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Abstract—In this paper, we review a general framework for the
optimal bit allocation among dependent quantizers based on the
minimum maximum (MINMAX) distortion criterion. Pros and
cons of this optimization criterion are discussed and compared
to the well-known Lagrange multiplier method for the minimum
average (MINAVE) distortion criterion. We argue that, in many
applications, the MINMAX criterion is more appropriate than
the more popular MINAVE criterion. We discuss the algorithms
for solving the optimal bit allocation problem among depen-
dent quantizers for both criteria and highlight the similarities
and differences. We point out that any problem which can
be solved with the MINAVE criterion can also be solved with
the MINMAX criterion, since both approaches are based on
the same assumptions. We discuss uniqueness of the MINMAX
solution and the way both criteria can be applied simultaneously
within the same optimization framework. Furthermore, we show
how the discussed MINMAX approach can be directly extended
to result in the lexicographically optimal solution. Finally, we
apply the discussed MINMAX solution methods to still image
compression, intermode frame compression of H.263, and shape
coding applications.

Index Terms—Boundary coding, minimum average criterion,
minimum maximum criterion, optimal bit allocation, shape cod-
ing, video coding.

I. INTRODUCTION

A COMPROMISE between the rate and the distortion is an
inherent feature of every lossy compression scheme. One

common approach to mathematically formulate this tradeoff
is to minimize the average (or total) distortion for a given bit
rate, or vice versa, to minimize the bit rate for a given average
distortion. In other words, the minimum average (MINAVE)
criterion is employed. The philosophy behind this approach is
that if the average distortion is minimized then, in the long
run, the best quality is obtained.

The well-known Lagrangian multiplier method [3], [19],
[20], [23], [31] is well suited for these kinds of constrained
optimization problems. It converts the “hard” constrained
problem into a set of “easy” unconstrained problems, param-
eterized by the Lagrange multiplier. These unconstrained
optimization problems need to be solved optimally and effi-
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ciently so that the overall scheme is optimal and efficient. In
the case where the quantizers are independent, the solution
can be found by solving a set of independent problems [3],
[31]. In the case of dependent quantizers, these unconstrained
problems can be solved optimally and efficiently by dynamic
programming (DP) [20], [23]. Quantizers are called dependent
when the selection of a particular quantizer depends on the
selection of a neighboring (in space and/or time) quantizer.
Differential pulse code modulation (DPCM) is a prime exam-
ple, since a quantizer applied to the current value changes the
prediction value for the next sample. This in turn changes the
prediction error which is then quantized by another quantizer.
Hence, since the quantizer applied to the prediction error is
nonlinear, the quantizer applied to the current sample has a
direct influence on the selection of the quantizer used for the
prediction error. We will give more examples of dependent
quantizers later on. The search for the optimal solution consists
of first finding the optimal using, for example, the bisection
method, such that the optimal solution to the unconstrained
problem also solves the constrained problem optimally. It is
interesting to notice that with this popular approach, a large
variability among the different source distortions is possible.
Since in general the sources are consecutive in time and/or
space, such as, different frames in a sequence, different blocks
in a frame, or different boundary segments, this variability in
quality can be very disturbing and the perceived quality is low
even though the average distortion is minimized.

A different approach to formalize the relationship between
the rate and the distortion is the minimum maximum (MIN-
MAX) distortion approach, where the goal is to minimize the
maximum source distortion for a given bit rate, or vice versa,
to minimize the bit rate for a given maximum source distortion.
The philosophy behind this approach is that by minimizing the
maximum source distortion, no single source distortion will
be extremely bad, and hence, the overall quality will be quite
constant. In fact, the MINMAX criterion is an ideal choice,
when the goal is to achieve an almost constant distortion which
is as small as possible for the available bit rate. It may also
be the criterion of choice when subjective quality is taken into
account. The lexicographic approach is a generalization of the
MINMAX criterion for the case where the MINMAX solution
is not unique. We will discuss the extension of the MINMAX
approach to the lexicographic approach later on.

There are many applications where a global distortion
metric, i.e., MINAVE criterion, is not a satisfactory measure
of quality or acceptability. For example, to an investor whose
stock went down, there is little consolation in the fact that the
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Dow Jones index reached a new high. Similarly, in coding
applications, it may be meaningless, in certain cases, to rely
on the global mean squared error (MSE) to judge performance.
One example is given in Section V-C for a boundary encoding
problem. In Fig. 18, the optimal MINAVE solution is found
for a rate constrained problem. In this case the optimal
MINAVE solution did not include the encoding of the area
between the leg of the child. Note that otherwise, the boundary
approximation is very good (error pixels are in white). This is
the expected result for the MINAVE criterion, since encoding
this long but rather small object requires many bits (long
boundary) while not encoding it at all results in a relative
small error (small area). Therefore, it is the best tradeoff in
the MINAVE sense not to encode the object and instead use
the saved bits to improve the boundary approximation for the
other objects in the scene. Hence the MINAVE results in a
small global MSE at the expense of a large localized MSE.
A MINAVE solution has an inherent problem with outliers,
which, though may be statistically insignificant, can play an
important role as we have shown in the above example.

With the MINMAX approach, on the other hand, this
problem does not exist, since the local maximum allowable
distortion is explicitly bounded. This is one motivation for
the recent interest in near-lossless compression techniques [7],
[17], [22], where quality is maintained at the local level.
Note that the MINMAX approach discussed in this paper can
include the near-lossless technique used in [22], using a proper
definition of distortion. Another strong argument in favor of
MINMAX comes from perceptual quality considerations. It
has long been known in the image coding field that the human
visual system exhibits more tolerance to distortions in regions
with high spatial activity than to distortions in relatively flat
areas [1], [10]. If the chosen distortion metric is inversely
related to a local (mean-removed) SNR, the application of
the MINMAX criterion has the effect of allowing more er-
rors in high frequency regions and fewer errors in relatively
uniform areas, which is consistent with perceptual quality
considerations.

