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SUMMARY
Modelling methods are nowadays at the heart of any geophysical interpretation ap-
proach. These are heavily relied upon by imaging techniques in elastodynamics and
electromagnetism, where they are crucial for the extraction of subsurface characteris-
tics from ever larger and denser datasets. While high-frequency or one-way approxima-
tions are very powerful and efficient, they reach their limits when complex geological
settings and solutions of full equations are required at finite frequencies. A review of
three important formulations is carried out here: the spectral method, which is very effi-
cient and accurate but generally restricted to simple earth structures, and often layered
earth structures; the pseudo-spectral, finite-difference and finite-volume methods based
on strong formulation of the partial differential equations, which are easy to implement
and currently represent a good compromise between accuracy, efficiency and flexibility;
and the continuous or discontinuous Galerkin finite-element methods that are based on
the weak formulation, which lead to more accurate earth representations and therefore
to more accurate solutions, although with higher computational costs and more com-
plex use. The choice between these different approaches is still difficult and depends on
the applications. Guidelines are given here through discussion of he requirements for
imaging/ inversion.
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1 INTRODUCTION

Interpreting geophysical data in complex geological ter-
rains requires solutions of the partial differential equations
(PDEs) governing the physics of the related field experi-
ments. In seismology and exploration geophysics, modelling
in various realistic media for various purposes, ranging from
risk analysis to crustal imaging, has promoted studies across
a wide range of analytical, semi-analytical and numerical
methods. This is particularly true in diffusive electromag-
netic and seismic scanning methods, as we consider in this
review. Numerical methods can be based on an approxi-
mation of the PDE, e.g., the high-frequency approximation
(see Virieux and Lambaré (2007) for references), or the one-
way propagation approximation (Claerbout 1985). However,
handling these approximations for forward modelling can
bias image construction when the waves observed are not
included in the approximation we consider.

The need for solutions of the full/ complete differential equa-
tions (or the corresponding integral equations) was quickly
recognised. Numerical methods with their discretisation for
geophysical applications were discussed as soon as com-
puters became powerful enough for numerical simulations
in heterogeneous media; e.g, in propagative elastodynam-
ics Alterman and Karal (1968); Bolt and Smith (1976);
Kelly et al. (1976); Marfurt (1984); Virieux (1984); Dablain
(1986); Levander (1988), and in diffusive electromagnetism
Cognon (1971); Kuo and Cho (1980); Goldman and Stover
(1983); Oristaglio and Hohmann (1984); Hohmann (1988);
Druskin and Knizhnerman (1988). These methods have their
own limitations that are related to time and space dis-
cretisation. Although these numerical methods have rarely
been used on large-scale imaging problems because of their
computational cost, their applications have been intensively
discussed in the context of seismic reverse-time migration
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(RTM) and seismic full-waveform inversion (FWI) (Baysal
et al. 1983; Lailly 1983; Whitmore 1983; Gauthier et al. 1986;
Tarantola 1987), as well as for diffusive electromagnetic in-
version (Constable et al. 1987; Hohmann 1988; Ramm and
Somersalo 1989). These studies form the basis of the current
developments in both seismic and diffusive electromagnetic
imaging.
The diversity of the numerical methods in geophysics ques-
tions the relevance and the pertinence of each approach.
Some scientific disciplines appear to have a more focussed
approach. For instance, in meteorology and in physical
chemistry, the pseudo-spectral method (which is often ref-
erenced as a spectral method in the literature) represents
the main approach used to address the challenging prob-
lems of weather prediction and climate change (Haltiner
and Williams 1980; Jarraud and Baede 1985; Fornberg
1998). The complex physical processes are put into sub-
grid phenomenological evolution, such as the chemical in-
teractions inside clouds. In structural mechanics, the finite-
element method is the method of choice (Zienkiewicz and
K. Morgan 1983). Extensions to complex non-linear rheo-
logical behaviours has been preformed with the distinct/
discrete element methods (Toomey and Beans 2000; Mar-
iotti 2007). The diversity involved in solving geophysical
modelling might, however, reflect the different challenges in
geophysics. These challenges can require different practical
solutions. For instance, to be economically valuable, the mi-
gration of hundreds of thousands of shots of a marine dataset
are needed to obtain a structural image from compressional
waves, which demands a different way of implementation of
the wave propagation problem than the precise modelling of
surface waves generated by a superficial earthquake.

Methodological efforts over the years have produced so-
phisticated tools that are well tuned for specific purposes.
This intensive exploration of various simulation techniques
comes from our difficulties in trying to understand the Earth
interior from propagation, diffusion, or even potential fields.
The challenges here come from

• the different types of data we handle: such as seismic
compressional waves in exploration geophysics for structural
images, trapped and surface waves in seismology, electric
and/or magnetic diffusive fields for crustal and lithosphere
modelling and imaging;

• the various types of media we have to consider: such
as marine environments with a liquid/ solid interface, sed-
imentary basins with shallow, very low velocity structures,
foothill complex zones with velocity inversion, complex to-
pography, and resistivity variations of several orders of mag-
nitude;

• the lack of precise knowledge of the geological struc-
tures;

• the modelling scale: in seismics, a wave can be recorded
after having propagated over hundreds of wavelengths; in
controlled source electromagnetics, the electric and magnetic
fields are recorded over at least five orders of magnitude and
after having diffused over several skin depths; in exploration,
the depth of investigation is several kilometres with a resolu-
tion of tens to hundreds of metres; and in global seismology,
the investigation zone is in hundreds of kilometres and the
resolution is in kilometres;

• the computational cost, especially when the modelling
represents just the kernel of a parameter inversion scheme.

In this review, we provide an overview of some of the
important numerical methods for solving PDEs in the con-
text of continuum mechanics. For complex heterogeneous
media imaging, these local equations are better suited than
integral equation methods (Hohmann 1983). Whatever the
approach, we need spatial and time/ frequency discretisation
for numerical computation. Decomposition of the unknown
fields with curvelets, beamlets or other similar wavelets, can
lead to some mixed representations; however, we do not dis-
cuss these here. We specifically consider three different ways
of finding the numerical solution:

• The spectral formulation: the PDEs are first formu-
lated in dual spaces, as for example the space Fourier do-
main, where partial derivatives are translated into algebraic
forms. The difficult (and not always possible) step is the ex-
pression of the boundary conditions when necessary, as well
as the excitation conditions, in this new space. However,
sometimes it can ease the expression of source excitation;
e.g., plane-wave excitation in magnetotellurics.

• The strong formulation: the PDEs should be veri-
fied specifically on discrete points on which the continuum
is interpolated, or their integral forms should be satisfied.
We will discuss spatial discretisation with spatial global and
local supports, each of which has specific advantages.

• The weak formulation: the PDEs should be veri-
fied globally over elements that use a discrete norm for the
solution. While this method might be quite general and
can include the strong formulation by using a specific norm
through a Dirac comb (using operators as distributions), we
will restrict ourselves to the standard Galerkin approach,
where the test functions are identical to the basis func-
tions on which the expected solution is expanded. We will
consider continuous as well as discontinuous formulations
(Zienkiewicz and K. Morgan 1983).

In section 2, we introduce the main equations and
make some preliminary comments. Spectral methods are
presented in section 3, and these have been the methods of
choice for waveform imaging of the global Earth (Woodhouse
and Dziewonski 1984). Section 4 is devoted to the strong
formulation with pseudo-spectral methods, finite-difference
methods, and finite-volume methods; all of these are widely
used in seismic and electromagnetic FWI, without forgetting
seismic RTM. Section 5 then introduces the popular finite-
element methods in the framework of the weak formulation.
Although these are heavier than the previous methods from
the point of view of computer resources, they start to be
used at different scales for FWI (Askan et al. 2007; Tape
et al. 2009). The advantages and disadvantages of continu-
ous and discontinuous approaches are discussed. In section
6, some of the current applications are listed, in section 7,
the imaging requirements that can influence our modelling
choices are presented, and finally, in section 8, we summarise
our conclusions.
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2 THE EQUATIONS AND SOME EARLY
COMMENTS

The equations used in elastodynamic and electromagnetic
modelling can be written either as first-order systems or
as second-order systems. The second-order systems contain
fewer unknowns, which provides a numerical advantage de-
spite the more complex structure of the numerical system.
Also, a parsimonious approach can be used after discreti-
sation of a first-order system, to reduce the number of un-
knowns (Luo and Schuster 1990), which leads to a system
that is equivalent to a discrete second-order system.

