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Abstract: The security of resource-constrained devices is critical in the IoT field, given that everything
is interconnected. Therefore, the National Institute of Standards and Technology (NIST) initialized the
lightweight cryptography (LWC) project to standardize the lightweight cryptography algorithms for
resource-constrained devices. After two rounds, the NIST announced the finalists in 2021. The finalist
algorithms are Ascon, Elephant, GIFT-COFB, Grain-128AEAD, ISAP, PHOTON-Beetle, Romulus,
SPARKLE, TinyJambu, and Xoodyak. The final round of the competition is still in progress, and
the NIST will select the winner based on their and third-party evaluations. In this paper, we review
the 10 finalists mentioned above, discuss their constructions, and classify them according to the
underlying primitives. In particular, we analyze these ciphers from different perspectives, such
as cipher specifications and structures, design primitives, security parameters, advantages and
disadvantages, and existing cryptanalyses. We also review existing analyses of these finalists with a
specific focus on the review of fault attacks. We hope the study compiled in this paper will benefit
the cryptographic community by providing an easy-to-grasp overview of the NIST LWC finalists.

Keywords: lightweight cryptography; NIST LWC competition; algorithms; IoT; fault analysis

1. Introduction

In the era of IoT, it is essential to have smaller, low-cost, and low-power devices
for various purposes. For instance, a cardiac implant installed inside a patient’s body
must be small and operate for a long time without recharging or replacing the battery.
These are commonly identified as resource-constrained devices, and security is essential
for most of these devices. The concern is that the limited resources on these devices may
cause performance issues when the standard cryptographic algorithms are running on
them. Therefore, in recent years, researchers have been working on developing lightweight
cryptography and various efficient cryptographic technologies [1–3]. Figure 1 illustrates
the design trade-offs for lightweight cryptography. Its requirements are constrained by
security, low-cost and high-performance. These requirements are balanced accordingly
by adjusting the key size, the number of encryption rounds and the system architecture;
key size can be lesser number of bits (e.g., 64 bits), achieving lower cost while sacrificing
the level of security to some extent, or reducing the number of rounds (e.g., 16 rounds),
achieving higher performance while sacrificing the level of security to some extent, or a
parallelized system can be designed to achieve higher performance while incurring more
cost, etc. Thus, the target of lightweight cryptography is to find a better balance between
performance and security within cost costraints.

To find a better balance between performance and security for resource-constrained
devices, the NIST initiated the Lightweight Cryptography (LWC) project in 2013 [4]. In the
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LWC project, NIST and independent researchers study the performance of existing cryp-
tographic standards and endeavour to develop new lightweight cryptography standards.
In 2018, NIST published the submission requirements and evaluation criteria for the LWC
competition [5]. After the call, 57 algorithms were submitted to the competition. The
NIST eliminated one of the algorithms from these submissions as it did not fulfill the
requirements. After the first round, 32 algorithms were advanced to the second round.
Subsequently, the third round of the competition began in 2021 after NIST announced the
finalists of the competition.

Figure 1. Lightweight cryptography: design trade-offs.

A complete specification of the algorithm and reference implementations are essential
among the requirements specified by the NIST. The specification document shall contain
the details of the algorithms, related mathematical operations, equations, design decisions,
and a design rationale. The submission may be a family of algorithms and could introduce
a hash function. Moreover, all proposals must be Authenticated Encrypted Authenticated
Data (AEAD) [6] algorithms. In addition, the specification shall contain a statement of the
security strength and details on known cryptographic attacks, including the complexities.

1.1. Related Works

Jimale et al. [7] conducted a systematic literature review for classifying authenticated
encryption (AE) schemes. Their study comprises a broad range of AE schemes, including
submissions from the CAESAR and NIST LWC competitions. They analysed the designs
based on the design approaches, security properties, and functional features; however, their
research did not cover third-party analyses of the AE schemes.

Elsadek et al. [8] evaluated the 10 NIST LWC finalists from the perspective of hardware
design efficiency. In particular, their work analysed energy efficiency using bit/joule as
one of the primary metrics. They also evaluated the throughput and area of these finalist
algorithms. Their result concludes that some ciphers, for example, TinyJambu, Xoodyak
and ASCON, outperform others in terms of energy efficiency. This work provides insight
into some aspects of the performance of the finalist algorithms; however, along with the
performance, other features such as security and cost should also be considered while
making the final decision.

Pugh et al. [9] conducted a systematic review of the implementations of the NIST
LWC submissions. Their study mainly focused on systematically testing the algorithms
to identify potential bugs. Based on the testing framework presented in this work, they
reported bugs in some early submissions.
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To the best of our knowledge, there are currently no existing reviews that analyse the
10 finalists of the NIST LWC project from different perspectives, such as cipher specifications
and structures, design primitives, security parameters, advantages and disadvantages,
and existing cryptanalyses. We note that in the previous cryptographic competitions, for
example, CAESAR competition [10], similar reviews have been conducted, which present
an overview of different ciphers from the CAESAR competition. We believe similar analyses
presented in this paper will help the cryptographic community to better understand the
current status of the finalist algorithms.

1.2. Our Contribution

We conducted a detailed literature review of the 10 finalists. Our study focuses on
finalist algorithms’ specifications and their structures, design primitives, security parame-
ters, advantages, and disadvantages. Our work also summarizes the existing cryptanalyses
of these ciphers. Apart from summarizing the existing cryptanalyses, we specifically fo-
cused on reviewing the current and potential fault analyses of the NIST LWC finalists.
The lightweight ciphers are primarily used in resource-constrained IoT devices. These
devices’ environments may not be physically secure, allowing attackers to access them
physically and perform side-channel attacks, such as fault attacks. The fault attacks are
highly effective against lightweight ciphers compared to classical cryptanalysis. The nature
of the physical environment in which these ciphers operate makes them more vulnerable
to such attacks. Therefore, it is crucial to evaluate the security of such ciphers against fault
attacks. This motivates us to focus our review of security analyses towards the direction
of fault attacks. Lastly, we have identified several open research problems that warrant
further investigations.

1.3. Organization of the Paper

Section 2 presents the cryptographic primitives and constructions that are used in
the 10 NIST LWC finalist algorithms. The discussion of these underlying primitives and
constructions will be helpful to understand Section 3, where the specifications of all the
finalist algorithms are presented. The section starts with a summary of a comparison of
the major aspects of the algorithms. Then, a description of each one of the algorithms is
provided within each subsection. Section 3 also contains a summary of the previously
known cryptanalyses on the finalist algorithms. As mentioned earlier, we are only focusing
on the fault attacks in this paper. Section 4 contains detailed descriptions of the fault
attacks that might be applicable or already applied to lightweight cryptographic algorithms.
Section 5 contains the conclusion of the paper.

2. Constructions and Primitives of Lightweight Cryptographic Algorithms

In this section, we review different design constructions, such as sponge, duplex,
and photon. Furthermore, we also discuss different cryptographic primitives used in
constructing the NIST LWC finalists.

2.1. Sponge

The Sponge construction proposed by Bertoni et al. [11] is a recent work and one of
the most commonly used primitives among the finalists of the NIST LWC competition.
Although its main purpose is to construct secure hash functions, certain properties make
the Sponge construction suitable for authenticated encryption, especially lightweight ones.
It is an iterative construction that acts akin to a random oracle but might suffer from the
inner state collision. The structure of the Sponge function is simple and efficient, which
makes it attractive for lightweight cryptography. The function takes a variable-length
input and produces an infinite-length output. It consists of a fixed-size state and two main
procedures; absorbing and squeezing. The state is divided into two parts; one is kept secret,
while the other is used to produce the output using the input. Each iteration of the Sponge
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function absorbs a fixed-length portion of the input, performs a transformation on the
entire state, and produces the output in the squeezing phase.

