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Abstract

Silver nanoparticle (AgNP) has been one of the most commonly used nanoparticles since the past decade for a wide range of
applications, including environmental, agricultural, and medical fields, due to their unique physicochemical properties and
ease of synthesis. Though chemical and physical methods of fabricating AgNPs have been quite popular, they posed various
environmental problems. As a result, the bioinspired route of AgNP synthesis emerged as the preferred pathway for synthe-
sis. This review focuses extensively on the biosynthesis of AgNP-mediated through different plant species worldwide in the
past 10 years. The most popularly utilized application areas have been highlighted with their in-depth mechanistic approach
in this review, along with the discussion on the different phytochemicals playing an important role in the bio-reduction of
silver ions. In addition to this, the environmental factors which govern their synthesis and stability have been reviewed.
The paper systematically analyses the trend of research on AgNP biosynthesis throughout the world through bibliometric
analysis. Apart from this, the feasibility analysis of the plant-mediated synthesis of nanoparticles and their applications have
been intrigued considering the perspectives of engineering, economic, and environmental limitations. Thus, the review is
not only a comprehensive summary of the achievements and current status of plant-mediated biosynthesis but also provides
insight into emerging future research frontier.
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Introduction

Nanotechnology is a new branch of colloidal science that has
gained immense importance over the past decade (Mondal
et al. 2021). Nanotechnology is concerned with the study
of materials at the nanoscale where the fundamental struc-
tural units of this novel technology are nanoparticles (NPs)
which have sizes ranging from 1 to 100 nm in at least one
dimension (Ajitha et al. 2015; Mondal et al. 2019; Kumar
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remediation, material engineering food industries, and medi-
cine (Shaikh et al. 2020). In some fields, advancements have
been remarkable, incluing the use of semiconductor NPs
for water splitting (Hisatomi et al. 2014), various environ-
mental applications (Mondal et al. 2021), medical appli-
cation (Gujrati et al. 2014), and application in electronic
fild like sensor (Ahmad et al. 2011). Amongst the metal-
lic NPs, silver nanoparticles (AgNPs) have been applied
most beneficially across a variety of diverse application
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fields due to their unique biological, chemical, and physical
properties including excellent catalytic activity, chemical
stability, high electrical conductivity, optical and thermal
properties (Shaikh et al. 2018). Consequently, amongst the
metallic NPs, AgNPs have become one of the most signifi-
cant nanomaterials attracting tremendous research interest.
Thus, AgNPs have been successfully used in various fields,
including antibacterial, antifungal, antiviral, anti-inflamma-
tory activities, composite fibers, cryogenic superconducting
materials, electronic component, food industry, health care,
industrial purposes, medical, photocatalytic degradation of
dye and can also be easily assimilated into cosmetic prod-
ucts (Ajitha et al. 2014b; Shaikh et al. 2018, 2020; Mondal
et al. 2019, 2021). In addition, due to the presence of Sur-
face Plasmon Resonance (SPR) phenomenon, AgNPs have
attracted unparalleled attention as color-based biosensors
(Ahmed et al. 2016).

Initially research focused on the development of robust
methods for AgNP synthesis. Today a wide variety of syn-
thetic methods have been established including chemical
methods (Iravani and Zolfaghari 2013), electrochemical
(Lim et al. 2006), microwave-assisted synthesis (Darmanin
et al. 2012), photochemical reductions (Remita et al. 2007)
and physical synthesis (Ashkarran 2010). All of these meth-
ods have their specific own limitations, such as the use of
toxic chemicals as reducing and/or stabilizing agent, the
requirement for high vacuum technology or other expensive
equipment, production of impure AgNPs of very low yield,
and high operating costs (Shaikh et al. 2018). For these
reasons there is still a need to develop alternative synthetic
routes for AgNP.

A holistic view of the current emerging trends in AgNP
synthesis was identified through an open-access database
search engine (dimensions), and VOSviewer software in
the present review. In the past decade, biological routes for
AgNP synthesis have become increasingly popular due to
the advantages of providing a one-step synthesis of non-
toxic, eco-friendly NPs without the need for preservation or
additional maintenance of cultures (Shaikh et al. 2020). Till
date, numerous plant species have been utilized for the bio-
synthesis of AgNP worldwide. Hence this review attempts
to summarize the wide variety of plant species and their
biochemicals, responsible for the synthesis of AgNP and
critically evaluates their limitations and feasibility for real
applications.

Applications of biosynthesized AgNP
Antibacterial activity of AgNP

Silver nanoparticles have been extensively used in food stor-
age, the health industry, as textile coatings, and in some
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environmental applications as an antibacterial agent. Several
accredited bodies including the US EPA, US FDA, STIAA
of Japan, Korea’s Testing and many research institutes have
approved products containg AgNP within certain ranges for
food storage, health industry, and textile coatings (Gupta
et al. 2018). The antibacterial properties exhibited by AgNP
tend to depend on several parameters such as shape, size,
pH, temperature and most importantly the capping agent
used (Ahmed et al. 2016; Edhari et al. 2021). The antibacte-
rial properties of biologically synthesized AgNP were inves-
tigated by several methods including the following: the disk
diffusion method (Jyoti et al. 2016), the Agar well diffusion
assay (Nayak et al. 2015), Kirby—Bauer (Mariselvam et al.
2014) and standard plate count (Zhang et al. 2014).

Several pathogenic Gram (—)ve bacteria such as Pseu-
domonas aeruginosa, Escherichia coli, Klebsiella pneumo-
nia, and Gram (+) ve like Staphylococcus aureus, Bacil-
lus pumilis, Bacillus subtilis, Streptococcus pyogenes were
tested to investigate their antimicrobial activity (Table S1)
(Rao et al. 2016). Results indicated a concentration-depend-
ent inhibition of bacterial growth for B. subtilis and E.
coli, with a Minimum Inhibitory Concentrations (MIC) of
6.25-12.5 and 12.5-25 pg mL~!, and where no growth was
observed in plates above 12.5 and 25 pg mL~!, respectively
(Rao et al. 2016). Similarly, the MIC for some several other
bacterial strains like Plesiomonas shigelloides, Bacillus sub-
tilis, Pseudomonas aeruginosa, Vibrio alginolyticus, and
Klebsiella pneumonia were routinely found to be at AgNP
doses < 15 ug mL~! (Okafor et al. 2013).

Mechanism of antibacterial activity of biosynthesized AgNP

The exact mechanism of interaction between AgNP and the
constituents of the outer membrane of E. coli is only par-
tially known. However, since E. coli cells are made up of
soft bases like phosphorus and sulfur, acid-base reactions
between the metallic nanoparticles and the microbial cells
are believed to lead to cell death (Prabhu and Poulose 2012).
Since basic sulfur and phosphorus are major components of
DNA and AgNP interacts with such soft bases (Hatchett and
White 1996), exposure to AgNP may stop DNA replication,
resulting in protein formation inhibition (Feng et al. 2000).
Betina (1966) showed after treatment with AgNP the protein
(DNA and/or ribosomal protein) became denatured due to
the formation of a bond between Ag* and the proteins func-
tional groups. Some researchers claim that the antibacte-
rial properties of AgNP were due to electrostatic attraction
between positively charged nanoparticles and negatively
charged bacterial cells (Stoimenov et al. 2002). It is assumed
that the cell wall degrades when AgNP interacts with bind-
ing biomolecules of the cell wall which finally causes cell
death (Stoimenov et al. 2002).
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Another probable mechanism often proposed following
AgNP exposure is that cell death around the wall occurs due
to disorganization of cytoplasmic membrane and linkages of
several biomolecules like carbohydrates, amino acids, and
protein (Patil et al. 2012). It is well known that AgNPs can
form complexes with nucleic acids via interaction with the
nucleosides groups of nucleic acids which results in antimi-
crobial activity (Ahmed et al. 2016).