2.1 The time-domain approach

In this review, we assume the earth parameters independent
of time.
The velocity-stress first-order elastodynamic equations are{

ρ∂tvi = ∂xjσij + fvi ;
∂tσij = cijkl∂xlvk + fσij .

(1)

Here, vi are the components of the velocity vector, σij the
components of the stress tensor, cijkl the components of the
stiffness tensor, ρ the density, and fvi and fσij the components
of the force source vector and the moment rate source tensor,
respectively. (The Einstein convention on repetitive indexes
is used.)
The first-order electromagnetic wave equations are{

µ∂th = −∇× e + fh;
ε∂te− σ = ∇× h + fe.

(2)

Here, e is the electric vector, h is the magnetic vector, σ
the conductivity, µ the magnetic permeability, ε the dielec-

tric permittivity, and fh and fe the magnetic and electric
source vectors, respectively.
The displacement second-order elastodynamic equation is

ρ∂ttui = ∂xj cijkl∂xluk + fi, (3)

where the components of the displacement vector are de-
noted by ui.
The second-order electromagnetic equation for the electric
field is

ε∂tte+ σ∂te+∇ 1

µ
×∇e = f , (4)

with an equivalent equation for the magnetic field.
Both the first-order and the second-order equations should
be complemented with their initial conditions. We generally
assume that the fields and their time derivatives are zero at
negative times. Boundary conditions also need to be added,
as we are modelling inside a finite computational domain.
In elastodynamics, at the free surface the traction is zero,
so

σijnj = 0, (5)

where ni are the components of the vector normal to the
free surface.
In electromagnetism, perfectly electrically conducting
boundary conditions are currently implemented, such that

e× n = 0 and h · n = 0, (6)

where n is the vector normal to the boundary.

Other boundary conditions come from the limited nu-
merical domain: absorbing boundary conditions need to be
implemented as surface conditions (Clayton and Engquist
1977) in relation to the radiation conditions or layer con-
ditions, as the now popular perfectly matched layer (PML)
technique (Bérenger 1994; Chew and Weedon 1994) for elec-
tromagnetism and for elastodynamics (Chew and Liu 1996;
Drossaert and Giannopoulos 2007; Komatitsch and Martin
2007) . Due to the discretisation, the PML conditions are not
perfect, although they are relatively efficient, and they limit
the size of the PML zone while maintaining its efficiency,
and long-term stabilities still need to be better understood
(Collino and Tsogka 2001; Bécache et al. 2004)

The time and spatial discretisations are often treated
separately. Before discussing the spatial discretisation
scheme, let us formulate the PDEs in a general framework.
The systems to be solved can be cast in a matrix form. For
the first-order system with the unknown vector p, we have

M∂tp+Kp = Sp+ f , (7)

and for the second-order system with the unknown vector
p′, we end up with

M ′∂ttp
′ +K′∂tp

′ = S′p′ + f ′, (8)

where the vectors f and f ′ represent the excitation. Usually,
the matrices M and M ′, which are often called the mass
matrices, describe the inertial terms and the matrices K
and K′ describe the viscous terms. The matrices S and S′

are often called the stiffness matrices, and they correspond
to the discretisation of the spatial derivatives and contain
the material properties of the wave equations and Maxwell
equations. Let us consider first-order systems.

The behaviour of the system greatly depends on the rel-
ative importance of M and K. If K is ’small’, the inertial
terms are dominant and the system is principally a prop-
agation system. With K = 0, the system is a hyperbolic
system. This is the case with elastodynamic systems or with
electromagnetic systems in the air or at high frequencies.
If M is ’small’, the viscous terms are dominant and the
system is principally a diffusive system; e.g., electromag-
netic systems at low frequencies. We can proceed through a
time marching approach for solving these PDEs iteratively.
With a propagation system, the Courant-Friedrickson-Lewy
(CFL) stability condition (Courant et al. 1967) leads to time
discretisation that is proportional to the space discretisa-
tion, making the explicit time-marching method relatively
attractive. With a diffusive system, the CFL condition pro-
vides time discretisation that is proportional to the square
of the space discretisation, here making the explicit time-
marching method less attractive. DuFort and Frankel (1953)
proposed a scheme that allows us to improve the CFL condi-
tion by effectively adding a propagative term in the discrete
schemes. However, the implicit schemes, such as the sim-
ple backward Euler scheme, constitute the logical approach.
This means solving a linear system at each time step. At
early times, the time stepping should still be small enough
to represent the solution correctly. Fortunately, the diffusive
nature of the system allows us to increase the time stepping
during the computation.
With first-order systems, and especially with propagation
systems, leapfrog time integration is often implemented to
obtain a conditionally stable scheme; a first-order forward
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time derivation directly applied to the equation (7) leads
to an unstable scheme (LeVeque 2002). The leapfrog time
derivation approach updates the stress and displacement,
or the electric and magnetic fields, sequentially. Sometimes,
instabilities are encountered when dealing with dissipation
terms and there is the need to use implicit time schemes.
With second-order systems, a central second-order time
derivative is generally used, and this allows explicit march-
ing with two previously estimated fields for the computa-
tion of the next one. Higher-order time integration, such as
the Lax-Wendroff scheme (Dablain 1986), the higher-order
scheme known as the arbitrary accuracy derivative Riemann
problem (ADER) scheme (Toro 2009), and the Runge-Kutta
schemes (Cockburn 2003), have been proposed for hyper-
bolic systems. In certain cases, spectral integration with
an arbitrary precision can even be adopted (Tal-Ezer et al.
1990; Mikhailenko et al. 2003).

2.2 The frequency-domain approach

Systems (7) and (8) can be written in the frequency domain
as

(−ıωM +K − S)p = f ; (9)

and (
−ω2M ′ − ıωK′ − S′

)
p′ = f ′, (10)

where ω is the angular frequency, and ı the pure imaginary
number with ı2 = −1. (For simplicity, we use the same sym-
bols for the fields in the time and in the frequency domains.)
The structure of the linear system is different for the prop-
agation equations and the diffusive equations. Indeed, the
propagation system leads to an indefinite system, namely a
system with (large) negative and positive (real part of the)
eigenvalues, limiting the efficiency of the iterative approach
for solving it. A preconditioner based on a damped wave
equation and a multi-grid cycle has been proposed, to speed
up the convergence of the iterative approach (Erlangga et al.
2006; Plessix 2007). Direct solvers based on LU decomposi-
tion are an alternative (Marfurt 1984; Operto et al. 2007).
The sparse matrix of a linear system has, however, a large
bandwidth, meaning that direct solvers in 3D require an ex-
tremely large amount of memory. On the contrary, a linear
system associated with the diffusion equations can be effi-
ciently solved with an iterative method (Mackie et al. 1993;
Newman and Alumbaugh 1999; Haber et al. 2000; Aruliah
and Ascher 2003; Mulder 2006).

In the following sections, we principally discuss the
spatial discretisation that generally applies to both time-
domain and frequency-domain formulations. However, our
presentation of the spectral formulation mainly concerns the
frequency-domain formulation.

