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Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart,
leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct
processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy,
metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume
overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism.
Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart
failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those
associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the
development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We
will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.

1. Introduction Notwithstanding the established role of cardiac remodel-
ing as a cause of ventricular dysfunction, the progression of

Understanding the molecular basis of cardiac remodeling is  the events involved in this phenomenon is not fully under-

one of the main challenges in cardiovascular medicine. The
term cardiac remodeling was used for the first time by
Hockam and Bulkley following the observation of regional
dilatation and thinning of infarcted myocardium in rats [1].
Subsequently, Pfeffer et al. used remodeling to describe the
volume increase of the left ventricular cavity following myo-
cardial infarction (MI) [2]. Today, this term broadly refers to
changes in the heart structure brought on by a variety of
pathologic insults, not solely due to myocardial infarction.

stood. In fact, multiple factors contribute to the development
and progression of cardiac remodeling and LV dysfunction.
These factors may have several detrimental overlapping
effects affecting cardiac structure and function at multiple
levels. For example, cardiac fibrosis may affect both relaxa-
tion and contractility. Cardiomyocyte death is a crucial event
underlying the development of cardiac dysfunction during
stress and determining the progression of cardiac abnormal-
ities overtime. In addition, cardiac hypertrophy and fibrosis
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and a progressive impairment of contractility and relaxation
orchestrate together the detrimental evolution of cardiac
remodeling. Several molecular pathways converge in cardiac
remodeling. For example, it has been demonstrated that after
a cardiac injury, inflammation is sustained through the
upregulation of cytokine release, leading to fibroblast prolif-
eration and metalloproteinases activation [3]. Furthermore,
oxidative stress and alteration in energy metabolism trigger
the hypertrophic and profibrotic signaling cascades, resulting
in cell death and progressive cardiomyocyte loss. Inflamma-
tion and oxidative stress also directly impair cardiac contrac-
tility and relaxation. Similarly, alterations of proteins
involved in calcium transport are also responsible for cardiac
remodeling, contributing to decreasing systolic and increas-
ing diastolic calcium release and reduced contractility [4].
Additionally, neurohormonal activation, such as the renin-
angiotensin aldosterone system, enhances the synthesis of
proteins involved in inflammation, cell death, and fibroblast
proliferation [5].

Here, we will review the molecular mechanisms involved
in cardiac remodeling. We will also describe the experimental
evidence that suggest acting on key molecules involved in
these dysregulated pathways may improve cardiac outcomes.

2. Definition of Cardiac Remodeling in Heart
Failure

Heart failure (HF) is a chronic heart disease that represents
one of the leading causes of mortality worldwide. The term
HF usually refers to the inability of the heart to maintain
the blood flow necessary to satisfy the metabolic require-
ments of the body [6]. Cardiac remodeling is strictly associ-
ated with the progression of HF [7]. It encompasses all the
molecular, cellular, and interstitial events that contribute to
the clinically relevant changes in the shape, size, and mass
of the heart after cardiac injury [7]. Cardiac remodeling
may occur following several pathophysiological stimuli lead-
ing to a reduction of contractility and/or an increase in wall
stress, such as ischemia/reperfusion (I/R), MI, pressure and
volume overload, genetic background, hypertension, and
neuroendocrine activation [7-9]. It may be either an adaptive
or a maladaptive mechanism [7]. In the first case, structural
changes of the heart exert a compensatory effect, maintaining
normal cardiac function [10, 11]. On the contrary, after sus-
tained stress, cardiac remodeling leads to a progressive and
irreversible dysfunction of the heart [12]. From a cellular
point of view, major mechanisms that contribute to cardiac
remodeling involve both cardiomyocytes and noncardio-
myocytes. In fact, during cardiac remodeling, cardiomyocyte
loss has been extensively described to occur through necrosis,
necroptosis, apoptosis, or autophagy, whereas fibrosis occurs
through fibroblast proliferation and extracellular matrix
(ECM) reorganization. Furthermore, mitochondrial dysfunc-
tion and metabolic abnormalities also contribute to the
development and progression of cardiac remodeling by
reducing contractility (Figure 1) [13]. The molecular players
and the involved signaling pathways will be discussed in
detail below.
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Dysregulation of physiological mechanisms, such as
excitation-contraction coupling (ECC), a process that tightly
regulates calcium influx and uptake, is a common feature of
several pathophysiological cellular alterations in cardiac
remodeling. In fact, in a failing cardiomyocyte, there is
impaired calcium uptake, mediated by proteins such as
sarco/endoplasmic reticulum Ca”**-ATPase (SERCA)-2a,
and uncontrolled calcium efflux through ryanodine receptors
(RyRs) [4]. Calcium dysregulation, beyond early macro-
scopic effects of systolic dysfunction and arrhythmias, can
interfere with processes such as hypertrophic growth, energy
metabolism, mitochondrial function, and cell survival [13].
These alterations are manifested by changes in heart geome-
try from an elliptical to a spherical shape, which in turn con-
tributes to impair the contractile function of the heart.
Furthermore, cardiac remodeling is characterized by
increased left ventricular (LV) mass with a reduction in LV
ejection fraction [7, 14].

3. Cardiac Hypertrophy

As a compensatory adaptive response to mechanical and
physiological stress impairing cardiac output, cardiomyo-
cytes may undergo hypertrophy (Figure 2). The hemody-
namic overload on cardiac walls activates complex
biological responses that culminate in tissue remodeling. Tis-
sue remodeling initially starts as compensatory LV hypertro-
phy, but eventually evolves into maladaptive remodeling,
triggering the transition to heart failure [15]. In fact, it was
recently shown in three different in vivo animal models of
pressure overload that silencing Stromal Interaction Mole-
cule (STIM)-1, one of the molecular initiators of the hyper-
trophic compensatory response, prevents as well as reverses
cardiac hypertrophy. However, the consequence for the ani-
mal is a rapid transition to heart failure. Mechanistically,
hypertrophic stress leads to increased Ca2” influxes mediated
by the association of calcium release-activated calcium chan-
nel protein (ORAI)-1/3 with STIM-1, which then activates
the mammalian target of rapamycin complex (mTORC)-2.
In this study, silencing of STIM-1 was shown to prevent
mTORC-2 phosphorylation of Akt kinase, thereby prevent-
ing suppression of GSK-3f activity, ultimately resulting in
inhibition of hypertrophic responses [16].

