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Knowledge of the average size and variability of the human spinal cord can be of impor-

tance when treating pathological conditions in the spinal cord. Data on healthy human 

spinal cord morphometrics have been published for more than a century using different 

techniques of measurements, but unfortunately, comparison of results from different 

studies is dif�cult because of the different anatomical landmarks used as reference points 

along the craniocaudal axis for the measurements. The aim of this review was to compute 

population estimates of the transverse and anteroposterior diameter of the human spinal 

cord by comparing and combining previously published data on a normalized craniocau-

dal axis. We included 11 studies presenting measurements of spinal cord cross-sectional 

diameters, with a combined sample size ranging from 15 to 488 subjects, depending on 

spinal cord level. Based on �ve published studies presenting data on the lengths of the 

segments of the spinal cord and vertebral column, we calculated the relative positions 

of all spinal cord neuronal segments and vertebral bony segments and mapped mea-

surements of spinal cord size to a normalized craniocaudal axis. This mapping resulted 

in better alignment between studies and allowed the calculation of weighted averages 

and standard deviations (SDs) along the spinal cord. These weighted averages were 

smoothed using a generalized additive model to yield continuous population estimates 

for transverse and anteroposterior diameter and associated SDs. The spinal cord had the 

largest transverse diameter at spinal cord neuronal segment C5 (13.3 ± 2.2), decreased 

to segment T8 (8.3 ± 2.1), and increased slightly again to 9.4 ± 1.5 at L3. The antero-

posterior diameter showed less variation in size along the spinal cord at C5 (7.4 ± 1.6), 

T8 (6.3 ± 2.0), and L3 (7.5 ± 1.6). All estimates are presented in millimeters ± 2 SDs. 

We conclude that segmental transverse and anteroposterior diameters of the healthy 

human spinal cord from different published sources can be combined on a normalized 

craniocaudal axis and yield meaningful population estimates. These estimates could be 

useful in routine management of patients with neurodegenerative diseases as well as for 

clinical research and experimental applications aimed at surgical spinal cord repair.

Keywords: spinal cord, reference point conversion, morphometry, segmental diameter, vertebral segment, 

neuronal segment

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging; C, cervical; T, thoracic; L, lumbar; S, sacral.
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Table 1 | studies presenting measurements of the cross-sectional diameter of the human spinal cord included in this review.

article Method reference point segments measured number of subjects

Elliot (23) Postmortem examination Neuronal C5, T6, L5 102

Nordqvist (16) Postmortem X-ray myelography Vertebral C2-L1 18

Thijssen et al. (17) In vivo CT myelography Vertebral C1-T1 20

Lamont et al. (18) In vivo X-ray myelography Vertebral C1-T1 69

Sherman et al. (4) In vivo MRI Vertebral C1-T3 66

Kameyama et al. (19) Postmortem examination Neuronal C2-T1 14

Kameyama et al. (19) Postmortem examination Neuronal C7 152

Kameyama et al. (20) Postmortem examination Neuronal C2-S3 12

Fountas et al. (21) In vivo CT myelography Vertebral C2-C7 102

Ko et al. (22) Postmortem examination Neuronal C3-S5 15

Zaaroor et al. (5) In vivo MRI Vertebral C1-L1 20

C, cervical; T, thoracic; L, lumbar; CT, computed tomography; MRI, magnetic resonance imaging.
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inTrODUcTiOn

�e spinal cord constitutes the main channel of a�erent and e�er-
ent signaling between the body and the brain, and pathology in 
the spinal cord typically leads to signi�cant lifelong functional 
de�cits in a�icted patients, regardless of traumatic or autoim-
mune etiology (e.g., spinal cord injury and multiple sclerosis).

Knowledge of the average size and variation of the human 
spinal cord can be of importance when treating pathological 
conditions in the spinal cord. It is known that patients su�er-
ing from multiple sclerosis have a reduced cross-sectional area 
compared to healthy matched controls (1). �ese case-control 
studies typically su�er from low power and without population 
estimates, it can be di�cult to determine whether a speci�c 
patient should be considered to have a pathologically small 
spinal cord. Furthermore, many experimental strategies for the 
treatment of acute and chronic traumatic spinal cord injuries 
are in di�erent phases of development (2). In all studies where 
a premade device, instrumentation, or otherwise physical object 
needs to be applied to the spinal cord, the population estimates 
of spinal cord size are of importance because they represent the 
variation in physical dimensions that will be encountered when 
operating on patients.