The MINAVE criterion, however, is much more commonly
used in the literature than the MINMAX criterion. This is
mostly due to the fact that efficient algorithms have been
available for the MINAVE criterion, while such algorithms
have been lacking for the MINMAX criterion. The MINMAX
problem for independent quantizers has been studied in [14]
where a simple algorithm has been proposed. The MINMAX
algorithm for the optimal bit allocation among dependent
quantizers described in this paper was first published in
[27] and also in [23, ch. 4]. In [26], the connection be-
tween the MINMAX and the MINAVE algorithm is outlined
while the first application of the MINMAX algorithm to
boundary coding was published in [28]. The first application
of the lexicographic criterion for the optimal bit allocation
among independent quantizers in a continuous framework
was published in [8]. The basic idea of secondary distortion
measures was introduced for boundary coding in [23]. The
main contribution of this review paper is the unification and
generalization of the previously published results. We estab-
lish a common framework for the MINMAX and MINAVE

criterion and show how the MINAVE can be extended to
include the lexicographic criterion. Furthermore, we generalize
the concept of a secondary distortion measure first introduced
for boundary coding. In addition, we show how the boundary
encoding problem is an application of the general theory
discussed in this paper. Furthermore we present new results of
the MINMAX criterion for video compression and compare it
to previously published results using the MINAVE criterion.

In Section II, we introduce the notation and assumptions
and formulate the problem mathematically. In Section III,
we review the Lagrangian multiplier method for dependent
quantizers and cast the solution in the DP paradigm, and
we also discuss the uniqueness of the solution and show
how the MINMAX approach can be extended to result in a
lexicographically optimal solution. In Section IV, we review
an efficient algorithm for the optimal bit allocation among de-
pendent quantizers for the MINMAX criterion. In Section V,
we apply both algorithms (MINMAX and MINAVE) to the
intra- and interframe encoding schemes used in H.263 and
compare the different results with respect to the mean and
variance of the resulting distortion. There we also present an
example of applying both criteria to the shape coding problem.
Finally, in Section VI, we compare the MINMAX and the
MINAVE criterion and summarize the paper.

II. NOTATION, ASSUMPTIONS, ANDPROBLEM FORMULATION

In this section we introduce the necessary notation, the
underlying assumptions, and the mathematical formulation of
the optimal bit allocation problem in a dependent coding
framework.

Before we proceed it is important to discuss in more detail
the notion of a source signal (henceforth referred to as source),
since the source distortion and the source rate are of critical
importance in the development of the paper. In general, we
consider as source any signal which is quantized. For example,
if the quantizers are selected per block (or macroblock in
H.263 notation) then each block is considered a source. On the
other hand, if the quantizer is selected and fixed on a frame-by-
frame basis (which is a popular strategy), then the frames are
considered different sources. In speech coding, it is common
to segment the original waveform into blocks of 10–30 ms
length. Each of these blocks is then considered a source.
For shape coding, the identification of a source becomes
more difficult. Basically the original boundary is considered a
sequence of boundary segments and each boundary segment is
approximated (quantized) by either a straight line or a higher
order curve. Hence the boundary segments are considered
sources. A complicating factor is that the original boundary is
not only segmented into one possible sequence of segments,
but into all possible sequences of segments. Therefore, a
given source (boundary segment) will in general consist of
several other sources (smaller boundary segments), and this
relationship holds until a boundary segment consists simply
of two consecutive pixels. Nevertheless, with this view of a
source in mind the boundary encoding is simply an application
of the more general theory.
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A dependent coding framework implies that the
source rate and/or source distortion

for a given source depends not only
on the quantizer applied to that source, but also on
neighboring quantizers in a neighborhood
defined by two nonnegative integersand . Examples of
such dependent coding frameworks are all predictive coding
schemes, such as motion compensated video compression,
segmentation encoding, image coding, etc. For example,
in motion compensated video compression, the quantizer
selected for the previous frame has a direct influence on the
rate-distortion characteristic of the current frame, since the
reconstructed previous frame and the motion information is
used to predict the current frame.

The total rate for encoding all sources is the sum of the
source rates, and defined as follows:

(1)

Depending on the employed distortion criterion, the distortion
for encoding all sources is the sum (or
average) of the source distortions (MINAVE)

(2)

or the maximum of the source distortions (MINMAX)

(3)

with and specifying the
boundary conditions.

In either case, two optimal bit allocation problems can
be formulated, the minimum rate problem and the minimum
distortion problem (which is also called the rate constrained
problem). In the minimum rate problem, we are looking for
the quantizer sequence which results in the smallest bit rate for
a given maximum distortion . This can be formulated as
follows:

s.t.: (4)

In the minimum distortion problem we are looking for the
quantizer sequence which results in the smallest distortion for
a given maximum bit rate . This can be formulated as
follows:

s.t.: (5)

The above formulations hold for either of the two distortion
criteria. It should be noted, however, that in some applications,

, the number of sources retained for quantization, may be
different from the number of sources present in the original
signal. In this case, finding the optimal is part of the
optimization.

III. T HE MINAVE CRITERION

In this section we show how the optimal bit allocation
problem can be solved for the MINAVE criterion which is
defined in (2). The solution is based on the Lagrange multiplier
method and DP. Note that for the MINAVE criterion, the total
rate and the total distortion are of exactly the same form and
hence the solution approach for the minimum rate problem is
equivalent to the solution approach for the minimum distortion
problem. Therefore, in this section, we will concentrate on
the minimum distortion problem, keeping in mind that by
relabeling the function names, i.e., , ,

, and , the minimum rate problem
can be solved using the same approach.

The basic idea behind the Lagrange multiplier method is to
merge the rate and the distortion with a Lagrangian multiplier

. This results in the Lagrangian cost function which is of the
following form:

(6)

The goal of this method is to convert the “hard” constrained
problem of (5) into a set of “easy” unconstrained problems
parameterized by .

It has been shown in [3] and [31] that if there is a such
that

(7)

and , then is also
an optimal solution to the minimum distortion problem of
(5) for the MINAVE criterion. It is well-known that when

sweeps from zero to infinity, the solution to problem (7)
traces out the convex hull of the operational rate distortion
curve, which is a nonincreasing function. Hence bisection [6]
can be used to find . The main problem with the Lagrange
multiplier method is that only solutions which belong to the
convex hull can be found.

Clearly, the efficiency of the Lagrange multiplier method
depends on the assumption that the unconstrained problem
of (7) can be solved efficiently. Based on the assumptions
made in Section II, the source rates and distortions only
depend on the quantizers selected in a neighborhood around
the current source. Therefore, the Lagrangian cost function
can be expressed as follows:

(8)

where . The Lagrangian multiplier
method is based on the assumption that the above uncon-
strained problem can be solved optimally and efficiently. In
the following section we will closely follow the development
of the DP recursion formula in [23]. Using it we will then
show how DP can be used to optimally solve the unconstrained
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problem efficiently, as long as, the size of the neighborhood
) is reasonably small.