On the other hand, chronic hypertrophy has been associ-
ated with interstitial fibrosis and cellular apoptosis. A precise
balance of muscle growth, inflammation, and angiogenesis is
necessary to ensure adaptive hypertrophic remodeling;
alterations to this equilibrium result in deterioration of car-
diac structure and function. During maladaptive cardiac
remodeling, sarcomere addition is performed in series—that
is, end-to-end—which gradually decreases cardiomyocyte
force production leading to contractile dysfunction, ventricu-
lar dilation, and arrhythmias [15]. Moreover, several cyto-
kines and growth factors have been found to play a key role
in the remodeling of the ventricular chambers in response
to hemodynamic overload. For example, placental growth
factor (PIGF) has recently been shown to regulate tissue
inhibitor of metalloproteinase TIMP-3/TNF-a-converting
enzyme (TACE) axis during cardiac remodeling in response
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F1GURE 1: Schematic overview of the main events that contribute to cardiac remodeling. Among the multiple signaling pathways involved, the
increase in cell death, inflammation, and oxidative stress pathways, as well as alterations in energy metabolism, converge in cardiomyocyte
(CMs) loss, hypertophy, and myocardial fibrosis, leading to cardiac remodeling. The main consequence in such structural modifications is

heart failure.

to overload. In particular, PIGF may act as a transcriptional
regulator of TIMP-3 to modulate inflammation, which upre-
gulates cardiac remodeling [17].

Studies on calcium regulation have contributed to a dee-
per understanding of the physiologic alterations underlying
cardiac remodeling. Generally, after contraction is induced
by Ca®", the cell actively pumps calcium ions outside the
cytoplasm to generate a new gradient. This is achieved
through the activity of the sarcoplasmic reticulum (SR) Ca**
pump, sarcolemmal Ca®* ATPase, and the Na'/Ca®*
exchanger, which utilizes the gradient created by the Na™/
K" pump. Defects in these mechanisms may result initially
in diastolic dysfunction. However, arrhythmias and systolic
dysfunction also occur due to impaired excitability and con-
traction, ultimately leading to cardiac hypertrophy [18, 19].

Mechanical wall stress activates mechanosensitive ion
channels, mainly responsible for the heart’s responses to
acute changes, and integrins, surface proteins intimately con-
nected to the ECM. Signals sensed in this way are then trans-
duced through the Akt pathway. Short-term activation of the

Akt pathway was shown to induce LV hypertrophy without
affecting cardiac function whereas long-term activation leads
to heart failure [20]. In this regard, conditional mutant mice
with activated Akt showed reversible cardiac hypertrophy
when the inducing treatment was interrupted within 2 weeks
of stimulation, whereas further stimulation caused irrevers-
ible remodeling, fibrosis, and eventually HF [21]. Akt exerts
size control through the inhibitory phosphorylation of
GSK3p, a negative controller of cellular size. In a genetic
mouse model of familial hypertrophic cardiomyopathy
(FHC) based on mutated sarcomeric proteins, GSK3f was
highly phosphorylated [22]. In contrast, mice with GSK3p3
overexpression had reduced heart size in response to stress
[23]. Mechanical stretch promotes the release of several fac-
tors, including angiotensin (AT)-II and endothelin-1, which
converge towards the activation of G-protein coupled recep-
tor (GPCR) signaling through G subunits. Genetic manip-
ulation of G, was associated with modulation of the
hypertrophic phenotype. For example, activation of phos-
pholipase C (PLC), a downstream effector of Ga,, leads to
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F1GURE 2: Cardiac hypertrophy (a) and cardiac fibrosis (b) signaling pathways. Several molecules participate in the modulation of genes
involved in cardiac hypertrophy. The transcription factor NFAT, responsible for cardiac hypertrophy, is positively regulated through
calmodulin/calcineurin. In contrast, GSK3f inhibits cytoplasm-nucleus translocation of NFAT. HDAC4/HDACS5 also represses
transcriptional activity of hypertrophic signals. Angiotensin II is the main mediator of cardiac fibrosis; AT1 receptor and ROS lead to
TGEP activation. This latter, through a SMAD-dependent or -independent pathway, activates the fibrotic genetic program, which consists
in fibroblast proliferation, leukocyte infiltration, matrix degradation, collagen deposition, and myofibroblastic transdifferentiation.

hypertrophy through the PI3K/Akt pathway [24]. Indeed,
GSK3p exerts its function by inhibiting nuclear translocation
of the nuclear factor of activated T-cells (NFAT), an upregu-
lator of hypertrophy. Calmodulin, a kinase that reacts to Ca**
dysregulation by activating the serine/threonine phosphatase
calcineurin (a functional antagonist of GSK3p), also con-
verges towards NFAT translocation [25].

Within the complex downstream network activated by
hypertrophic stimuli, epigenetics plays a central role as well.
In fact, Class II histone deacetylases, HDAC4 and HDACS5,
normally interfere with DNA binding of prohypertrophic
transcription factors, such as NFAT, myocyte enhancement
factor (MEF), and GATA-4. Oxidation or phosphorylation
on specific residues, performed by kinases such as Ca**/cal-
modulin-dependent protein kinase (CaMK)-II, GPCR kinase
(GRK)-5, PKC, and PKD, causes a cytoplasmic translocation
of Class II HDAC:s, derepressing prohypertrophic transcrip-
tional activity [26, 27].