Data on healthy human spinal cord morphometrics have been 
published for more than a century using di�erent techniques of 
measurements and di�erent reference points along the craniocau-
dal axis of the spinal cord. Imaging techniques such as computed 
tomography (CT) can be used to detect so�-tissue changes and 
damage to vertebrae, while magnetic resonance imaging (MRI) is 
most appropriate for de�ning neuronal tissue (3–5). Voxel-based 
techniques, implemented on MRI images, are available for spinal 
cord cross-sectional area measurement as a means for fast and 
comprehensive assessment of volumetric changes (6). Although 
these imaging techniques give important information about the 
existence of damage to vertebrae and/or neuronal tissue, the 
techniques do not provide an exact methodology for determin-
ing the location and morphometries of an a�ected spinal cord 
neuronal segment. �e main disadvantage with the radiological 
approaches is inadequate resolution. �erefore, histological 
studies have also been implemented. However, neuronal tissue 
does not retain shape postmortem, introducing other technical 
challenges and possible bias.

�e human spinal cord is made up of 30 neuronal segments 
distributed along the spinal cord in eight cervical, 12 thoracic, 
5 lumbar, and 5 sacral segments. �e spinal cord is positioned 
in the vertebral canal of the vertebral column. �e vertebral 
column is made up of 24 segments with 7 cervical, 12 thoracic, 
and 7 lumbar segments. However, the spinal cord terminates 
approximately between lumbar vertebrae L1 and L2, and, there-
fore, the 30 spinal cord neuronal segments are distributed over 
20 vertebral bony segments. Most radiological techniques can-
not determine spinal cord neuronal segment level, but instead, 
rely on reporting the vertebral bony segment level. In contrast, 
postmortem studies commonly rely on the spinal rootlets for 
determining spinal cord neuronal segmental level. Comparison 
between and combination of results from di�erent studies are 
inherently di�cult because of the diverse anatomical landmarks 
used for the measurements.

�is review sought to compute population estimates of the 
transverse and anteroposterior diameter of the entire human 
spinal cord by comparing and combining previously published 
data on a normalized craniocaudal axis.

MaTerials anD MeThODs

studies and Data
Inclusion in the Analysis
We searched PubMed for original research publications report-
ing morphometric data on the human spinal cord. Studies not 
found in PubMed but referred to in the included studies were 
also added. Table 1 shows the studies presenting cross-sectional 
measurements of the human spinal cord, while Table  2 shows 
the studies presenting longitudinal measurements along the 
craniocaudal axis of the spinal cord neuronal segments. We also 
included three studies presenting the length of the vertebral bony 
segments in Table 2 (7–9).

Extracting Data from Studies
Most of the studies included did not present the raw data from 
their measurements; instead, averages and standard deviations 
(SDs) were provided. Some studies presented their data in graphi-
cal instead of numerical format. To ensure correct extraction of 
data from these studies, we imported images of the graphs into a 
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Table 2 | studies presenting measurements of the length of the human spinal cord neuronal segments and verebral bony segments included in this 

review.

article Method reference point segments measured number of subjects

Donaldson and Davis (24) Postmortem examination Neuronal C1-S5 4

Panjabi et al. (7–9) Postmortem examination Vertebral C2-L5 12

Ko et al. (22) Postmortem examination Neuronal C3-S5 15

Cadotte et al. (10) In vivo MRI Neuronal/vertebral C3-C8/C3-C7 10

C, cervical; L, lumbar; S, sacral.
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CAD-program (Rhino 5 for Mac, Robert McNeel & Associates) 
and used the internal measurements tool to extract the precise 
values from the graphs.

relative lengths of segments
Calculating Relative Lengths of Spinal  

Cord Neuronal Segments
Using the data from the studies in Table  2, we calculated the 
relative length of each spinal cord neuronal segment by simply 
dividing the length of each segment by the total length of the 
spinal cord. By estimating the segmental diameter, the measure-
ments from the di�erent studies were weighted according to the 
number of subjects (i.e., individuals) in each study.

Calculating Relative Lengths of Vertebral Bony 

Segments and Aligning Spinal Cord Neuronal 

Segments
Using the data from the studies in Table 2, we also calculated the 
relative length of each vertebral bony segment using the same 
method described above for the neuronal segments. A vertebral 
bony segment was de�ned as the vertebra and half of the two 
adjacent intervertebral disks. �e disks were assumed to increase 
in size proportionally to the vertebrae.

�ere were no measurements for vertebral segments C1 and 
C2 in the studies that we found. �eir respective ratios were 
approximated by aligning vertebral bony segments with spinal 
cord neuronal segments in the cervical region according to 
Cadotte et  al. (10). Speci�cally, the distance between the mid-
point of spinal cord neuronal segment C3 and vertebral bony 
segment C3 was set to 1.3 times the distance between spinal cord 
neuronal segments C3 and C4. Finally, we assumed that both 
the spinal cord and the vertebral column terminated at the same 
cranial level and divided the distance equally between C1 and 
C2 vertebral bony segments. �erefore, our calculated relative 
sizes of C1 and C2 should be considered approximations and 
interpreted with care.

relative Positioning of segments
Relative Positioning and Scaling of Spinal Cord 

Neuronal Segments and Vertebral Bony Segments
To align the spinal cord neuronal segments with the vertebral 
bony segments, we multiplied all cumulative percentages for 
vertebral bony segments by 1.29. �is scaling factor was calcu-
lated by dividing the cumulative percentage of entire spinal cord 
(100%) with the cumulative percentage of the vertebral column 
at vertebral bony segment L1. �is new scaling of vertebral bony 

segments set the caudal end of the L1 vertebral bony segment 
equal to the caudal end of spinal cord neuronal segment S5. As a 
result, the positioning depends on knowledge of the positions of 
the C3 and C4 spinal cord neuronal segments relative to the C3 
vertebral bony segment presented by Cadotte et al. (10) and the 
level of termination of the spinal cord between vertebral bony 
segments L1 and L2 (11).