A. DP Recursion Formula

Even though there exists only a finite number of combina-
tions in which source quantizers in (8) can be
combined, the exhaustive search is too complex. Assuming the
same cardinality for all source quantizers, the complex-
ity of exhaustive search is , where complexity refers
to the number of times the cost function
needs to be evaluated. With the use of the proposed DP
algorithm, this complexity can be significantly reduced.

Dropping the subscript , we denote by the minimum
Lagrangian cost up to and including neighborhood, that is

(9)

From (9), it follows that

(10)

Since does not depend on
, it can be moved outside the inner minimization

and the following DP recursion formula results:

(11)

Assuming that all source quantizers have the same cardinality
, this recursive formula requires only com-

parisons to find , , ,
given , . Thus, the overall

complexity is , which is a significant reduc-
tion from required by the exhaustive search. It is
important to note that the time complexity depends directly
on the size of the neighborhood ( ). In other words, if
the dependency among quantizers is well localized, such as in
single predictor DPCM ( ) or a second-order
B-spline ( , see Section V-C), the above DP
formulation results in a low time complexity. Clearly, if the
dependency is not well localized as, for example, the vector
median-based DPCM for the motion vector prediction in H.263
( ) [24], [29] the time complexity increases
exponentially. Furthermore, in cases where the dependency is
global, for example, the current quantizer depends on every
previous quantizer, then the above DP algorithm degenerates
to an exhaustive search. Nevertheless, most problems have a

strong local dependency and hence the DP approach works
well.

B. Forward DP Algorithm

Having established the DP recursion formula (11),
we apply the Viterbi algorithm [5] to arrive at the
optimal solution, which consists of the minimum cost

and its
associated sequence of source quantizers. The recursion is
first initialized:

(12)

and the optimal selection backpointer is introduced:

(13)

Next, the recursion formula is applied for up to and
including , that is

(14)

Again the back pointer is assigned, for which the argument
which minimizes the above problem needs to be known:

(15)

which is

(16)

The last backpointer is the argument that minimizes the cost
at the last source:

(17)

Consequently, the optimal sequence of source quantizers
is found by following the backpointers

during the backtracking stage, i.e.,

(18)

where refers to the first element in the vector.
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IV. THE MINMAX C RITERION

In this section, we propose a general algorithm for the
optimal bit allocation among dependent quantizers for the
MINMAX criterion [27]. The basic idea behind the proposed
algorithm is to solve the minimum rate problem optimally
using DP. This is possible since the maximum distortion
constraint applies toeach source and not to the sum
of the source distortions. We then prove that the operational
rate distortion function is nonincreasing. Therefore, we can
solve the minimum distortion problem, which is a min max
problem, using bisection, where in each bisection iteration the
minimum rate problem is solved using a different .

A. The Minimum Rate Problem

In this section, we solve the minimum rate problem which
is described in (4) for the MINMAX criterion. The key
observation for the derivation of the optimal solution is that,
the maximum distortion constraint applies to each
source, and not, as in the case of the MINAVE criterion, to the
sum of the source distortions. We can make use of this fact
by redefining the source rates as follows:

.
(19)

In words, the rate for a source with a distortion which is larger
then the maximum permissible distortion is set to infinity.
This results in the fact that, given that a feasible solution
exists, the quantizer sequence which minimizes the total rate,
as defined in (1), will not result in any source distortion greater
than . If no feasible solution exists, then the resulting
minimum total rate is infinite, hence, this situation can easily
be detected and can be increased. In other words, the
minimum rate problem, which is a constrained optimization
problem, can be transformed into an unconstrained optimiza-
tion problem using the above redefinition of the source rates.

The structure of the total rate formula in (1) is equivalent to
the structure of the Lagrangian cost function for the MINAVE
case in (8). Hence, the optimal solution to the unconstrained
minimum rate problem can also be solved by DP as shown
in Section III-B.

We can now calculate the operational rate distortion function
as follows:

s.t.: (20)

where we assume that is a variable.

B. The Minimum Distortion Problem

The proposed optimal bit allocation algorithm for the min-
imum distortion problem is based on the fact that we can
optimally solve the minimum rate problem. In other words,
for every given , we can find the quantizer sequence
which results in , the minimum rate for encoding

Fig. 1. TheR�(Dmax) function.

the combined sources, where each source distortion has to be
below the maximum distortion [see (20)]. We use the
following theorem to formulate an iterative procedure to find
the optimal solution for the minimum distortion problem.

Theorem 1: is a nonincreasing function of
.

Proof: Let be
the optimal solution of (4) for and

the optimal solution of (4) for
. Since , is a possible

solution of (4) for , using bits.
Since is the optimal solution of (4) for

, it follows that .
The above theorem is intuitively clear since it simply states

that if a greater maximum distortion is permissible, then we
should be able to encode the sources with a smaller number of
bits. Note that even though this seems obvious, this only holds
true because we can solve the minimum rate case optimally.

Having shown that is a nonincreasing func-
tion, we can use bisection to find the optimal such
that , which solves the minimum distor-
tion problem of (5) or the MINMAX criterion. The bisec-
tion method starts with two points and

which bracket the optimal solution (see
Fig. 1). Then, a middle point is found by
invoking the minimum rate algorithm for

(21)

The new bracketing points of the optimal solution are then the
middle point and one of the original points which results in a
bracket which includes the optimal solution. This procedure is
then iterated until the optimal solution is found or the bracket
is small enough for the purpose at hand.

Since this is a discrete optimization problem, the function
is not continuous and exhibits a staircase charac-

teristic (see Fig. 1). This implies that there might not exist a
such that . In that case, the proposed

algorithm will still find the optimal solution, which is of the
form , but only after an infinite number of
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iterations. Hence we stop the algorithm after a fixed number
of iterations.

C. Breaking the Tie

Sometimes the solution to the MINMAX distortion problem
is not unique. That is, two or more source quantizer sequences
result in the same minimum rate for the same
distortion . One way out of this problem is to arbitrarily
select one of the solutions, for example, the one with the
smallest index. This is, in fact, the way most encoders resolve
this problem.