3 SPECTRAL FORMULATION

By moving to a dual domain such as the space Fourier/
wavenumber domain, we can efficiently transform partial
spatial derivatives into products. We can even go to the
time Fourier domain, which gives us the algebraic disper-
sion relation. Analytical or semi-analytical solutions can
be worked out using the Cagniard-De Hoop path in the

frequency-wavenumber domain if it is possible to construct
it (Cagniard 1962; de Hoop 1960; Aki and Richards 2002).
When the media variations become too complex, we can
expand the solution on special functions, which forms a
complete basis as a relatively compact description when the
medium is smooth. When boundaries exist, simple geome-
tries such as spherical/ ellipsoidal shapes can still lead to
semi-analytical solutions, while more complex shapes are
handled by numerical techniques. The medium is decom-
posed into simple domains where the fundamental solution
is obtained through a linear combination of elementary solu-
tions that form a complete basis, which is often expressed in
a transformed domain. When the boundary conditions are
satisfied by each elementary solution, they will be automat-
ically satisfied by the solution wanted, due to the linearity
of the problem. These methods are often expressed in the
frequency-wavenumber space, although some of them are in
the time domain (Wheeler and Sternberg 1968).
The restriction to laterally invariant 3D media provides a
dramatically efficient and accurate method, as only a few
nodes are required in the discretisation of boundaries in the
vertical direction (one point per layer). The solution is de-
composed in plane waves with a constant wavenumber vec-
tor kh . After the Fourier transform over the time and the
horizontal coordinates, the first-order equation is

dp̃

dz
= iωAp̃+ f̃δ(z − zs), (11)

where A is the propagator matrix that depends on the earth
parameters and the horizontal wavenumber, p̃ the field vec-
tor, f̃ the source vector, and zs the source depth. The vari-
ables with tilde depend on the angular frequency, ω, the hori-
zontal wavenumber, kh, and the depth, z. With the acoustic-
wave equation, for instance, p̃ is formed by the vertical dis-
placement and the pressure, and the propagator matrix is
equal to

A(z) =

[
0

k2h(z)

ρ(z)ω2 − 1
κ(z)

−ρ(z) 0

]
, (12)

where the density is denoted by ρ and the bulk modulus by
κ.

This linear system can be diagonalised in each layer by
finding the eigenvalues and eigenvectors of the matrix A,
which leads to two independent upwards and downwards
plane-wave solutions. The solution can then be propagated
by generalised reflection/ transmission coefficients from the
source to the free surface, where free-surface boundary con-
ditions are applied. Then, the solution is moved back down
to the bottom half-space, where the radiation condition is
applied, which builds up the final solution. When consid-
ering sources at various depths, the method is as efficient
as a substitution technique. This technique was developed
in elastodynamics (Spencer 1960; Kennett 1983), as well as
in diffusive electromagnetism (Cagniard 1953; Wannamaker
et al. 1984). To model the magnetotelluric response, the
source terms are introduced as plane-wave boundary con-
ditions on the top of the model (Wannamaker et al. 1984).

There are similar procedures for laterally varying me-
dia, although these are more computer intensive. Potential-
ities for imaging can be considered with the fast moment
method (FMM), which dramatically reduces the memory
requirements. The solution is efficiently found iteratively for
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each source (see Chaillat et al. (2008) for applications to
elastodynamics). Therefore, we can foresee that the FMM
(which requires few computer resources for modelling) could
be a tool for imaging techniques that has not been explored
yet, as far as we know, with open questions remaining as to
the reliability of the method for complex structures.

4 STRONG FORMULATION

Nowadays, scientific challenges concern complex zones of the
earth with rapid spatial variabilities in the medium proper-
ties. Spectral methods are often inadequate. When consider-
ing PDEs, we can consider volumetric discretisation of the
medium properties, and the fields wanted should be simi-
larly discretised. We can consider global spatial discretisa-
tion (which is often presented as a modal approach), such
as pseudo-spectral methods where the partial derivatives are
estimated by going back and forth in the dual domain (e.g.,
Fourier, Legendre or Chebychev domains), which leads to
specific regular/ non-regular sampling (Kosloff and Baysal
1982; Druskin and Knizhnerman 1988; Seriani and Priolo
1994; Priolo et al. 1994). We can also consider spatial dis-
cretisation with local support, and more specifically, the
finite-difference method that is widely used in many fields
(Levander 1988; Mackie et al. 1993; Robertsson et al. 1994;
Newman and Alumbaugh 1999; Pitarka 1999; Taflove and
Hagness 2000; Moczo et al. 2007). The finite-volume meth-
ods go one step futher, which allows a more accurate de-
scription of the medium while keeping the simple geomet-
rical construction of the finite-difference method (LeVeque
2002). However, this often leads to a low-order scheme. In
the strong formulation, the PDEs need to be exactly satis-
fied at collocation points or at elementary domains of the
volumetric mesh that describes the model space.

4.1 The pseudo-spectral and finite-difference
methods

Volumetric discretisation of the PDEs has been considered in
many studies for the solving of efficiently linear propagation
or diffusion. Differences come from the geometry of the mesh
associated with the selected spatial interpolation functions.

The solution vector p(x) where we ignore the time or
frequency variation can be approximated through an expan-
sion using basis functions, ψj , as

p(x) =

N∑
j=1

p(xj)ψj(x), (13)

where the nodes xj define the collocation points at which the
PDE has to be satisfied. The total number of these nodes
is denoted by N . Multi-dimensional elementary functions
ψj(x) are selected according to the spatial support we con-
sider. Often, we rely on tensorial descriptions over dimen-
sions. Global support for Fourier polynomials with regularly
spaced collocation points or Chebyshev polynomials with ir-
regularly spaced collocation points (Kosloff and Baysal 1982;
Kosloff et al. 1990; Tessmer and Kosloff 1994) provide the
pseudo spectral methods (PSMs). These lead to a dramatic
reduction in the unknowns at the expense of interactions
between nodes, which can be a critical issue for imaging:

any misestimation of properties and/or fields has an impact
everywhere. Local support with Lagrange polynomials leads
to the finite-difference method (FDM), which is popular be-
cause of its simplicity and its efficiency.

The approximate derivative along one direction xi is ob-
tained through the application of a matrix D to the discrete
field values p(xj) at collocation points xj :

∂p

∂xi
(xl) =

N∑
j=1

p(xj)ψ
′
j(xl), (14)

where the components of the matrix are Dlj = ψ′j(xl). This
transformation is sometimes called a stencil. Higher deriva-
tives can be constructed by repetitively applying D. With
global support (PSM), the cost of computing the deriva-
tives is O(N2) operations from matrix multiplication, or
O(NlogN) by spectral estimation through direct and inverse
FFT. With local support (FDM), this leads to the following
stencil:
for the first-order derivative with regular spacing ∆

∂xp =

K/2∑
n=1

ak
2∆

(p(x+ k∆)− p(x− k∆)) ; (15)

and for the second-order derivative

∂xxp =

K/2∑
k=0

ak
∆2

(p(x+ k∆) + p(x− k∆)) , (16)