Corrected Positioning of Transverse Diameter 

Measurements of the Human Cervical Spinal Cord
�e positions of the segments shown in Figure 1 were used to 
�nd the correct relative positions of each cross-sectional meas-
urement along a normalized craniocaudal axis of the human 
spinal cord. Each measurement was placed as closely as possible 
to the anatomical position described by the original authors, with 
respect to the type of segmental reference used in the study (spi-
nal cord neuronal segment or vertebral bony segment) as well as 
the positioning on that speci�c segment (cranial end of segment, 
midpoint of segment, or caudal end of segment).

Evaluating the Corrected Positioning  

of Measurements
To estimate the e�ect of adjusted craniocaudal positions on trans-
verse diameter measurements of the human cervical spinal cord 
shown in Figure 2, we �tted a linear regression model, before and 
a�er correction of craniocaudal position:

 

Transverse Diameter Position
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~ *

* *

β

β β

1

2

2

3+ +
 

�e squared term was added because the cervical spinal cord 
transverse diameter approximates the shape of a second-degree 
polynomial, and the dummy term study was added to correct for 
di�erences in intercept between the studies. Adjusted R-squared 
was used as a measure of alignment of the cervical intumescences 
between studies. Con�dence intervals for the adjusted R-squared 
were estimated using a 1,000 iteration bootstrap.

Weighted averages
Calculating Weighted Averages and  

Variances along the Spinal Cord
To combine the cross-sectional measurements of the human 
spinal cord from all studies into single estimates, we calculated 
a moving weighted average. First, measurements from all stud-
ies were aligned along their correct position on our corrected 
craniocaudal axis described above and in Figures  1 and 2. 
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FigUre 2 | (a,b): with the relative positions of spinal cord neuronal segments and vertebral bony segments illustrated in Figure 1, we plotted measurements of the 

transverse diameter of the cervical spinal cord. In panel (a), the measurement of the transverse diameter of the spinal cord is not corrected for craniocaudal 

position, and, therefore, the cervical intumescence is misaligned between studies with different reference points. In panel (b) (corrected for craniocaudal position), 

the intumescence appears aligned. The difference in alignment was tested by �tting a second degree polynomial regression to the data points. Bootstrapping 

con�dence intervals for the two estimates of R2 (for corrected and uncorrected, respectively) showed that the con�dence intervals were non-overlapping, indicating 

a substantial improvement of alignment after correction.

FigUre 1 | Figure illustrates the relative positions of each neuronal spinal cord segment and vertebral bony segment in the human spine. Relative 

positions were calculated using data from Tables 3 and 4, together with relative positions of the C3-vertebral and C3-neuronal segment (10) and the mean spinal 

cord termination in the spinal canal at L1/L2 (11).
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�erea�er, starting at the cranial end, four consecutive meas-
urements of spinal cord diameter were combined into a single 
average, weighted by the number of subjects in the comprising 
studies for the four included measurements. �e average posi-
tion along the craniocaudal axis of the four measurements was 
used as the new position for the weighted average. Next, the 
most cranial of the four measurements was dropped, and the 
closest measurement caudal to the three remaining measure-
ments was included to create a new group of four measure-
ments, with a new weighted average and a new position along 
the craniocaudal axis.

Moving weighted variances were calculated using the same 
method as described for the moving weighted averages. �e 
calculated variances were then converted to weighted SDs.

Population estimates
Constructing Continuous Population Estimates  

with a Generalized Additive Model
To construct continuous population estimates and achieve 
further smoothing, a generalized additive model was used to �t 
the weighted averages and weighted SDs. We used the smooth-
ing function of ggplot2 (12) in R (13) with the formula y ~ s(x, 
k = 12), allowing a 12° polynomial function to �t the data.