Another way to break this tie is with the use of secondary
distortion measures first introduced for boundary encoding in
[23]. As shown above, DP is used to solve the minimum
rate MINMAX problem directly by redefining the source
rates. Secondary objectives can easily be included in the DP
framework. We propose to use the MINAVE criterion as a
secondary objective to break the tie between two or more
optimal MINMAX solutions. The source rates are changed
again, and in fact something very similar to a Lagrangian is
defined. Recall the source rates were redefined before in (19)
for the MINMAX case. The following definition changes (19)
to include a MINAVE based secondary distortion measure,
weighted by :

(22)

where and stand for and
, respectively, with the latter one being

the MINAVE criterion-based secondary distortion measure
and a positive real number. As shown, the DP algorithm
finds the sequence of dependent quantizers which minimizes

.
We would like to select such that it will identify a winner

among the optimal solutions, but it should be impossible for
any other solution to outperform the optimal ones. Let us
denote by and the costs
of two solutions to the original MINMAX problem and let us
assume without loss of generality that solutionis optimal.
Clearly, if is also optimal, i.e., , any positive real

will cause the solution with the smaller secondary distortion
to be selected. If, on the other hand, is not optimal,

i.e., , then we would like solution to be selected
regardless of the magnitudes of the secondary distortions. That
is, must be such that, in this case

(23)

If , the solution is correctly selected. Hence, we
assume . Rearranging the variables, the following
upper bound results:

(24)

where is the smallest possible difference between an
optimal and a suboptimal solution, which is usually 1 bit, and

is the largest possible value of the secondary distortion
measure. Consequently, anysatisfying
is capable of discriminating between two solutions based on
a secondary distortion measure. By selectingas proposed
above a suboptimal MINMAX solution will never be selected
as the optimal solution, and the secondary distortion measure
will only be used to find a winner among the optimal solutions.

It is also possible to incorporate secondary distortion mea-
sures, specifically the MINMAX measure, into a DP algorithm
operating on the MINAVE criterion. We cannot include a
MINMAX measure into the Lagrangian cost function directly.
Note, however, that the maximum source distortion exhibits
the same order of dependency as the sum of the source
distortions. In other words, knowing the current maximum
source distortion makes the future of the maximum source
distortion independent from the past. We now apply this
knowledge to the DP recursion formula of (11). If two (or
more) result in the same , the one resulting in
the smallest maximum source distortion is selected, and the
new minimum maximum source distortion is stored together
with the backpointer identifying the optimal .

Yet another way to break the tie between two or more
optimal MINMAX solutions is through application of the lexi-
cographic optimality principle [8], which can be considered an
extension of the MINMAX criterion. If the MINMAX solution
is unique, then it is also the lexicographically optimal solution.
This is the reason why we discuss this approach in this section.
The lexicographical optimality criterion can be explained as
follows. If two or more MINMAX solutions exist, a sorted list
is created for all candidate optimal solutions. It contains the
source distortions introduced by individual source quantizers.
These distortions are sorted in the decreasing order and the lists
are then scanned sequentially. When there is a tie between two
optimal MINMAX solutions the first elements of the respective
lexicographically ordered lists must be equal. The lexicograph-
ically ordered list which has the smallest second largest source
distortion is then considered to represent the smaller total
distortion, and hence, it identifies the optimal solution. If the
second largest source distortion still results in a tie, then the
third largest source distortion is compared, and so on.

Clearly, we do not want to keep all possibly optimal
solutions until the end of the DP. Ideally, we would like
to eliminate lexicographically suboptimal solutions as early
as possible. This can be achieved easily in the proposed DP
framework, since a lexicographically ordered list exhibits the
same order of dependency as the maximum of the source
distortions. In other words, knowing the current lexicograph-
ically optimal list of source distortions makes the future of
the lexicographically optimal list independent from the past.
We now apply this knowledge to the DP recursion formula of
(11). If two (or more) result in the same , the
one resulting in the smallest lexicographically ordered source
distortion list is selected, and this new list is stored together
with the backpointer identifying the optimal .

The main difference between the idea of a secondary
distortion measure and a lexicographically optimal solution is
that the secondary distortion measure allows for the influence
of a completely different distortion measure. In contrast to
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Fig. 2. Macroblock quantizer step sizes. First row: fixed quantizer step size ofQ = 10; second row: step sizes for the minimum total distortion approach;
third row: step sizes for the minimum maximum distortion approach.

this, the lexicographically optimal solution is all based on
one type of distortion measure. For example, if there are two
MINMAX optimal solutions for a boundary approximation,
it makes intuitive sense to select the one which results in
a smaller MSE. This is the nature of a secondary distortion
measure. Clearly, the tie can also be broken using a lexico-
graphical criterion, but in this case, the breaking of the tie
is still based on a smallest maximum distortion and not on
something else, like an intuitive MSE. In other words, the
secondary distortion measure is appealing to us since it allows
to combine MINMAX and MINAVE criteria which are both
well-known concepts for which we inherently have an intuitive
understanding.

V. APPLICATIONS

In this section, we present several examples from different
areas of data compression to compare the MINAVE and the
MINMAX approaches. They all have in common the theme of
optimal bit allocation among dependent quantizers, for which
solution techniques derived in Sections III and IV are applied.

In Section V-A, we discuss the optimal block quantizer
selection for a still-frame compression scheme [23], [27]. In
Section V-B, we discuss the optimal quantizer, mode, and
motion vector selection for a motion-compensated video com-
pression scheme. Note that the mode and quantizer selection
scheme for the MINAVE criterion has been reported in [24]
and is very similar to the scheme reported in [32]. The
combined selection of motion vector, mode, and quantizer for
the MINAVE criterion has been reported in [29], while the
selection of optimal motion vectors in a lossless video coder
are discussed in [21]. Finally, in Section V-C, we discuss the
optimal boundary approximation for a shape-encoding scheme
[11], [30].

TABLE I
EACH OF THE 99 MACROBLOCKS (16� 16) RESULTS IN A PARTICULAR MSE,
AND THE MEAN MSE IS THE MEAN OF THESE 99 MSE’S. THE SAME HOLDS

FOR THE MINIMUM , MAXIMUM , AND STANDARD DEVIATION COLUMN

It is important to notice that the presented theory can also
be used for completely different coding schemes, as long as
the assumptions stated in Section II are satisfied.

A. Still-Frame Compression

The dependent image coding scheme we use for this exam-
ple is the intraframe scheme employed in TMN4 [4], which is
the test model four of the H.263 standard.

For the example at hand, we encode the first frame of the
QCIF color sequence “Mother and Daughter.” We use the
TMN4 mechanism for transmitting the quantizer step sizes
which is based on a modified delta modulation scheme. In
TMN4, the quantizer step size of the current macroblock
must be within 2 of the quantizer step size employed for
the previous macroblock. Then the difference between the
quantizer step sizes is entropy coded. This DPCM scheme
results in a first-order dependency between two consecutive
blocks, since the operational rate distortion curve of the current
block depends on the quantizer selected for the previous block.