Interesting insights have been recently reported on para-
crine prohypertrophic signaling provided by endothelial cells
during pressure overload-induced cardiac remodeling. For
example, Appari et al. [28] showed that complement Clq
tumor necrosis factor-related protein (CTRP)-9 deletion
and overexpression suppresses or upregulates cardiac hyper-
trophy, respectively, following transversal aortic constriction
(TAC). Mechanistically, this is mediated by phosphorylation
of the prohypertrophic transcription factor GATA-4 through
extracellular-regulated kinase (ERK)-5. The hypertrophic
genetic program includes upregulation of signaling molecules

such as brain natriuretic peptide (BNP) and atrial natriuretic
peptide (ANP), which decrease blood pressure through diure-
sis, and of structural proteins such as f-myosin heavy
chain (S-myHC) [15]. Interestingly, despite the existence of a
tightly controlled mechanism for regulation of myosin heavy
chain «/f isoform ratio, NFAT activation unbalances the
physiological 90% proportion of f-myHC. The supposed bio-
logical rationale is that this isoform requires less ATP, but also
has less contractile ability. In fact, it was shown that expression
levels of B-myHC are inversely correlated to overall contrac-
tion capacity, myocyte shortening, and force generation [29].

Natriuretic peptides, together with nitric oxide (NO),
activate cGMP-dependent protein kinase (PKG), exerting
an antihypertrophic effect. Preclinical and clinical studies
with sildenafil, a ¢cGMP-phosphodiesterase inhibitor that
stimulates NO production, have shown beneficial effects in
congestive heart failure (CHF) [30, 31]. Interestingly, oxida-
tive stress levels are increased during cardiac injury as well
as hemodynamic overload. In fact, it has been recently
reported that deletion of the superoxide-producing enzyme
NADPH oxidase (NOX)-4 attenuates cardiac hypertrophy
after 2 weeks of pressure overload [32].

Lastly, interesting evidence is emerging from a protein
that has been extensively studied in oncology, the peptidyl-
prolyl cis-trans isomerase NIMA-interacting (PIN)-1. This
protein acts as a molecular orchestrator in many different
physiological and pathological cellular processes, including
hypertrophy. In fact, PIN-1 is upregulated in a model of pres-
sure overload. Moreover, PIN-1 depletion interferes with Akt
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and mitogen-activated protein kinase (Mek) prohyper-
trophic signaling. Intriguingly, the same protective effect
was obtained by PIN-1 overexpression, suggesting that this
protein acts within a tight operative range [33].

4. Myocardial Fibrosis

Hypertrophy is often flanked by interstitial and perivascular
fibrosis, a phenomenon resulting from the combined effect
of inflammation and apoptosis. In fact, pathological remod-
eling is often the consequence of insufficient capillary density
that progressively leads to cell death in the infarcted myocar-
dium after the acute event, as well as in the hemodynamically
overloaded heart. In fact, it has been shown that expression of
vascular endothelial growth factor (VEGF), which is regu-
lated by transcription factors such as hypoxia-inducible fac-
tor (HIF)-1a and GATA-4, is impaired in the failing heart
[21]. However, the underlying molecular mechanism is con-
troversial, since the inflammation-mediated proapoptotic
activity of p53 inhibits HIF-1a [34], while ROS produced
by NOX-4 (an enzyme under control of inflammatory and
neurohumoral signals) seems to be positive drivers of HIF-
la activation [35].

Macroscopically, the term myocardial fibrosis refers to
the deposition of types I and III collagen, and ECM cross-
linking, that together cause altered mechanosensing, stiffen-
ing of the chamber walls, and impaired heart elasticity and
diastolic function [36]. Additionally, it has been reported that
fibrosis impairs contractility and disturbs the chemoelectrical
conductance of the heart, leading to arrhythmias, local
microfibrillations, and inefficient contraction [37]. The
development of fibrosis requires (i) increased synthesis of
matrix metalloproteinases (MMPs) due to downregulation
of MMP inhibitors [38]; (ii) stimulation of profibrotic medi-
ators, such as TGF-f, a-smooth muscle actin (a-SMA),
platelet-derived growth factor (PDGF), and cytokines [39];
(i) differentiation of fibroblasts into myofibroblasts, which
express features of smooth muscle differentiation [40]; and
(iv) recruitment of cells of an endothelial origin for
endothelial-to-mesenchymal transition (EndMT), generating
cells that still express endothelial markers while gaining
fibroblast-like characteristics [41]. Indeed, fibroblasts play a
critical role in fibrosis. Many inflammatory mediators trigger
cellular differentiation towards the myofibroblastic pheno-
type, characterized by expression of a-SMA, proliferation,
migration, release of proinflammatory signals, and increased
production of ECM remodeling proteins. Nevertheless, many
questions remain unanswered about the cellular source of
these active cells, as extensively reviewed by Travers et al.
[42]. Briefly, given that most myofibroblasts derive from
resident inactive fibroblasts, which are extremely prone to
activation in response to injury in order to preserve heart
function, many mesenchymal cells are thought to transdiffer-
entiate towards the myofibroblast phenotype. Strong evi-
dence has also been provided for perivascular cells
differentiating and contributing to fibrosis. When human
pericytes were injected into the peri-infarct zone of mice,
there was improved cardiac remodeling through the activa-
tion of a reparative angiogenic program [43, 44]. Although

some studies suggest a role for the transdifferentiation of
endotheliocytes, epicardial cells, and circulating bone-
marrow-derived stem cells, this is still under debate [37,
45-47]. Further efforts may be required for the identification
of novel phenotypic markers that can help clarify the contri-
butions of these cell populations to the myofibroblastic pool
found in the remodeling heart.

In both adaptive and maladaptive (chronic) fibrosis,
there is extensive monocyte infiltration, enriching the local
macrophage population. Their primary role within the
myocardium is still an object of debate, but the most accepted
theory considers these cells molecular orchestrators of the
myocardial inflammatory response, achieved through exten-
sive cytokine interplay between macrophages and lympho-
cytes [3]. Moreover, endothelial cells can strongly
contribute to the profibrotic inflammatory environment by
activating a proinflammatory secretory phenotype [48], in
addition to directly transdifferentiating into myofibroblasts,
as previously mentioned. A significant contribution to local
inflammation is also provided by several subpopulations of
lymphocytes [49, 50] and mast cells [51, 52], which exert a
prominent role in the activation of fibroblasts within the
myocardium. Furthermore, cardiomyocytes themselves have
both an active and passive role in cardiac inflammation;
while cardiomyocytes can activate a profibrotic and proin-
flammatory secretory phenotype, they are also sensitive to
the stimuli they are contributing to, resulting in a complex
autocrine network between molecular pathways that can ulti-
mately lead to cell death [53].

