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Abstract: COVID-19, caused by SARS-CoV-2, has resulted in a global pandemic recently. With no
approved vaccination or treatment, governments around the world have issued guidance to their
citizens to remain at home in efforts to control the spread of the disease. The goal of controlling the
spread of the virus is to prevent strain on hospitals. In this paper, we focus on how non-invasive
methods are being used to detect COVID-19 and assist healthcare workers in caring for COVID-19
patients. Early detection of COVID-19 can allow for early isolation to prevent further spread.
This study outlines the advantages and disadvantages and a breakdown of the methods applied in the
current state-of-the-art approaches. In addition, the paper highlights some future research directions,
which need to be explored further to produce innovative technologies to control this pandemic.
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1. Introduction

Since late 2019, countries around the world have been experiencing a global pandemic through
the surfacing and spread of the potentially fatal COVID-19 (COronaVIrusDisease 2019) caused by
SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2) virus [1]. COVID-19 causes victims
to develop a fever and display respiratory difficulties causing coughing or shortness of breath [2–4].
Data collected from victims of the virus shows that most deaths occurred in patients with underlying
health issues with elderly people being at a higher risk of death [5]. The first confirmed case of the
virus is considered to be in Wuhan, China in December 2019 with some of the early cases thought to be
traced to seafood markets trading live animal species such as bats and snakes [6–9]. The virus has
been discovered to likely be related to bats. It is suspected that the virus may have been transmitted
to humans through bats which were being sold as food items [10,11]. The exact cause of the virus is
still unknown, and it has also been suggested that the virus could originate from pangolins, which are
natural hosts of corona viruses [12]. Pangolin is unlikely to be linked to the outbreak as the corona
viruses found on the animal differ to COVID-19 [13]. However, it is possible the pangolin could have
served as an intermediate host. As a result, these markets were shut down in China [14]. The virus
rapidly spread throughout China and eventually spread throughout the world. The virus was officially
declared a global pandemic by the World Health Organisation (WHO) on 30th January 2020 [15,16].
Although new discoveries are being made at the time of writing this paper, the virus has been found to
be highly contagious and this has led to its rapid spread throughout the world [17]. The virus is spread
primarily through respiratory droplets from an infected person [18]. These droplets can be dispensed
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by an infected person when coughing or sneezing. The droplets can then infect others directly via
the eyes, mouth or nose when they are within a one or two meters radius of an infected person [19].
Some examples can show where 2 m is not enough distance such as with tobacco smoke traveling over
9 m from a lung source [20]. This uncertainly has led to the recommendation of using facial masks
as a protective measure. There is debate on the effectiveness of masks, but it is recommended by the
WHO to use masks if in contact with COVID-19 patients [21,22]. The droplets can also be passed to
others indirectly due to their long-term presence on surfaces [23]. Another leading factor in the rapid
spread is that those infected with COVID-19 can be contagious during the early stages of infection
while they are showing no symptoms [24]. This leads to people believing they are not sick while
unknowingly spreading the virus. One of the main challenges of the COVID-19 pandemic is the how
the spread of the virus can be controlled. The rapid spread of COVID-19 has highlighted how the
world’s population interacts when faced with a pandemic [25]. Governments around the world have
outlined guidelines to their citizens to adhere to lockdown rules. Currently, the best strategy to control
the spread of COVID-19 is to ensure social distancing until a vaccine or an effective treatment can be
produced [26,27]. The National Health Service (NHS) of the United Kingdom is expecting an increased
demand for their services as more COVID-19 patients are admitted and staff sick leave increases as staff
members contract the disease [28]. Technology is being rapidly introduced in healthcare applications to
develop systems that can ease the demand of the health service [29–31]. Any assistance via healthcare
technology will free up valuable clinical resources to focus on other areas of care. In this paper, we look
at the state-of-the-art non-contact sensing techniques and how these technologies can be used to assist
in the care and detection of people suffering from COVID-19 and how these methods can help to
reduce the spread of the disease, primarily the spreading of the disease from patients to healthcare
workers such as doctors, nurses, and career staff.