Degradation of toxic dyes using AgNPs

The number of commercially available dyes is currently
estimated to exceed 1 million, where at least 10,000 difffert
dyes are routinely used in the cosmetic, dyeing, leather,
paper, pharmaceutical plastic, printing and textile indus-
tries (Shaikh et al. 2021). As a result, about 0.7 million tons
of dye wastes are commonly released in effluent annually
(Shaikh et al. 2020), where non-biodegradable bi-products
(dyes and dyestuff) pose major environmental threats to the
biosphere. This is one of the most alarming environmental
problems, where AgNP particles have exhibited considerable
mitigation options (Ghazal et al. 2020). This is an area where
the role of AgNP for the degradation of toxic industrial dyes
from wastewater by either catalytic or photocatalytic degra-
dation has received much attention (Table 1).

Catalytic degradation

Relative to equivalent bulk materials of the same mass,
AgNPs show improved catalytic activities due to a rela-
tively greater surface area with a lower volume. Normally,
the large difference in redox potential between the electron
donor and the electron accepter makes reaction difficult by
limiting electron transfer between acceptor and donor due to
the limited passage of electrons (Tripathi et al. 2013). How-
ever, for AgNPs in presence of borohydride ion, an electron
donor helps to cross the activation energy barrier in the cata-
lytic degradation reaction (Varadavenkatesan et al. 2019).

Mechanism of catalytic dye degradation using AgNPs

The Bond Dissociation Energy (BDE) plays a significant
role in most chemical reactions because it is often necessary
to break exisiting bonds to form new ones. In a typical deg-
radation system, NaBH, acts as an eletron donor and releases
electrons to the dye, which acts as an eletron acceptor and
receives the electron (Varadavenkatesan et al. 2019). When
AgNP is present in this sytem, it acts as a catalyst by help-
ing the “electron-shuttling” process, more efficiently passing
electrons to the acceptor (dyes) from the donor (NaBH,) but
via AgNP. This electron relay process causes surface altera-
tion of AgNPs which visually appears as blue spectral shift
of the surface plasmon resonance band of AgNPs (Pradhan

et al. 2002). The spectral blue shift results in the resonance
band of AgNP overlapping the absorption peak of the dye
(corresponds to n—n* and/or n—n* transitions of dye) (Vara-
davenkatesan et al. 2019). Thus, electron transfer becomes
easier and smoother when a catalyst has an intermediate
redox potential between that of the acceptor and the donor
(Tripathi et al. 2013). This is shown visually in Fig. 1.

Photocatalytic dye degradation

Biosynthesized AgNPs are often very effective photo-cata-
lytic degraders of toxic dyes due to surface plasmon reso-
nance (SPR) where photocatalytic degradation efficiency
increases as the metal nanoparticle size decreases (Table 1).
Photocatalysis is the mutual competition between separa-
tion and recombination of electron—hole pairs [valence band
(VB) and conduction band (CB)]. Photocatalytic activity
was generally increased by increasing the number of elec-
tron—hole pairs on the surface of the charge carrier. Dur-
ing photocatalytic degradation, when light photons hit the
valence electrons of AgNPs, they gained energy and there-
after the valence shell emitted highly energetic electrons,
which generated active radicles which acted as potent oxi-
dizing agent to completely degrade dye to non-hazardous
products like CO,, H,0, NH,*, and NO;~ (Shaikh et al.
2018, 2020).

Mechanism of photo-catalytic dye degradation using
AgNPs

Under visible and/or UV irradiation the VB electrons of the
metal are excited and promoted to the CB, creating conduc-
tion electron (e”¢p) in the CB and a positive hole (h*yp)
in the VB (Eq. 1) (Sinha et al. 2014) (Fig. 2). These pho-
togenerated species (h*yy and e ) generate highly reactive
radicals capable of dye degradation (Shaikh et al. 2018). For
example, h*yp can dissociate water (H,0) into hydrogen
(H*) and hydroxyl (TOH) ion, where the hydroxyl (TOH)
ion is subsequently convertedinto a hydroxyl radical (-OH)
(Eq. 2 and 3). Simultaneously, e” g can convert dissolved
oxygen (O,) into a superoxide radical anion (*O,”) (Eq. 4)
(Saravanakumar et al. 2016), which can therafter also react
with H,O to produce both ‘OH and the hydroperoxyl radi-
cal (HO,*) (Eq. 5) (Shaikh et al. 2020). These three photo-
generated radicals (*OH, +O,~, and HO,') all contribute to
the degradation of complex dyes into simple non-toxic frag-
ments like ammonium (NH4+), carbon dioxide (CO,), nitrate
(NO;3;7), and water (H,O) (Eq. 6) (Tahir et al. 2015).

AgNP +hv (4 <390 nm) = AgNP(h*) + AgNP (¢7),
(1
AgNP(h*) + H,0 = H" + —OH, 2
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Fig. 1 Mechanism of catalytic A
dye degradation using AgNP

| Reactant

Fig.2 Mechanism of photo-
catalytic degradation of dyes
using AgNP

Dye v

FDye ) (Digrded Produgts)

e

Activation
Energy
(With nAg)

_. Activation Ex

V( BHy )

Product

Fragmented

enhanced biocompatibility and stability, which has only
enhanced AgNP suitability as a nanoscale drug-delivery
system. Indeed, the unique target specificityof AgNP have
resulted in its extensive use in nanoparticle-based drug-
delivery applications, specifically anti-cancer and anti-tumor
drug delivery systems (Philip et al. 2011).

In addition, AgNP has also proven to be a potent antimi-
crobial and antipathogenic agent, in dental-related nanotech-
nology-based strategies (Qing et al. 2018). The main aim of
using AgNP in dentistry has been to protect against harmful
pathogens and protect the oral cavity (Burdusel et al. 2018).
For example, the good biocompatability of AgNP was shown
to be useful as a coating material for dental barrier mem-
branes (DBM). Such AgNP coatings have also been shown
to prevent pathogenic contamination from dental implants'
and poor tooth-brushing techniques. Recently, AgNP has
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Products

also been used in tooth stainers in the form of nanosilver
diamine fluoride (SDF); however, the effect of this new
compound is still unknown (Burdusel et al. 2018). Moreo-
ver, Qing et al. (2018) reported AgNP as a coating material
(silver-coated prostheses) for an unconventional approach
for prophylaxis of tumor-related infections in the Orthopedic
and bone-implant-related field.