where K is the order of the scheme, and ak are coefficients
to determine.
For FDM, the cost of computing the derivative is reduced
at the expense of the precision, and therefore of the accu-
racy of the solution, as the order K is often much smaller
than the number of nodes N . The collocation density or
the mesh discretisation must be increased when considering
short spatial support. A fourth-order stencil is considered
to be optimal for a second-order time integration. Higher-
order stencils (e.g., tenth-order) can, however, provide dras-
tic computational time and core memory reductions that are
crucial for 3D simulations, although at the expense of accu-
racy in non-smooth media (Dablain 1986). Optimal design
of the matrixD (i.e. optimal choice of the coefficients ak), in
association with the definition of the collocation points, has
been an endless investigation with this strong formulation.
The main purpose has been the reduction of the numeri-
cal dispersion (Marfurt 1984; Holberg 1987; Operto et al.
2007), through looking at the spatial shape of the stencil
(Saenger et al. 2000), the spectral shape of the derivative
operator (Jo et al. 1996; Hustedt et al. 2004), or the min-
imisation of the residual energy through the Rayleigh-Ritz
variational investigation (Takeuchi and Geller 2000). These
efforts are relatively specific to acoustic and elastic propaga-
tion modelling. In diffusive electromagnetism, second-order
spatial derivatives are generally sufficient, as they already
lead to large grid spacing compared to the desired earth dis-
cretisation.
Regular cartesian grids are often associated with the FDM
because of its efficiency. Stretching the collocation points in
relation to strong gradients of the medium properties might
drastically reduce solution errors for both global and local
supports at the expense of computer resources; e.g., FDM
approaches have been extended to irregular grids for seismic
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propagation (Moczo 1989; Jastram and Tessmer 1994; Aoi
and Fujiwara 2001; Wang et al. 2001). In diffusive electro-
magnetics, stretched grids are very common, especially in
the depth direction, because of the strong field attenuation.
We can consider that the FDM generally performs better on
smooth media, especially when we consider high-order sten-
cils and coarse grids, for speeding up the forward modelling.
Reductions in modelling costs have been achieved through
the introduction of the staggered grid approach. The com-
ponents of the solution vector p are not defined at all of
the nodes of the grid, which reduces the size of the field
vector without damaging the dispersion of the scheme (Yee
1966; Virieux 1986). Some difficulties can appear with free
boundary conditions and anisotropy, which require interpo-
lation of some fields. This approach turns out to be stable at
boundaries between solids and liquids. An alternative par-
tial grid approach, as proposed by Saenger et al. (2000),
mitigates the difficulties related to free boundary conditions
and anisotropy, while the full grid approach (Tam and Webb
1993) will still be required for long-term stability conditions
at the free surface (Lombard and Piraux 2004; Lombard
et al. 2008). An approach based on Lebedev’s grid has been
proposed, to handle anisotropy (Davydycheva and Druskin
1999; Lisitsa and Vishnevsky 2010).

Whatever method we choose for the spatial discretisa-
tion, we end up with an evolution system in the time domain
(systems (7) or (8)), or a linear system in the frequency do-
main (systems (9) or (10)). In the frequency domain, the
efficiency of a direct solver depends on the bandwidth of
the matrix of the linear solver. High-order stencils along
one dimension considerably increase this bandwidth. The
compactness of the stencil is a critical issue. With acoustic-
pressure second-order wave equations, almost fourth-order
compact schemes have been proposed through the optimal
reduction of the dispersion of the scheme in the frequency
band of the forward modelling (Marfurt 1984; Stekl and
Pratt 1998; Operto et al. 2007), which leads to this very
compact system,

−ω2

v2
a0p(x, y, z)+

1∑
k=−1

1∑
l=−1

1∑
m=−1

ak,l,m
∆

p(x+k∆, y+l∆, z+m∆),

(17)
where a0, ak,l,m are the coefficients to be determined fol-
lowing rules mentioned above. This scheme involves only
neighbouring points, and does not increase the bandwidth
of the linear system, as compared to the standard second-
order scheme, and it leads to an ’optimal’ tool for acoustic
forward modelling for seismic imaging when a frequency-
domain direct solver is used.

4.2 The finite-volume methods

One of the limitations of standard finite-difference methods
comes from the earth discretisation on rectangular regular
or irregular grids, which prevents efficient representation of
non-flat interfaces. This limitation can be eliminated when
we work with the integral form of the PDEs. This idea con-
sists of writing the PDEs in a first-order (pseudo) conser-
vative form, and taking the integral over the computational
domain. In certain cases, this integral form of the PDEs can
be obtained directly from the physical conservation laws.
The local lower-order interpolation of the fields allows an

intuitive construction, which leads to the success of this for-
mulation. We proceed through a geometrical interpretation,
rather than through a variational approach. This technique
appears to have the flexibility to describe the medium us-
ing complex meshing, while retaining the simple approach of
the FDM. The so-called grid method, which was introduced
by Zhang and Tielin (1999) and is based on local integra-
tion of elastodynamics, and the finite-integration technique,
which is based on local integration of Maxwell’s equations
(Clemens and Weiland 2001), follow similar strategies and
can be considered as finite-volume methods. As Clemens
and Weiland (2001) considered regular rectangular grids,
the technique collapses into a FDM approach, although ar-
bitrary grids might have been considered. The equivalence
of a finite-volume approach over a regular rectangular grid
and a FDM was noted by Brossier et al. (2008) in the fre-
quency domain.
The finite-volume method starts with the decomposition of
the computation domain, Ω, into a set of subdomains, Ωe,
here called finite volumes: Ω = ∪eΩe. Let us consider the
equation

M∂tp = Ak∂xkp+ f , (18)

where k = 1, 2, 3 is an index over the spatial directions, and
Ak the matrices containing the earth parameters. Equation
[code for equation 18 please] corresponds to equation 7 be-
fore spatial discretisation and with the viscous term K = 0.
AssumingAk is constant, the integral form of equation [code
for equation 18 please] over a volume Ωe is simply:∫

Ωe

dxMe∂tpe =

∫
Ωe

dx ∂xk

(
Ak
epe

)
+

∫
Ωe

dxfe, (19)

where Me and Ak
e are the matrices associated with the vol-

ume e, fe the source, and pe the fields.
We transform the volume integral containing the spatial
derivatives to a surface integral through the divergence
(Gauss) theorem. This gives the following equation,∫

Ωe

dxMe∂tpe =

∫
∂Ωe

dxAk
epe n

e
k +

∫
Ωe

dxfe, (20)

where nek are the components of the normal to the boundary
∂Ωe.

In the finite-volume approach, we work with the field
volume averages per volume; these are discontinuous at the
boundary ∂Ωe. Indeed, the surface integral relates to (nu-
merical) fluxes, Akp, between the adjacent volumes. With
∂Ωe = ∪e′∈VeΓe,e′ and Ve as the set of the adjacent vol-
umes to the volume e, we can write the equation [code for
equation 20 please] as (LeVeque 2002)

Me∂tpe =
∑
e′∈Ve

∫
Γe,e′

dxφke,e′(pe,pe′)n
e,e′

k + fe, (21)

where pe and fe are now volume averages and φe,e′ the
flux through the boundary Γe,e′ between the volumes e

and e′ that depend on pe and pe′ , and ne,e
′

the normal to

Γe,e′ , with ne,e
′

= −ne
′,e. As only the fluxes are shared

on the boundary of each finite volume, material and field
discontinuities can be handled. Finite-volume approaches
differ in the flux approximations and the time-integration
schemes. Note that we can develop a similar approach in
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the frequency domain. On the boundary of the computation
domain, Ω, specific fluxes need to be defined to take into
account the boundary conditions (LeVeque 2002).

There are two main strategies to define the fluxes: the
centred flux between two adjacent elements; or the disym-
metrical flux based on physics. The centred flux is simply
obtained by averaging the flux components between two ad-
jacent elements, which gives a symmetrical estimation. On
rectangular regular grids, this returns to the scheme ob-
tained by centred finite differences. This strategy has useful
conservative properties and can be applied to non-hyperbolic
systems. However, it can induce numerical errors when sharp
variations or discontinuities are expected in the field.

With a hyperbolic system, we can use its propagative
nature to define the disymmetrical fluxes. This is obtained
by solving the Riemann problems using Godunov’s approach
and upwind fluxes (LeVeque 2002). The fluxes are then de-
termined according to the local propagation directions of the
waves. While sharp variations and discontinuities are well
handled, this approach leads to a dissipative scheme. Impor-
tant improvements have been performed since the study of
Roe (1981), with the propagation of discontinuities: the ini-
tial approach is only first-order and has large numerical dis-
persion. Higher-order schemes can be obtained with the Lax-
Wendorf approach, or with its extensions, that are associ-
ated with generalised (derivative) Riemann solvers that give
the ADER method (Toro 2009). Some of these high-order
schemes create oscillations around discontinuities. Slope lim-
iters or (weighted) essential non-oscillatory schemes have
been proposed. These approaches are generally not applied
in seismic or electromagnetic modellings in geophysics.