As the designers claim, when the Sponge function is used as a hash function, the
complexity to produce an inner collision is 2(c+3)/2 (c is the size of the inner state or the
capacity). The complexity of an output collision is 2(c+3)/2 where n is the output length
or the digest length. Bertoni et al. further claim that a sponge-based hash function is
secure against pre-image and second pre-image attacks. They also defined the use of
Sponge construction for authenticated encryption functions and stream ciphers. This
is achieved by storing the secret value (the key) in the inner state since it will not be
exposed to the output directly. The secrecy of the key will increase as the capacity increases.
Sponge construction-based algorithms, such as SPONGET, KECCAK, and PHOTON, are
the underlying primitives for several of the NIST LWC finalists.

2.1.1. SPONGENT

SPONGENT [12] is a permutation function based on the Sponge construction. It is
used as a cryptographic primitive in Elephant [13] and a few other LWC algorithms. More-
over, the permutation used in SPONGENT is related to PRESENT [14]. It has 13 variants,
including SPONGENT-128/256/128, SPONGENT-160/320/160, SPONGENT-224/448/224,
and SPONGENT-88/80/8. The permutation consists of ICounter that is updated using a lin-
ear feedback shift register (LFSR), a substitution layer with a 4-bit S-box, and a permutation
layer.

The designers Andrey et al. [12] claim that the design of the SPONGENT prevents the
linear hull effect, which is the main weakness of the PRESENT cipher. Furthermore, it has an
upper bound of the differential characteristic probability of 2−28 over six rounds. Another
vital claim in their work is that it provides resistance against differential cryptanalysis.
Moreover, the SPONGENT provides sound security against collision and pre-image attacks
when used as a hash function. Further, it also provides security against linear attacks.
Finally, the SPOGENT can be easily implemented in hardware using a minimum gate area
as small as 738 GE for SPONGENT-88/80/8 variant.

2.1.2. KECCAK

KECCAK [15] is a family of Sponge-based cryptographic algorithms that are used in
ISAP [16], Elephant [13], and many other lightweight cryptographic algorithms. Its design
is simple and flexible, and it has many variations. Moreover, KECCAK-f permutation is
bit-oriented and parallelizable on hardware that supports SIMD and CPU pipelining. The
permutation used in KECCAK is known as KECCAK-f and has seven variations. These
variations have state sizes varying from 25 to 1600 bits and have different numbers of
rounds depending on the state size. The permutation consists of a few different mapping.
As the designer indicated, these mappings provide differential propagation properties,
correlation properties, and some other properties to the permutation that make it secure
against many differentials and linear cryptanalyses, such as higher-order differential attacks,
impossible differential attacks, differential-linear attacks, boomerang attacks, and integral
attacks. Furthermore, the asymmetric properties of different rounds prevent slide attacks.

2.1.3. PHOTON

PHOTON [17] is another family of lightweight cryptographic hash functions designed
for resource-constrained devices. Similar to SPONGENT and KECCAK, it also has a
Sponge-based construction. Although it is introduced as a hardware-oriented design, it can
also be easily implemented in software. It is used as the permutation function in the NIST
LWC finalist algorithm PHOTON-Beetle [18] and other lightweight cryptographic schemes
such as ORANGE [19]. It is a new version of the Sponge function, called the extended
Sponge framework. It uses a different capacity in the squeezing phase than in the absorbing
phase. The advantage of this construction is that it provides better pre-image resistance
depending on the new capacity size used. The PHOTON uses a permutation similar to AES
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to update the state. However, the implementation of the permutation requires much less
gate area compared to the most lightweight implementation of AES permutation. Several
variants of the PHOTON hash function were proposed based on the output size (from 64 to
256 bits).

The designers claim that the security of the permutation can be easily proven because
of its AES-like structure, especially resistance against differential and linear cryptanalyses.
The rebound and super-box attacks are recent and effective cryptanalysis methods on AES-
like hash functions. According to the security analyses of these two types of attacks, the
data and time complexities are very high for PHOTON. Moreover, the PHOTON provides
resistance against cube testers and algebraic attacks.

2.2. Duplex

Duplex mode [20] is a cryptographic construction similar to the Sponge permutation. It
is designed to use the Sponge construction to generate a message digest (MAC) more easily
than the Sponge-based constructions. Moreover, it is one of the first complete authenticated
encryption constructions that can be used for permutation-based ciphers without a key
scheduling algorithm. Apart from this, it has some special use cases, such as pseudo-
random bit generation. It is used to construct well-known lightweight cryptographic
algorithms such as Ascon. The Duplex function takes three inputs: plaintext, a data header
(or associated data), a key to produce the ciphertext and a tag as the message authentication
code (MAC). This procedure is known as wrapping (SpongeWrap). The decryption process
(known as unwrapping) expects the key used for wrapping, the ciphertext, associated data,
and the tag as the input. Then, it produces the plaintext if the tag is correct or an error if
the tag is invalid. It is easy to see that these properties correspond with the requirements
of the NIST lightweight cryptographic competition, which makes it a suitable choice for
lightweight AEAD algorithms. The duplex construction is based on Sponge construction.
However, unlike the sponge construction, it can use the same state used for the previous
encryption call. In other words, it maintains the state between encryption (or decryption)
calls [20]. The authors call this “duplexing”. Further, the instance of this construction is
called the “duplex object”.

It is shown that security against generic attacks can be easily proven. In addition, the
designers also state that it provides the flexibility to choose the bit rate and the padding
function. Moreover, a duplex construction allows a simple permutation as the transition
function. However, it also has some disadvantages. Duplex-based encryption cannot be
executed in parallel since it requires the state from the previous call. Another downside
is that it does not support nonce naturally, which results in encrypting the same message
sequence multiple times to produce the same output.

2.3. Tweakable Block Cipher

Many cryptographic algorithms have modes of operation that produce different out-
puts for the same inputs each time. However, the cryptographic primitives are not designed
for such variation. Tweakable block cipher is a well-known technique proposed by Moses
et al. [21] to construct a block cipher primitive with variability in the output. According
to Moses et al., the main advantage of using such a cryptographic primitive is efficiency.
The main difference between a regular block cipher and a tweakable block cipher is that
a tweakable block cipher takes an extra parameter known as the tweak for an input. The
tweak is a value that provides variations in the output for the same inputs.

A regular block cipher can be used to produce a secure and effective tweakable block
cipher. However, constructing a tweakable block cipher from a standard block cipher
requires careful design since a weak construction may worsen the security of the original
block cipher. Moses et al. described a few methods to construct a tweakable block cipher
from a regular one. For instance, XOR-ing the output of a block cipher with the tweak and
encrypting again is a way to construct a secure cipher. The designers also suggest a few
modes of operations for tweakable block ciphers, namely Tweak Block Chaining (TBC),
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Tweak Chain Hash (TCH), and Tweak Authenticated Encryption (TAE). The NIST LWC
finalist Romulus uses the tweakable block cipher Skinny as its underlying primitive (refer
to the section detailing Romulus for more details).

There are a few research opportunities related to tweakable block ciphers. For instance,
analyzing the security of the modes of operations associated with the tweakable block
cipher and defining and analyzing a tweakable stream cipher are open problems.