Search Strategy

The following search terms and variation of search terms were used in Google Scholar,
MDPI, Science Direct and IEEE databases: radar breathing detection tachypnea, RGB-thermal
breathing detection, Terahertz COVID-19, ultrasound non-contact lungs, ultrasound imaging,
CT Scanning COVID-19, X-ray COVID-19, Camera COVID-19 Detection, Radar COVID-19 diagnosis,
Thermography COVID-19, Terahertz COVID-19 detection, thermography non-contact, COVID-19
symptoms, Ultrasound Non-contact.

2. Non-Contact Sensing to Detect COVID-19 Symptoms

Non-contact sensing is the ability to detect information without direct contact with a subject.
In terms of healthcare, non-contact can be used monitor the human body without devices physically
touching the body. Non-contact techniques are considered highly valuable in dealing with a highly
infectious disease such as COVID-19, as contact may contribute to the spread of disease. This is because
healthcare workers will not need to make physical contact with patients to enable the monitoring of the
patient. Using wearable devices can cause risks to healthcare workers as they will need to have physical
contact with patients to attach the device. Despite precautions being undertaken such as wearing gloves
and face masks, there will be lower risk if contact with patients can be successfully removed completely.
Healthcare sensing technologies aim to collect information from a person which can be processed by
Artificial Intelligence (AI) to provide decision support or directly analyzed by a clinician to diagnose
a disease or monitor existing conditions. The use of AI can help to relieve pressure on hospital staff
while they work hard to manage resources during the global pandemic. Non-contact remote sensing
technology can sense such healthcare markers without introducing anything to the body (e.g., wearable
devices). Wearable devices can be uncomfortable for some which will entice users to remove the device
and results in misplacement or damage [32]. The non-contact techniques can assist in the detection
of COVID-19 and the care of patients suffering from COVID-19. This will allow for quick diagnosis
and allow for healthcare professionals to make clearer judgements on the treatment of the patient and
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allow for quarantine action to be undertaken. Vital-sign monitoring can provide great assistance in the
fight against COVID-19 for several reasons. These reasons include detection of irregular breathing
patterns, which is a major symptom of COVID-19, but it can also monitor the health conditions of
patients suffering with COVID-19. Although COVID-19 affects the respiratory system [33,34], it has
also been shown to take effect on the cardiovascular system [16]. These non-contact methods can
also monitor heartbeats and therefore provide a monitoring system of the patient cardiovascular
system. It can be concluded that non-contact sensing that monitors these vital signs can be used to aid
in the detection and treatment of COVID-19. Examples of non-contact techniques described in this
paper include computed tomography (CT) scans, X-rays, Camera Technology, Ultrasound Technology,
Radar Technology, Radio Frequency (RF) signal sensing Thermography and Terahertz. Table 1 details
the advantages and disadvantages of each technique. These methods can be used with AI to help give
diagnosis. Currently testing for COVID-19 is done by doing a swab test. The results of these tests
are currently returned the next day, but may be delayed by up to 72 h [35]. The paper will provide a
review of the state-of-the-art literature that is using these non-contact methods to be able assist patients
suffering with COVID-19. Table 2 provides a summary table of the current literature contained within
this review paper.

Table 1. Summary of Non-Invasive Techniques.

Method Accuracy Cost Time for Measurement Time for
Results

Harm to
Body

Skills of
Operators Possibility

of AI

CT High High Moderate Fast Low High Yes
X-Ray High High Moderate Fast Low High Yes
Camera High Medium Real Time Real Time None Medium Yes
Ultrasound High Medium/High Moderate Medium Low High Yes
Radar High High Real Time Real Time None Medium Yes
RF High Low Real Time Real Time None Low Yes
IR Thermo High Medium Fast Fast None High Yes
THz High Medium Fast Fast None High Yes
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Table 2. Summary of Current Literature.