From a molecular point of view, many signaling path-
ways, involving both paracrine and endocrine secretion, are
involved in the development of fibrosis in pathological
cardiac remodeling (Figure 2). In fact, the renin-angiotensin-
aldosterone system (RAAS) is responsible for many patho-
physiological modifications that occur in cardiac remodeling
[5]. Increased angiotensin-converting enzyme (ACE) levels
lead to elevated circulating AT-IL, which is a well-known pro-
fibrotic mediator [54]. Note that activation of AT-1 receptor
stimulates expression of transforming growth factor (TGF)-
B through both SMAD-dependent and SMAD-independent
pathways [55, 56]. Given that TGF-f is a pleiotropic mediator,
its contribution to fibrosis mainly consists of stimulating
transdifferentiation towards a myofibroblastic phenotype
and increasing expression of many different protease inhibi-
tors [57]. Recently, in a model of myocardial fibrosis, both
AT-IIand TGF-f were reported to mediate fibrosis by increas-
ing the levels of serpinE2/protease nexin-1, which is responsi-
ble for collagen deposition [58]. Moreover, Zhang et al. showed
the involvement of focal adhesion kinase (FAK) in the pro-
cesses of collagen deposition and cardiac fibrosis after myocar-
dialinfarction [59]. However, TGF-fis not the only molecular
mediator of RAAS-induced effects. In fact, proliferation,
hypertrophy, and fibrosis have also been linked to the
mitogen-activated protein kinase (MAPK) pathway (particu-
larly, ERK1/2, c-Jun N-terminal kinase [JNK], and p38).
MAPK in turn interacts and associates with the AT-II/AT-1
complex, epidermal growth factor receptor (EGFR), platelet-
derived growth factor receptor (PDGFR), and insulin receptor
[60]. In summary, while ERK itself is responsible for a mild



response, strong stimuli and ROS-mediated triggering of apo-
ptosis signal-regulating kinase (ASK) can activate JNK and
p38 [60]. JNK and p38, together with an activated aldosterone
receptor, induce fibroblast matrix deposition, modulate
MMPs, and increase TIMP expression to stabilize remodeled
ECM [61]. This concerted response relies primarily on the
activity of major transcription factors, such as nuclear factor
(NF)-xB and activator protein (AP)-1. Consequently, stimu-
lated cells enact a proinflammatory response characterized
by paracrine secretion of tumor necrosis factor (TNF)-q,
which increases proliferation and collagen deposition, as well
as IL-13, which promotes degradation and remodeling [3, 5].

These cytokines, along with AT-1, which triggers the
activity of NOX through IxB inhibition, are also involved in
inflammatory ROS production, further exacerbating phlogo-
sis [60, 62].

During MI, damage-associated molecular pattern
(DAMPs) proteins are also released from the myocardium,
triggering inflammatory fibrotic cardiac remodeling. DAMPs
bound to pattern recognition receptors (PRRs), or with toll-
like receptors (TLRs), are crucial for the activation of
proinflammatory signaling pathways. Among these, most
converge on MAPK phosphorylation, NF-«B and interferon
regulatory factor (IRF) nuclear translocation, and “NACHT,
LRR and PYD domains-containing protein” (NLRP)-3
inflammasome activation. Consequently, cells increase the
production of proinflammatory cytokines, chemokines, and
cell adhesion molecules [37]. A specific type of PRR is RAGE,
a receptor that binds to advanced glycated end products
(AGEs), which are known to activate a proinflammatory
expression phenotype [63]. Its concentration was described
to correlate with cardiac fibrosis in vivo [64]. Moreover,
RAGE deletion decreased inflammation, reduced fibrosis,
and ameliorated cardiac fractional shortening in an I/R
murine model [65]. Interestingly, in the same study, Volz
and colleagues demonstrated that leukocytes infiltrating the
myocardium, rather than resident cells, were responsible for
AGE-associated adverse inflammatory cardiac response.
Despite little being known about the molecular mechanism
linking AGEs to fibrosis, there is evidence supporting that
TGEF- 8 may play a major role [66]. Furthermore, in addition
to stimulation of fibroblast proliferation and deposition of
types I and III collagen, AGEs contribute to enhancement
of ECM accumulation, compromising the heart’s diastolic
function [67, 68].