2.4. Grain

Grain is a lightweight stream cipher first introduced by Hell et al. [22]. The idea of
Grain stream cipher is used to construct the finalist Grain128-AEAD [23]. It was designed
for hardware applications where a high encryption/decryption speed is required using a
minimum gate count. It is efficient in software as well. The design of Grain consists of both
linear and non-linear feedback registers.

3. Specifications of NIST LWC Finalist Algorithms

The 10 finalist algorithms of the NIST LWC project are Ascon, Elephant, GIFT-COFB,
Grain-128AEAD, ISAP, PHOTON-Beetle, Romulus, SPARKLE, TinyJambu, and Xoodyak.
We briefly review the specifications and constructions of these ciphers. Table 1 provides a
comparison between the NIST LWC finalist algorithms in terms of the underlying primitive,
mode of operation, sizes of the state, the key and the tag. As shown in Table 1, the majority
(seven) of the finalists are sponge permutation-based constructions, whereas the finalists
include two block cipher-based and one stream cipher-based constructions. More details
on their constructions are followed in the below subsections.

3.1. Ascon

Ascon [24] is a block cipher encryption with two variations; Ascon-128 and Ascon-
128a. It is also one of the algorithms in the final portfolio of the CAESAR competition [24].
The Ascon team has developed a new variation called Ascon-80pq, which is secure against
quantum key search. The submission also consists of two hash functions, namely Ascon-
HASH and Ascon-HASHA. The Ascon is based on a 320-bit permutation structure and is
designed to perform well in hardware and software. The Ascon-128 and the Ascon-128a
have a 128-bit key, 128-bit nonce, and 128-bit tag. The data block sizes of the Ascon-128 and
the Ascon-128a are 64 bits and 128 bits, respectively. All these parameters are fixed. The
initial value of the state consists of the key and nonce. The Ascon is based on a duplex mode
of operation, more specifically, the MonkeyDuplex. The encryption and the decryption
algorithms have a finalization phase to produce the Message Authentication Code (MAC).

The specification of Ascon states a few security claims. All variations of the Ascon
provide 128-bit security. The designers claim that it is secure even when the nonce is reused
a few times accidentally. They indicated an attacker could not recover the key, even if the
internal state is known for a few rounds and the complexity of a key recovery attack is
296 for the Ascon-128a and 2128 for the Ascon-128. The authors state the special variation,
Ascon-80pq, has resistance against Grover’s algorithm-based key search attacks due to the
increased key size. The hash functions of Ascon have security against collision attacks and
pre-image attacks and also provide resistance against length extension attacks and second
pre-image attacks. Furthermore, Ascon provides robust security against timing attacks due
to its bit-sliced S-boxes. Ascon also contains details about the expected performance; as the
authors claim, Ascon has better performance since its operations are based on 64-bit words
and only use bit-wise operations. They have measured the throughput as 4.9–7.3 Gbps
on less than 10 kGE hardware. Additionally, Ascon does not need any inverse operation,
which also makes it efficient.
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Table 1. A summary of the specifications of the NIST LWC finalist algorithms

Name Type Variant Underlying
Primitive State (Bits) Key (Bits) Mode of

Operation Rate/Block (Bits) Tag (Bits) Security (Bits)

Ascon Sponge Ascon-128 Ascon-p 320 128 Duplex 64 128 128
Ascon-128a Ascon-p 320 128 Duplex 128 128 128

Elephant Sponge
Dumbo Spongent 160 128 Elephant 160 64 112
Jumbo Spongent 176 128 Elephant 176 64 127

Delirium Keccak 200 128 Elephant 176 128 127

GIFT-COFB Block GIFT-COFB GIFT-128 192 128 COFB 128 128 128

Grain-128AEAD Stream Grain-128AEAD N/A 256 128 N/A 1 64 128

ISAP Sponge

ISAP-K-128 Keccak 400 128 ISAP 144 128 128
ISAP-A-128 Ascon-p 320 128 ISAP 64 128 128

ISAP-K-128A Keccak 400 128 ISAP 144 128 128
ISAP-A-128A Ascon-p 320 128 ISAP 64 128 128

PHOTON-Beetle Sponge PHOTON-Beetle-AEAD[128] PHOTON256 256 128 Beetle 128 256 121
PHOTON-Beetle-AEAD[32] PHOTON256 256 128 Beetle 32 256 128

Romulus Block
Romulus-N Skinny-128-384 384 128 COFB 128 128 128
Romulus-M Skinny-128-384 384 128 COFB 128 128 128
Romulus-T Skinny-128-384 384 128 COFB 128 128 128

SPARKLE Sponge

SCHWAEMM128-128 SPARKLE 256 128 SPARKLE 128 128 120
SCHWAEMM256-128 SPARKLE 384 128 SPARKLE 256 128 120
SCHWAEMM192-192 SPARKLE 384 192 SPARKLE 192 192 184
SCHWAEMM256-256 SPARKLE 512 256 SPARKLE 256 256 248

TinyJambu Sponge TinyJambu TinyJambu 128 128 TinyJambu 32 64 120

Xoodyak Sponge Xoodyak Xoodoo 384 128 Cyclist 352 128 128
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Besides the security and performance claims, the Ascon specification also contains a
design rationale that provides great details about the design decisions. For instance, Ascon’s
Sponge-based structure gives several advantages, such as proven security, flexibility, and
simplicity. Moreover, the specification provides a guide on how to select the correct member
of the family. The authors have provided a summary of known attacks performed by third
parties and their own analyses. The best-known analyses listed are zero-sum attack, integral
attack, differential attack, linear attack, zero-correlation attack, impossible differential
attack, and subspace trail attack. When the numbers of rounds are is 12, the complexity of
these attacks is much higher than 2128, which is acceptable in resource-constrained cases.
Other than the attacks, it also analyses differential, linear and algebraic properties.

Nevertheless, there is a clear gap in practical side-channel attacks tested on the Ascon.
Therefore, it is a direction for new research on side-channel attacks on the Ascon. Finally, the
Ascon contains an implementation section that contains performance-related measurements
such as cycles per byte. However, it does not include performance characteristics on low-
end devices such as 8-bit microcontrollers.

3.2. Elephant

The second algorithm on the LWC finalist list is Elephant [13]. It is also a block cipher
based on permutations. It uses the encrypt-then-MAC procedure for authentication. The
Elephant’s inverse-free design is parallelizable in software and hardware. It has three
variations, namely, Dumbo, Jumbo, and Delirium. The main variation, Dumbo and Jumbo,
are based on Spongent [12] hashing, while Delirium uses Keccak [25] as its primitive. All
three variants use LFSR for masking. Furthermore, Dumbo, Jumbo, and Delirium have
block sizes of 160-bits, 176-bits, and 200-bits, respectively. The main masking used in
authenticated encryption consists of an LFSR and a permutation (Spongent or Keccak).
This will be XORed with the plaintext to produce the ciphertext in the encryption, and the
ciphertext will be XORed with the mask to recover the plaintext. The Elephant presents
specifications for the permutations for all three variations – the tag size for Dumbo and
Jumbo are 64 bits, and for Delirium, it is 128.

The Elephant contains detailed analyses of formal multi-user security of the authen-
ticated encryption mode. The authors have derived an upper bound for the advantages
of the adversary in breaking the security. The authors claim that Dumbo, Jumbo, and
Delirium versions achieve 112-bit, 127-bit, and 127-bit security, respectively. The security
analysis section of the Elephant contains a theoretical analysis of differential, linear, and
integral cryptanalysis on Spongent and Keccak permutations.