The quality of the solution depends on the meshing.
Small meshes and meshes with poor aspect ratios can sig-
nificantly affect the numerical solution. The time evolution
is controlled by the smallest element of the medium. The
resolution of the linear system in the frequency domain can
provide difficulties with respect to the different sizes of the
elements. The meshing strategy is in fact shared by both the
finite-volume and the finite-element methods, and it is the
common bottle-neck of forward modelling.

5 WEAK FORMULATION

Despite their advantages, the discretisation methods dis-
cussed so far reach their limits in complex geological settings
when the geometry of the interfaces have predominant roles
in the recorded data: very fine discretisation is required for
accuracy, which can lead to relatively expensive and inef-
ficient simulations, as this fine discretisation impacts upon
the whole domain. High-order differential stencils based on
overlapping elements/ meshes and high-order finite-volume
methods are questionable. The finite-element method based
on the weak formulation of the PDEs appears to give us
more freedom to adapt the discretisation to particular ge-
ometries.

The weak formulation is obtained by multiplying the
PDEs by test functions (unlike the finite-volume methods),
by integrating over a given domain, and by carrying out an
integration that in part reduces the derivation order of the
fields wanted (which weakens the derivability conditions by

transferring them to the test functions) (Zienkiewicz and
K. Morgan 1983; Brenner and Ridgway Scott 2008; Hes-
thaven and Warburton 2008). As the weak formulation has
an integral form like the finite-volume methods, we can de-
compose the total integration volume into small domains,
which are also called elements, of a-priori arbitrary shapes;
the integral over the total domain is the sum of the integrals
over the small domains. The introduction of test functions
gives us the extra freedom to develop high-order schemes
without overlap between the elements. However, it has a
numerical cost, since the mass matrix often becomes non-
diagonal; this is a drawback when comparing this with the
strong formulation with an explicit time scheme. The choice
of the test functions together with the representation of the
field inside the domains determine the type of finite-element
methods. Classically, the fields and the test functions are
functions of the same space: this corresponds to the Galerkin
formulation. When the test functions are defined through
the values on a given set of nodes, we speak about the nodal
approach. In practice, in the nodal approach, the test func-
tions are the product of Lagrange polynomials. When test
functions are global polynomials in the element, we speak
about the modal approach. The (maximum) degree of the
polynomials gives the order of the element. In this review,
we consider two approaches: the continuous Galerkin finite-
element method (CGFEM); and the discontinuous Galerkin
finite-element method (DGFEM). The purpose is not to de-
scribe here all of the developments in finite-element meth-
ods, as the literature has become too numerous over the
last 50 years, but to give some highlights that can help the
reader.

5.1 The continuous Galerkin finite elements

With the (classic) CGFEM approach, the fields involved in
the differential equations are assumed to be continuous in
the entire computation domain. They are decomposed on
a local piece-wise functional basis, which is also used for
the test functions. To highlight the main features of the
CGFEM, we consider the displacement second-order wave
equations (3). The weak form is obtained by multiplying
these equations by the test functions, w, and by integrating
over the computation domain Ω (wi are the components of
w and Eisntein’s convention on repetitive indices), as∫

Ω

dxρ∂ttuiwi =

∫
Ω

dx∂xjσijwi +

∫
Ω

dxfiwi (22)

and integrating by parts, assuming continuous test functions
and fields,∫

Ω

dxρ∂ttuiwi = −
∫

Ω

dxσij∂xjwi +

∫
∂Ω

dxσijwinj +

∫
Ω

dxfiwi

(23)
where nj are the components of the vector normal to the
boundary ∂Ω.
At the free-surface boundaries, the surface integral on the
righthand side is zero. This integral is also zero when the
test functions can be chosen as null on the boundary condi-
tions (Dirichlet conditions). This is one of the advantages of
the CGFEM: the free-surface boundary condition is intrinsi-
cally satisfied, which allows precise modelling of the surface
waves. More complicated boundary conditions can also be
handled explicitly through the boundary integral. From here
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on, this surface contribution is taken as zero.
In the discrete formulation, the test function space is of fi-
nite dimension; it can be represented by P basis functions.
We call wpi the components of the p basis function. In this
CGFEM approach, as the fields and test functions are part
of the same function space, we have

ui(x, t) = ûpi (t)w
p
i (x); (24)

and

σij =
∑
k

cijklû
p
k(t)∂xlw

p
k(x). (25)

We can then rewrite equation (23) as∫
Ω

∑
i

dxρwpiw
q
i ∂ttû

p
i = −

∫
Ω

∑
i

dxcijklû
p
i ∂xlw

p
k∂xjw

q
i +

∫
Ω

∑
i

dxfiw
q
i .

(26)
The computational domain is decomposed into elements,
(Ω = ∪eΩe). For each element, we obtain the semi-discrete
system from equation 26:

Me∂ttûe = Seûe + fe, (27)

where Me, Se are the mass and stiffness matrices of the
element e, respectively, and ûe and fe the field and source
vectors, respectively.
The total unknown vector, û, is formed with all of the com-
ponents ûpk, which are sorted according to a given number-
ing procedure. In the CGFEM, the elements share the field
values at the faces, edges and corners of the elements. There-
fore, the field vector of the element e shares component el-
ements with the field vectors of the neighbouring elements,
forcing the continuity of the fields at the edges of the ele-
ments. The system satisfied by û has the form of system (8).
Assembly of the matrices Me and Se gives the (total) mass
and stiffness matrices,M and S, respectively. The mass ma-
trix is not diagonal in the general case, because Me is a pri-
ori not diagonal and because of the assembling. It can have a
large bandwidth. It is, however, a sparse matrix. In the fre-
quency domain, the CGFEM leads to system (10). Similar
results are obtained with the electromagnetic wave equa-
tions. In this formulation, the earth parameters can vary
in each element. This variability of the earth parameters
in each element has to be taken into account in the com-
putation of the integrals that define the mass and stiffness
matrices. With the nodal approach and a Gaussian quadra-
ture technique, this can be achieved easily by defining the
earth parameters at the nodes of the test functions.
We have considered only one test function space here. To
more accurately represent the derivatives of the fields, we
can use a different test function space per equation of the
system. This leads to the so-called mixed-element meth-
ods (Nédélec 1980; Stenberg 1988). This idea resembles the
staggered-grid idea of the FDM. This is used, for instance,
with the first-order elastodynamic wave equation to more
accurately compute displacement and stress (Bécache et al.
2002), or with the electromagnetic equations to handle the
divergence operator and the possible discontinuity of the
normal components via the so-called edge elements, and
then to avoid some spurious numerical modes that arise from
medium discretisation (Hiptmair 2002; Monk 2003).

The conditioning of the mass matrix, M , depends on
the shapes of the elements. Badly shaped elements, e.g., very

elongated elements, lead to a poorly conditioned system and
can create numerical instability. This is one of the difficulties
of the meshing, which needs to avoid elements with too large
an aspect ratio. The condition number ofM also depends on
the choice of the test functions; in the nodal approach, this is
seen as the choice of the location of the nodes in the element.
For high-order elements, equidistant nodes lead to poor con-
dition numbers, and in practice only non-equidistant nodes
are used, and especially nodes based on the Gauss-Lobato
points with quadrant or hexagonal elements (Cohen 2002).
While it is not a real drawback with frequency-domain for-
mulation or with an implicit time scheme (as in diffusive
electromagnetics), with an explicit time scheme, the solving
of a non-diagonal system at each time step can limit the
usefulness of the approach. The remedy here is to apply a
mass-lumping technique: namely, to replace the mass matrix
with a diagonal matrix built by summing all of the elements
of a line onto the diagonal (Cohen 2002). This simplifica-
tion is not always accurate, and therefore careful choice of
the quadrature and the nodes is required. This approach is
often adequate with Gauss-Lobato points and a Gaussian
quadrature. The spectral element method, which is often
used in seismology, is developed in Komatitsch and Vilotte
(1998); Chaljub et al. (2007), and used the Gauss-Lobato-
Legendre integration technique to obtain a diagonal mass
matrix with a high-order quadrant in 2D and a hexagonal in
3D elements. Aside from the property of a diagonal mass ma-
trix, this leads to spectral convergence behaviour in space.

