand.128

CD4 cells are crucial for the acquired immune response in both human beings and 

animals.108 In a longitudinal cohort, children who became infected with cryptosporidium 

were more likely to carry the HLA class II DQB1*0301 allele (which presents antigen to 

CD4 cells) and the HLA class I B*15 allele (which presents antigen to CD8 cells) than were 

children who were not infected.129 In patients with AIDS, the risk and severity of infection 

are associated with the CD4 cell count. Interferon γ is associated with acquired immunity in 

human infection, and interferon γ knockout mice have increased susceptibility to 

infection.130 Interferon treatment reduces susceptibility to infection in cell lines, but not in 

primary epithelial cells131—CD8 cells assist in clearance of human infection.132

The role of humoral immunity in protection from cryptosporidiosis is unclear.108 In murine 

models, hyperimmune globulin controlled infection, but elimination of β cells had no 

significant effect.108 Secretory IgA has not correlated with protection in healthy volunteers 

or patients with AIDS.108 By contrast, high concentrations of specific antibody were 

associated with short duration of illness in children in Bangladesh.15 Similarly, 

cryptosporidium antibody in breast milk was associated with immune-protection of breast-

feeding infants.133 The antibody to the parasite surface antigen gp15/17 was associated with 

protection against reinfection;134 however, this antibody could also be a marker for a 

stronger cellular immune response. Thus no clear surrogate marker of protective immunity 

exists in cryptosporidiosis.

Several antigens have been explored for use in a vaccine. Results of studies in gnotobiotic 

pigs showed incomplete cross-protection between C parvum and C hominis.135 Similarly, 

results of cohort studies of children in low-resource countries showed frequent re-

infections.29 Reinfections are more likely to be by different species and subtypes of 

cryptosporidium, but cases also exist of reinfection with the same subtypes.

Several antigens are being developed as vaccine candidates.105 For example, gp60 (also 

called gp40/15) is a polyprotein cleaved by a parasite serine proteinase into two surface 

proteins—gp15 and gp40, the latter is variable and used for speciation and subtyping of 

strains. Both gp15 and gp40 can stimulate interferon γ production by peripheral blood 

mononuclear cells of those previously infected.136 Among children in Bangladesh, IgA 

antibody to gp15 was not species specific, and was associated with shorter duration of 

illness.137 Vaccines based on gp15 alone or in combination with other antigens are in 

development.138
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A recombinant DNA vaccine consisting of a second 15 kDa antigen termed Cp15 was 

immunogenic, and immunisation of pregnant goats protected offspring.139–143 Studies have 

expressed this antigen in attenuated Salmonella, recombinant vaccinia, and DNA vectors. 

Vaccination with Cp15 in a Salmonella vector protected mice from infection, but the effect 

was not significantly greater than with the vector alone.142

Results of a study in Bangladesh also showed that patients with infection had greater serum 

IgG, IgM, and IgA to Cp23 than did healthy patients, and the responses again were 

conserved across several subtypes and associated with shorter disease.144 Studies in animals 

indicate that Cp23 plasmids can promote activation of both antibody and CD4 concentration, 

with reduced parasitic burden, and long-term immunity with parasitic challenge.145 Other 

vaccine vectors include DNA, Lactobacillus, and Salmonella expressing Cp23.146 Other 

antigens being explored for vaccine use include P2 antigen, profilin, Cryptosporidium 

apyrase, Muc4, and Muc5.143,147,148

Discussion

Growing evidence shows a high global burden of cryptosporidiosis, especially among 

children and people who are immunocompromised or malnourished. Data that we highlight 

in this Review emphasise the underappreciated role of cryptosporidium as an important 

childhood diarrhoeal pathogen. Moreover, results of the Global Enteric Multicentre Study24 

showed the association between cryptosporidium infection and subacute mortality. More 

detailed studies are needed to elucidate the mechanisms of injury and the resultant health 

effects of cryptosporidium infection. Further longitudinal studies that use advanced 

molecular methods are crucial to characterise the pathogenesis of infection, host, and 

environmental factors in susceptibility, immune response, and clinical outcomes. Better 

characterisation is needed of worldwide variations and effect in community-based settings. 

The effects of different Cryptosporidium genotypes on disease, growth, and development are 

poorly understood and need to be better defined. Better methods to define genotypes are 

needed to enhance understanding of parasite strains. Finally, although asymptomatic 

cryptosporidium has been associated with poor growth in single-site studies, well designed 

longitudinal studies are needed to improve our understanding of the role and adverse effects 

of asymptomatic infections on growth and development.

Diagnosis of cryptosporidium infection at the point of care in low-resource settings is a 

challenge. How to interpret multiple enteropathogens in a child with diarrhoea is 

unclear.62,149 Microscopy and antigen detection assays are useful for clinical diagnosis at 

the genus level. Species differentiation and subtyping are important for outbreak 

investigations, epidemiology, burden assessment, and risk-factor and transmission studies, 

and might ultimately enable refined clinical diagnosis. Species and subtype information is 

not necessary for selection of clinical care and therapeutic options, but might need to be 

taken into account in drug investigations and clinical trials. Novel stool diagnostics, 

serodiagnostics, and biomarkers for cryptosporidium disease could enable more accurate 

identification of active cryptosporidiosis than do present methods, which could be used for 

accurate case ascertainment, and therapeutic or vaccine trials.
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Many obstacles exist to the development of drugs for cryptosporidiosis, including difficulty 

in propagation of these organisms in vitro. Novel in-vitro methods could enable propagation 

and might also improve in-vitro screening for novel treatments and vaccines.150 Animal 

models for drug assessments are poorly standardised, and the target responses that correlate 

with efficacy in people are poorly characterised. Gnotobiotic piglets and immunosuppressed 

gerbils are the only animal models available for C hominis, although neither has been widely 

adopted. Whereas C parvum can be propagated in calves and lambs, cross-strain 

contamination has been a problem. Most in-vivo screening has been done in 

immunosuppressed rodents, however developments include a malnourished mouse model 

and natural murine infection with Cryptosporidium tyzzeri. Animal models need to be better 

standardised for pharmacological and efficacy studies and for comparison with results from 

studies in people.