However, it needs more information about the third-party cryptanalysis on the cipher.
There are no details about the side-channel attacks on the Elephant. It only provides a list of
third-party cryptanalysis of Spongent and Keccack. In other words, Elephant needs more
third-party security analysis.

3.3. GIFT-COFB

GIFT-COFB [26] is a lightweight cryptography algorithm based on the GIFT block
cipher. The GIFT-COFB supports authenticated encryption using Combined FeedBack
(COFB) mode. It does not require expensive inverse operations to decrypt. The recom-
mended parameters are a 128-bit block and a 128-bit tag. The cryptography primitive used
in the GIFT-COFB is GIFT-128 [27]. It is a 40-round substitution-permutation network
(SPN) cipher with a 128-bit key. The main round function of the GIFT-128 consists of four
main phases: initialization, cell substitution, bits permutation, and round key addition. It
also requires a key scheduling mechanism and round constants. In addition, the GIFT-128
has a look-up table (LUT) based variant [27] to improve the runtime by using more space.

The authors have presented a hardware performance. According to that, the hardware
implementation of the GIFT-COFB needs a gate area of 3927 GE. Moreover, it requires
40 cycles to encrypt a block of plaintext. GIFT-COFB contains details about the VHDL-
based implementation and synthesis. The power consumption of this implementation
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is 156.3 µW. The energy efficiency details consist of a comparison of some of the other
modes of the GIFT-COFB. As the authors stated, GIFT-COFB can be implemented efficiently
in software using the bit-slice method. Further, it uses efficient bitwise operations such
as xor for the permutation. However, the GIFT-COFB is not parallelizable by design.
Besides the performance details provided by the authors, it also contains summaries of
software implementations and benchmarking provided by third parties. The security
analysis provides the upper bound for the advantage of an adversary who tries to break
the GIFT-COFB authenticated encryption. The authors claim that the GIFT-COFB has 64-bit
security against IND-CPA and 58-bit security against INT-CTXT.

3.4. Grain-128AEAD

Grain-128AEAD [23] is one of the few stream ciphers in the NIST LWC competition. It
is based on the well known cipher Grain [22]. It consists of a 128-bit key and a 96-bit nonce.
The structure of Grain-128AEAD is designed using two major components, the pre-output
generator and the authenticator generator. The pre-output generator consists of a 128-bit
NFSR and a 128-bit LFSR. The authenticator generator consists of an accumulator and a
shift register. In the initialization phase, the NFSR and the LFSR are initialized with the key
and the nonce. After the initialization, the pre-output generator generates a stream of bits
which is later XORed with the plaintext to produce the ciphertext. An important feature
mentioned in Grain-128AEAD is that it supports an AEAD mask. It allows us to define
which bits are plaintext and which bits are additional data. As the authors state, this will be
important when designing new communication protocols since the position of the header
can be defined easily.

The Time/Memory/Data trade-off (TMD-TO) is a type of attack that many stream
ciphers are not secure against. The internal state of the Grain-128AEAD cannot be recon-
structed; hence a TMD-TO attack has a complexity of 2128. The authors claim that it is also
secure against algebraic attacks due to the large algebraic degree of the output function.
A reused key/nonce pair might cause leakage of information about the plaintext. There-
fore, it is not allowed in the Grain-128AEAD. As the authors claim, the Grain-128AEAD
has countermeasures against correlation attacks. The reason is that it has a large state.
However, it states that the Grain-128 cipher has been broken using a dynamic cube attack.
The researchers expect that the improved initialization process will prevent cube and key
recovery attacks and claim that the key recovery attack has a complexity of 296. A few
successful fault attacks have been performed against the Grain.

The single bit-by-bit design of the Grain-128AEAD is highly efficient in hardware
implementations. The researchers have implemented the algorithm using stm065v536.
The Synopsys Design Compiler 2013 is used for synthesis and simulation. They have
recorded the required gate count as 3638.5 GE. When the level of parallelization is 32, the
gate count is 12,110.5. Additionally, the power requirement of the hardware is 313 nW,
and the throughput is 50 kbit/s. Practical cryptanalysis of side-channel attacks is an open
direction for research against Grain-128AEAD.

3.5. ISAP

ISAP [16] is a family of permutation-based authenticated ciphers. The four variants of
the family are ISAP-A-128A, ISAP-K-128A, ISAP-A-128, and ISAP-K-128. The ISAP-A-128A
and the ISAP-A-128 use Ascon-p as their primitive, while the ISAP-K-128A and the ISAP-
K-128 use Keccak-p[400]. Like many other NIST LWC algorithms, ISAP is also powered
by encrypt-then-MAC mode. The ISAP has a re-keying function to generate session keys.
All members of ISAP have a key size of 128-bits. The ISAP-A-128-A and the ISAP-A-128
consist of a 320-bit state, while the ISAP-K-128A and the ISAP-K-128 have 400-bit states.
Furthermore, the ISAP implementation does not require inverse operations.

The authors claim all members of the ISAP provide 128-bit security, and the ISAP is
specially designed to provide security against passive side-channel attacks. It also states
that the re-keying function prevents differential power attacks (DPA) and fault attacks.
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The specific Sponge-based structure helps to improve the resistance against simple power
analysis (SPA) attacks. Nevertheless, the nonce must never be reused with the same
plaintext. Both the Ascon-p and the Keccak cryptographic primitives used in the ISAP have
proven security. There are many published security analyses.

As the authors claim, the design of the ISAP is suitable for lightweight software and
hardware implementation. The hardware implementation of the ISAP-K-128A only needs
a gate area of 12 kGE in the TSMC65nm cell library. The software implementation of
ISAP-A-128A only takes 450 cycles per byte on an AVR ATmega328p microcontroller [16].
Both hardware and software implementations provide robust security against certain
fault attacks, including DFA, SFA, and SIFA. Moreover, the researchers also have taken
countermeasures against tag comparison..

3.6. PHOTON-Beetle

PHOTON-Beetle [18] is another Sponge-based permutation cipher. It is a family of
ciphers designed using the Beetle [28] mode. The PHOTON-Beetle-Hash is the family of
hash functions introduced with it. The PHOTON-Beetle has a 256-bit internal state and
uses a 128-bit tag for authentication. Two recommended variations of the PHOTON-Beetle
are PHOTON-Beetle-AEAD[128] and PHOTON-Beetle-AEAD[32]. They use 128-bit data
blocks and 32-bit data blocks, respectively. The recommended hash function is PHOTON-
Beetle-Hash[32].

According to the security claims, the PHOTON-Beetle-AEAD[128] has 121-bit security
against the IND-CPA and the INT-CTXT [29]. Likewise, the PHOTON-Beetle-AEAD[32] pro-
vides 128-bit security. Moreover, a collision attack and pre-image attack on the PHOTON-
Beetle-Hash has a time complexity of 112-bits and 128-bits. There are two third-party
security analyses of the PHOTON-Beetle-AEAD. Dobraunig and Mennink [30] have per-
formed a generic key recovery attack with a data complexity of 2122.8 and a time complexity
of 2124. The second analysis is a collision attack on the PHTON-Beetle-Hash by Mege [30],
in which the data complexity is 2111.5. The Sponge mode used in the PHOTON-Beetle is
specifically designed for lightweight applications. Unlike the original Sponge mode, the
Beetle Sponge mode uses combined feedback of the permutation to update the state. The
reason behind using this mode in the PHOTON-Beetle is that it prevents the attacker from
processing multiple blocks simultaneously.