All of the aforementioned alterations evoke a cell
response through so-called “mechanotransduction.” The
term refers to the capacity of each cell to sense its own archi-
tecture, and modify expression profiles in response to its
alteration [69]. The mammalian sterile 20-like kinase
(Mst)-1 pathway functions to integrate physical and bio-
chemical stresses and is crucial in many cardiovascular dis-
eases [70]. In fact, it is sensitive not only to alterations of
cell morphology and ECM characteristics, but also to many
inflammatory signals [71]. Many of these signals converge
on yes-associated protein (YAP), a downstream effector of
Mst-1; these signals include oxidative stress and metabolic
derangements through AMP-activated protein kinase
(AMPK) activity [72, 73]; angiotensin II through GPCR-
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activated PKA [74]; and cytotoxic stress through mTORC-2
[75]. It has previously been shown that activation of Mst-1
reduces autophagy and cell proliferation and may eventually
trigger apoptosis. It is thus not surprising that in an environ-
ment such as the fibrotic heart, Mst-1 has been recognized as
a major contributor to cardiomyocyte mortality [76-80].
Lastly, microRNAs (miRNAs or miRs), which are small
noncoding single-stranded RNAs that serve as key posttran-
scriptional regulators, have also been implicated in the
pathogenesis of several cardiovascular diseases, including
myocardial fibrosis [81, 82]. Among the most studied miR-
NAs directly involved in cardiac fibrosis, miR-133a, miR-
29, and the miR-21 families seem to play a pivotal role in
the genesis and progression of cardiac remodeling toward
cardiac fibrosis. Recent data demonstrate a relationship
between miR-133a and collagen 1A1 (CollAl), suggesting
that myocardial fibrosis occurring in Ang-II-dependent
hypertension is regulated by the downregulation of miR-
133a and miR-29b through the modulation of CollAl
expression [83]. Notably, myocardial infarction has been
associated with downregulation of miR-29 expression in car-
diac fibroblasts, via the action of TGF-f [83]. The miR-29
family, and in particular miR-29s, directly targets the mRNA
of different types of collagens and ECM proteins and has a
strong antifibrotic effect in the heart. MiR-21 also plays a
clear role in cardiac fibrosis; it promotes fibroblast survival,
growth factor secretion, and synthesis of collagens through
the regulation of the ERK-MAPK signaling pathway, via the
inhibition of sprouty homologue 1. In myocardial infarction,
miR-21 activates the TGF-3/SMAD pathway via suppression
of TGF-f receptor III in the ischemic area, enhancing
collagen production, upregulating a-SMA expression, and
facilitating fibroblast differentiation into pathological myofi-
broblasts [84, 85]. These findings are particularly important
in the setting of a possible clinical translation. In fact, it is well
established that myocardial miRNA expression can be ham-
pered by the use of antisense RNAs. The development of
anti-miRNA therapeutics aimed at reducing or reversing
fibrosis is of paramount interest: in this way, miR-29 and
miR-21, which are both dysregulated in myocardial
remodeling, seem to represent main pathogenetic targets
for such an approach.

5. Inflammation, Metabolism, and Cardiac
Remodeling

Chronic inflammation in the remodeling heart reduces ATP
and phosphocreatine concentrations, impairing mitochon-
drial carbohydrate metabolism and fatty acid oxidation
[86]. Consequently, the inefficient and acidogenic process
of glycolysis meets energy demands anaerobically. At the
same time, pharmacological inhibition of fatty acid oxidation
ameliorates cardiac function in CHF patients [87]. All these
derangements further impair cardiac contractility. In addi-
tion, inflammatory cytokines directly reduce contractility by
interfering with SERCA2a [88]. While the molecular alter-
ations underlying the development of the so-called “fetal
metabolic phenotype” are still the object of debate and
intense study, there are several pathways that seem essential



Oxidative Medicine and Cellular Longevity

OO000000000

mt biogenesis

Glucose oxidation

O 0
Q0

B-oxidation

FIGURE 3: Schematic overview of the relationship between PPAR-response elements (PPREs) and peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGCla) in cardiac remodelling. AKT: protein kinase B; AMPK: adenosine monophosphate-activated protein
kinase; ERK1/2: extracellular signal-regulated kinase 1/2; ERR: estrogen-related receptor; GPCR: G-protein coupled receptor; GSK3:
glycogen synthase kinase 3 beta; IKK: IxB kinase; IxB: inhibitor of NF-«B; INSR: insulin receptor; IRS: insulin receptor substrate; LATS 1/
2: serine/threonine-protein kinase 1/22; LKBI: liver kinase B1; MEK: mitogen-activated protein kinase kinase; MSK1: mitogen and stress-
related kinase 1; MST1: mammalian sterile 20-like kinase; mTORC: mammalian target of rapamycin complex 1 and mTORC-2; ORAI1/3:
calcium release-activated calcium channel protein 1/3; PDC: pyruvate dehydrogenase complex; PDK4: pyruvate dehydrogenase kinase;
PDP1: pyruvate dehydrogenase phosphatasel; PI3K: phosphoinositide 3 kinase; PI3K: phosphoinositide 3-kinase; RAF: serine/threonine-
specific protein kinases; RAS: small GTPase RAS; RHEB: RAS homolog enriched in brain; RXR: 9-cis-retinoic acid receptor; S6 K1: S6
kinase 1; STIM-1: stromal interaction molecule-1; TSC-1/2: tuberous sclerosis- 1/2; YAP: yes-associated protein. See text for details. The
figure was made in part using tools provided by Servier Medical Arts.

in this complex pathophysiological context, such as the axis
of peroxisome proliferator-activated receptors (PPARs) and
their coactivator PGC-1 (Figure 3). In fact, cardiac metabo-
lism is mostly regulated by the PPAR transcription factor
family, whose members recognize specific DNA regulatory
sequences, called PPAR-response elements (PPREs). The
PPAR family includes three isoforms, PPAR-a, PPAR-p/6,
and PPAR-y, whose relative levels vary in a tissue-specific
fashion. In the heart, PPAR-ow and PPAR- /6 are the main
isoforms, and previous studies have confirmed their critical
role in cardiac metabolism and pathology [89]. PPARs form
heterodimers with the 9-cis-retinoic acid receptor (RXR),
which has high affinity for many transcriptional corepres-
sors. The binding of the complex with long-chain fatty acids
or eicosanoid-derived products induces a conformational
change that permits the replacement of the corepressor with
a coactivator. In the heart, the best characterized coactivator
is PGC-1a, which regulates the expression of many genes
involved in mitochondrial biogenesis, f-oxidation, glucose
oxidative metabolism, and the electron transport chain
[90]. PGC-1a expression is markedly altered in pathologic
states; in fact, its level is elevated in conditions of high energy
demand [91, 92], but is decreased in heart failure [93], ische-
mia [94], and hypertrophy [95, 96].