First, we fix the quantizer step size for all macroblocks to
10. The resulting rate ( bits) and distortion
are listed in Table I. Note that the mean squared error (MSE)
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Fig. 3. MSE of each macroblock of the luminance channel. First row: MSE for a fixed quantizer step size ofQ = 10; second row: MSE for the minimum
total distortion approach; third row: MSE for the minimum distortion approach.

of the luminance (Y) channel is used as the distortion measure.
For both the MINAVE and the MINMAX criterion, we solve
the minimum distortion problem, where we set the maximum
rate equal to the rate TMN4 uses for a fixed quantizer of 10
( ). Again, the resulting rate and distortion are
listed in Table I.

In Fig. 3, the MSE per macroblock for the three implemen-
tations is shown, and in Fig. 2, the corresponding quantizer
selections are displayed. It is interesting to notice in Fig. 2
that there are quite a few blocks where the quantizers are
the same for both optimal schemes. These blocks tend to
coincide with the blocks where the MSE (see Fig. 3) is very
small, i.e., blocks with no high frequency components. In
Fig. 4, all three approaches are compared to the original image.
The compression ratio for the three compressed images is
approximately 11, and, even though in each case the block
MSE’s are quite different, the visual quality of the three
compressed images is similar, which is another argument in
favor of the fact that the global MSE does not tell the whole
story. It is clear from Fig. 3 that the minimum maximum
distortion scheme results in a more even quality for the entire
frame than the minimum total distortion approach. In fact,
discounting the blocks with very low MSE, the distortion
profile is quite flat and very close to the minimum average
distortion achieved by the MINAVE approach. In other words,
the result shows that if the goal is to have almost constant
distortion, which is almost as low as the smallest possible
average distortion, for a given bit budget, the MINMAX
criterion is an excellent choice.

B. Intermode Frame Compression

An example of applying the MINMAX approach to a depen-
dent quantizer framework is presented here for the interframe
coding scheme employed in TMN4 [4]. This example is an

optimal block-based (16 16) motion estimation and residual
error quantization scheme.

As in the previous section, we use the QCIF color sequence
“Mother and Daughter” to compare performance of MINAVE
[29], MINMAX, as well as a fixed-quantizer scheme.

The displaced vector field (DVF) encoding scheme used
here differs from TMN4 in two aspects. First, instead of
a raster scan, the modified Hilbert scan [23] is employed
to achieve a higher correlation between consecutive motion
vectors. Second, only a first-order DPCM encoding is used
and not a vector median-based one, which, because of the
neighborhood’s small size ( in Section III-A),
results in a faster optimization procedure. The motion is
estimated with a half-pixel accuracy with the maximum range
of 15.5 pixels.

We use the TMN4 modified delta modulation scheme for
transmitting the quantizer step sizes between the current and
the previous blocks, with the difference limited to2. This
difference is then entropy coded and sent to the decoder
together with the quantization index.

Conceptually, for a given block, we may think of se-
lecting a particular motion vector followed by selecting the
residual error quantizer as a single quantization operation.
Since the number of these generalized quantizers is finite and
they exhibit a first-order (rate) dependency, the techniques of
Sections III and IV are applicable.

In the following experiments, we apply the scheme men-
tioned above to encode the “Mother and Daughter” sequence
in the intermode at 7.5 frames/s, i.e., every fourth frame. As
with the intramode, the MSE of the luminance (Y) channel is
used as the distortion measure.

First we fix the quantizer step size for all macroblocks in
all frames to 10. In this case, the encoder can only decide in
which mode (intra, inter, skip, or prediction) a given block
is encoded, and, in case of inter, which motion vector to
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Fig. 4. Comparison between MINMAX, MINAVE, and fixed quantizer approaches with the same compression ratio.

use. These decisions, however, are made using a heuristic
algorithm. The resulting rates, for each frame, are stored in
the rate profile to be matched by the MINAVE and MINMAX
optimal encoders, which, in addition to the mode, can also
optimally choose both a motion vector and a quantizer for
each block. That is, both MINAVE and MINMAX solve the
minimum distortion problem, subject to the rate being equal
(within 25 bits) to that used by TMN4 with the fixed quantizer
step size encoding. The resulting average block MSE evolution
for the three encoders is shown in Fig. 5 for all coded frames.
Similarly, Figs. 6 and 7 show the evolutions of the maximum
and the standard deviation of the block MSE. Clearly, the
MINMAX approach leads to a greater uniformity in the
maximum MSE across all frames. It may seem strange that,
within each frame, the MINAVE and MINMAX approaches
exhibit similar degree of variability of the block MSE’s, as
evidenced by Fig. 7. However, a global measure like the
standard deviation is inherently incapable of penalizing the
few outliers possible under MINAVE, and, hence, obscures the
benefits of MINMAX. As expected, the MINMAX approach is
outperformed by both MINAVE and fixed quantizer schemes
in terms of the average block MSE. The optimal quantizer
selections and the optimal motion vector fields are displayed

Fig. 5. Comparison between the average block PSNR
[PSNR = 10 � log

10
(2552=MSE)] for the MINMAX, MINAVE,

and fixed quantizer approaches with the same compression ratio.

in Figs. 8–13 for the fixed quantizer, MINAVE, and MINMAX
encodings, respectively. It is interesting to note that in all
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Fig. 6. Comparison between the maximum block PSNR
[PSNR = 10 � log

10
(2552=MSE)] for the MINMAX, MINAVE,

and fixed quantizer approaches with the same compression ratio.

Fig. 7. Comparison between the standard deviation of block MSE for
the MINMAX, MINAVE, and fixed quantizer approaches with the same
compression ratio.

cases, no motion vectors are found in the hand area since
this newly appeared object was not present in the previous
reference frame. In general, with the MINMAX approach, an
almost uniform level of quality is achieved, which, arguably,
is more consistent with the subjective assessment of quality
than the global MSE.

C. Shape Coding

In this example, we demonstrate the application of MIN-
MAX and MINAVE approaches to the problem of lossy bound-
ary encoding. Recently, this problem has attracted considerable
attention as a result of emerging multimedia applications and
the MPEG-4 standardization effort.

A number of algorithms have been recently reported, like,
for example, the context-based CAE coder [2], the modified

Fig. 8. Quantizers in the fixed quantizer scheme.

Fig. 9. Motion vectors in the fixed quantizer scheme.

modified read (MMR) coder [33], the baseline coder [13],
the vertex-based polynomial coders [9], [18], as well as the
recently proposed optimal B-spline coders [15], [16], [30]. A
review and comparison of shape coding algorithms can be
found in [11].