The software implementation developed by the researchers of the PHOTON-Beetle
was executed on an 8-bit AVR microcontroller to measure the performance. They imple-
mented a ROM-optimized version and a speed-optimized version for each member of the
PHOTON-Beetle family. The RAM usage of the implementation is around 86 bytes. The
ROM-optimized version uses only 2416 bytes of flash memory, while the speed-optimized
version uses 4364 bytes. The ROM-optimized and speed-optimized versions need 8128.03
and 4835.35 cycles per byte of data, respectively. However, the PHOTON-Beetle documen-
tation lacks details on third-party security analysis of side-channel attacks and hardware
implementation.

3.7. Romulus

The next finalist algorithm in the list is Romulus [31], a tweakable block cipher
(TBC) [21] based on the Skinny block cipher [32]. Romulus has three main variations;
Romulus-N, Romulus-M, and Romulus-T. Among these, Romulus-N is the main variant.
Romulus-M provides security against misused nonce, and Romulus-T is leakage-resilient.
It also consists of a hash function known as Romulus-H. The mode of the Romulus structure
is very similar to the COFB. All three variants of the Romulus encryption have a 128-bit
key, a 128-bit nonce, and a 128-bit tag. The data block size is 128 bits. It allows encrypt-
ing/decrypting 259 bytes of data, including the associated data using a single key-value
pair. Furthermore, the Romulus-H produces 256-bit hash values for any input.

As the designers claim, Romulus-N and Romulus-M provide 128-bit security. Romulus-
M provides 128-bit security even if the nonce is reused. Additionally, Romulus-T offers
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121-bit security. They further claim that the hash function Romulus-H has 121-bit security
against collision, pre-image, and second pre-image attacks. The variant Romulus-M is
secure against the release of unverified plaintext (RUP) attacks. Another claim that authors
have made is that the heavily protected implementation of the Skinny-128-384+ used in the
Romulus-T prevents information leakages for many side-channel attacks. Moreover, the
underlying block cipher, Skinny, is proven to be secure against related-tweaky attacks.

The hardware implementation of the most lightweight variant of the Romulus de-
veloped by the researchers, the Romulus-N, only needs 6325 GEs. The Romulus-M also
requires a similar amount of gate area. However, there is a research opportunity to imple-
ment the Romulus-T on hardware and measure the performance. Further, the study done
by the authors lacks more performance-related metrics, such as throughput and cycles.
In addition to hardware implementation details, it presents the software implementation on
an 8-bit AVR microcontroller, specifically ATmega644. It, too, lacks important performance-
related measurements such as RAM usage and the number of cycles per data byte.

3.8. SPARKLE

SPARKLE [33] is a family of permutation ciphers submitted to the NIST lightweight
cryptography competition. It consists of an authenticated cipher named Sponge-based
cipher for Hardened but Weightless Authenticated Encryption on Many Microcontroller
(SCHEWAEMM), a hash function called Efficient Sponge-based and Cheap Hashing (ESCH).
The SPARKLE is constructed using an ARX structure. However, it has improved against
linear attacks. The three variants of the SCHWAEMM that use 128-bit, 256-bit, and 192-bit
key sizes are known as SCHWAEMM256-128, SCHWAEMM256-256, and SCHWAEMM192-
192, respectively. All of them use a 256-bit state and a 256-bit nonce. The ESCH has a state
size of 384-bits. The ARX structure in the SPARKLE performs XOR and other operations on
32-bit words to improve the performance on low-end and high-end microcontrollers.

SCHWAEMM256-128, SCHWAEMM192-192 and the SCHWAEMM256-256 provide
120-bit, 184-bit and 248-bit security, respectively. Nevertheless, the security levels are only
valid when the nonce is unique. The authors believe a complete state recovery attack will
not be successful in the nonce misused case since the adversary can only control a part
of the state. According to the specification, the permutation is protected against several
differential attacks by bounding the MEDCP using a truncated tail. Furthermore, it can be
theoretically proven that the SPARKLE is secure against linear attacks, Boomerang attacks,
impossible differential attacks, Yoyo games, and zero-correlation attacks.

As the authors state, Alzette, the ARX-box used in the SPARKLE, has properties that
make it possible to run the algorithm parallel up to a certain level. However, it is possible
only when the CPU supports Single Instruction Multiple Data (SIMD). The implementations
were executed on 8-bit AVR and 32-bit ARM microcontrollers. The C implementation of
the SPARKLE256 with 10 rounds needs 992 cycles per byte in the AVR and 46 cycles per
byte in the ARM. In addition, it uses static RAM of 40 bytes, and the code size is 348 bytes.

3.9. TinyJAMBU

TinyJAMBU [34] is an AEAD encryption scheme based on the JAMBU, one of the most
popular contestants in the CAESAR competition. It uses smaller block sizes and a more
lightweight keyed permutation. The main variation, TinyJAMBU-128, uses a 128-bit key
and a 128-bit state. The main component of the keyed permutation is a nonlinear feedback
register (NFRS). The NFSR is used to update the current state. Moreover, the number of
rounds is 640 or 1024, depending on the operation phase of the cipher. The special feature
of this NFSR’s feedback primitive is that 32 updates can be executed in parallel on a 32-bit
CPU. The encryption and decryption algorithms have four main phases, initialization,
processing associated data, processing plaintext/ciphertext, and finalization/verification.
A 64-bit tag is produced in the finalization phase of the encryption algorithm. The other
two variants, TinyJAMBU-192 and TinyJAMBU-256, have 192-bit and 256-bit keys.
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According to the specification, the TinyJAMBU-128 has 112-bit security, while the
TinyJAMBU-192 and the TinyJAMBU-256 have 168-bit and 224-bit security, respectively.
The researchers claim that the TinyJAMBU prevents the recovery of the key even when
the nonce is misused, and the maximum forgery advantage is 2−15. Moreover, the Tiny-
JAMBU provides strong protection against differential forgery attacks. The probability of
successfully performing a differential key recovery attack is as low as 2−83.

The researchers have implemented the TinyJAMBU-128 in hardware to measure the
performance. The NIST LWC Hardware API is used for this purpose, and the Synopsys
Design Compiler is used for synthesis. The gate area needed for TinyJambu-128 is 3223 GE
for 8 rounds per clock cycle. The throughput for the message is 135 Mbps. The software
performance has been measured on the ARM Cortex-M4F microcontroller. The code size of
software implementation is 872 bytes, and it consumes 394 cycles per byte when encrypting
16 bytes of data.

3.10. XOODYAK

XOODYAK [35] is a cryptographic primitive designed for AEAD encryption, hashing,
pseudo-random bit generation, etc. The XOODYAK uses the XOODO as the permutation,
which has a 384-bit internal state. It is also inspired by the Keccak-p permutation. There are
two different modes of the XOODYAK, hash mode and the keyed mode. When initialized
with a key, it can be used in keyed mode. The mode of operation used in the XOODYAK is
called Cyclist. The Cyclist object contains the state of the primitive.

As mentioned in the specification, encrypting and decrypting require 91.2 and 91.3 cy-
cles per byte, respectively. The results presented are for an ARM Cortex-M0 microcontroller.
Additionally, the code size for the XOODYAK is 3494 bytes. Likewise, researchers have also
analyzed the performance of the XOODYAK for ASIC and FPGA. The minimum gate area
required by the ASIC implementation is recorded as 8101 GE with a frequency of 200 MHz.
The FPGA implementations were executed on a Xilinx Artix-7 board. The XOODYAK
specification lacks details about practical cryptanalysis.