Use of AgNP for COVID-19 mitigation

Currently the COVID-19 pandemic is a major urgent topic
of scientific endeavour. The current pandemic, coronavi-
rus disease (COVID-19), has spread almost all over the
world (over 221 countries), with > 138,057,338 infected
people causing the death of >2,972,992 people. Scientists
around the world have done significant studies to develop
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therapeutics or vaccines. However, the efficiency of these
vaccines is still questionable. A considerable effort has also
been given to nano-based anti-viral agents or vaccines, all
of which are currently in initial development phases far from
public implementation. However, Talebian et al. (2020) pro-
posed metallic nanoparticles (Ag, Cu, TiO,) as an alternative
to conventional approaches to fighting COVID-19. Among
these various nanoparticles, AgNP has already shown sig-
nificant promising results as a durable and self-sterilizing
agent. Talebian et al. (2020) reported AgNP has been used
as a photocatalytic coating agent on the surface of COVID-
19 test kits and the coating layer of respiratory face masks.
AgNP-based fortification equipment and disinfecting agents
can provide enhanced protection against SARS-CoV-2 and
carrier for antigens or as an adjuvant, making way to develop
new generation of vaccines (Rai et al. 2021). However,
the main disadvantages with these kits where the chance
of false-negative results, poor analytical sensitivity, long
response time, and the health impact of the AgNP coated kit
on a human are yet to be studied (Vaculovicova et al. 2017).
To overcome these challenges, recently, Swiss researchers
developed a dual-functional plasmonic biosensor (involving
a combination of a localized surface plasmon and photother-
mal resonance plasmon), as a promising alternative to AgNP
for clinical diagnosis of COVID-19 (Qiu et al. 2020).

Approaches of silver nanoparticle synthesis

There are two main approaches involved in AgNP synthesis,
‘bottom up’ or ‘top down’ (Ahmed et al. 2016). In the top-
down approach, nano-sized particles are synthesized from
a suitable bulk material by breaking down the parent mate-
rial via size reduction (Fig. 3). The most common methods
employed in the top-down approach include chemical etch-
ing, combustion, mechanical/ball milling, sputtering, and
thermal/laser ablation (Mittal et al. 2013). The key step in
all these methods is the reduction or breakdown of the par-
ent starting material. However, one major limitation of these
processes is that they result in AgNPs which have significant
surface imperfections due to the alteration of the physical
and chemical properties of the starting material (Mittal et al.
2013).

In the ‘bottom up” approach, a range of mainly physio-
chemical, and occasionaly biological methods are used in the
self-assembly of atoms to develop new nuclei of a particular
nanosize. Common bottom-up approaches include aerosol
process, atomic/molecular condensation, (electro)chemical
precipitation, laser pyrolysis, sol-gel process, spray pyroly-
sis, vapor deposition and bio-reduction (Mittal et al. 2013).

'
Bottom up Method

(Built from smaller entities)

+
Top Down Method

{Sire Reduction from a suitable starting material)

— Chemical Etchin:
Aerosol Process ) Atomic / Molecular i
]' Condensation
T Explosion Process
(Electro)chemical T 0.4 o
Precipitation o x [ hasertyrotyss T
X i 0 Mechanical / Ball
Sol-gel Process : 3 j Spray Pyrolysis |\ L 2
= - Sputteri
3 < puttering
Vapor Depesition : Bio-reduction
(Bacteria, Fungi. Plants, Yeast)
Thermal / Laser
Nou-Toxic Ablation
Fig. 3 Different approaches for silver nanoparticles synthesis
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Conventional methods adopted for the biosynthesis
of AgNP

Biosynthesis of AgNP mainly involves the following three
common steps: 1. collection, 2. Extraction, and 3. reaction,
which are briefly described as follows:

i. Collection and preparation: The first step involves the
collection and segregation of the target plant species.
The target plant part is then washed with tap water
twice or thrice and finally with distilled water to
remove any impurities, debris or organic substances
adhering to the materials.

ii. Then the fresh uncontaminated plant parts are either
shade-dried for 10-15 days till constant weight and
finally powdered with a grinder, or blotted dry, cut
into pieces, and boiled with millipore water for 30 min
to prepare the plant extract (Joseph and Mathew
2015). Another extraction method invlolves grind-
ing the fresh plant part after thorough washing with
millipore water and/or ethanol. The extract is finally
filtered using Whatman filter paper no.1 and stored at
4 °C for further use (Shaikh et al. 2018, 2020; Mondal
etal. 2021).

iii. Reaction: The last step of the biosynthesis process is
the reduction process where the plant extract is added
to 1-10 mM AgNO; to reduce the pure Ag(I) ions
to Ag(0) at room temperature normally in a reaction
lasting upto 6 h. Typically, the bio-reduction process
is monitored by measuring the UV—visible spectrum at
200-800 nm with a regular interval of 0.5 nm, where
the AgNP peak arises around 400-450 nm (Mondal
et al. 2019, 2021; Shaikh et al. 2020).

Disadvantages of conventional synthesis methods

While the physiochemical route of AgNP synthesis is use-
ful for large-scale production of high-purity AgNPs with
superior physical properties, the top down method does
have several disadvantages including the following:

i. Most physical methods need expensive equipment and
high vacuum technology.

ii. Mechanical/ball milling methods often require sub-
stantial amounts of the initial bulk material, which
must be subjected to high mechanical energy over an
extended period, which tends to result in a high prob-
ability of some surface deterioration and contamina-
tion due to the use of steel grinding balls.

iii. During ion sputtering methods, the process of vapor-
izing solid materials and sputtering through inert gas

sl ¢llodl ay .
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ion beams of He, Ne, Ar, Kr, or Xe, can influence the
final composition, optical properties, surface morphol-
ogy, and texture of the nanoparticle produced.

iv. While applying the laser ablation method, where NPs
are synthesized by reduction of size using laser irra-
diation, the main disadvantage is the low yield due to
blockage of the laser path and energy in the colloidal
solution (Jamkhande et al. 2019).

Likewise, the bottom up methods also have a range of
distinct disadvantages. For example:

i. Chemical methods need a range of different, often
toxic inorganic and/or organic reducing agents, to
act as both reducing and, to prevent agglomeration,
capping agents This can include ascorbate, elemental
hydrogen (H), sodium citrate (Na;C4H50-), sodium
borohydride (NaBH,), Tollen’s reagent [Ag(NHj;),]
NO; and N,N-dimethyl formamide (C;H;NO) in both
polar or non-polar solvents (Ajitha et al. 2014a).

ii. Reducing chemicals are often toxic, relatively expen-
sive and can create impurities in the final NPs, which
can become secondary pollutants when practically
applied.

iii. Bottom-up methods tend to be relatively expensive,
low yield methods, difficult to control leading to low
reproducibility (Jamkhande et al. 2019).

To address these major concerns, currently the main focus
of AgNP synthesis research has been the synthesis of non-
toxic and environment friendly AgNP through biological
pathways (Ahmad et al. 2010). This is because biosynthe-
sized AgNP is generally identified as non-toxic with less
environmental impacts than other physiochemical methods
(Ahmed et al. 2016). Unlike traditional chemical methods,
the biosynthesis approach has the advantage of using a sin-
gle aqueous plant part extract, as both the reducing as well
as stabilizing agent rather than a suite of toxic chemicals.
While this is a single natural extract, several biomolecules
may be involved as either reducing and/or capping biomol-
ecules (Shaikh et al. 2018, 2020). The other main advantage
of biosynthesis of AgNPs is that they generally yield large
amounts of AgNPs with well-defined size and morphology
(Hutchison 2008).