PGC-1a, when combined with the PPAR complex, upre-
gulates the transcription of pyruvate dehydrogenase kinase
(PDK)-4, a crucial kinase that inactivates the pyruvate-
dehydrogenase complex residing on the inner mitochondrial
membrane, resulting in decreased glucose oxidation and
increased fatty acid utilization [97]. Another major PGC-1«
target is the estrogen-related receptor (ERR) family, among
which ERRa drives the expression of genes encoding oxi-
dative phosphorylation and fatty acid oxidation, as well
as the PPARa gene itself [98]. Mice overexpressing
PPAR-f/8 display a normal heart, in contrast to those
overexpressing PPAR-a, which is associated with inflam-
mation [99]. An opposite effect was demonstrated with
PPAR cardiomyocyte-specific deficient mice, which mani-
fested a pathologic phenotype only with depletion of iso-
form f/8, but not a. Mice lacking the former showed
decreased mitochondrial biogenesis, myocardial hypertro-
phy, and depressed cardiac performance [100]. PGC-l«
is likewise critically important for controlling processes
such as cell metabolism and the inflammatory response.
Mice with either overexpression [101] or deletion [102]
of this gene develop cardiac abnormalities. Moreover,
PPARs have been proposed to physically cross-inhibit
inflammatory transcription factors, such as NF-«B, AP-1,



signal transducers and activators of transcription (STATs),
and NFAT, in a process termed “transrepression” [103].
Furthermore, PPAR-« is able to transcriptionally regulate
IxBa, thus controlling NF-«B activity [104]. Conversely,
PPAR-« is negatively regulated by MEK-1, an upstream
member of the ERK1/2 pathway, which stimulates the
nuclear export of PPARa by direct binding [105]. Interfer-
ence with NF-«B transcriptional activity has also been
shown for PPAR-[3/5 [106] and PPAR-y [107, 108].

PGC-1a represents a cornerstone of the molecular con-
trol in the context of inflammatory cardiac diseases. In fact,
NF-«B largely mediates the mechanism by which TNF-«
downregulates PGC-1a. It accomplishes this by acting in
concert with the previously described shifts toward different
energetic substrates during the progression of cardiac inflam-
matory pathologies [109]. The physical interaction between
NF-«B and PGC-1« impairs the latter’s capacity to induce
its own expression, thereby leading to a reduction of PDK4
expression levels, with a consequent increase in glucose oxi-
dation, as observed during inflammation [110]. It is worth
mentioning that the transcriptional capacity of PGC-la
may also be compromised through phosphorylation by Akt,
which is activated by NF-«B [111]. Finally, PGC-1a™’~ mice
showed lower cardiac power and increased glucose con-
sumption [102], while specific cardiac TNF-« overexpressing
mice displayed cardiomyopathy and decreased levels of
PGC-1a and PDK-4 [112].

The PI3K/Akt pathway has been extensively studied in
this context as it relates to PPARs. In fact, PI3K mediates
many cellular responses in both physiological and patho-
physiological states through its effector Akt, which is a core
kinase whose down-stream targets include GSK-3, AMPK
and mTOR. Akt phosphorylation-mediated inhibition of
GSK-3f increases cardiac glycogen synthesis [113]. Akt acti-
vation has been shown to decrease AMPK activity, which is
induced by ATP depletion through phosphorylation by
upstream kinases like LKB1. Once activated, it switches off
energy-consuming processes and boosts energy-producing
pathways. Furthermore, AMPK promotes glucose trans-
porter type (GLUT)-4 expression and translocation to the
cell membrane and stimulates glycolytic enzymes. Moreover,
AMPK has been reported to be protective against ROS [113].
Additionally, Akt activation stimulates the activity of mTOR
kinase, which is responsible for substrate switching and sup-
pression of the inflammatory response. Note that mTOR
itself activates Akt and downregulates insulin signaling, inhi-
biting IRS-1 [114].

6. Mitochondrial Dysfunction

All the mechanisms involved in cardiac remodeling may be
potentially associated with mitochondrial dysfunction.
Recent evidence suggests that mitochondrial dysfunction
contributes to the development of several pathologies,
including neurodegenerative and cardiovascular diseases
[115, 116]. In the heart, the cardiomyocyte mitochondrial
compartment is particularly robust to meet energy requests
for sarcomere contraction [86]. ATP synthesis occurs
through oxidative phosphorylation, a process that relies on
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electron transfer across multimeric complexes on the inner
mitochondrial membrane. As previously mentioned, under
normal conditions, mitochondrial ATP is generated primar-
ily through oxidation of fatty acid and glucose. When trans-
ported inside mitochondria as metabolic intermediates, these
substrates produce nicotinamide adenine dinucleotide
(NADH), reduced flavin adenine dinucleotide (FADH,),
and GTP through the Krebs cycle. NADH and FADH, actu-
ally transport redox energy to the electron transport chain
(ETC), which is then used to generate a proton gradient for
ATP synthesis [117]. Meanwhile, mitochondrial reactive
oxygen species (mt-ROS) are physiologically generated,
mainly from complexes I and III of the ETC [118]. At low
levels, mt-ROS act as intracellular messengers during cardiac
remodeling, whereas at high levels they are responsible for
damage to mitochondrial DNA (mt-DNA) and proteins;
this in turn impairs transcription of mitochondrial genes
coding for components of the ETC, affecting energy
production [119].

It has been demonstrated that angiotensin II increases
mt-ROS in mice, contributing to cardiac fibrosis and hyper-
trophy, both of which are crucial for cardiac remodeling, as
discussed above. Interestingly, both fibrosis and hypertrophy
are reduced in Ang-II-treated genetic mice overexpressing
mitochondrial catalases, suggesting that antioxidant thera-
pies may prevent cardiac remodeling [120]. In the same
study, the authors showed that mt-ROS-induced cardiac
remodeling is mediated by the activation of ERKI/2.
Recently, Sirtuin 4 overexpression was found to exacerbate
cardiac hypertrophy induced by angiotensin-II, and to
impair cardiac function through an increase of mt-ROS and
a concomitant reduction of manganese superoxide dismutase
(MnSOD) [121]. Moreover, Shiomi et al. demonstrated a
reduction in LV remodeling after myocardial infarction in
transgenic mice overexpressing glutathione peroxidase, an
enzyme that reduces ROS [122]. Similarly, overexpression
of peroxiredoxin-3, a mitochondrial antioxidant protein,
has also been shown to improve mitochondrial function,
reduce cardiac fibrosis and myocyte hypertrophy, and ame-
liorate LV function [123]. Interestingly, in vivo activation of
mitochondrial aldehyde dehydrogenase 2 (ALDH2), a pro-
tein involved in detoxifying mitochondrial reactive aldehydes
generated during oxidative stress, was shown to be able to
rescue pathological ventricular remodeling after MI by
reducing myocardial fibrosis and hypertrophy and by restor-
ing mitochondrial function [124].