3.11. Summary of Existing Cryptanalyses of NIST LWC Finalist Algorithms

We summarize the existing cryptanalytic techniques applied to the NIST LWC finalist
algorithms. Table 2 presents a summary of known cryptanalyses of the finalist algorithms.
The summary incorporated here mainly includes the result from the application of the
attacks to the cipher itself; there may be other published results on the underlying primi-
tive/permutation function that are not included in Table 2. For this reason, it may seem
from Table 2 that there are no published analyses of ISAP; however, we note that there are
several third-party results in the existing literature on the underlying primitives of ISAP,
namely, Keecak and Ascon-p.

We can observe from Table 2 that a variety of classical and side-channel attacks, e.g.,
linear, differential, differential-linear, interpolation, cube/cube-like, slide, distinguishing
attacks, and correlation power analysis, are explored on different candidates. The goals of
these attacks include key recovery, forgery, state recovery, and distinguishing the output
from a random output. In most cases, the attacks were applied to round-reduced or tweaked
versions of the ciphers. Based on the publicly available analyses, all the candidates still
show to have their claimed security, i.e., no published attack yet that breaks the security
claim of the 10 finalists.

From Table 2, it is also apparent that there are only a limited number of investigations
of side-channel attacks on the NIST LWC finalists. Future research can focus on this
direction to analyse these algorithms from the perspective of side-channel leakage and
resistance against side-channel attacks.
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Table 2. Summary of known analyses of the finalist algorithms

Method Cipher Results

Linear

GIFT-COFB KRA – 15-round with TC/DC/MC: 290.7/262/296 [36]; KRA – 16-round with TC/DC/MC: 2122.8/262.1/247 with
success probability 80.01% . [37]

TinyJambu KRA – TC: practical and DC: 296.8 with success probability 82%. [38]

Differential Ascon FA, TC: 2101, for 4 rounds of 12. [39]

Differential-Linear

Ascon KRA, TC: 231.4, for 7 rounds of 12. [40]

TinyJambu FA – 338-round with probability 2−62.68, diffential on 384-round with probability 2−70.64. [41]

Xoodyak KRA - TC: 223.34/222.04
and DC: 23.34/222.04 for 4/5-round, respectively, [42]; 4-round rotational
differential-linear distinguisher for Xoodoo. [43]

Interpolation Elephant Applied to DELIRIUM, TC: 298.3, MC: 270. [44]

Cube/cube-like

Ascon KRA – TC: 2123 for 7-round (nonce-respecting) [45]; KRA/SRA – 7-round Ascon-128a (nonce-misuse) with TC:
2116.2 and DC: 2117 [46]

TinyJambu KRA – 428-round and DA – 437-round [47]; KRA – 440-round and DA – 476-round [48]; FA – TC/DC: 242/232

using 212/210 related keys for TinyJAMBU-192/256, respectively, [49]; KRA – TC/DC: 223, 220, 218 using related
key differentials for TinyJAMBU-128/192/256, respectively, [49]

Grain-128AEAD KRA – TC/DC: 2123/296 for 190-round, DA – TC/DC: 296 for 189-round [50]; KRA – TC/DC: 2126.26/296 for
191-round [51]; DA – TC: 228.22/234.69 for 205/235-round Grain-128a under single-key/weak-key setup [52]

Xoodyak KRA – TC: 243.8 for 6-round (out of 12). [53]

Slide TinyJambu KRA, TC: 264 [54]

Side channel
Elephant KRA using CPA – recovers the key for the 160-bit variant in about a minute using 35 power traces [55]

GIFT-COFB KRA with DCSCA – TC: 218.39 and MC: 225.39, the TC is 213.39 if 32 encryptions per session are assumed

Others

GIFT-COFB KRA – TC:24 for 2-round GIFT-COFB [56]; FA – success probability qd/2n/2, given qd forgery attempts, also
shows FA possible with 2n/2 attempts using a single known-plaintext encryption query [57]; DA – 2 and 6

rounds of GIFT-COFB [58]; updated bound for privacy [59]

PHOTON-Beetle KRA, QC: 222.8 [60]; related key FA with an updated security bound of the authentication [59]

Romulus MA on Romulus-M [61]

SPARKLE MITM based DA – Sparkle-256/384/512 with 4/4/5 steps, respectively, with practical TCs and MCs [62]

TinyJambu DA [63] – TC/DC: 223 for 544-round in secret-key settings, TC/DC: 216/223 for full-round 128/192-bit versions
in known-key settings, TC/DC: 223 for 1152-round 256-bit version in known-key settings

Xoodyak DA–12-round Xoodoo (permutation of Xoodyak) with TC:233 [64]

Key: KRA—key recovery attack; FA—forgery attack; DA—distinguishing attack; SRA—state recovery attack;
CPA—correlation power analysis; DCSCA—differential ciphertext side-channel attack; MA—matching attack;
MITM—meet-in-the-middle; TC—time complexity; DC—data complexity; MC—memory complexity; QC—query
complexity.

4. Fault Analysis of NIST LWC Finalist Algorithms

A fault attack is a powerful type of attack that has many variations. Researchers
pay considerable attention to securing their cryptographic scheme against fault attacks.
Baski et al. [65] present a detailed introduction to fault attacks and brief descriptions of fault
attacks on symmetric cryptosystems. Note that all the NIST LWC competition algorithms
are symmetric key ciphers. A fault analysis consists of two main tasks; injecting fault and
analyzing the output and/or input to recover the secret key, the internal state, or the input.
Every fault attack requires a fault model, and different fault models can be used to describe
the effect of the fault on the cipher. For instance, the precise bit flip model is used to flip a
bit on an exact location. Single/multiple fault adversary and random/deterministic fault
models are other well-known fault models used in practice [65].

Baski et al. explain how different alteration methods work. There are three types of
data alteration methods; volatility, modification of operation, and modification of operand.
There are many methods of injecting faults into a device that runs the encryption algorithm.
Clock glitches, power glitches, laser, optics, and electromagnetic (EM) emanation are a few
of them. The most practical method is the clock/power glitch, which suddenly changes
the input power or the clock length for a short period. Other forms, such as a laser, may
require comparatively expensive, large equipment and expert knowledge of hardware.
After injecting the faults, the attacker analyzes the output. Based on the methods used for
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the analyses, fault attacks can be divided into a few categories; we explain them and their
applications to the NIST LWC finalists in the following sections.

4.1. Differential Fault Attacks (DFA)

Biham et al. [66] first introduced differential fault attack (DFA) in 1997. It was to
break the Data Encryption Standard (DES) using only 50 to 200 faulty and non-faulty
ciphertexts. The attack is conducted by encrypting the same unknown plaintext twice,
one with a fault and the other without a fault. The fault should be a single bit. Biham et
al. inject the fault in the 16-th round of the DES. Next, many of the incorrect values for
each 6-bit key can be eliminated with the help of the difference distribution table of the
S-boxes. Then, the same procedure can be applied to rounds 14 and 15 to recover the last
48-bit sub-key. Then other 8-bits of the key can be easily recovered using the brute force
method. An alternative approach to recovering the remaining key bits will be applying
the attack again. The authors claim this allows for the recovery of larger keys, such as the
168-bit keys in 3DES. However, due to the differential nature, this method will only work
in the nonce-misused case.