Biosynthesis of AgNP

Although the mechanism was not well understood, the
reduction of metal ions by plant extracts was first identi-
fied in the early 1900s (Mittal et al. 2013). Since then, a
range of metals have been sucessfuly reduced via a range of
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plant materials. However, in the last 35 years, bio-synthe-
sis of AgNP has attracted significant attention using either
extracts of plant tissue, plant parts or indeed the whole plant
(Fatimah 2016). The bio-reduction process simply involves
mixing of a metal solution with plant extracts at room tem-
perature (Mittal et al. 2013). The main objectives during
the green synthesis of AgNP is to maximize safety and effi-
ciency and minimize the environmental and societal impact
of toxic raw materials. The nature, yield, quality, and char-
acteristics of the produced AgNP are influenced mainly by
the relative concentrations of plant extract and metal salt,
contact time, temperature, and reaction pH (Dwivedi and
Gopal 2010).

The choice of plant extract may also be important because
several plants and their respective parts may contain differ-
ent biomolecules which can act as reducing agent as well
as stabilizing agents during bio-reduction (Table 2). These
biomolecules may also influence the overall surface charac-
teristics of the AgNPs and also agglomeration in solution
due to the numerous possible combinations of biomolecule
interactions with the AgNPs (Mittal et al. 2013). Thus, the
various different plant types and parts currently used for the
biosynthesis of AgNP is briefly discussed below.

Biosynthesis of AgNP using leaf, root, shoot, flower,
and fruit extract

The successful synthesis of AgNP using different plant
parts has been summarized in Table 2. Generaly most of the
AgNP particles synthesized with various plant parts yielded
spherical AgNPs with an average size of 5 to 85 nm (Mittal
et al. 2013). However, non-spherical AgNPs, i.e. triangular,
pentagonal, and hexagonal, were also reported using Eclipta
prostrate leaf extract; where the particle size ranged between
30 and 60 nm when the reaction occurred at room tempera-
ture (Rajakumar and Abdul Rahuman 2011). Similarly, both
cubic and irregular AgNPs were also synthesized using
the seeds of Trachyspermum ammi and Artocarpus het-
erophyllus, respectively (Jagtap and Bapat 2013). At room
emperature biosynthesis reaction times ranged between 10
and 300 min. The bio-reduction of the Ag precursor was
ascribed to high levels of biomolecules in the different plant
parts (leaves, fruits, flowers, seeds, barks and roots). These
biomoluces could be very diverse and include a myriad of
alcohols, alcoholic compounds, alkaloids, alkynes, allylic
benzenes, amide, amino acids, amino acid residues, anth-
raquinones, ascorbic acid, benzoates, caffeoyl, carbohy-
drates, carotenes, catechic tannins, diterpenoids, flavonoids,
glycosides, iridoids, leucocyanidin, proteins, phenols, phe-
nolic compounds, saponins, steroids, sugars, tannins, terpe-
noids, triterpenoids, traces of reducing sugars, triterpenes,
and vitamin C) which acted both as reducing and/or capping
or stabilizing agents (Ebrahimzadeh et al. 2020). Though

the phytochemicals present in the different plant extracts
have been identified by several researchers, no one was able
to clearly identify one specific biomolecule involved in the
bio-reduction of Ag* to AgNP. Biosynthesized AgNP, using
various leaf extracts, has generally shown several important
properties including excellent antibacterial activities, cyto-
toxic, mosquitocidal activity, synergistic effects with anti-
biotics, anticancer effects against human breast cancer cells
(MCF-7), and photocatalytic degradation of dye (Shaikh
et al. 2020). AgNP synthesized from flower extracts was
also shown to have efficient catalytic activity for the reduc-
tion of cationic dyes such as methylene blue in the presence
of NaBH, by generating active free radicals (-OH, ‘O, and
HO,*) and antibacterial efficiency due to deterioration of
the plasma membrane by AgNP penetration through the cell
wall causing bacterial cell death in cytotoxic studies using
human cell lines (Ocsoy et al. 2017). Fruit extract (Lycium
barbarum) mediated AgNP also exhibited good optical
properties suitable for uses as sensors (Saha et al. 2017).

While Ameen et al. (2019) reported the successful bio-
synthesis of AgNP using a Mangifera indica flower extract,
no identification of the specific phytochemicals responsi-
ble for reduction was provided. However, other researchers
like Hamedi and Shojaosadati (2019) did include a gen-
eral screening and characterization of the phytochemicals
responsible for AgNP synthesis when using a Diospyros
lotus extract, which showed that alkaloids, anthraquinones,
flavonoids, saponins, steroids, tannins, and terpenoids were
all key components. In fact, of the more than 200 plant spe-
cies from 86 families extracted and used for AgNP synthe-
sis, most studies have conclusivley identified as the specific
phytochemical(s) involved, creating a huge knowledge gap
regarding the specific phytochemical(s) responsible for
either reduction and/or capping during AgNP biosynthesis
and the underlying reaction mechanisms. Some attempts
to explore the mechanisms by FTIR techniques implicate
amide, carboxylate, carbonyl group, proteins, terpenoids,
ketones, and aldehydes of Vigna sp. seed extract (Moham-
madi et al. 2016), but ideifiication of specific biochemicals
is a challange.

Bio synthesis using other plant parts

Rapid green synthesis of AgNP has also been reported by
some other plant parts including pericarp extracts of Sap-
indus emarginatus (Swarnavalli et al. 2017), Allium stipi-
tatum (shallot) (Taheri et al. 2015), and apricot tree gum
(Rajkuberan et al. 2017), latex extract of Euphorbia antiquo-
rum L., (Mariselvam et al. 2014) inflorescence of Cocos
nucifera (Edison and Sethuraman 2012), and Musa sp.
(Banana) peel extract (Ibrahim 2015). As with most other
plant extract derived NPs most of the biosynthesized AgNP
were spherical having a particle size ranging between 4 and
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60 nm. Biomolecules identified as being involved in bio-
reduction included alcohol, aldehydes, alkanes, amines,
amide II, amino acids, carbohydrates, carboxylic acid, car-
bonyl compounds, cellulose, ester, hemicelluloses, hydroxyl
group, lycopene, pectin, phenolic compounds, polyphenol,
proteins, vitamins (C, K, E), and B-carotene (Ahmed et al.
2016) (Table 2).

The biosynthesized AgNP showed significant antibac-
terial activity against Bacillus subtilis, Escherichia coli,
Klebsiella pneumonia, Proteus mirabilis, Proteus vulgaris,
Pseudomonas aeruginosa Staphylococcus aureus, and
Vibrio cholera, (Swarnavalli et al. 2017). It also showed the
antibacterial activity towards human pathogens and blood-
sucking parasites such as Aedes aegypti and Culex quinque-
Jasciatus (Rajkuberan et al. 2017), anticancer agents (Rajku-
beran et al. 2017), antimicrobial activity against bacterial
pathogens of humans such as Salmonella paratyphi, Bacillus
subtilis, Klebsiella pneumonia, and Pseudomonas aerugi-
nosa (Mariselvam et al. 2014).