Extracting Point Values of Continuous Population 

Estimates along the Spinal Cord
To facilitate comparison between our continuous population 
estimates and other studies, we extracted values for each spinal 
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Table 3 | relative lengths of human neuronal spinal cord segments.

segment Percentage  

of spinal cord

cumulative percentage  

of spinal cord

C1 1.6 1.6

C2 2.2 3.9

C3 3.5 7.3

C4 3.5 10.8

C5 3.5 14.3

C6 3.3 17.6

C7 3.2 20.8

C8 3.4 24.1

T1 3.6 27.7

T2 3.9 31.6

T3 4.4 36

T4 5 41

T5 5.1 46.1

T6 5.6 51.8

T7 5.6 57.4

T8 5.4 62.7

T9 5.1 67.8

T10 4.7 72.4

T11 4.3 76.7

T12 3.9 80.6

L1 3.6 84.2

L2 2.8 87

 L3 2.4 89.4

L4 2.2 91.6

L5 1.7 93.3

S1 1.5 94.9

S2 1.6 96.4

S3 1.4 97.8

S4 1.3 99.1

S5 0.9 100

With data from the articles in Table 2, we calculated the relative proportions of each 

spinal cord neuronal segment relative to the length of the whole spinal cord.

C, cervical; T, thoracic; L, lumbar, S, sacral.
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cord neuronal segment and vertebral bony segment. �e number 
of subjects measured for a given segment was de�ned as the 
total number of subjects included in any study with a calculated 
craniocaudal position inside the cranial and caudal limits of 
the segment in question. �is was used as an approximation of 
sample size, as there is no obvious way of calculating exact sample 
size for di�erent portions of a smoothing function.

Number of Measurements and Relative Contribution 

of Studies along the Spinal Cord
To present the total number of measurements included at dif-
ferent points along the craniocaudal axis of the spinal cord, we 
plotted the total number of measurements in each vertebral bony 
segment in Figure  6A. Figure  6B shows the relative contribu-
tion of each included study along the spinal cord, and Figure 6C 
shows the relative contribution of di�erent methods for obtaining 
measurements.

software
Data was gathered in Microso� Excel and stored as comma-
separated values (.csv), all calculations were performed in R 
(13), and graphs were produced with the ggplot2 and cowplot 
packages (12, 14). Bootstrapping was performed with the boot 
package (15).

resUlTs

studies and Data
Studies Included in the Analysis
Data on the diameter of the healthy human spinal cord were 
available from various published sources, covering more than 
100  years of research and various acquisition methodologies 
(4, 5, 16–24). �e published papers di�ered in terms of meth-
odology of measurement, anatomical reference points, segments 
measured, and the number of subjects included. Six published 
papers reported data on the lengths of the spinal cord neuronal 
and vertebral bony segments (7–9, 22).

All studies reported SDs of measurements, except for the fol-
lowing: Fountas et  al. (21), Ko et  al. (22), and Nordqvist (16). 
Donaldson and Davis (24) did not report SDs, but all raw data was 
presented in the paper, so the SDs could be computed. Raw data 
for measurements of anteroposterior diameter in Nordqvist (16) 
was also presented in the paper, but not for transverse diameter. 
Tables 1 and 2 give an overview of included studies.

relative lengths of segments
Relative Length of Spinal Cord Neuronal Segments
�e longest spinal cord neuronal segments were found in the 
thoracic spinal cord, and each segment constituted approximately 
5% of the whole spinal cord. Multiplying the relative length of a 
spinal cord neuronal segment in Table 3 with the average length 
of the spinal cord yielded segments lengths well above 2 cm in 
the thoracic spinal cord and around 1.5 cm in the cervical spinal 
cord. �e calculated relative lengths of each spinal cord neuronal 
segment are presented in Table 3.

Relative Length of Vertebral Bony Segments
�e vertebral bony segments became longer in the caudal direc-
tion, with the lumbar vertebrae being the longest. �e lumbar ver-
tebrae constitute almost 6% each of the whole vertebral column, 
or 3.5  cm per  segment. �e absolute measurement is naturally 
highly dependent on the length of torso of the individual. �e 
calculated relative length of each vertebral bony segment is 
presented in Table 4.

relative Positioning of segments
Effect of Corrected Positioning of Transverse 

Diameter Measurements of the Human Cervical 

Spinal Cord—R-Squared and Bootstrap
Figure  1 shows the alignment of spinal cord neuronal seg-
ments and vertebral bony segments calculated by our method. 
Figure  2A shows a raw positioning using only segment index, 
and Figure 2B shows our best e�ort to position measurements 
of the transverse diameter of the human cervical spinal cord cor-
rectly along a normalized craniocaudal axis.

To estimate the e�ect of the adjustment of craniocaudal posi-
tion of measurements, we set up two second-degree polynomial 
regression models. �e R-squared value for Model 1 (uncor-
rected positioning) was 68.8% and 86.4% for Model 2 (corrected 
positioning), which was applied to the corrected data shown in 
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Table 4 | relative lengths of human vertebral bony segments.

segment Percentage of vertebral 

column

cumulative percentage of 

vertebral column

C1 3.2a 3.2

C2 3.2a 6.4

C3 2.8 9.1

C4 2.7 11.9

C5 2.7 14.6

C6 2.6 17.2

C7 3.1 20.2

T1 3.4 23.6

T2 3.7 27.3

T3 3.7 31.1

T4 3.9 34.9

T5 3.9 38.8

T6 4.2 42.9

T7 4.3 47.3

T8 4.5 51.7

T9 4.6 56.3

T10 4.8 61.2

T11 5.1 66.2

T12 5.4 71.7

L1 5.7 77.3

L2 5.8 83.1

L3 5.7 88.8

L4 5.7 94.6

L5 5.5 100

aApproximated.