Salam et al. [67] presented three differential fault attack models to Grain-128AEAD to
recover the state of the Grain using a small number of faulty outputs. To identify potential
fault targets, they generated and analyzed the algebraic normal form (ANF) of consecutive
keystream bits. The first attack is called the “Bit-flipping attack”. In this attack, a single-bit
fault is injected, and the derivatives of the faulty and non-faulty results are used to recover
the state bit. This method can recover the 223 state bits by injecting 26.64 faults, and the data
complexity is 27.80. The next model is “Probabilistic random fault attack,” which is very
similar to the bit-flipping method but uses a random bit-flipping instead of a deterministic
bit-flipping model. The probabilistic random bit-flipping approach could recover 223 bits
of the state using 210.45 with a data complexity of 211.60. The third attack is a “Deterministic
random fault attack”. This method also uses a random bit-flipping model. However, the
value of the random fault can be conclusively determined. This model can also recover
223 state bits using 29.39 faults with a data complexity of 212.98.

SBCMA — Semi-Blind Combined Middle-round Attack is a differential-like fault
attack recently proposed by Hou et al. [68]. The attack injects faults in an S-box and
observes the side-channel leakage for two rounds to recover the secret key. Compared to
other fault attacks, SBCMA does not require knowledge of the inputs and outputs of the
cipher. Two different classes of the attack were considered in this work:

• SBCMA A – observes differentials in each S-box
• SBCMA B – observes differentials in each Quotient group

These two classes were evaluated against the lightweight AEAD scheme GIFT-COFB.
The SBCMA A is reported to require 94.32 faults in 13.79 sessions with a known fault mask
and 76.96 faults in 11.62 sessions for random faults with chosen fault mask to recover the
master secret key. On the contrary, the SBCMA B is reported to require 145.58 faults in
20.20 sessions with a known fault mask and 100.08 faults in 14.51 sessions for random faults
with chosen fault mask to recover the master secret key. Note that the fault mask here refers
to the input difference to the S-box.

Recently, DFA has been investigated against the finalist candidate PHOTON-Beetle [69].
This work applies two fault models: (1) random fault and (2) known fault. Under the random
fault, it is assumed that the attacker can inject fault at a specific time by which one nibble
of the internal state is changed to a random one. The known fault model also changes the
internal state to a random one, but the faulty value is known to the attacker, e.g., assuming
the attacker perfectly knows the statistical distribution of the fault. The reported results in this
work claim to retrieve the secret key with approximately 237.15 and 211.05 faulty queries for
random and known fault models, respectively. The offline time and memory complexities
for these attacks are 216 and 210 nibbles for the random fault, and 211 and 29 nibbles for the
known fault. Further, the work also reports the number of faults can be reduced to 640 if a
precise bit-flip model were assumed; however, this model is less practical.
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4.2. Collision Fault Attacks (CFA)

Collision Fault Attacks (CFA) [70] is a combination of fault attacks and collision attacks,
which involves finding collisions by injecting faults. The model is used against the AES to
recover the secret key. In this attack, the attacker should be able to inject a fault to a specific
bit in the state and should be able to collect faulty and non-faulty ciphertext outputs. After
finding the collisions, the attacker can determine the key byte, which corresponds to the
byte containing the faulty state bit. There are five attack models presented. The attack
recovers the full 128-bit key using only 32 faults. The authors also propose a second attack
suitable for the particular case where the system is protected by a memory encryption
mechanism (MEM). This attack needs 285 faults to recover the key. An important point
presented is that the MEM would not increase the security by a significant margin as
expected. The third and fifth attacks require 1024 and 4096 faults, respectively.

In 2020, a collision fault attack was presented by Liu et al. [71] to the GIFT-COFB
encryption scheme. First, a CFA was applied to the primitive (GIFT-128) used in the GIFT-
COFB. The complete key of GIFT-128 can be recovered using the round keys of the first
and the second round keys. The attack requires the fault to be injected into a specific bit.
According to the properties of the S-box used in GIFT-128, a collision should exist for a
correct ciphertext in the set of faulty ciphertexts. Then, the attacker can determine 2 bits of
the round key. The authors show that this attack can recover the key using only 64 faulty
ciphertexts and with a data complexity of 210.

4.3. Statistical Fault Attacks (SFA)

Statistical fault attacks (SFA) are firstly introduced in Fuhr et al. [72]. This method
is effective in the nonce-based AEAD encryption schemes since it does not need faulty
and correct ciphertext of the same plaintext. Another interesting fact about this attack is
that, in most cases, plaintext does not have to be known. The attack was demonstrated
against the AES and recovered the complete key using 1–18 faults. The fault is required to
be injected into a selected byte. An important requirement of the attack is that the faulty
byte is extremely biased (toward 0 or 255). First, the attacker collects several ciphertexts
with faults. The fault can be injected just before the last or the second last round after
adding the round constant. Then, an expression to the faulty byte can be obtained by
inverting the MixColumn, ShiftRow, and SubByte operations of the last (or second last
round). The input to this expression will be a byte of the faulty ciphertext and a byte
of key-guess. Fuhr et al. [72] propose three distinguishers to select the correct key byte
out of the guessed ones.

The first distinguisher is the maximum likelihood method; the likelihood for each key
byte is calculated for all corresponding faulty ciphertext bytes, and the key byte with
maximum likelihood is chosen. However, this method requires perfect knowledge of fault
distribution. When the fault distribution is unknown, yet the faulty value is biased towards
0 or 255, the Hamming weight distinguisher can be used. When the attacker only knows the
distribution of the faulty value is biased, the Square Euclidean Imbalance distinguisher can
be used. This procedure can be repeated 16 times with different fault positions to recover
all 16 key bytes of the AES. The probability of recovering the correct byte by an attack on
round 9 is high as 99%.

The original SFA method proposed by Fuhr et al. only applies to a cryptographic
primitive such as the AES. Dobraunig et al. [73] present statistical fault attacks on advanced
modes of operations such as GCM, CCM, EAX, and OCB. The outputs to the primitives
can be determined using ciphertext and plaintext in CCM, EAX, and GCM modes. Then
the same method in Fuhr et al. [72] can be applied to recover the key. The attack on OCB
mode is possible by using a partial plaintext block, which is padded with a known value
(typically 0s or 0s followed by 1). Using this known value, the output of the primitive can
be determined; hence, the attack in Fuhr et al. is applicable. However, the SFA attack on
XEX-like construction can be complicated since the output of the primitive is masked with
a secret value. A successful method is proposed against the scheme AES-COPA [74], which
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uses a XEX-like structure. In this case, the secret mask only depends on the key. Here, the
trick is to guess the value for the combination of the secret mask and the key and apply
the SFA to determine the correct one. Then, the SFA can be applied again to recover the
key bytes. The authors also explain how to adopt the SFA for the tweakable block ciphers.
However, this method requires knowledge of the tweak.

4.3.1. Statistical Ineffective Fault Attack (SIFA)

Several methods have been introduced to detect the occurrence of faults. One is the
redundancy-based detection of faults. Statistical ineffective fault attack (SIFA) [75] is a fault
attack that can be used to recover the secret of a cryptosystem where fault detection is
applied. This method is somewhat similar to the SFA. However, the attacker should collect
only the ciphertext where the fault is ineffective. The attack was initially applied to AES.
The attack requires that the distribution of the diagonal of the fault distribution table [75]
should be non-uniform. After collecting the ciphertexts where the fault is ineffective, the
same procedure in Fuhr et al. [72] is applied to determine the key.