For practical applications, the meshing needs to be
adapted to the earth structure, with generally fine meshes in
complex zones or in zones with low velocity or low resistivity,
in order to speed up the computation. With the CGFEM,
grid adaptation (also called h-refinement) is regularly used.
However, because elements share information through the
nodes that are on the boundaries, it is complicated to use
different types of elements, and especially different element
orders (the so-called p-refinement). This sometimes limits
the flexibility of the method, especially when high-order el-
ements would be needed in most of the domain to gain effi-
ciency.

5.2 The discontinuous Galerkin finite elements

Some of the limitations of the CGFEM approach can be
addressed by the DGFEM, including, as already mentioned,
when some of the field components need to be discontinuous
across interfaces. In CGFEM, forcing the continuity of the
test functions can introduce some spurious artificial modes.
Relaxing the continuity of the test functions helps to better
represent the fields. The p-refinement can also be easily han-
dled with DGFEM. DGFEM approaches are, however, not
a replacement for the classic Galerkin approaches, because
they also suffer from numerical complications.
To discuss the main features of DGFEM, let us consider the
hyperbolic first-order wave equation as for the finite vol-
ume. We also decompose the computational domain Ω into
elements, Ωe as previously. The weak form is obtained by
multiplying the equations by the test functions wq. These
test functions, together with the fields, are a priori not con-
tinuous at the boundaries of the element. Therefore, after
integration in parts, the weak form in the element Ωe is



Spectral, pseudo-spectral, finite-difference and finite-element modelling 9

(Hesthaven and Warburton 2008):∫
Ωe

dxM ij∂tpejw
q
i = −

∫
Ωe

dx pej∂xk (Ak
ijw

q
i ) +

∫
∂Ωe

dxφkein
e
kw

q
i+

∫
Ωe

dx feiw
q
i

(28)
with the numerical flux

φkei = Ak
ijpej . (29)

On the boundary ∂Ωe, the numerical flux is not known
because the fields are discontinuous. As with finite-
volume methods, the main difference between the different
DGFEMs is in the numerical estimation of this flux. The
fluxes are shared by the adjacent elements. We assume that
the fluxes depend on the values of the fields in the element
and on its adjacent elements. With ∂Ωe = ∪e′∈VeΓe,e′ and
Ve as the set of the neighbour elements of the element e, we
can write the flux on Γe,e′ as

φkei = φ̂ki (pe,pe′). (30)

Here, φ̂ remains to be determined. As previously, we consider
the Galerkin approach for the discretisation:

pei = p̂peiw
p
i . (31)

The weak formulation becomes∫
Ωe
dx
∑
jM ij∂t(p̂

p
ejw

p
j )wqi = −

∫
Ωe
dx
∑
j p̂

p
ejw

p
j ∂xk (Ak

ijw
q
i ) +∑

e′∈ve

∫
Γe,e′

dx φ̂ki (p̂e, p̂e′)n
e,e′

k wqi +
∫

Ωe
dx feiw

q
i .

(32)
With constant test functions per element (and constant
matrices Ak), the first volume integral on the righthand
side is null and we retrieve the equation (21) of the finite-
volume methods. The lower-order finite-volume method is
equivalent to the lower-order DGFEM, showing that the
DGFEM generalises the finite-volume method in one way,
while alternative higher-order formulations of the finite-
volume method are also possible.

With a linear flux φ̂, we obtain the linear system

Me∂tp̂e = Sep̂e +
∑
e′∈Ve

S′e,e′ p̂e′ + fe, (33)

which has the form of system (7).
Before assembling the matrices, we need to take care of

the conditions at the boundaries of the computation domain,
and notably at the free surface. Contrary to the continuous
case, the free-surface condition is not naturally accounted
for with this method; specific numerical fluxes need to be
defined as with the finite-volume method.
The total unknown vector, p̂, is built from the vectors p̂e.
The vectors p̂e do not share elements, and therefore the vec-
tor p̂ is just the concatenation of all of the vectors p̂e. This
means that the global mass matrixM is block-diagonal. The
linear system associated with the DGFEM is then often eas-
ier to solve than that associated with standard finite-element
methods. We must however note that the size of the vector
p̂ can be much larger with DGFEM than with CGFEM, es-
pecially with low-order elements, because the nodes on the
element boundaries are duplicated, which represents an ef-
fect of the flux approach balancing the advantages of the p
adaptivity.

The flux strategies described for finite-volumes methods
can be adopted here. An upwind approach has been tested
by Dumbser et al. (2007); Käser et al. (2007), and centred

fluxes by Etienne et al. (2010). With DGFEM, high-order
schemes can also be obtained using high-order polynomials
for the test functions, which is a great advantage. With the
centred fluxes, the earth parameters can be gathered in the
matrix M , in front of the time derivatives (e.g., by using
the compliance matrix -the inverse of the stiffness matrix-
in the elastodynamic equation). Consequently, the numeri-
cal fluxes are independent of the earth parameters, and for
imaging/ inversion, where we need to compute the gradient
of the misfit function with respect to the earth parameters,
the derivatives of the flux terms disappear, which makes
the implementation simpler. However, it can complicate the
implementation when we have large earth parameter discon-
tinuities, e.g., at the acoustic-elastic interface.

DGFEM has also been proposed for the second-order
wave equation (Rivière and Wheeler 2003; Grote et al. 2006;
de Basabe et al. 2008). The use of the second-order wave
equation is interesting because it reduces the number of un-
knowns. The schemes differ according to the penalty applied
in the numerical flux estimation.

Although the mass matrix is block-diagonal for the
DGFEM, the blocks can be relatively large in 3D for high-
order elements. The quadratures discussed in the CGFEM
section can be applied, to obtain a diagonal matrix (de
Basabe et al. 2008). The use of an orthogonal basis, e.g.,
with the Legendre polynomials, in a modal approach, au-
tomatically leads to a diagonal mass matrix, assuming con-
stant material properties per element (Cockburn 2003).

In practical applications, grid refinement and order re-
finement can be easily implemented, leading to the so-called
hp-adaptivity, because the elements share flux values and
not field values, as in CGFEM (Cockburn 2003). In most of
the geophysical modelling applications of DGFEM, the ele-
ments used in the meshing are triangular in 2D and tetra-
hedral in 3D, which leads to simpler meshing than with the
quadrant or hexahedral elements classically used with the
spectral finite-elements method. However, to our knowledge,
DGFEM has been mainly used with low-order elements in
an imaging approach.

In the presence of complex geometry and complex geo-
logical models, adaptivity and the mesh refinement are the
key features for efficient numerical solutions of the elastody-
namic and electromagnetic equations. Refining meshes im-
pose severe stability constraints on explicit time-stepping
schemes to respect the CFL condition and to ensure stabil-
ity of the numerical scheme. When the mesh refinement is
restricted to a small region, the smallest time step will be
used in the entire computational domain. Overcoming this
limitation is essential to achieve high performance and high
numerical accuracy. If there is only a limited number of small
cells, then decreasing the interpolation order is a practical
approach (p-adaptivity) (Dumbser et al. 2007; Etienne et al.
2010), while local time-stepping schemes with local stabil-
ity conditions will be the method of choice Collino et al.
(2006); Dumbser et al. (2007); Diaz and Grote (2009). The
methods of local time steps have not yet achieved the matu-
rity level for efficient load balancing between processors in
a high-performance computer environment, as the compu-
tational complexity varies dramatically between processors
with the local time stepping: an optimal domain decompo-
sition strategy remains to be found, as far as we know.
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6 SOME APPLICATIONS

Without being exhaustive, we now give some of the geophys-
ical applications of the modelling methods described above.