The availability of several genome sequences draws attention to many potential targets for 

chemotherapy. Genetic manipulation could provide useful strategies for target prioritisation, 

but no methods are available. Funding to support development of molecular methods could 

enable development of more effective drugs. Incentives are needed to convince the 

pharmaceutical industry that a market for new therapeutics exists. Because people at highest 

risk of severe sequelae (eg, malnourished children) live in low-resource settings, 

government and non-governmental organisation support will be necessary for drug 

development and implementation of widespread treatment. In addition to development of 

novel drugs, a focus on delivery and financing is necessary.

Although there is cause for optimism about the potential development of a vaccine to 

prevent cryptosporidiosis, major barriers include poor understanding of the human 

protective immune response—including which antigens are crucial, which responses are 

associated with protective immunity, and which delivery routes are optimum. These 

obstacles could be overcome by a well funded vaccine development programme with clear 

benchmarks for success.

Conclusion

Despite advances in our understanding of the genetics and immunology of cryptosporidium, 

several important knowledge gaps and challenges exist. The panel lists the key messages of 

this Review. Diagnostic tests each have their limitations in cost, performance, differentiation 

of clinical significance, and assessment of co-infections with other pathogens. New methods 

need to be developed to improve interpretation of results in the setting of multiple infections, 

relevance of species subtypes, and in surveillance studies. In identification of novel or 

repurposed therapeutics, more efficient use of genomic databases, improved culture 

methods, and development of standardised assays is necessary to screen potential targets. 

We also need to optimise animal models for in-vivo studies that can better replicate human 

disease. Vaccines have the potential to reduce the significant burden of disease, but the 

extent and types of immunity necessary, and the methods by which to administer and induce 

protective immunity are unclear. Ultimately, progress in cryptosporidium research on 

diagnostic and therapeutic product development will need greater appreciation of the public 
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health effect of this disease, with commitment from funding bodies to establish mechanisms 

to support this crucial work.
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Panel: Key recommendations

• The effects of different cryptosporidium genotypes on disease, growth, and 

development are poorly understood and need to be better defined. Further 

longitudinal studies that use advanced molecular methods are needed to better 

characterise the pathogenesis and burden of disease from cryptosporidium 

infection.

• Several diagnostic methods for cryptosporidium are available, but infection is 

significantly underdiagnosed. In low-resource settings with high rates of mixed 

infections, quantitative assays will be important for future studies of burden, and 

assessment of drug regimens and point-of-care tests need to be developed and 

used more widely.

• An urgent need exists for better treatments for cryptosporidiosis, and for better-

standardised methods for screening compounds in vitro and in animals.

• Drug development has been hampered by limitations of methods to propagate 

the organisms in vitro and to genetically manipulate the parasites.

• Development of a vaccine to prevent cryptosporidiosis is feasible, but further 

studies are needed to define mechanisms of protection from human disease and, 

perhaps, to develop live-attenuated strains through genetic engineering.
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Search strategy and selection criteria

We searched PubMed, Web of Science, and Google Scholar with the search terms 

“cryptosporidium”, “Epidemiology”, “Diagnosis”, “Immunology”, “Treatment”, and 

“Vaccine”, from Jan 1, 1946, to April 1, 2014. We included relevant articles and citations 

in English only and identified knowledge gaps, research opportunities, and key 

recommendations.
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Table 1

Trade-offs of diagnostic methods for cryptosporidium

Advantages Disadvantages

Microscopy Low technology
Widely available

Low sensitivity (about 70–80% with modified 
acid-fast stain)45,46

Requires special stains and skilled technicians

Antigen detection Good sensitivity (70–100%)45–48

Several commercially-available kits in enzyme immunoassay, 
immunofluorescence assay, and immunochromatography test 
formats

Costly for resource-poor country settings

Nucleic acid amplification Excellent sensitivity45,49

Can speciate, subtype, and quantify50,51

Amenable to multiplexing for additional enteropathogen 
targets

Expensive instrumentation
Technically demanding, requires skilled 
laboratory technicians for DNA extraction and 
amplification

Serological methods Useful for surveillance purposes and discrimination of 
historical, recent, and repetitive infection

Research laboratory use only
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Table 2

Chemotherapy of cryptosporidiosis

Status Limitations

Nitazoxanide Approved for use for cryptosporidiosis but 
not with HIV co-infection

Efficacy 56–96% in healthy hosts70–72

Not effective in patients with advanced AIDS72–74

High cost and availability limit widespread use

Paromomycin Approved for use for other indications Limited efficacy in patients with AIDS75,76

No controlled data in other groups

Azithromycin Approved for use for other indications Not effective in patients with advanced AIDS67

Anecdotes of efficacy in combination in patients with AIDS

Rifaximin Approved for use for other indications Anecdotes of responses in patients with AIDS67,68

Rifabutin Approved for use for other indications Effective at prevention of cryptosporidiosis in studies of 
Mycobacterium avium prophylaxis67,68

HIV protease inhibitors Approved for use for HIV treatment Associated with resolution of cryptosporidiosis in patients with 
AIDS67,68

Partial efficacy against Cryptosporidium parvum in mouse models
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