Excessive ROS production does not represent the only
feature of mitochondrial dysfunction. It has been demon-
strated that during progression of cardiac remodeling, there
is significant downregulation of genes involved in mitochon-
drial biogenesis, such as PGC-1a and PGC-1p, p38-MAPK,
and mitochondrial transcription factor A (TFAM). For
example, mice lacking PGC-1« displayed a more rapid pro-
gression towards heart failure after transverse aortic constric-
tion [125]. Similarly, PGC-1 was shown to be responsible
for mitochondrial dysfunction resulting from accelerated
myocardial hypertrophy following pressure overload [126].
Furthermore, expression of p38-MAPK was found to be
reduced after MI, leading to an impaired capability to oxidize
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fatty acids, which in turn contributes to LV dilatation [127].
Interestingly, in vivo overexpression of TFAM in a mouse
model of MI improved mt-DNA copy number and mito-
chondrial complex activity, while reducing myocyte hyper-
trophy, interstitial fibrosis, apoptosis, and chamber
dilatation, thus slowing down the overall progression of LV
remodeling [128].

7. Autophagy Dysregulation and Apoptosis

Autophagy is an evolutionarily conserved mechanism for cel-
lular homeostasis in which the macromolecular constituents
of protein and mitochondria are turned over and recycled for
energy production, protein synthesis, and the biogenesis of
organelles [129]. Autophagy allows the sequestration of por-
tions of cytoplasm by double membrane vesicles called
autophagosomes that deliver their content to lysosomes for
ultimate digestion [130]. Autophagic regulation relies on
both internal and external stimuli, including inflammatory
signals such as TNFa«, which triggers the NF-xB pathway,
and DAMPs, which signal through intra- and extracellular
PRRs [131]. It has been recently demonstrated that unmethy-
lated mt-DNA that has evaded autophagy is recognized as a
DAMP by TLR-9, whose deletion is protective in a TAC
model of pressure overload [132].

It has been shown that induction of autophagy exerts car-
dioprotective effects in several cardiovascular pathologies. In
fact, autophagy represents an adaptive mechanism adopted
by the heart in response to stress conditions. However, pro-
longed states of high activation may be detrimental [133].
Autophagy is upregulated during MI as an adaptive response
to nutrient deprivation [134], oxidative stress [78], and hyp-
oxia [135]. Cardiac remodeling is reduced in a mouse model
of I/R with impaired autophagy through Beclin-1 heterozy-
gous deficiency, compared to wild-type [136]. Interestingly,
Zue and colleagues have shown in a model of pressure over-
load that modulation of autophagy, achieved through Beclin-
1 deletion and overexpression, improved or exacerbated
pathological remodeling, respectively [137]. Moreover, in a
TAC pressure-overload murine model, the administration
of pleiotropic HDAC inhibitors, such as trichostatin A, was
found to suppress autophagy and attenuate cardiac hypertro-
phy, suggesting that these are inversely correlated processes
[138]. In fact, cardiac-specific deficiency of Atg5 (autophagy-
related 5) in mice [139] or 3-adrenergic stimulation, facilitates
myocardial hypertrophy [140], whereas rapamycin-induced
autophagic activation can prevent it [141]. Studies on the role
of autophagy in cardiovascular diseases have proven that
intensity, duration, and contingent activation of autophagy
with other signaling pathways are key determinants in cardiac
response to pathogenic insults.

Many signaling pathways are involved in the regulation
of autophagic flux. For example, we have previously shown
that mTOR signaling, a strong negative regulator of autoph-
agy, represents the main molecular switch through which
autophagy is inhibited [142]. In fact, mTOR inhibition
through rapamycin, everolimus, or lentivirus-mediated over-
expression of miR-99a induces autophagy and mitigates
cardiac remodeling, whereas autophagic flux inhibition with

bafilomycin Al aggravates post-MI dysfunction and remod-
eling [143-145]. Interestingly, inhibition of AMPK, a well-
known mTORC-1 upstream negative regulator that senses
cytoplasmic AMP concentration, was also found to impair
autophagy via an increased interaction between B-cell lym-
phoma (BCL)-2 and Beclin-1 [142]. This is consistent with
our previous study demonstrating the same mechanism for
Mst-1-dependent autophagy suppression [78].

As discussed above, Mst-1 appears to be a fundamental
link between autophagy and apoptosis. In fact, it was previ-
ously shown that Mst-1 is inhibited by mTORC-2, thereby
improving cardiac response to stress [75]. Recent studies
have shown that although excessive activation of autophagy
may lead to cell death, normal physiologic activation actually
protects cells from apoptotic death [146]. Indeed extensive
crosstalk has been reported between autophagy and apopto-
sis in the adult myocardium. The opposing nature of these
two phenomena is based on the interaction between Beclin-
1 and Bcl-2 family members, whose phosphorylated active
forms inhibit mitochondria outer membrane perme-
abilization (MOMP), consequently preventing initiation of
the apoptotic intrinsic pathway. Beclin-1 is part of a class
III PI(3)K complex and, along with VPS-34 and VPS-15, is
responsible for the formation of autophagic vesicles. Phos-
phorylation of Bcl-2 by several regulatory kinases, such as
JNK, strongly reduces Bcl-2 affinity for Beclin-1, resulting
in the interruption of the sequestration process that inhibits
autophagy [147, 148]. Moreover, apoptosis activation
impairs autophagy through direct caspase-mediated cleavage
of Atg-4D and Atg-5 [129, 133]. Lastly, AMPK suppression
results in the activation of mTORCI. This in turn phosphor-
ylates and inhibits ULK-1, an autophagy activator upstream
of the class III PI3K complex [149].