Statistics of plant-mediated AgNP synthesis

Plants are widely distributed throughout the world includ-
ing both the hydrosphere and lithosphere. Christenhusz and
Byng (2016) identified 452 vascular plant families which
contain about 308,312 plant species (Angiosperms: 295,383,
Gymnosperms: 1079, Lycopods: 1290 and Ferns: 10,560),
where the number of the plant species in the largest fami-
lies (including Asteraceae, Fabaceae, and Orchidaceae)
is increasing daily. The global distribution of these newly

discovered species is clustered mainly in tropical countries
like Australia, Brazil, China, and New Guinea (Christenhusz
and Byng 2016). Unfortunately, Joppa et al. (2011) reported
that many biodiversity hotspots for these newly discovered
plant species were also the most vulnerable. Moreover, the
global distribution and economic value of these plant fami-
lies are quite different. It has been estimated that 17 plant
families contribute ~80% of plantas foods. Orchidaceae as
the largest vascular plant family (~736 genera and 28,000
plant species) followed by Asteraceae (~ 1623 genera and
24,700 plant species) and Fabaceae (~751 genera and 19,500
plant species). Though, Orchidaceae is the largest plant fam-
ily, in terms of AgNP biosynthesis, the highest number of
plant species (31) used was in the Fabaceae family followed
by Asteraceae (10) and Lamiaceae (10). Overall our litera-
ture review suggests that 221 plant species belonging to 85
families (18.8% of total plant families found worldwide)
were used for the plant mediated AgNP synthesis, might be
due to their abundance and presence of the flavonoid com-
pounds (Fig. 4). This might be due to the global distribu-
tion, abundance, and most importantly the presence of high
quantity of phytochemicals, which reduce Ag™ to Ag and
stabilize AgNP in the colloidal medium.

Among the 221 plant species, there are several plant parts
which were sucessfully used in plant-mediated biosynthesis
of AgNP. More than 45% of the plant-mediated biosynthe-
sis of AgNP was conducted using leaves alone. However,
some other plant parts including aqueous extract (10%), fruit
(9.09%), and root (7.73%) were also found to significantly
contribute in several studies (Fig. 5). Leaves are the most
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Fig.5 Distribution of plant
parts used for biosynthesis of
AgNP

active part of the plant because they geneally contain greater
numbers and quantities of phytochemicals including flavo-
noids, phenolic compounds, and reducing sugars (Altemimi
etal. 2017).

Factors affecting plant-mediated
biosynthesis of AgNP

The main challenges in AgNP biosynthesis are the control
of crystallinity, shape, size, and dispersity, where the main
factors directly influencing these parameters are discussed
below.

Effect of precursor concentration (AgNO;)

In majority of the plant-mediated biosynthesis of AgNP,
AgNO; has been used as a precursor, and its concentra-
tion exhibited a significant impact on the particle size of
the resultant NPs. For example, Shaikh et al. (2020) found
maximum yield of AgNP with minimum size was achieved
at 1.25 mM AgNO;. Zhang et al. (2013) reported optimum
biosynthesis of AgNP at a AgNO; concentration of 1.0 mM,
showing that at lower AgNO; concentrations a wider Sur-
face Plasmon Resonance (SPR) band was formed and upon
increasing the AgNO; concentrations, the product peak
become narrower indicating decreasing particle size till
the optimum AgNO; concentration. A similar result was
reported by Muthu and Priya (2017) using Cassia auricu-
lata flower extract for spherical and triangular AgNP ranging

(m Leaf

= Flower

B Fruit

u Seed

u Bark

® Root

m Aqueous Extract
e Other parts

from 10 to 35 nm with a 1.0 mM AgNOj; precuser solution
also being optimal. Moreover, the investigations of Zhang
et al. (2013) also suggested that by increasing the AgNO;
concentration better AgNP (position and shape) were formed
and the SPR peak of AgNP trended toward red-shift, indicat-
ing larger particle size.

Effect of precursor and phytoextractant ratio (V/V)

Several earlier works have suggested that the ratio of the
precursor to phytoextractant solution on a volume basis
could also affect AgNP biosynthesis. This seems reason-
able because the biomolecules within the phytoextractants
are the key components responsible for both reduction of
the Ag salt as well as stabilization of the produced AgNP.
It is well established that increasing the phytoextractant
dose can not only enhance AgNP yield but also increase
the size increase and alter shape up to an optimum ratio
(Vijayaraghavan and Ashokkumar 2017).

Effect of reaction time

The size, shape, and properties of biosynthesized AgNP
are significantly influenced by the reaction (or incubation)
time for specific plant extractant. Though interspecific var-
iation is evident, incubation time for a specific plant part
normally shows an optimum value for effective bio-reduc-
tion. Vijayaraghavan and Ashokkumar (2017) reported that
the yield and size of AgNP were both positively correlated
with incubation time up to an optimum duration. While

aue ¢llodl Ay .
s Sherss 9) Springer



2648

Applied Nanoscience (2021) 11:2625-2660

Shaikh et al. (2020) reported complete bio-reduction
within 20 min using Flavans, Flavanonol, and Flavonol
present in the Shorea robusta leaf extract, Muthu and Priya
(2017) reported 99% bio-reduction of silver ions within
23 h using a Cassia auriculata flower extract where the
main phytochemicals were carbohydrates, glycosides, and
polyphenolic compounds. In both the cases, deviation from
the optimum incubation period led to decreased yield and
size variation. Li et al. (2020) reported the size of AgNP
increased with increasing incubation time (with 1 mM
AgNO;) from 10+2 nm at 5 h, to 25+3 nm at 9 h and
40+ 5 nm at 13 h, where the increasing size might be due
to the agglomeration of colloidal AgNP.

Effect of pH

The pH of the solution medium is an important parameter
that influences both the rate, shape, and size of plant-medi-
ated biosynthesised AgNP. For example, Sathishkumar et al.
(2009) found that when using a Cinnamom zeylanicum bark
extract for bio-reduction over a wide pH range (1-11) large
ellipsoidal AgNP formed at acidic pH (pH * 7), whereas
smaller spherical AgNP formed at alkaline pH (pH > 7). This
was attributed to the presence of a larger numbers of func-
tional groups at higher pH, leading to nucleation at higher
pH while at lower pH aggregation was favoured over nuclea-
tion. Nucleation increases with increasing solution pH indi-
cating the formation of Ag® from Ag* due to bio-reduction.
At the same time, the solution pH also influences the rate of
bio-reduction by influencing the activity of the phytochemi-
cals (Veerasamy et al. 2011). For example, it was suggested
that better AgNP formation occurred under basic conditions
with 0.1-2.0 mM AgNO; and efficiency decreased with
decreasing pH of the reaction medium (Yazdi et al. 2019).
Furthermore, AgNP synthesized in acidic medium (pH 4)
yielded larger particle size, whereas highly dispersed and
small-sized AgNPs were observed at pH 8 (Khandan Nasab
et al. 2020). This phenomenon revealed enhancement of
nucleation *centres with increases in solution pH. The result
also suggested that at lower pH (< 7) large number of func-
tional groups of phytochemicals bind with AgNP increas-
ing the chance of agglomeration, resulting in larger sized
AgNP (Veerasamy et al. 2011). However, Ondari Nyakundi
and Padmanabhan (2015) suggested that as a soft metal, Ag
binds with soft ligands like amino and sulthydryl groups,
where these positive charged groups then reduce Ag* to
Ag at low pH. The bio-reduction was thus mainly through
ionic binding and phytochemicals which was favoured at
low pH due to the presence of positively charged functional
groups. The study also suggested the involvement of some
hard ligand-like carboxylic groups which became protonated
at low pH and also helped to in the formation of AgNP. It
is also evidential from examination of the literature that the
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zeta potential of acidic colloidal AgNP is generally lower
than that of alkaline colloidal AgNP. Rapid bio-reduction
with highly dispersed AgNP and negative zeta potential was
observed at higher pH (Akhtar et al. 2013).