With data from Panjabi et al. (7–9), we calculated the relative proportions of each 

vertebral bony segment relative to the length of the whole vertebral column. One 

vertebral bony segment was de�ned as the vertebra and half of both adjacent 

intervertebral disks. There was no data for segments C1 and C2, and their respective 

percentages were approximated using the relative positions of C3 and C4 spinal cord 

neuronal segments and C3 vertebral bony segment from Cadotte et al. (10), with the 

assumption that the upper end of the C1 spinal cord neuronal segment was aligned 

with the upper end of the C1 vertebral bony segment and the termination of the spinal 

cord was located between vertebral bony segments L1 and L2.

C, cervical; T, thoracic; L, lumbar.
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Figure 2B. �e 95% con�dence intervals for the R-squared values 
were non-overlapping, indicating a robust di�erence.

�e numerical results from the models and bootstraps are 
presented with the underlying data in Figures 2A,B.

Weighted averages
Weighted Averages along the Spinal Cord
To combine the cross-sectional measurements and SDs of the 
human spinal cord from all studies into single estimates, we 
calculated weighted averages. Figure 5 shows the raw weighted 
averages and SDs along the spinal cord.

Population estimates
Continuous Population Estimates along  

the Spinal Cord
To construct continuous population estimates and achieve further 
smoothing, a generalized additive model was �t to the weighted 
averages and weighted SDs.

�e smoothed continuous population estimates of human spi-
nal cord transverse and anteroposterior diameters are shown in 
Figure 3 (cervical spinal cord with original data from the studies), 

Figure 4 (whole spinal cord with original data from the studies), 
and Figure 5 (whole spinal cord with weighted averages and SDs). 
�e transverse diameter of the spinal cord showed the expected 
shape with a marked cervical intumescence and a smaller lumbar 
intumescence. �e anteroposterior diameter decreased through-
out the spinal cord.

Point Values of Continuous Population Estimates 

along the Spinal Cord
To facilitate comparison between our continuous population 
estimates and other studies, we extracted exact values for each 
spinal cord neuronal segment as well as vertebral bony segment.

Results for each spinal cord neuronal segment are presented in 
Table 5 and for vertebral bony segment in Table 6.

Number of Measurements and Relative Contribution 

of Studies along the Spinal Cord
As seen in Figure 6A, the number of measurements in the cervi-
cal spinal cord is much greater than in the thoracic, lumbar, and 
sacral parts, with around 10 times the sample sizes. �e propor-
tion of in vivo methods is also greater in the cervical spinal cord 
(Figures 6B,C).

DiscUssiOn

We estimated normal human spinal cord transverse and 
anteroposterior diameter from previously published data. To 
compare and combine these di�erent studies, we created and 
analyzed a conversion method to place measurements correctly 
along a standardized craniocaudal axis. We created weighted 
averages of measurements and combined them with a gener-
alized additive model to create a �nal continuous population 
estimate of transverse and anteroposterior diameter, as well 
as the associated SDs along the craniocaudal axis of the entire 
human spinal cord.

studies and Data
Studies Included in the Analysis
We included a variety of studies from di�erent eras of research 
using di�erent methodologies. We deemed this necessary 
because of the small number of studies available overall and the 
incomplete coverage of the spinal cord in these studies.

Quality of Original Data Included in the Analysis
�e reliability of the estimated segmental spinal cord diameters 
presented is based on the quality of the reported data in the 
studies included. �ese reported data were based on either 
radiology or postmortem examination of the healthy human 
spinal cord. When implementing a radiological approach for 
segmental measurements, the delimitation of the cord is vital 
in order to achieve accurate measurements (18). Lamont et al. 
found it challenging to delimit the nerve root from the actual 
spinal cord, which prompted them to measure the whole width 
of both the cord and the root and to conduct the measurements 
at the mid-vertebral level only (18). Single reference points 
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FigUre 3 | (a,b): �gure illustrates measurements of the human cervical spinal cord transverse [panel (a)] and anteroposterior diameter [panel (b)] from different 

published studies. The size of the dots represents the number of subjects included in each study. The full black line shows the continuous population estimate from 

the general additive model, and the gray ribbon represents the population estimate ± 2 standard deviations (SDs) (based on the SDs of the studies).
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imply error consistency throughout the spinal cord but are 
likely to reduce the quality of the estimate and aggravate the 
comparison between previously published data. Sherman et al. 
used a more rigorous approach in obtaining between 10 and 110 
samples from each cord level (4). Techniques such as computed 
myelography allow sectioning down to 13 mm thickness, which 
is signi�cantly thicker than what is achievable through post-
mortem studies (17). However, both �ijssen et al. and Sherman 
et  al. emphasized the need for axial radiological sectioning 
perpendicular to the cord to avoid elongation of the sections 
(4, 17). Other elements which might in�uence the quality of 
radiological measurement are: window settings, concentration 
of contrast media like computed tomographic myelography 
(20, 25), and window level and pulse sequence for MRI (20, 26). 
Finally, cranial parts of the cervical spinal cord are especially 
di�cult to measure using the radiological approach, as overlap 
with the base of the skull, incisor teeth, and maxilla greatly 
obstructs vision (18).