Progressive cell death in the chronically overloaded heart
is considered among the leading causes of cardiac remodeling
[150]. Several cytokines, through an increase in ROS levels
and GPCR signaling, can trigger apoptosis in the failing
ischemic or overloaded heart [119]. A plethora of GPCRs
converges on kinases, such as Askl, p38-MAPK, JNK, PKC,
and CAMKII. CAMKII acts as a crosslink between calcium
dysregulation and ROS production [151]. Moreover, CAM-
KII is additionally activated by ROS and is upregulated
downstream of AT-II GPCR signaling by NOX-4 [152].
However, the activity of previously mentioned factors
(e.g., AKT, PIM-1, GSK-3f) can counteract proapoptotic
stimuli [153].

Recently, a novel form of controlled cell death, termed
programmed necrosis or “necroptosis,” has shown a promi-
nent role in many pathologies, including cardiovascular
diseases. It is described by loss of cytoplasmic and mitochon-
drial membrane integrity, with a consequent dispersion of
DAMPs and other proinflammatory stimuli [154].

8. Clinical and Translational Perspectives

To date, several drugs are already known to exert beneficial
effects in cardiac remodeling, slowing progression towards
heart failure [155]. Nonetheless, novel targets and strategies
are needed to expand therapeutic options and to increase
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biological and clinical efficacies. Since the early nineties, a
variety of randomized clinical trials has demonstrated a ben-
eficial effect of ACE inhibitors, mineralocorticoid receptor
blockers, and angiotensin receptor blockers (ARBs) [155].
These inhibitors of the RAAS act at different points of the sig-
naling cascade of angiotensin II, which can induce cardiac
remodeling independently of changes in blood pressure
[156]. Nevertheless, control of blood pressure remains an
important protective therapeutic strategy after MI. Unfortu-
nately, other agents have been less successful in the clinical
setting. The vasopressin antagonist tolvaptan improved
patient symptoms in the EVEREST trial but ultimately did
not improve long-term mortality or HF-related morbidity
[157]. Similarly, endothelin-1 is thought to have a cardiac
hypertrophic effect through transcriptional and posttransla-
tional modifications, increasing cardiomyocyte growth and
contractility [158]. Yet endothelin-1 antagonists have not
shown mortality benefit in the ENCOR, RITZ-4, and EARTH
clinical trials [159-161].

B-adrenergic receptor blockers are also extensively used
to reduce adverse cardiac remodeling, although controversial
results have emerged from clinical trials [162]. Treatment
with B-blocking agents opposes adverse remodeling at both
the molecular and organ levels [163-165]. A recent report
has also shown a significant clinical and biological correla-
tion between f3-blocker treatments in patients and features
of reduced profibrotic potential of resident cardiac progeni-
tor cells [166]. Interestingly, excessive adrenergic drive in situ
may also affect the myofibroblast potential of resident pro-
genitors through p2-signaling [167], contributing to detri-
mental profibrotic conditions. Resident progenitors are
known to contribute to cardiac homeostasis and can be
exploited for therapeutic purposes [168-170]. In fact, cardiac
cell therapy using resident progenitors has also been shown
to exert therapeutic effects through paracrine antifibrotic
mechanisms [171]. These studies highlight how f-blockers
may act at multiple levels and on different mechanisms of
fibrosis and remodeling. They also suggest how different
approaches, such as S-blockers and regenerative therapy,
may be integrated to obtain adjuvant or synergic effects.

Other strategies can also be developed to increase the effi-
cacy of B-blockers. In fact, experimental gene therapy with an
engineered catalytically inactive G-protein receptor kinase-2
(B-ARK,,) reduced fB-receptor internalization and degrada-
tion, augmenting f-blocker effects in a rodent model of heart
failure [172, 173]. The same was reported in failing human
myocytes [174].

Nonetheless, since cardiac remodeling is a complex mul-
tifactorial process, gene therapy directed to single genes may
not be efficient enough in clinical settings. Interestingly, dif-
ferent combined approaches based on transcription factors
and miRs are showing encouraging results. For example,
antago-miR mediated inactivation of miR-25, which is selec-
tively upregulated in cardiomyocytes from TAC-overloaded
hearts and targets mRNAs such as sarcoplasmic reticulum
calcium ATPase 2a (SERCA2a) and inositol-3"-phosphate
receptor-1 (IP3R1), improves calcium reuptake and myocar-
dial contractility during HF [175]. The same effect has been
obtained through adenoviral overexpression of SERCA2a
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[176]. Based on this rationale, and considering the increased
mortality reported in long-term treatment with positive ino-
tropic agents, an adeno-associated virus AAV1/SERCA2a
was created and used in the CUPID clinical trial, with long-
term safety and efficacy [177].

Gene transfer has also been therapeutically explored to
achieve neocardiomyogenesis. In fact, overexpression of the
oncogenic miR-17 to miR-92 cluster was sufficient to induce
cardiomyocyte proliferation [178]. Moreover, direct fibro-
blast reprogramming into beating cardiomyocyte-like cells
was performed through concomitant gene transfer of
GATA-4, heart and neural crest derivatives-expressed pro-
tein (HAND)-2, T-box transcription factor (TBX)-5, and
MEF-2 [179]. In vivo gene transfer of these transcription
factors after MI attenuated fibrosis and cardiac dysfunc-
tion [179]. Interestingly, it was recently shown that hyper-
trophy and fibrosis could also be treated with the
administration of epigenetic drugs, such as the DNA
methylation inhibitor 5-azacytidine or the previously men-
tioned HDAC inhibitors [180].

In conclusion, despite the promising strategies that have
been proposed and developed, a collective and integrated
translational effort is needed to find the most effective and
safe strategy to reach the ambitious goal of successfully treat-
ing cardiac remodeling.
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