Effect of temperature

Temperature is yet another key factor that significantly
affects the shape and size of biosynthesized AgNP with a
positive correlation between temperature and AgNP yield
up to an optimum temperature, normally around 27 °C
for 0.5-3.0 mM AgNOj; (Akhtar et al. 2013; Kumar et al.
2021a). Verma and Mehata (2016), when investigated AgNP
biosynthesis using a Azadirachta indica leaf extract at dif-
ferent temperatures ranging from 10 to 50 °C, found that
AgNP size decreased with increasing temperature upto
27 °C, which might be due to an increased bio-reduction
rate with increasing temperature. Most studies agree that
smaller and more uniformly distributed AgNP are produced
at room temperatures (around 27 °C). Increasing temperature
(beyond room temperatute; 27 °C) resulted in larger sized
AgNP, potentillay due to the denaturation of phytochemicals
and increasing agglomeration of AgNP (Ahmed et al. 2016).
However, as with many studies, this article failed to idenify
the specific phytochemicals responsible for changes in the
size of AgNP with increasing temperature.

Mechanism of the biosynthesis process

The biochemical composition of plant extacts may vary
considerably with the plant species or even within the same
plant when different plant parts are extracted. While a wide
range of phytochemicals, commonly implicated in either bio-
reduction and/or stabilization are known and listed breifly in
the Sect. 4.1, the extact mechanistic role this chemical play
is not always clear. None of these articles clearly indicated
or identified the specific active biomolecules responsible for
the bio-reduction process of Ag* to Ag’. Jha and Prasad
(2010) reported that some metabolites can trigger the bio-
reduction process via transformation of silver ions to AgNP
due to redox activity of dehydroascorbic acid/ascorbic acid
or amenti/hinoki flavones or some other metabolite. Some
researchers reported that the carbonyl and hydroxyl groups
of flavonoids, terpenoids, carbohydrates, and phenolic com-
pounds as reducing agents, played a key role in the reduc-
tion of Ag™ ions to metallic Ag® nanoparticles (Ajitha et al.
2015). Proteins, peptides and the carbonyl groups of amino
acid have all been shown to have strong affinity to bind with
metallic Ag® to form a coating layer around the AgNP that
assists colloidal stabilization in solution (Fig. 6) (Karthik
et al. 2017). These authors also claimed that the quantity
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Fig.6 Probable bio-reduction mechanism of silver salts (AgNO;) leading to the formation of AgNP

of leaf extract used in the experiment has an important role
in regulating the size of the nanoparticles and inhibited the
oxidation of the produced AgNP (Ajitha et al. 2015).

Extracts of Desmodium trifolium were successfully used
to biosynthesise AgNP via reduction of silver ions where
the presence of ascorbic acid in the extract played a sig-
nificant role (Ahmad et al. 2011). Previously, Kesharwani
et al. (2009) had also reported a bio-reduction mechanism
when using Datura metel to produce stable AgNP havin a
particle size between 16 and 40 nm. However, rather than
ascorbic acid, this study had shown that the D. metel leaf
extract contained a wide varieity of enzymes, amino acids,
alkaloids, proteins, and polysaccharides these were respon-
sible for bio-reduction.

However, in all of these studies, while a mechanism was
propsed involving simultaneous reducing and/or capping
biomolecules, none of the studies could unambiguously
identify the specific phytochemicas involved in each role.

Role of phytochemicals in the biosynthesis
of AgNP

The bio-inspired routes for AgNP synthesis are attractive
because they not only produce nontoxic and inexpensive
nanoparticle in a one-step synthesis but, also depending
on the interaction between AgNP and the phytochemical
capping agents present, the AgNPs so produced are often
produced with controllable size and morphology.There-
fore, it is important to identify and understand the specific
interaction(s) between the phytochemicals present in the
extracts and the silver salts in solution which react to pro-
duce AgNP. While a vast myriad of phytochemicals includ-
ing amides, flavonoids and peptides for example (details
listed in Sect. 2) have been identified as being involved in
AgNP biosytheis, the specific interaction of all phytochemi-
cals is yet to be conclusively established.
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Trouillas et al. (2006) employed a density-functional the-
ory (DFT) method to investigate the interactions during bio-
reduction of a silver salt which showed that the O—H bond
dissociation energies of the hydroxyl group of the catechol
moiety of flavonoids was less than that of other —OH groups
present in most phytochemicals. Similar result was reported
by Bose and Chatterjee (2016) for the biosynthesis of AgNP
using a Psidium guajava leaf extract. These results indicated
that the carbonyl and hydroxyl groups of flavonoids play a
significant role in the reduction of Ag ions through the metal
chelation with the catechol moiety of flavonoids, where the
electrostatic interaction and charge transfer between the OH
group of flavonoids and Ag™ ion are responsible for bio-
chemical interaction leading to bio-reduction. Shaikh et al.
(2020) also reported three specific flavonoids (Flavan-3-ol,
Flavan-3,4-diol, Flavan-4-ol) acted as reducing and/or cap-
ping agent for the reduction Ag™ to Ag® (Fig. 7), during the
biosynthesis of AgNP using a Shorea robusta leaf extract.
This bio-reduction mechanism might be due to the tauto-
meric transformations of flavonoids to flavone and/or fla-
vonol (from enol to keto), where the reactive hydrogen was

Fig. 7 Role of phytochemicals
in the biosynthesis of AgNP
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released by some hydroxyl (-OH) containing groups includ-

ing Flavans, flavanonol and flavonol (Shaikh et al. 2020).
The review was conducted to identify the trends emerg-

ing in nanoparticle research using an open-access database
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search engine (Dimensions), and VOSviewer software
(version 1.6.16) for data analysis to acquire a holistic view
of the current trends in AgNP synthesis. Research articles
published during 2008-2021 (till 31st January 2021) were
considered in this statistical analysis (Fig. 8a). Among the
115 million publications searched, 2877 research articles
were found for the search term ‘bio-synthesized silver
nanoparticles’, where only 629 research articles were also
related to ‘plant-mediated bio-synthesized silver nano-
particles’. For this search, we used two keywords, “bio-
synthesized silver nanoparticles” and “plant-mediated
silver nanoparticle synthesis” under the “research article”
section only.

The refined search criteria yielded 2877 research articles
published in the 65 most common journals in the fields of
science, technology, and engineering, where ~50% of arti-
cles were published in the 14 major analytical and environ-
mental chemistry journals (Fig. S1). Most studies (> 65%)
were published between 2013 and 2020, indicating a grow-
ing interest in the advancement of analytical techniques in
the field of nanotechnology. It was observed from the analy-
sis that though initially, these studies were only focused on
the AgNP biosynthesis, from 2015 onwards, focus shifted
to environmental pollution control domain from only bio-
synthesis of AgNP (Fig. 8). Moreover, an analysis on the
research articles based on ‘plant-mediated silver nanopar-
ticle synthesis’ in the past decade (2010-2020) showed
that the number of publications in the 1st and 2nd quarter
(2010-2016) was gradual. However, a significant incre-
ment was observed at the end of the 2nd quarter (after
2013-2014).