Title of Paper Citation Year Key Themes Authority

Abnormal respiratory patterns
classifier may contribute to
large-scale screening of people
infected with COVID-19 in
an accurate and unobtrusive
manner

[36] 2020

The paper details that COVID-19
patients display tachypnea
(Rapid breathing). The paper
looks at taking depth images to
identify the breathing patterns of
volunteers using deep learning

Peer reviewed paper.
24 citations on Google
Scholar.

Artificial intelligence
distinguishes COVID-19 from
community acquired pneumonia
on chest CT

[37] 2020

CT scan images are used in
a COVNet neural network to
distinguish between COVID-19,
Pneumonia and Non-infected
scan images.

Peer reviewed paper.
157 citations on
Google Scholar.

Automatic detection of
coronavirus disease (COVID-19)
using x-ray images and deep
convolutional neural networks

[38] 2020

X-ray scan images are used
in a ResNet-50 Convolutional
Neural Network (CNN) to
distinguish between COVID-19
and non-infected scan images.

Peer reviewed paper.
102 citations on
Google Scholar.

Automated detection of
COVID-19 cases using deep
neural networks with X-ray
images

[39] 2020

X-ray images are processed
using the DarkNet neural
network to test binary
classification between
COVID and Non-infected
and multi-class classification
between COVID, Pneumonia
and Non-infected.

Peer reviewed paper.
22 citations on Google
Scholar.

Can Radar Remote Life Sensing
Technology Help to Combat
COVID-19?

[40] 2020

Radar systems have been used
to monitor the vital signs of
patients in a contact less manner
to protect healthcare workers

Paper uploaded on
researchgate.net.

Combining Visible Light and
Infrared Imaging for Efficient
Detection of Respiratory
Infections such as COVID-19 on
Portable Device

[41] 2020
RGB-Terminal camera footage
used in a BiGRU neural network
model between healthy and ill.

Peer reviewed paper.

Coronavirus (COVID-19)
classification using CT images
by machine-learning methods

[42] 2020

CT scan images are used
to experiment with various
methods of feature extraction
and deep learning algorithms to
achieve the best results

Peer reviewed paper.
157 citations on
Google Scholar. 157
citations on Google
Scholar.

CSAIL device lets doctors
monitor COVID-19 patients
from a distance

[43] 2020

Radio Frequencies have been
used to monitor the vital signs of
patients in a contactless manner
to protect healthcare workers

Article found on MIT
Computer Science &
Artificial Intelligence
Laboratory website.

Covid-19 screening on
chest x-ray images using
deep-learning-based anomaly
detection

[44] 2020
X-ray images are used with deep
learning to identify if samples
are COVID-19 or Pneumonia

Peer reviewed paper.
32 citations on Google
Scholar.

Lung infection quantification of
COVID-19 in CT images with
deep learning

[45] 2020

CT scan images are used in deep
learning to identify COVID-19.
Human-in-the-loop technique is
used to focus on increasing
accuracy

Peer reviewed paper.
52 citations on Google
Scholar.

POCOVID-Net: automatic
detection of COVID-19 from a
new lung ultrasound imaging
data set (POCUS)

[46] 2020

Lung Ultrasound videos of
COVID-19, Pneumonia and
non-infected patients used deep
learning for classification.

Peer reviewed paper.
2 citations on Google
Scholar.
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2.1. CT Scanning