As discretisation is different from other formulations,
spectral methods are often used to validate the solutions of
the volumetric methods, especially when an interface phe-
nomenon has an important role. A well-known application
is for global earth modelling where both material properties
and fields are developed on spherical harmonic functions
for latitute/ longitude coordinates, and simple polynomial
interpolation for the radial coordinate (Woodhouse and
Dziewonski 1984; Geller and Ohminato 1994; Woodhouse
2007). These spectral approaches (at least for horizontal
distances) have a low number of parameters (Takeuchi et al.
2000; Kawai et al. 2006), which allows efficient computa-
tions of seismograms for relatively smooth media. For global
earth imaging, spectral methods have been the methods of
choice as the earth is a closed medium. Since the seminal
study of Woodhouse and Dziewonski (1984), FWI has been
performed up to 0.05 Hz from recorded seismograms with
earthquakes of magnitudes greater than 6.5, due to the
closed-form estimations of the Fréchet derivatives and the
relatively compact form of the Hessian matrix (Geller and
Hara 1993): various local targets have been investigated
as the database has increased (see references provided by
Thurber and Ritsema (2007)).
Due of the efficiency and accuracy with layered 3D media,
spectral methods have also been used for FWI, often with a
stochastic approach (Sen and Stoffa 1995; Pica et al. 1990;
Kormendi and Dietrich 1991; Hoversten et al. 2006; De
Barros and Dietrich 2008).

Spectral methods also have an important role when
the state equations are reformulated with the introduction
of Green functions. We can cite the primary/ secondary
formulation that is often used in diffusive electromagnetism
(Hohmann 1988; Zhdanov 2002). In this formulation, the
primary solution in a layered background is often computed
with a spectral method, allowing analytical discretisations
of the source; the secondary field is computed by a vol-
umetric (FDM or finite-element) formulation. We should
also mentioned the integral equations formulation. These
might be of interest when the sought properties of the
medium are confined in a more limited domain than the one
where we must solve the forward problem, or when weak
perturbations in the variations of properties are expected
(Zhdanov 2002). Here, volumetric methods, such as the
FDM, are also used to compute the Green functions. These
approximations could be similarly applied using the partial
differential equations (Robertsson and Chapman 2000;
Abubakar et al. 2009). It is worth noting that the integral
equation methods can be collapsed into the boundary
integral methods where discretisation is only along the
boundaries between domains, as long as solutions are
available inside each domain. We often consider domains
with homogeneous properties leading to local analytical
solutions (Kausel 2006), although numerical local solutions
can be constructed at the expense of computer resources
(Wolf 2003).

A lot of large-scale geophysical inversion/ imaging uses

the FDM or the finite-volume method. In 3D electromag-
netic imaging, applications can be found in magnetotelluric
data imaging (Mackie et al. 1993) and in marine-controlled
source electromagnetic data imaging (Newman and Alum-
baugh 1999; Carazzone et al. 2005; Plessix and Mulder
2008). In these applications, most of the time, the inversion
is carried out in the frequency domain and second-order
spatial schemes are used. In seismic imaging, 3D acoustic
RTM of P-waves is nowadays a commodity, especially in the
Gulf of Mexico. In 3D, only time-domain implementations
with time marching are competitive, because a sufficiently
large band-frequency window has to be taken into account
to obtain sufficient depth localisation. To improve the effi-
ciency, large optimal stencils are implemented (Etgen and
O’Brien 2007). The use of large stencils is not only crucial
from a computational time point of view, but also from a
memory and I/O point of view. In exploration geophysics
and geodynamic lithospheric interpretations, 3D acoustic
FWI also principally relies on FDM techniques. However,
contrary to the RTM, only a sparse set of frequencies can
be used. Here, computation of the gradient of the misfit
function is required, making the implementation somewhat
more challenging than for the RTM application. Processing
frequency per frequency allows the I/O requirements to
be reduced. Indeed, the time-harmonic incident field can
generally be stored in the memory while computing the
data back-propagated field, as the finite-volume method
currently uses only the low frequency part of the data
spectrum. Therefore, both 3D time-domain and frequency-
domain implementations are now used (Ben-Hadj-Ali et al.
2008; Vigh and Starr 2008; Warner et al. 2008; Plessix
2009; Sirgue et al. 2010). Despite some attempts (Brossier
et al. 2009), finite-volume methods are not routinely used
in seismic imaging. While attractive for the representation
of sharp interfaces, as we can use triangle or tetrahedral
meshes,these low-order methods remain too expensive
and less flexible than finite-element methods. We can
also question the relevance for imaging of the high-order
finite-volume methods based on high-order time integration,
such as the ADER technique, because of their complexity.
FDMs represent a good compromise. These are less accu-
rate than other numerical methods, but they are efficient,
notably with the high-order stencils in seismic imaging,
and easy to implement even with gradient computation.
While the model representation can be crude (for instance
with rough topography), model discretisation through
a grid is easy and generally does not lead to numerical
difficulties. In exploration geophysics, we often do not have
precise knowledge of the geological interfaces (except at the
air-earth and water-earth interfaces). Therefore, working
with relatively smooth earth parameters at a wavelength
scale is often sufficient, at least in the first stages of velocity
model building with P-waves or resistivity imaging in a
marine environment.

In the oil and gas industries, finite-element methods
have rarely been used so far in large-scaled applications.
In contrast, they have been applied in seismology. Various
implementations have been studied, from standard finite-
element approaches (Marfurt 1984) to octree-based finite-
element methods (Bielak et al. 2003) in active and passive
seismology, and with classic and mixed continuous finite-
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element methods, sometimes with edge elements, in elec-
tromagnetism; e.g., see Cognon (1971); Li and Key (2007).
A few inversions have been performed using the standard
finite-element approach (Askan et al. 2007). However, with
the regaining of importance of land exploration and the need
for better reservoir characterisation, these techniques might
become crucial to better model the propagation and diffu-
sion phenomena around interfaces and in anisotropic media.
In global seismology, the spectral finite-element method with
a spectral convergence in the standard space has reached a
mature level (Komatitsch and Vilotte 1998; Komatitsch and
Tromp 2002; Chaljub et al. 2007). This method has been
applied in an inversion scheme at lithospheric scales (Ficht-
ner et al. 2008; Tape et al. 2009). DGFEM implementations
that provide additional properties and flexibilities have been
proposed (Käser et al. 2007; De la Puente et al. 2008). The
first preliminary attempts of this method for seismic imag-
ing have been performed (de la Puente et al. 2010). The
relative advantages of the different finite-element methods
for inversion remain an active research topic.

7 SOME MODELLING AND IMAGING
CONSIDERATIONS

When modelling approaches form the kernel of an inver-
sion/ imaging problem, some extra considerations can influ-
ence our choice, depending on the size of the model space.
In elastodynamics and electromagnetism imaging methods,
the earth model contains from less than 100 unknowns in
very small real-sized cases, to hundreds of millions in large
real-sized cases. When the forward modelling is fast enough
and with a reduced number of unknowns, the objective func-
tion of the inverse problem can be minimised with a global
optimisation technique, such as a grid search or Monte Carlo
sampling (Press 1968; Silva and Hohmann 1983; Hong and
Sen 2009), or a semi-global method, such as simulated an-
nealing or genetic algorithms (Sen and Stoffa 1995), where
the sampling strategy of the model space depends on the
values of the objective function. These (semi-)global optimi-
sations are interesting because they only rely on the value
of the misfit function. To converge, these methods require
a number of simulations that is often larger than the num-
ber of unknowns. Unfortunately, they can be implemented
only with small cases under certain simplifications. Classi-
cally, a 1D assumption is made, and the spectral methods
are good candidates. The FDM and the finite-volume and
finite-element methods are often still too expensive to allow
(semi)-global searches.