The first research article on plant-mediated bio-synthe-
sized silver nanoparticles was published by Rajasekharreddy
et al. (2010), which reported biosynthesis of both AgNP and
gold nanoparticle (nAu) using the leaf extracts of Calotropis
gigantea L. (Calotropis), Carica papaya L. (Papaya), Cit-
rus aurantium L. (Bitter orange), Datura metel L. (Datura),
Jatropa curcas L. (Barbados nut), Solanum melongena L.
(Eggplant), and Tridax procumbens L. (Coat buttons) using
the sunlight exposure method. Moreover, the network map
of 2792 authors with a citation weightage, represented in
Fig. 9a, showed that the research group of Prof. Giovanni
Benelli of University of Pisa, Italy, Prof. Kadarkarai Muru-
gan of Bharathiar University, India, Dr. Chellasamy Pan-
neerselvam of University of Tabuk, Saudi Arabia and Prof.
Zia Ul Haq Khan of University of Engineering and Technol-
ogy Peshawar, Pakistan were the major contributor in the
field of 'plant-mediated bio-synthesized silver nanoparticles’.
It was also seen from Fig. 9b that Prof. Giovanni Benelli had
the highest number of articles (10) of plant-mediated AgNP
synthesis, owing to the highest total link strength (344), fol-
lowed by Prof. Kadarkarai Murugan (number of articles 9;
total link strength 229). The highest citations and the highest

total link strength indicated the novelty, reliability of the
phenomenon, and acceptability in the scientific community
which swiftly triggered the progress and advancement of
the field of nanoparticle research, more precisely in the field
of plant-mediated AgNP research. Some of the research-
ers (Prof. Zia Ul Haq Khan; Number of articles 7 of plant-
mediated AgNP synthesis; Total link strength 90) have a
high number of papers but lower total link strength indicat-
ing the resecach articles are not cited in this field. However,
Dr. Chellasamy Panneerselvam has only 6 articles related
to plant-mediated AgNP synthesis owing total link strength
of 200 indicating the higher citation rate and acceptability
of his articles.

From the 629 published research articles on AgNP across
67 countries, it was found that the research was predomi-
nantly conducted in Asia compared to Europe, America,
and Africa. The result showed most of the research articles
were published by India (258), followed thereafter by China
(58), and least among among European countrries, where
Italy (12) had the highest number of published on AgNP
papers, and Nigeria (11) had the highest AgNP papers in
Africa (Fig. S2), while Australia and the USA contributed
5 and 30 papers of AgNP, respectively. The incremen-
tal sequence in the greatest number of published AgNP
papers (> 10) was India > China > Pakistan > Saudi Ara-
bia> Iran > USA > South Korea > Malaysia > Egypt > South
Africa> Mexico > Italy > Nigeria. Nineteen per cent of the
countries in the database, including India, China, Pakistan,
Iran, Malaysia, Mexico, Egypt, and Nigeria, had ten or more
research articles contributing >95% plant-mediated AgNP
articles (Fig. 10).

Similarly, the data were also examined for citation analy-
sis considering a minimum threshold limit of three published
research articles from a country, which showed India to be
the largest contributor with 258 articles, followed by China
with 58 (Fig. 10). Moreover, India has the highest total link
strength (1218), indicating Indian studies were cited by
most other countries as a reliable source of information in
this field. The spread of research mainly clustered in Asia
revealed strong bias at the continental scale, having >60% of
the total citation between 2008 and 2021. In North America,
South America, Europe, and Africa, the cluster centred in
the USA, Mexico, Italy, and South Africa, respectively.

This bibliometric study showed good knowledge of
plant-mediated AgNP synthesis in Asian countries like
India, China Pakistan and some Europian countries.
Among these, India is one of the pioneers and most expe-
rienced country in the field of plant-mediated AgNP
research. The enhanced research in this country might be
due to the following: (1) availability of numerous plants
due to geographical location and wide ranges of climatic
conditions, (2) significant development in the field of nano-
science and nanotechnology, and (3) directionless research,
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which generally followed the previous one (changing the
plants and applications) to publish a paper without real-
izing the significance and feasibility for real application.
However, this study also showed that AgNP research
was deficient or even absent in a considerable part of the
globe, mostly in poor and developing countries of South
America and Africa. The major reason behind this could
be less nanotechnology development and lower funding in
theses regions resulting in the observed publication gap.
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Moreover, some research articles were focused on AgNP
biosynthesis and detailed sampling techniques and preser-
vations in the 2nd and 3rd quarters of the decade (Ahmed
et al. 2016). Among the different sampling technique, non-
repeated grab sampling was a commonly adopted technique
for the collection of most of the plant samples (Moham-
madi et al. 2016). However, some repeated grab sampling
and composite sampling were also observed in some of the
studies (Raja et al. 2017).



Applied Nanoscience (2021) 11:2625-2660

2653

Number of Articles per

Country (2010 - 2021)

B U

| 1 19 -23

B - 24-30

‘-4 31-45
s I s 127 :
7-10 I 128-336 e
. - A

Fig. 10 Country-wise publication of plant-mediated AgNP papers

Limitations of plant-mediated AgNP
biosynthesis

While most of the review articles on plant-mediated bio-
synthesis of AgNPs foscussed simply on the success of the
process, very few articles addressed the potential challenges
and shortcomings of this approach. Therefore, in this review,
an attempt has been made to discuss the major factors limit-
ing the yield, and operational scalability of AgNP produc-
tion, like concentration of the plant extracts, the source/type
of phytochemicals, the stoichiometric ratios of the reagents
and differing optimal experimental conditions. Theses
limitations have been broadly categorized below under the
following sections: technical limitations, engineering and
economical.

Variability in synthesis parameters

The precursor concentration, the stoichiometric ratio of pre-
cursor to plant extract, reaction incubation time, reaction
temperature and pH are all key factors that can affect the
morphological characteristics (size and shape) of AgNP as
well as yield. Khalil et al. (2014) reported the formation
of smaller particles (8—15 nm) was favoured by a higher
ratio of the bio-extract: precursor (5 mL in a 10 mL Ag*
solution), and particle size increased (up to 30+ 6 nm)
with a decreasing ratio of the bio-extract: precursor solu-
tion (1 mL in a 10 mL Ag™ solution), whereas Johnson and
Prabu (2015) reported increasing phytochemical concentra-
tion increased AgNP size. However, Shaikh et al. (2020)

reported increasing AgNP size with decreasing precursor
(AgNO;) concentration due to the occurrence of a narrow
SPR band. Suresh et al. (2014) had suggested that during
the biosynthesis of AgNP using Delphinium denudatum root
extracts the reaction incubation time affected the bio-reduc-
tion. In this work, while an initially sharp UV absorption
spectra was observed, increasing the incubation time cuased
the UV absorption spectra to become wider indicating larger
AgNP. Most studies support a positive correlation between
AgNP yield and temperature increase (up to an optimum
temperature, generally 300 K). Karthik et al. (2017) found
that pH was a most important factor influencing variation in
size and shape when using a Camellia japonica leaf extract.
Moreover, the literature of Karthik et al. (2017) also suggests
that not only do different plant extracts have different pH,
but also that even the extracts of different plant parts from
the same plant may have different pH, which also affects
morphology, shape, and size.