An example of a non-invasive technique to detect COVID-19 is using computed tomography
(CT) scans [47]. This process involves taking several X-ray images of a person’s chest to create a 3D
image of the lungs. The images can be reviewed by professionals to look for abnormalities in the
lungs. The professionals are trained to review the images and they can tell from the captured image
what is normal tissue of the lungs and which part of the lungs look to be infected. Infection can
lead to inflammation of the tissue which will be present in the CT images. This method has been
used to look for pneumonia which is an infection of the lungs which can affect the lungs similarly
to how COVID-19 has an effect on the lungs of a patient. The activity of COVID-19 in the lungs is
more prominent in the later stages of infection; however, ultimately, research has shown that CT scans
showed a sensitivity of 86–98% [48]. This technique is non-contact as nothing is directly introduced
into the body of the patient. However if a patient has been found to be infected with COVID-19 then
the surface of the CT scanning machine is likely to contain droplets of the infection dispensed by
the patient. This will therefore need to be cleaned effectively to prevent the spread of the virus to
another patient who will be tested using the CT scanner apparatus. It can be noted that cleaning of
surfaces can be considered safer for healthcare workers than physical contact with a patient. This is
because droplets that are present on surfaces are likely to be static, whereas infected patients will
dispense these droplets from their bodies during breathing and possibly through coughing, which is a
symptom of COVID-19. CT scans can achieve high precision with high image resolution, however the
technology used to perform CT scans is expensive. CT Scanners are paid for out of hospital budgets
and are part of the dedicated equipment used to assist hospital staff in patient diagnosis. Their cost is
proportionate to the level of accuracy they can provide within the healthcare industry. The equipment
is not portable, and it requires skilled professionals for image analysis. The CT scanning machine is a
massive piece of equipment. The machine is big enough to scan the entire length of an adult laying
down. This also ensures the machine is of a high weight which will further remove the portability
of the device. Another disadvantage of CT scanning is that the patient is exposed to radiation [49].
The radiation levels in CT scans have been found to result in an estimated cancer mortality risk of
0.08% within a 45-year-old adult [50]. Recently, AI has been used on CT images for diagnosis of
COVID-19 [51]. Again, AI can allow for support for the skilled professionals analyzing the CT images
produced by the CT scanners. If AI can assist with the detection and predictions of any disease in
the lungs, this can help to ease the workload of the CT scan professionals. The advantages of this can
allow for greater care of patients and more opportunity to ensure the appropriate safety prosecutions
are being taken to prevent the spread of COVID-19 to the hospital staff or other patients who could
potentially be classed as at high risk of COVID-19.

Fei Shan et al. [45] developed a deep-learning model which was able to detect COVID-19 and
the level of infection within the lungs. Their model adopted a human-in-the-loop (HITL) strategy.
Human-in-the-loop is when specialists are used to label a small amount of training data. Then an
initial model is trained. Then this initial model is used to classify new data. The specialist then corrects
any incorrect labels and the data set can be used to train further models. This task can be iterated
numerous times to reduce the tedious task of labeling large amounts of data. The experiment used
249 confirmed cases of COVID-19 for training. The experiment achieved a high result of 91.6% accuracy.
The experiments of this paper used 3 iterations. The first iteration made classifications on the validation
data using 36 labeled images as a data set with an accuracy score of 85.1%. The labels are then corrected
and added to the second iteration. The second iteration used 114 images for training and achieved
an accuracy result of 91.0%. The labels are then corrected and passed to the third iteration. The third
iteration is used on all 249 training images and achieved an accuracy result of 91.6%. The improved
accuracy greatly reduces the human involvement and time devoted to labeling the full data. Figure 1
displays a flow chart of the process of human-in-the-loop.
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Figure 1. Flow chart of work for detection of COVID-19 from CT scan (Reproduced from [45]).

Li, Lin, et al. [37] used a COVNet, a custom deep-learning neural network to predict COVID-19
in CT images. The complete data set used included 400 COVID-19 CT images, 1396 Pneumonia CT
images and 1173 non-infected CT images. The model takes CT images as input and extracts features of
COVID-19 and pneumonia evidence found in the CT images. The features are then combined and the
neural network can be applied to make predictions on whether the CT images contain COVID-19 or
pneumonia features or if the CT images are of that of a non-infected person. Results found that the
model was able to predict COVID-19 in patients with 90% sensitivity. The model proved to not only be
able to detect infected and non-infected lungs but was also able to differentiate between COVID-19
and pneumonia with pneumonia having a sensitivity of 87%. Once the model was trained it was able
to classify new samples within 4.51 s [37]. Figure 2 shows the process followed in this research.

Figure 2. Flow chart of work for detection of COVID-19 from CT scan (Reproduced from [37]).