Despite the potential for di�erences in quality between studies, 
we did not weigh the di�erent studies based on their perceived 
quality.

relative lengths of segments
Relative Length of Spinal Cord Neuronal Segments
Delimitation of the segments is vital when calculating the length 
of spinal cord neuronal segments. Donaldson and Davis meas-
ured the distance between the uppermost �la of successive nerves 
in four subjects on the dorsal and ventral aspect of the cord (24). 
However, Ko et al. measured the distance between the lowermost 
�lament of the just proximal segment and the lowermost �lament 
within each root, based on a sample consisting of 13 males and 
2 females (22).

relative length of Vertebral bony 
segments
We have included three studies from the same research group 
reporting data on vertebral length (7–9). �e sample size 
included in the respective publications was 15 or lower, and 
additional studies and/or more subjects would have been an 
advantage. When estimating the height of the vertebral body, the 
points of measurement are important. Panjabi et  al. measured 
the posterior vertebral body height of cervical vertebras in the 
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8

Frostell et al. Spinal Cord Segmental Diameter

Frontiers in Neurology | www.frontiersin.org December 2016 | Volume 7 | Article 238

midsagittal plane (7). �e authors reported that this resulted in 
an average underestimation of the height of each vertebral body 
by approximately 2 mm, when comparing to previously reported 
data (7, 27, 28). �e same research group (8) found that the 
posterior thoracic vertebral body height was consistently one 
to 2 mm less than that reported by Berry et al. and Scoles et al. 
(29, 30) but in line with data reported by Cotterill et  al. (31). 
�e same applied for lumbar vertebral body posterior height 
(27, 29, 30). Since we used relative vertebral size rather absolute 
measurements, a systematic error in measurement is of minor 
importance. Panjabi et al. did not report the lengths of the C1 and 
C2 vertebrae. �erefore, we calculated approximate percentages 
for these vertebrae by using previously published relative posi-
tions of segments in the cervical spinal cord (10), termination 
of the spinal cord between lumbar vertebral bony segments L1 
and L2 (11), and the assumption that the upper end of the C1 
vertebrae is aligned with the upper end of the C1 neuronal seg-
ment. �erefore, the relative proportions of segments C1 and C2 
in our model should be interpreted with care.

Because we de�ned a vertebral bony segment as the vertebra 
and half of both the adjacent intervertebral disks, our model 
assumes that intervertebral disks increase in thickness along the 

craniocaudal axis by same proportion as the vertebrae. �is is 
not an unreasonable assumption, but one that was not backed 
with any data.

relative Positioning of segments
Effect of Corrected Measurement Positioning of the 

Transverse Diameter of the Human Cervical Spinal 

Cord—R-Squared and Bootstrap
Despite the complexity and shortcomings of our model, with 
scarce data and reliance on a number of assumptions, the strategy 
to create a normalized craniocaudal axis for comparison of cross-
sectional measurements of the human spinal cord was successful. 
Success was indicated by the increase in adjusted R-squared from 
68.8 to 86.4% when comparing the raw positioning using only 
segment index and our best e�ort to place measurements based 
on their calculated position. �e increase in adjusted R-squared 
was robust, as shown by the non-overlapping 95% con�dence 
intervals achieved by bootstrapping the adjusted R-squared for 
the two models. �e relative positioning of segments along the 
spinal cord relies heavily on the studies by Cadotte et al. (10) and 
Boonpirak and Apinhasmit (11).
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(SDs) from the population estimate based on the SDs of the studies.
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Weighted averages
Weighted Averages along the Spinal Cord
�e weighted averages were calculated by combining four adja-
cent measurements. �is step was necessary to normalize the 
number of measurements along the spinal cord before �tting the 
generalized additive model to decrease problems where sample 
sizes changed suddenly along the spinal cord.

�e number four was reached empirically by the authors and 
can therefore be questioned. We argue that it combined measure-
ments to a reasonable degree without losing frequency response in 
the signal. In the measurements of anteroposterior diameter, the 
small number of measurements resulted in periodical oscillations 
of the weighted averages in the cervical spinal cord (Figure 5B). 
�is was ameliorated in the next step by �tting the generalized 
additive model.