The problem at hand is the lossy approximation of a given
closed discretized contour by connected segments of a given
order (lines or higher order curves). In the following discus-
sion, we refer to second-order B-spline segments, with each
segment being defined by three consecutive control points.
The precise mathematical definition of this parametric curve
is given in [11]. A continuous spline segment is quantized to
fit the discreet support grid of the image. Optimal placement of
the control points, under a chosen differential encoding scheme
of their position and a segment distortion measure, constitutes
the solution to the contour approximation problem. Although
on the surface this problem seems quite different from the
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Fig. 10. Optimal quantizers in the MINAVE scheme.

Fig. 11. Optimal motion vectors in the MINAVE scheme.

other examples presented in this paper, it can be formulated
and solved using the same methods.

The definition of a distortion between the original and the
approximating boundaries is not unique. When the MINMAX
criterion is employed, the problem at hand is to minimize
the rate while guaranteeing that none of the pixels of the
approximating contour is located farther than (Euclidean
distance) away from the original contour. To aid in the
implementation, as well as understanding, of the algorithm,
we define a distortion band, centered around the original
boundary, to which a MINMAX approximation must belong.
(In [12], was allowed to vary.) Fig. 14, in which
the original and the approximating contours are also shown,
illustrates this concept. We note, however, that is not a
true metric, since there may be pixels on the original contour
located a distance from the approximating contour.

For the MINAVE criterion, we choose to adapt the distortion

Fig. 12. Optimal quantizers in the MINMAX scheme.

Fig. 13. Optimal motion vectors in the MINMAX scheme.

metric used by MPEG-4 to evaluate efficiency of competing
shape coders. A contour distortion is defined as the number of
incorrectly labeled pixels, i.e., all pixels in the interior of the
original object and in the exterior of the approximating object,
or vice versa, normalized by the total number of interior pixels
in the original frame. A frame distortion , which is the sum
of its contour distortions, is then defined as

number of pixels in error
number of all interior pixels

(25)

Let , , and be three consecutive control points
defining a B-spline segment of the approximating boundary.
This segment originates at the midpoint ( ) and ter-
minates at the midpoint ( ). Let us also associate the
beginning and the end of the spline segment withand ,
the two closest points on the original boundary, respectively.
Then the segment distortion can be evaluated, as in Fig. 15,
by counting the number of pixels in error. Clearly, the contour
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Fig. 14. Distortion band and boundary approximation using the MINMAX criterion.

Fig. 15. Area between the original boundary segment and its spline approx-
imation (circles).

distortion under the MINAVE criterion, in this case, is additive,
since it can be defined on a segment-by-segment basis.

In order to decorrelate consecutive control point locations,
a second-order prediction model is used [11]. Every control
point is encoded in terms of the relative angleand the length

(in pixels), as depicted in Fig. 16(a) and (b). Control point
locations are not restricted to belong to the original boundary,
since the problem at hand is that of approximation and
not interpolation. For reasons of computational complexity,
however, a fixed width admissible control point band is
defined around the original contour, similar to the distortion
band of Fig. 14, to which control points must belong. We
sequentially number all original boundary pixels and associate
every control point band pixel with the boundary pixel closest
to it. Implementation details, including specification of the
VLC tables for and , can be found in [11] and [16].

Having defined the segment rate and
the segment distortion , the problem is the

(a)

(b)

Fig. 16. Encoding of a spline control point.

selection of control points under either MINMAX or MINAVE
criterion in the framework of resource allocation among de-
pendent quantizers or states, so that the tools developed in
Sections III and IV can be applied to find the optimal solution.
We note that when the MINMAX criterion is employed,

is two-valued: zero when the segment falls
within the distortion band and otherwise. Let us define
a state as a grouping of two consecutive control points. A
transition between two states and is
then labeled with a Lagrangian cost

, representing one
B-spline segment. Thus, we can associate a “quantizer” with
every pair of consecutive states, since it has both the rate and
the distortion characteristics. Thus, an ordered set of control
points corresponding to the sequence of dependent quantizers
with the least total cost constitutes the optimal solution to
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Fig. 17. Rate-distortion performance of MINAVE and MINMAX algo-
rithms.

Fig. 18. Frame 5, kid 1 encoded with 347 bits using the MINAVE approach
(white: pixels in error; grey: error-free pixels; black: background).

the contour approximation problem. The optimal solution is
obtained by applying the DP recursion formula, described in
Section III-A.

We conduct experiments on the 100 frames of the “Kids”
sequence in the intra mode, i.e., without taking into account
the temporal correlation between frames. We compare the
MINAVE and the MINMAX algorithms in terms of their rate
versus distortion characteristics in Fig. 17, where both the
rate and the distortion were averaged over 100 frames. As
expected, MINAVE outperforms MINMAX with respect to the
global distortion measure used for its optimization. When we
consider the visual quality, however, the MINMAX result may
be preferred. Figs. 18 and 19 show the same object encoded

Fig. 19. Frame 5, kid 1 encoded with 343 bits using the MINMAX approach.

using the MINAVE and MINMAX criteria with 343 and 347
bits, respectively. With the areas in error shown in white, it
can be seen in Fig. 18 that the object representing the area
between the legs of the kid was deemed unimportant based
on the global rate distortion tradeoff. With the MINMAX
approach, the encoder must approximate every object with a
given maximum distortion which prevents such objects
from being skipped.

VI. CONCLUSIONS

We conclude this paper by comparing the two optimal
bit allocation algorithms for the MINAVE and the MIN-
MAX criterion. The MINAVE approach is based on the
Lagrange multiplier method. This method is used to trans-
form the constrained optimization problem into a set of
unconstrained optimization problems parameterized by the
Lagrangian multiplier . These unconstrained problems are
then solved optimally using DP. The optimal, which results
in the solution of the original constrained problem, is then
found using an iterative approach, such as bisection, where
for each iteration the unconstrained problem needs to be
solved. For the MINAVE approach, the minimum rate and
the minimum distortion problem are both solved by the same
algorithm. This is one of the main differences between the
MINAVE and the MINMAX approach.

For the MINMAX approach, the minimum rate problem,
which is a constrained optimization problem, can be trans-
formed into an unconstrained problem using the redefinition
of the source rates. Then this unconstrained problem can
be solved directly using DP. In other words,no iteration is
necessary to solve the minimum rate problem. The minimum
distortion problem is then solved using the fact that we can
find the optimal solution to the minimum rate problem, which
results in a nonincreasing operational rate distortion function.
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The solution to the minimum rate problem is also found by an
iterative search for the optimal using bisection. For each
iteration, the minimum rate problem (i.e., the unconstrained
problem) is solved using DP.