The research of Barstugan, Mucahid et al. [42] used machine learning on a data set of 150 CT
images. The data set contains 53 infected CT images. Patches of the images are taken. Patches in image
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processing is the process of taking images and dividing them into containers of different sizes of pixels.
Different sized patches are used to create 4 different samples of patches. The patch sizes are 16 × 16,
32 × 32, 48 × 48 and 64 × 64. The images were labeled as infected CT images and non-infected CT
images in regard to COVID-19. The research used different methods of feature extraction on the images.
These methods include Grey-Level Co-occurrence Matrix (GLCM), Local Directional Patterns (LDP),
Grey-Level Run Length Matrix (GLRLM), Grey-Level Size Zone Matrix (GLSZM) and Discrete Wavelet
Transform (DWT). Support Vector Machine (SVM) algorithm was then used to classify the extracted
features of each of the methods. Support Vector Machine was used on the features using 2-fold, 5-fold
and 10-fold cross-validation. Cross-fold validation is the process of using each fold to work as both
training and testing data for the model to make predictions. Each fold will take a turn as being the
testing data while the others are used as training. This is repeated for however many folds there are so
that each fold serves as the testing data at least once. Then the results are compiled and each sample
will have predictions made on it as it served as the testing data through each fold. The best accuracy
result achieved out of the various methods of experimentation was 99.64%. This result was achieved
using Discrete Wavelet Transform feature extraction method with 10-fold cross-validation using the
48 × 48 patch dimension CT images. A flow chart of the methodology followed in this research is
shown in Figure 3.

Figure 3. Flow chart of work for detection of COVID-19 from CT scan (Reproduced from [37]).

The above papers have shown through experimentation that CT scanning can display the signs
of COVID-19 within a person’s lungs. The research has also shown how AI can be used to make
predictions of CT images and provide assistance in the determination of whether COVID-19 is present
in the lungs or not. The studies have also shown that AI can determine the level of infection present
in COVID-19 patients. The AI has also been able to differentiate between pneumonia and COVID-19
infections which is a positive as COVID-19 and pneumonia is similar in the way that both diseases
attack the lungs. Table 3 provides a breakdown of the above research papers on using CT scans for
non-contact COVID-19 diagnosis and care of patients.
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Table 3. Summary of CT Scanning works.

Citation Training Data Algorithms Results

[45] 249 CT images of COVID-19
showing different levels of infection.

Custom Convolutional
neural network (CNN) called
“VB-Net”

91.6% Accuracy

[37]
400 COVID-19 CT images, 1396
Pneumonia CT images and 1173
non-infected CT images

Custom Convolutional
neural network (CNN) called
“COVNet”

90% sensitivity of
COVID-19 samples.

[42] 150 CT images including 53
COVID-19 cases. Support Vector Machine 99.64% Accuracy

2.2. X-Ray Imaging

X-ray images can provide an analysis of the health of the lungs and are used frequently to
diagnose pneumonia [52]. The same strategy is used with X-ray images of the lungs to display
the visual indicators of COVID-19 [53,54]. This is due to the similarities between COVID-19 and
pneumonia as diseases that take an effect on the respiratory system. Similar to CT scans, X-ray
equipment is also expensive and requires professionals to analyze the X-ray image.

The paper entitled “Automatic detection of coronavirus disease (COVID-19) using x-ray images
and deep convolutional neural networks” used X-ray images taken of COVID-19-infected lungs and
patients with lungs that were non-infected with COVID-19 to create a data set of x-ray images which
was then used to predict COVID-19 automatically in patients. The X-ray images are passed into a
ResNet-50 Convolutional Neural Network (CNN) which successfully obtained results of 98% accuracy
in the differentiating between COVID-19 infected X-ray images and the non-infected x-ray images [38].