Weighted SDs along the Spinal Cord
�e weighted SDs were calculated by squaring the known SDs 
to become variances and computing the weighted average 

variances. Taking the square root of the weighted average 
variances yielded the weighted SDs. �is approach assumes 
that samples were drawn from the same population, which is 
probably not entirely true but represented the only practical 
way of estimating aggregated SDs known to us without the 
original data.

Population estimates
Weighted Averages along the Spinal Cord
�e continuous population estimates of the transverse and 
anteroposterior diameter resulting from the combination of the 
included studies (Figures 3–5) were consistent with the expected 
shape of the spinal cord (e.g., cervical and lumbar intumescence). 
�e population SDs enclosed almost all data points when plot-
ted as two SDs, giving further con�dence that these data were 
combined with some accuracy.

�e choice of parameters for the generalized additive model 
was reached empirically just like the weighted average. When 
choosing parameters that accurately described the data, we 
chose the lowest possible order polynomial that would follow the 
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perceived shape of the spinal cord with some accuracy. �is was 
only evaluated visually and represents a weakness of the approach.

Correlation between Spinal Cord Size and Other 

Morphometrics
It is reasonable to discuss the impact of morphometrics defin-
ing body size, such as gender, height and body weight. Sherman 
et al. confirmed the previously established (32) lack of correla-
tion between body weight, age, and spinal cord size, and that 
these parameters do not have to be adjusted (4). Kameyama 

et al. (20) also confirmed that the size of the spinal cord has 
no correlation with age, height, or body weight by conclud-
ing that the relative ratio of the cross-sectional area of each 
cervical, thoracic, and lumbar segment to that of the C3 are 
similar between individuals, even with a large interindividual 
variation in spinal cord size. However, some contradictory 
results were presented by Kameyama et al. (19), who reported 
that differences between genders seem to include not only 
spinal cord length (11) but also the cross-sectional area. They 
found that the cross-sectional area for C7 was significantly 
smaller in females when compared to males, hypothesizing 
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Table 6 | estimated spinal cord diameters—vertebral column bony 

segment reference.

Vertebral column 

segment

Transverse 

diameter

anteroposterior 

diameter

number of 

subjects

C1 11.5 ± 1.9 8.2 ± 1.6 207

C2 12.3 ± 2.4 7.9 ± 1.6 318

C3 13.1 ± 2.4 7.6 ± 1.7 336

C4 13.3 ± 2.1 7.3 ± 1.6 438

C5 13.1 ± 1.9 7 ± 1.6 488

C6 12.1 ± 2 6.8 ± 1.6 336

C7 11 ± 2.3 6.8 ± 1.6 351

T1 10.2 ± 2.4 6.9 ± 1.7 200

T2 9.7 ± 2 6.8 ± 1.8 131

T3 9.5 ± 1.9 6.6 ± 1.9 131

T4 9.2 ± 2.4 6.4 ± 1.9 65

T5 8.8 ± 2.9 6.4 ± 1.9 65

T6 8.4 ± 2.9 6.3 ± 2 167

T7 8.3 ± 2.3 6.3 ± 2 65

T8 8.6 ± 1.7 6.4 ± 2 65

T9 8.6 ± 1.8 6.5 ± 2 77

T10 8.2 ± 2.1 6.4 ± 1.8 80

T11 8.6 ± 1.9 6.7 ± 1.7 92

T12 9.4 ± 1.5 7.5 ± 1.6 119

L1 7.1 ± 2.5 5.8 ± 2.4 251

Point values of population estimates shown in Figures 3 and 4 are shown here in 

numerical format at the craniocaudal position of the middle of each vertebral bony 

segment. “Number of subjects” indicates the number of measurements found within 

the craniocaudal limits of each segment and should not be interpreted as an exact 

“n” for statistical calculations, but rather as an approximation of the amount of data 

available along the spinal cord.

C, cervical; T, thoracic; L, lumbar; S, sacral.

Table 5 | estimated spinal cord diameters—spinal cord neuronal 

segment reference.