While these algorithms have many similarities, they are
quite different with respect to finding all optimal solutions.
This cannot be guaranteed for the Lagrangian approach, since
only solutions belonging to the convex hull can be found.
Furthermore, while the Lagrangian multiplier method needs an
iterative search for both the minimum rate and the minimum
distortion problem, the MINMAX approach only needs an
iteration for the minimum distortion problem. Hence, the
minimum rate problem can be solved much faster for the
MINMAX approach. Ultimately, showing that the MINMAX
approach has several algorithmic advantages over the MI-
NAVE approach does not help somebody who needs to solve
a MINAVE problem. We do believe however that many
real-world problems are better served by using a MINMAX
approach than a MINAVE approach and that the MINAVE
approach has only been so popular since its optimal solution
has been known. We have argued that the MINMAX approach
based on maintaining a minimum level of local SNR is highly
correlated with perceptual quality measures. Now that the
optimal solution to the MINMAX criterion is known, we
believe many problems should be solved using this approach.
This is especially true, since both approaches are based on
the same underlying assumptions. Hence, every DP algorithm
which can solve the MINAVE problem can easily be changed
to solve the MINMAX problem.

Both algorithms discussed in this paper (MINAVE and
MINMAX) were applied to the intraframe encoding scheme
used in H.263 [23], [27], interframe mode of the same stan-
dard, as well as shape coding [11], [30]. The results obtained
were compared in terms of the global MSE-like measures
and visually. It was clear from these experiments that the
MINMAX approach resulted in a more even quality for the
entire source than the MINAVE approach. In the shape coding
example, the MINMAX approach avoided the problem of skip-
ping perceptually important features and objects. The sacrifices
in the average distortion in the MINMAX approach in the
conducted experiments were not significant. In conclusion, if
the goal is to have almost constant distortion, which is almost
as low as the smallest possible average distortion, for a given
bit budget, the MINMAX criterion is an excellent choice.

REFERENCES

[1] G. L. Anderson and A. N. Netravali, “Image restoration based on a
subjective criterion,”IEEE Trans. Syst., Man, Cybern.,vol. SMC-6, pp.
845–853, 1976.

[2] N. Brady, F. Bossen, and N. Murphy, “Context-based arithmetic en-
coding of 2D shape sequences,” inProc. Int. Conf. Image Processing
(ICIP), Santa Barbara, CA, 1997, pp. I-29–32.

[3] H. Everett, “Generalized Lagrange multiplier method for solving prob-
lems of optimum allocation of resources,”Oper. Res.,vol. 11, pp.
399–417, 1963.

[4] Expert’s Group on Very Low Bitrate Visual Telephony, “Video codec
test model,” TMN4 Rev1. ITU Telecommunication Standardization
Sector, Oct. 1994.

[5] G. D. Forney, “The Vitterbi algorithm,”Proc. IEEE, vol. 61, pp.
268–278, Mar. 1973.

[6] C. F. Gerald and P. O. Wheatley,Applied Numerical Analysis,4th ed.
Reading, MA: Addison-Wesley, 1990.

[7] D. Haugland, J. G. Heber, and J. H. Husoy, “Optimization algorithms
for ECG data compression,”Med. Biomed. Eng. Comput.,vol. 35, pp.
420–424, 1997.

[8] D. T. Hoang, E. L. Linzer, and J. S. Vitter, “Lexicographic bit allocation
for MPEG video,”J. Vis. Commun. Image Represent.,vol. 8, no. 4, Dec.
1997.

[9] M. Hötter, “Object-oriented analysis-synthesis coding based on moving
two-dimensional objects,”Signal Process.: Image Commun.,vol. 2, pp.
409–428, Dec. 1990.

[10] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based
on models of human perception,”Proc. IEEE,vol. 81, pp. 1385–1422,
Oct. 1993.

[11] A. K. Katsaggelos, L. Kondi, F. W. Meier, J. Ostermann, and G. M.
Schuster, “MPEG-4 and rate distortion based shape coding techniques,”
Proc. IEEE,vol. 86, pp. 1126–1154, June 1998.

[12] L. Kondi, F. W. Meier, G. M. Schuster, and A. K. Katsaggelos, “Joint
optimal object shape estimation and encoding,”Proc. SPIE,vol. 3309,
pp. 14–25, Jan. 1998.

[13] S. Lee, D. Cho, Y. Cho, S. Son, E. Jang, and J. Shin, “Binary shape
coding using 1-D distance values from baseline,” inProc. ICIP, Santa
Barbara, CA, 1997, pp. I-508–511.

[14] D. W. Lin, M.-H. Wang, and J.-J. Chen, “Optimal delayed-coding of
video sequences subject to a buffer size constraint,” inProc. Conf.
Visual Communications and Image Processing,SPIE, 1993, vol. 2094,
pp. 223–234.

[15] G. Melnikov, P. V. Karunaratne, G. M. Schuster, and A. K. Katsaggelos,
“Rate-distortion optimal boundary encoding using an area distortion
measure,” inProc. Int. Symp. Circuits and Systems,June 1998.

[16] G. Melnikov, G. M. Schuster, and A. K. Katsaggelos, “Simultaneous
optimal boundary encoding and variable-length code selection,” inProc.
Int. Conf. Image Processing,Oct. 1998, pp. I-256–260.

[17] R. Nygaard and D. Haugland, “Compressing ECG signals by piecewise
polynomial approximation,” inProc. Int. Conf. Acoustics, Speech and
Signal Processing,May 1998, pp. 1809–1812.

[18] K. J. O’Connell, “Object-adaptive vertex-based shape coding method,”
IEEE Trans. Circuits Syst. Video Technol.,vol. 7, pp. 251–255, Feb.
1997.

[19] A. Ortega and K. Ramchandran, Eds., “Rate-distortion techniques for
image/video compression,”IEEE Signal Processing Mag.,vol. 15, pp.
23–50, Nov. 1998.

[20] K. Ramchandran, A. Ortega, and M. Vetterli, “Bit allocation for de-
pendent quantization with applications to multiresolution and MPEG
video coders,”IEEE Trans. Image Processing,vol. 3, pp. 533–545, Sept.
1994.

[21] J. Ribas-Corbera and D. L. Neuhoff, “Optimal bit allocations for lossless
video coders: Motion vectors versus difference frames,” inProc. ICIP
1995, pp. II-747–760.