The main limitation of all of these different studies was
together the observations tended to be contradictory and no
similar trends were observed between disparate studies. Gen-
erally, this occurs because to a large extent the results vary
significnly depending both on the different plant extracts
used and thus the differnces in the presence of various phyto-
chemicals. Another limitation is purity and yield of the final
compounds because separation of AgNP from the colloidal
phase is challanging. One of the most significant concerns
of plant-mediated AgNP synthesis is obtaining high yield.
Increasing yield by changing the biosynthesis parameter(s)
often leads to the higher-sized AgNP. Moreover, specific
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phytochemicals and background chemistry control the size
and morphology of AgNP shape and size. Thus, identifica-
tion of the specific phytochemicals involved in AgNP bio-
synthesis is required to understand the mechanism. However,
the lack of good extract characterization in terms of the com-
mon phytochemicals present is a major issue when trying to
undserstand relationships between yield, morphology, and
plant extract chemicals. Though research has claimed that
biosynthesis of AgNP is more environment friendly than
either chemical or physical approaches, failed to be prove
it due to a significant lack of clear scientific evidence (Mit-
tal et al. 2013). The assertion of environmenmtal friendlie-
ness is based mainly on consideration of how much toxic
chemicals are substituted by non-toxic alternatives during
biosynthesis or how much energy is saved, and the perceived
ecological and economic impacts (Kumar et al. 2020; Kumar
and Bhattacharya 2021).

Engineering limitations

To maintain quality, in terms of uniformity of size and
surface composition, which are both essential for assuring
enhanced performance, commercial AgNP is synthesized
under rigorous standards. However, most biosynthesized
AgNP particle’s shape and size cannot be well controlled
and this often affects phsiochemcial properties like electri-
cal conductivity. Furthermore, most studies indicate that
biosynthesized AgNP are polydispersed due to the diver-
sity in the phytochemicals originating from different plant
materials. Nouri et al. (2020) reported that the presence of
alkene, amide, alcohol, alkaloids, flavonoids, phenol, pro-
teins, saccharides, steroids, saponins, sugar, and tannins
in Mentha aquatica leaf extract induced the biosynthesis
of spherical AgNP. However, Khoshnamvand et al. (2019)
reported formation of spherical, ellipsoidal, and hexagonal
AgNP using an Allium ampeloprasum leaf extract, while
cubic (size ~68.06 nm), flower shaped (size 25 nm), hex-
agonal (size 20-80 nm), rectangular flakes (size 7-24 nm),
and truncated triangular shaped (size 10-30 nm) AgNP were
biosynthesized when using Andrographis echioides leaf
extract (Elangovan et al. 2015), Chrysophyllum oliviforme
leaf extract (Anju Varghese et al. 2015), Alpinia officinarum
Rhizome extract (Li et al. 2020), Waltheria americana Root
extract (Deshi et al. 2016), and Platanus orientalis leaf
extract (Al-Thabaiti et al. 2015), respectively.

Some researchers used additional chemicals including
cetyltrimethylammonium bromide (CTAB), amphiphilic
molecules, surfactants, anionic, cationic and Gemini for
shape-controlled AgNP biosynthesis (Al-Thabaiti et al.
2015). However, the particular factor or interaction govern-
ing the shapes of the AgNP is still unknown and no scientific
evidence or justification was provided to indicate how the
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parameters or the phytochemicals determined the shape of
biosynthesized AgNP.

Economic limitations

Currently the main economical uncertainlty associated with
the biosynthesis approach is that most studies till date have
been performed at the laboraoty scale and there is little
information on the feasibility of the process on an indus-
trial scale. The large amounts of plant extract required to
scale up production, may be an important limiting factor for
large scale production. In addition to this, continuous sup-
ply of plant materials for extraction of active biomolecules
is also uncertain. Johnson and Prabu (2015) reported AgNP
synthesis using Commelina benghalensis, Cycascircinalis,
Ficus amplissima, and Lippia nodiflora, where the leaf
extracts were concentrated by centrifugation at10,000 rpm
for 30 min, exhibiting significant bio-reduction within 15
min with larger spherical sized AgNP formed witha small
enhancement in yield. Moreover, to produce large quantities
of phytoextractant a significant amount of bimasswaste is
generated from the process.

Other important factors to consider include maintaining
of high yield and stability, where the chemistry and/or mech-
anism associated with these factors is not well understood.
In addition, the metrics usied in calculating AgNP yield is
poorly characterized between different studies (i.e., mass
intensity, effective mass yield, and the stoichiometric factor).
Likewise, economic feasibility analysis of the biosynthesis
of AgNP compared to tradaiotion synthetic methods has not
been considered.

However, the identification and separation of phyto-
chemical particularly involved in the bio-reduction is quite
impossible but the biosynthesis of continuous, long term
industrial scale AgNP may be maintained by using some
common native plant species. Plant species having no eco-
nomic value (i.e., Eichhornia sp., Parthenium hysteropho-
rus) which creates advarce effects due to overgrowth may
be a good alternative.

Conclusions

In recent years, the bioinspired synthesis of AgNP has
attracted significant attention, and plant-mediated AgNP
synthesis has been the most sought method due to the
wide availability of plant sources, environment friendli-
ness of the procedure (without the use of toxic chemi-
cals), high stability of the produced nanoparticles and
suitability of the method for large-scale synthesis. This
nontoxic size-controlled biosynthesis of AgNP has
become inexpensive nanotechnology suitable for a wide
range of applications. A wide range of applications like
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biomedical, environmental, agricultural, biosensing, to
name a few, have been successful with biosynthesized
AgNP particles. Numerous plant species across the globe
showed the capability to biosynthesize AgNP particles, as
evident from the extensive list summarised in the review
due to their presence of a wide array of phytochemicals,
though specific biochemical for each function is yet to
be elucidated. However, these bio-reduced nanoparticles
still pose limitations in large-scale applications, owing to
their yield and purity. The limitations and disadvantages
have been discussed under engineering, environmental and
economic bottlenecks. Finally, the bibliometric analysis of
the trend of this plant-mediated AgNP synthesis research
revealed that initially, the biosynthesis of AgNP was the
main objective, and maximum work on this was done in
Asia, with India producing the highest number of scientific
articles and citations, while the USA or Europe worked
more on applications of the AgNP particles later. Recently
instead of using isolated AgNP particles, the technique has
shifted to target specific applications with hybrid systems.
Finally, it can be concluded that plant-mediated synthesis
of silver and other nanoparticles is a lucrative option but
requires more research into improving its applicability for
a sustainable result.

Research gaps and future recommendations

In recent years, the biological synthesis of NP (like AgNP)
has emerged as an important scientific field. Among the
wide number of natural materials, plant extract/biomass has
gained significant importance due to the simple one-step
inexpensive process, more environment friendly process,
and safe to handle chemicals. However, several researchers
hypothesized the involvement of specific potential chemical
agents/functional groups of the plant species during the syn-
thesis of AgNP. However, considering the diversity of plants
and the phytochemicals composition, none of the papers
describes the particular phytochemical(s) responsible for the
bio-reduction of Ag™ (reduce Ag™ into Ag®) or stabilization
rather than the hypothetic bio-reduction mechanism. This
area still presents a lacuna in the research of Phyto mediated
synthesis of nano particles and need to be addressed. This
will help in controlling and achieving the desired size and
morphology of the nanoparticles for various applications.
This will also help to assess the toxicity of the specific phy-
tochemicals involved in the process on biological organisms
once they come in contact in nature.
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