spinal cord 

segment

Transverse 

diameter

anteroposterior 

diameter

number of 

subjects

C1 11.3 ± 1.7 8.3 ± 1.6 26

C2 11.5 ± 1.9 8.2 ± 1.6 181

C3 12 ± 2.3 8 ± 1.6 318

C4 12.8 ± 2.4 7.7 ± 1.7 362

C5 13.3 ± 2.2 7.4 ± 1.6 234

C6 13.1 ± 1.9 7 ± 1.6 438

C7 12.5 ± 1.9 6.9 ± 1.6 488

C8 11.3 ± 2.2 6.8 ± 1.6 336

T1 10.7 ± 2.3 6.9 ± 1.6 316

T2 10 ± 2.3 6.9 ± 1.7 27

T3 9.6 ± 2 6.8 ± 1.8 131

T4 9.5 ± 1.9 6.6 ± 1.9 131

T5 9.2 ± 2.4 6.4 ± 1.9 65

T6 8.7 ± 3 6.4 ± 1.9 65

T7 8.4 ± 2.7 6.3 ± 2 167

T8 8.3 ± 2.1 6.3 ± 2 77

T9 8.6 ± 1.7 6.5 ± 2 65

T10 8.6 ± 1.8 6.5 ± 2 65

T11 8.3 ± 2.1 6.4 ± 1.9 65

T12 8.2 ± 2.1 6.4 ± 1.8 27

L1 8.6 ± 1.9 6.7 ± 1.7 65

L2 9.1 ± 1.6 7.2 ± 1.6 27

L3 9.4 ± 1.5 7.5 ± 1.6 77

L4 9.3 ± 1.5 7.5 ± 1.6 27

L5 8.8 ± 1.7 7.1 ± 1.8 27

S1 8.4 ± 1.9 6.8 ± 2 129

S2 7.1 ± 2.5 5.8 ± 2.4 65

S3 6.3 ± 2.8 5.2 ± 2.7 27

S4 5.5 ± 3.2 4.6 ± 2.9 15

S5 4.7 ± 3.5 3.9 ± 3.2 15

Point values of population estimates shown in Figures 3 and 4 are depicted here 

in numerical format at the craniocaudal position of the middle of each spinal cord 

neuronal segment. “Number of subjects” indicates the number of measurements found 

within the craniocaudal limits of each segment and should not be interpreted as an 

exact “n” for statistical calculations, but rather as an approximation of the amount of 

data available along the spinal cord.

C, cervical; T, thoracic; L, lumbar; S, sacral.
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that the difference in size of the spinal cord between sexes 
may be partly explained by the variation in height. However, 
they could not find any correlation between spinal cord size 
and body weight.

Individual variation in cord size was substantial between indi-
viduals with equal height and resulted in signi�cant positive cor-
relation to cross-sectional area, transverse diameter, and sagittal 
diameter (19). However, Kameyama et al. found that body weight 
had no signi�cant correlation to cross-sectional area, diameter, or 
sagittal diameter. �e authors report that age had a slight negative 
correlation to cross-sectional area and sagittal diameter at C7, but 
not for transverse diameter at the same level. �ey hypothesize 
that age-related degenerative changes may explain the �attening 
of the cervical spinal cord with age, con�rming previously pub-
lished data (16, 19, 33). We observed that many of the included 
studies tended to include more males than females, which could 
have a�ected our analysis.

In summary, some contradictions seem to exist between the 
impact of body type characteristics on spinal cord size, but most 

previous studies have been underpowered to detect all but very 
strong correlations. Because our present study lacks the raw 
data, further investigation of predictors for spinal cord size was 
not possible. An interesting expansion of this study would be 
to gather all raw data and analyze predictors of size in a larger 
sample.

clinical implications
Clinical Implications of Population Estimates
Continuous population estimates of the transverse and anteropos-
terior diameters of the spinal cord could be useful in diagnosing 
and monitoring patients with neurodegenerative and neuro-
in�ammatory diseases. It is known, for example, that patients 
su�ering from multiple sclerosis have a reduced cross-sectional 
area compared to healthy matched controls (1), but these studies 
have low power. Without population estimates, it can be di�cult 
to determine whether a speci�c patient should be considered to 
have a pathologically small or large spinal cord.

Clinical Implications of Model for Relative  

Segmental Positions
In the future, the model of spinal cord neuronal segment 
relation to vertebral bony segment could be used to achieve 
a better understanding of visible localized pathology on MRI 
in the spinal cord in  situations where identi�cation of spinal 
cord neuronal segments is challenging. �is would require a 
validating study in patients in whom a well-de�ned pathology 
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of the spinal cord is present and can be correlated to a segmental 
symptom such as the motor or sensory level of a patient with 
a spinal cord injury. Such a study is currently being planned in 
our research group.

Clinical Research Implications
Multiple experimental studies for treatment of acute and chronic 
human spinal cord injuries are in di�erent phases of development 
(2). In all studies where a premade device, instrumentation, or 
otherwise physical object needs to be applied to the spinal cord, 
the population estimates are of importance because they repre-
sent the variation in physical dimensions that will be encountered 
in patients.

Our research group is involved in a clinical trial exploring 
surgical repair of the human spinal cord (http://ClinicalTrials.
gov Identi�er: NCT02490501). During the design of the biode-
gradable device used in the study, knowing population estimates 
of the human spinal cord was a necessity, and, therefore, we 
believe that this work can be useful for other groups in similar 
projects.

cOnclUsiOn

We conclude that segmental transverse and anteroposterior 
diameters of the healthy human spinal cord from di�erent pub-
lished sources can be combined on a normalized craniocaudal 
axis and yield meaningful population estimates with reasonable 
sample sizes. �ese estimates could be useful for the routine 
management of patients with neurodegenerative diseases as well 
as for clinical research and experimental applications involving 
surgical spinal cord repair.
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