The SIFA on the Ascon AEAD cipher is presented in Dobraunig et al. [75]. The original
SIFA cannot be applied to the Ascon due to the permutation structure. The proposed
method uses a double-fault model. In this model, two faults are injected into two selected
5-bit S-boxes of the last round of the Ascon permutation of the finalization phase. Instead
of ciphertext, tags (MAC) are collected where the faults are ineffective. Then, the output of
these S-boxes can be calculated for each key hypothesis by taking the inverse of the linear
diffusion layer of the Ascon permutation [24]. Since the diffusion layer can be modeled
as a multiplication with a matrix, the inverse can be achieved by taking the inverse of
the matrix. However, the output of a single S-box will depend on the 68-bit of the key.
Therefore, choosing the correct 68 bits of the key would require a time complexity of 268.
As a solution, the authors present a key dividing strategy to reduce this complexity. It uses
a set of linear binary equations to derive the key.

4.3.2. Single Event Transient Fault Analysis (SETFA)

Single Event Transient Fault Analysis (SETFA) [76] is a recent fault analysis method for
the Elephant authenticated encryption scheme proposed by Joshi et al. [76]. This method
targets a hardware implementation of the cipher. The attack consists of five steps, (1)–
identification of fault points (hot spots), (2)–choosing fault combinations, (3)–fault injection,
(4)–encrypting with faults, and (5)–fault analysis. The attack was applied to Dumbo, a
variant of Elephant. However, the faults used in this method are based on set 0 or set 1.
In other words, the attacker should be able to select the exact value of a specific bit of the
intermediate state. The authors claim the attack on Dumbo can recover the correct keys
with a probability of 30% where the number of ciphertext queries is 140.

4.3.3. Fault Intensity Map Analysis (FIMA)

Fault Intensity Map Analysis (FIMA) is a recent method introduced by Ramezanpour et
al. [77] that uses information from fault bias and the correlation between fault distribution and
intensity to recover the secret. In general, it combines several existing techniques fault sensi-
tivity analysis (FSA), differential fault intensity analysis (DFIA), ciphertext-only fault analysis
(CFA), and statistical ineffective fault analysis (SIFA). Ramezanpour et al. demonstrated the
application of FIMA to Ascon. They claimed that combining several techniques can recover
the 128-bit secret key of Ascon with lesser than half of the fault injections than the previous
techniques that rely only on the bias. They also show that this new method performs six-times
better than other previous methods when countermeasures, e.g., ineffective and error detec-
tion, are in place. The method was further extended with a deep neural network (NN)-based
fault intensity map analysis (FIMA-NN) and tested against AES S-box [78]. FIMA-NN also
shows promising results and can be further investigated to evaluate the NIST LWC finalists.
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4.4. Summary of Fault Analyses of the LWC Finalists

We summarize the different fault analyses applied to the NIST LWC finalists in Table 3.
Notice that several approaches have emerged in recent years apart from the traditional
differential fault attack. Some of these new approaches have not been fully explored yet
against all the NIST LWC finalists. For instance, the recently introduced technique FIMA
combines different fault techniques, e.g., biased distribution with intensities, for applying
the fault attack with lesser faults. Further research can be conducted towards this direction
to understand the resistance of the NIST LWC finalists against fault attacks.

Table 3. Summary of fault analyses of the LWC finalists

Cipher Fault Attack Model Results

ASCON

SIFA [79] Random fault, biased fault
distribution KRA—with 12.5 to 2500 faulty outputs for highly biased to more uniform

distributions, respectively

FIMA [77] Biased fault distribution
with varying intensities KRA—claimed to require 50% lesser faults than previous techniques

SSFA [80] Bit-reset, multi-byte KRA—QC: 70 to 100

Elephant SETFA [76] Stuck-at fault (set to 0 or 1)
at specific wires KRA on Dumbo—85–250 queries

GIFT-COFB

CFA [71] Bit-flip KRA—with 64 faulty ciphertexts, DC: 210

SBCMA A Random with chosen fault
mask [68] KRA—QC: 26.27 in 11.62 sessions

SBCMA A Known fault mask [68] KRA—QC: 26.6 in 13.79 sessions

SBCMA B Random with chosen fault
mask [68] KRA—QC: 26.64 in 14.51 sessions

SBCMA B Known fault mask [68] KRA—QC: 27.19 in 20.20 sessions

Grain-128AEAD DFA

Random [81] SRA—Grain-128a using 4-10 faults

Bit-flipping [67] SRA—QC: 26.64 and DC: 27.80 faults

Probabilistic random [67] SRA—QC: 210.45 and DC: 211.60 faults

Random [67] SRA—QC: 29.39 and DC: 212.98 faults

PHOTON-Beetle DFA

Random fault [69] KRA—QC: 237.15, TC: 216 and DC: 210

Known fault [69] QC: 211.05, TC: 211 and DC: 29

Bit-flipping [69] QC: 29.32

Key: KRA—key recovery attack; SRA—state recovery attack; SIFA—statistical ineffective fault attack; SETFA—
single event transient fault attack; FIMA—fault intensity map analysis; SSFA—sub-set fault analysis; CFA—
ciphertext-only fault analysis; SBCMA A—semi-blind combined with middle-round attack (observes differentials
in each S-box); SBCMA B—semi-blind combined with middle-round attack (observes differentials in each Quotient
group); DFA—differential fault attack; TC—time complexity; DC—data complexity; QC—query complexity

5. Conclusions

This paper reviews the specifications of the NIST LWC finalist algorithms and their
structures. A good number of these algorithms employ Sponge-based constructions or a
related construction, such as the Duplex. The reason for this common choice is the simplicity
and efficiency of the Sponge constructions. Many of the algorithms use hash functions as
cryptographic primitives. For instance, the KECCAK is used in the Elephant and the ISAP.
The tweakable block cipher is another construction used in algorithms such as the Romulus.
Additionally, algorithm families have different variations with different purposes. For
instance, the Romulus-T is designed to provide security in the case of a misused nonce,
and the Ascon-80pq provides security against quantum attacks. However, many of these
algorithms need further investigations on cryptanalysis, especially on side-channel and
fault attacks.

To the best of our knowledge, none of the finalist algorithms are broken based on the
third-party analyses. All the NIST LWC finalist algorithms have shown a good security
margin against classical cryptanalysis methods such as linear and differential analysis. It
is worthwhile to focus on powerful fault attacks for analyzing these ciphers. Many NIST
LWC competition finalist algorithms lack proper and practical analysis against side-channel
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and fault attacks. Different fault attack techniques, such as DFA, CFA, SFA, FIMA and
SIFA, can be tested on the aforementioned algorithms. Specifically, fault attacks have not
been applied to Ascon, Elephant, TinyJambu, Xoodyak, ISAP, Romulus, and SPARKLE.
For Elephant, a fault attack has been applied but the attack model is stringent and there
is possibility to explore further in terms of other fault models. Similarly, Grain-128AEAD
has only been investigated against differential fault attack; other fault attack techniques
have not been explored against this cipher. We note that NIST does not require security
claims against side-channel/fault attacks for the proposals submitted to the NIST LWC
competition. However, in the submission requirement, NIST also stated that the ability
to provide resistance against side-channel/fault attacks easily and at a low cost is highly
desired. Therefore, investigating the application of different fault attacks on these ciphers
will allow us to better compare the NIST LWC finalists.

With the advancement of science and technology, large-scale quantum computers will
be available in the near future. Thus, quantum-safe cryptosystems will be essential for
secure communication in the future. Therefore, it is worthwhile to investigate quantum-safe
lightweight cryptography for future standardization. This can be identified as one of the
future challenges of NIST lightweight cryptography standardization.
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