[22] D. Saupe, “Optimal piecewise linear image coding,” inProc. SPIE,
Conf. Visual Communications and Image Processing,1997, vol. 3309,
pp. 747–760.

[23] G. M. Schuster and A. K. Katsaggelos,Rate-Distortion Based Video
Compression, Optimal Video Frame Compression and Object Boundary
Encoding. Norwell, MA: Kluwer, 1997.

[24] , “Fast and efficient mode and quantizer selection in the rate
distortion sense for H.263,” inProc. SPIE, Conf. Visual Communications
and Image Processing,Mar. 1996, pp. 784–795.

[25] , “A video compression scheme with optimal bit allocation
among segmentation, motion and residual error,”IEEE Trans. Image
Processing,vol. 6, pp. 1487–1502, Nov. 1997.

[26] , “The minimum–average and minimum–maximum criteria in
lossy compression,”Vistas Astron.,vol. 41, no. 3, pp. 427–437, 1997.

[27] , “Optimal bit allocation among dependent quantizers for the
minimum maximum distortion criterion,” inProc. Int. Conf. Acoustics,
Speech and Signal Processing,May 1997, vol. 4, pp. 3097–3100.

[28] , “An optimal polygonal boundary encoding scheme in the rate
distortion sense,”IEEE Trans. Image Processing,vol. 7, pp. 13–26, Jan.
1998.

[29] , “A theory of the optimal bit allocation between displacement
vector field and displaced frame difference,”IEEE J. Select. Areas
Commun.,vol. 15, pp. 1739–1751, Dec. 1997.

[30] G. M. Schuster, G. Melnikov, and A. K. Katsaggelos, “Operationally
optimal vertex-based shape coding,”IEEE Signal Processing Mag.,vol.
15, pp. 91–108, Nov. 1998.

[31] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set
of quantizers,”IEEE Trans. Acoust., Speech, Signal Processing,vol. 36,
pp. 1445–1453, Sept. 1988.



SCHUSTERet al.: REVIEW OF THE MINIMUM MAXIMUM CRITERION 17

[32] T. Wiegand, M. Lightstone, D. Mukherjee, T. G. Campbell, and S. K.
Mitra, “Rate-distortion optimized mode selection for very low bit rate
video coding and the emerging H.263 standard,”IEEE Trans. Circuits
Syst. Video Technol.,vol. 6, pp. 182–190, Apr. 1996.

[33] N. Yamaguchi, T. Ida, and T. Watanabe, “A binary shape coding method
using modified MMR,” in Proc. ICIP, Santa Barbara, CA, 1997, pp.
I-504–508.

Guido M. Schuster received the Ing. HTL degree
in Elektronik, Mess- und Regeltechnik in 1990
from the Neu Technikum Buchs (NTB), Buchs,
St. Gallen, Switzerland, and the M.S. and Ph.D.
degrees, both in electrical engineering, from North-
western University, Evanston, IL, in 1992 and 1996,
respectively.

In 1996, he joined the Network Systems Division
of U.S. Robotics, where he cofounded the Advanced
Technologies Research Center. He is currently a
Distinguished Member of Technical Staff in the

3Com Carrier Systems Business Unit (formerly the Network Systems Division
of U.S. Robotics), Mt. Prospect, IL. He also holds an Adjunct Faculty
appointment in the Department of Electrical and Computer Engineering at
Northwestern University. He holds or has filed for more than 30 patents
in fields ranging from adaptive control over video compression to Internet
telephony. He has published more than 30 journal and proceedings articles.
He is the coauthor of the bookRate-Distortion Based Video Compression
(Norwell, MA: Kluwer, 1997). His current research interests are operational
rate-distortion theory and networked multimedia, in particular, Internet tele-
phony.

Dr. Schuster was awarded the gold medal for academic excellence and was
also the winner of the first annual Landis and Gyr fellowship competition at
the NTB.

Gerry Melnikov was born in Odessa, Ukraine, in
1971. He received the B.S. degree from Illinois
Institute of Technology, Chicago, and the M.S.
degree from Northwestern University, Evanston, IL,
both in electrical and computer engineering. He is
currently pursuing the Ph.D. degree in the same field
at Northwestern University.

His research interests include, but are not limited
to, image and video coding, shape coding, and
object-oriented signal processing.

Aggelos K. Katsaggelos(M’85–SM’92–F’98) re-
ceived the Diploma degree in electrical and mechan-
ical engineering from the Aristotelian University of
Thessaloniki, Thessaloniki, Greece, in 1979, and the
M.S. and Ph.D. degrees, both in electrical engi-
neering, from the Georgia Institute of Technology,
Atlanta, in 1981 and 1985, respectively.

In 1985, he joined the Department of Electrical
Engineering and Computer Science at Northwestern
University, Evanston, IL, where he is currently a
Professor, holding the Ameritech Chair of Infor-

mation Technology. He is also the Director of the Motorola Center for
Communications. During the 1986–1987 academic year, he was an Assistant
Professor in the Department of Electrical Engineering and Computer Science,
Polytechnic University, Brooklyn, NY. His current research interests include
image and video recovery, video compression, motion estimation, boundary
encoding, computational vision, and multimedia signal processing. He is
also a member of the Associate Staff, Department of Medicine, Evanston
Hospital. He is the Editor ofDigital Image Restoration(Heidelberg, Germany:
Springer-Verlag, 1991), coauthor ofRate-Distortion Based Video Compression
(Norwell, MA: Kluwer, 1997), and coeditor ofRecovery Techniques for Image
and Video Compression and Transmission(Kluwer, 1998).

Dr. Katsaggelos is an Ameritech Fellow and a member of SPIE. He is a
Member of the Board of Governors and the Publication Board of the IEEE
Signal Processing Society, the IEEE TAB Magazine Committee, the Steering
Committee of the IEEE TRANSACTIONS ON MEDICAL IMAGING, the IEEE
Technical Committees on Visual Signal Processing and Communications,
and Multimedia Signal Processing, and Editor-in-Chief of theIEEE Signal
Processing Magazine.He has served as an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING(1990–1992), an Area Editor for the
journal Graphical Models and Image Processing(1992–1995), a Member of
the Steering Committee of the IEEE TRANSACTIONS ON IMAGE PROCESSING

(1992–1997), and a Member of the IEEE Technical Committee on Image
and Multi-Dimensional Signal Processing (1992–1998). He has served as the
General Chairman of the 1994 Visual Communications and Image Processing
Conference (Chicago, IL) and as Technical Program Cochair of the 1998 IEEE
International Conference on Image Processing (Chicago).