In more complex settings, we revert to local optimi-
sation due to computational constraints. Local techniques
without the estimation of the gradient, such as the simplex
method, are limited to a few parameters. This leaves us with
gradient optimisation. This adds some burdens on the imple-
mentation, as the gradient of the misfit function with respect
to model parameters needs to be evaluated and numerical
differentiation is not a real option due to its cost. Comput-
ing the Jacobian matrix of the misfit function, namely the
Fréchet derivatives with respect to the model parameters, is
often not possible because it would require a large number
of simulations, although there are cases where it is man-
ageable (Chen et al. 2007). With a limited number of pa-

rameters, closed-form estimation of the Fréchet derivatives
can be done with the spectral methods, as mentioned pre-
viously . An alternative consists of directly evaluating the
gradient with the adjoint-state technique (Chavent 2009).
The discretisation of the equations 7, 8, 9, or 10 leads to
the formal system Lp = f . The adjoint system is given by
LTq = g, where q is the adjoint (back-propagated) fields,
g the source of the adjoint system, which depends on the
residuals between the observed and computed data from the
fields p, and T the transposition. The gradient with respect
to a model parameter m is then given by qT ∂mLp.
Several comments that may guide our modelling choice can
now be made:

• The forward (direct) and backward (adjoint) systems
are similar. They are conjugated, and consequently they
have the same dispersion curve. The methods described for
the forward system can be used directly to solve the back-
ward system. However, the source term of the backward sys-
tem is generally less localised than the source term of the
forward system. This may become a challenge with spectral
methods. Moreover, it is recommended to derive the adjoint
system from the discretised system (Chavent 2009). This
can be numerically difficult or expensive with certain ap-
proaches, such as spectral methods or sophisticated spatial
and temporal schemes; e.g., with some FDM schemes on ir-
regular grids, and some high-order time-integration schemes.

• In the time domain, the adjoint system is solved back-
wards. This means that computing the gradient requires the
incident fields at all of the time steps. This is a burden com-
pared to the frequency domain, where all of the frequen-
cies can be treated separately. When an efficient frequency
solver exists, such as in diffusive electromagnetism, the fre-
quency domain is then the domain of choice. Note that the
situation becomes more complicated when a time window is
applied to the data, e.g., to remove the air wave. When the
I/O becomes a bottle-neck with the time-domain approach,
check-pointing methods can be applied, as recalled by Symes
(2007); however, this increases the computational effort and
the complexity of the implementation.

• In the frequency domain, the matrix L is independent
of the source locations. With a direct solver, the LU matrix
decomposition is then carried out only once, making this
implementation attractive. In 3D geometries, however, the
parallelisation of the direct solver is quite challenging, and
this requires a very large amount of memory. This approach
is a priori not a real option in diffusive electromagnetism,
where fast iterative solvers exist. In acoustics, with fixed-
spread acquisition, the direct-solver approach can be an op-
tion when very few frequencies are used, as in certain FWIs
(see examples in Brossier et al. (2010)). This, however, re-
lies heavily on the hardware architecture, and especially the
speed of communication.

• Often, the data contain a large number of sources. The
forward and backward systems can be very efficiently par-
allelised over the sources. Moreover, the computational do-
main can be adapted to the shot acquisition, which leads to
an efficient implementation, especially when the computa-
tional and inversion grids can be decoupled. Time-domain
and frequency-domain implementations with an iterative
solver take advantage of this feature when dealing with large
real datasets. For the frequency, the algorithm can also be
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parallelised over the frequencies. This favours frequency-
domain implementation when an efficient solver exists. This
explains why frequency-domain approaches are favoured in
diffusive electromagnetism; moreover, just a sparse set of
frequencies are often used. In elastodynamics, no sufficiently
efficient 3D frequency-domain iterative solver exists yet to
compete with time-domain implementation when a large
band-frequency window needs to be modelled, such as for
RTM. When only a very few frequencies are used, such as
with certain (acoustic) FWI, iterative solvers can be an op-
tion. Nevertheless, time-domain implementations are cur-
rently the most common choices.
• The gradient will be efficiently evaluated when the ma-

trix ∂mL is very sparse. High-order time or spatial schemes
reduce the sparsity of these matrices. The adjoint state tech-
nique can, for instance, be relatively inefficient with spec-
tral methods, such as the reflectivity method. The FDM
and finite-element high-order spatial schemes are generally
not an issue. However, parallel implementations by domain
decomposition can significantly increase inter-node commu-
nication. The local nature of the DGFEM appears to be
an advantage. In the time domain, the complexity added
by the high-order time scheme, such as a high-order ADER
scheme, needs to be evaluated. Currently, as far as we know,
only low-order time schemes are used in inversion.

With large inverse problems, these considerations around
the gradient computation appear to be in favour of the
FDM, or the finite-volume or finite-element methods for
spatial discretisation. The choice between frequency-domain
and time-domain formulations is problem dependent. Phys-
ical or (pre)-processing considerations should influence the
choice, as these can influence the behaviour of the numerical
implementation.

8 CONCLUSIONS

In this review, three main modelling approaches have been
presented. First, spectral methods can give very efficient and
accurate solutions; however, their lack of flexibility limits
their applications to very specific earth geometries, e.g., a
layered earth. Secondly, the discretisation of the strong for-
mulation of the PDEs was discussed. This corresponds to the
pseudo-spectral, finite-difference method and finite-volume
method. On a structured meshing, and notably a regular
or stretched grid, these approaches are easy to implement
and are relatively flexible. They are currently the methods
of choice for large-scale modelling and inversion in explo-
ration geophysics, and especially in the marine environment.
They may however demand very fine discretisation when the
earth model contains large contrasts, and accurately mod-
elling the responses around a sharp interface is quite chal-
lenging. Thirdly, we discussed the weak formulation, namely
the finite-element methods with continuous and discontin-
uous approaches. The use of test functions gives us more
freedom, and the integral form provides us flexibility in the
meshing. However, they lead to numerical challenges: they
are more difficulty to implement than methods related to the
strong formulation, they are often more expensive in compu-
tational time and memory, and they are more complicated
to use because the accuracy of the response depends on the
quality of the meshing.

This classification helps in our understanding of the ad-
vantages and limitations of each particular method for the
modelling of specific physical phenomena. The choice of the
modelling approach depends in particular on the needed ac-
curacy, the efficiency in the evaluation of the solution and
the gradient of the misfit function in an inversion algorithm,
and the simplicity of use. Although this was not really dis-
cussed, the efficiency can depend considerably on the hard-
ware architecture. Some of the new types of hardware archi-
tecture require new modelling implementations to be used
efficiently, as, for example, graphical processor units, which
can require specific developments. Similarly, the practical
implementation will probably be adapted to the data ac-
quisition. Densely sampled acquisition in exploration geo-
physics, with or without blending, or in lithospheric inves-
tigations with the recent deployment of sensors, as for the
US array experiment, challenge our modelling choice. This
appears to indicate that developments in modelling and the
associated inversion approaches remain crucial for the im-
provement of our sub-surface knowledge, and particularly
for the extraction of more information from the ever larger
datasets we record.
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Nédélec, 1980. Mixed finite elements in R3, Numerische Math-

ematik , 35, 315–341.
Newman, G. A. and Alumbaugh, D. L., 1999. Electromagnetic

modeling and inversion on massively parallel computers, in

Three Dimensional Electromagnetics, edited by M. Oristaglio
and B. Spies, Geophysical Developments, No 7, pp. 299–321,

SEG.
Operto, S., Virieux, J., Amestoy, P., L’Excellent, J-Y., Giraud,

L., and Ben Hadj Ali, H., 2007. 3D finite-difference frequency-

domain modeling of visco-acoustic wave propagation using a
massively parallel direct solver: A feasibility study, Geophysics,

72(5), SM195–SM211.

Oristaglio, M.L. and Hohmann, G. W., 1984. Diffusion of electro-
magnetic fields into a two-dimensional earth: A finite-difference

approach, Geophysics, 49, 870–894.

Pica, A., Diet, J. P., and Tarantola, A., 1990. Nonlinear inver-
sion of seismic reflection data in laterally invariant medium,

Geophysics, 55(3), 284–292.

Pitarka, A., 1999. 3D elastic finite-difference modeling of seismic
motion using staggered grids with nonuniform spacing, Bulletin

of the Seismological Society of America, 89, 54–68.
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