The paper of Zhang, Jianpeng, et al. [44] used deep-learning techniques on a data set of X-ray
images of 70 patients confirmed to have COVID-19. Additional images of patients with pneumonia
are added from a public chest X-ray image data set. The model is used to identify differences in
X-ray images between patients infected with COVID-19 and patients suffering from pneumonia.
The proposed deep-learning model was able to achieve a sensitivity of 90% detecting COVID-19 and a
specificity of 87.84% in detecting non-COVID-19 cases.

Ozturk, Tulin, et al. [39] also conducted experiments using deep learning to classify X-ray
images of patients with real-time classification of COVID-19. The experiments made use of a custom
deep-learning model named DarkNet to perform binary and multi-class classifications. The binary
classification is the process of deep learning, making predictions based on two choices. In the case
of this experiment, the binary classification seeks to distinguish between COVID-19 and no findings
of disease. Multi-class classification is when AI is tasked with making classifications on more than
two possible classifications. This differs from binary classifications as the model must make decisions
on which class data belongs to rather than just making distinctions between data. The multi-class
classification distinguishes between no findings of disease and or if disease is found, and then whether
the disease is pneumonia or COVID-19. The experiments used a publicly available data set of COVID-19
X-ray images and another publicly available data set for non-infected and pneumonia X-ray images.
The complete data set included 127 COVID-19 X-ray images and 500 pneumonia X-ray images and
500 non-infected X-ray images. The deep-learning process made use of the developed DarkNet neural
network. The complete X-ray image data set was divided between 80% training data and 20% testing
data. The deep learning was run for 100 epochs using 5-fold cross-validation. Each epoch is an iteration
of when the data is passed through the neural network. The neural network will learn about the data
being passed through. Repeating epochs can allow for the model to fine-tune its biases and weights on
what it believes data should be classified as. Then the model can improve the accuracy as it learns what
works and does not until it can provide the best results obtained. The results produced an accuracy
score of 98% for binary classification and an accuracy score of 87.02% for multi-class classification.
It is expected that the result will fall as the number of classifications increase as the AI will need to
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recognize more features to distinguish between classes rather than differentiate between two data
patterns. The complete process followed in this work is detailed in Figure 4.

Figure 4. Flow chart of work for detection of COVID-19 from X-ray images (Reproduced from [39]).

2.3. Camera Technology

Camera technology can be used to provide non-contact sensing by observing the chest movements
of an individual [55]. This can be achieved by capturing video footage of movements of the chest
or, in the case of depth cameras, they are able to calculate depth by using two sensors with a known
range [56]. The information captured using camera technology can be used provide assistance in the
detection of COVID-19 as one of the symptoms of the disease includes an increase in the breathing rate
of patients.

The paper “Combining Visible Light and Infrared Imaging for Efficient Detection of Respiratory
Infections such as COVID-19 on Portable Device” used RGB-thermal camera footage for the detection
of COVID-19. The footage was used with machine-learning binary classification to detect normal and
abnormal breathing from people wearing protective masks. This research is relevant as masks are now
commonly worn by people around the world as a preventive measure against COVID-19. The research
collected real-world data and applied deep learning to achieve a high result of 83.7% accuracy which is
the highest result found in the literature in regards to breathing detection using RGB-thermal imaging
with deep-learning models. This research can provide a scanning method which can be used to control
the spread of the virus and work with protective masks, thus reducing spread of COVID-19 [41].

Wang, Yunlu, et al. [36] used Microsoft Kinect cameras to take depth images of volunteers
breathing. A total of 20 volunteers were asked to sit on a chair and simulate 6 different breathing
patterns. The breathing patterns were eupnea, bradypnea, tachypnea, biots, Cheyne –Stokes and
central apnea. Each of these patterns display a different breathing rate in the individuals. Patients
of COVID-19 display the rapid breathing pattern of tachypnea. During data collection, a spirometer
was used to ensure the breathing pattern was being simulated correctly by the volunteers. The depth
images taken using the camera were used in a deep-learning neural network model to classify the
abnormal breathing patterns of tachypnea associated with COVID-19. The deep-learning model used
was the BI-AT-GRU algorithm. Gated Recurrent Unit (GRU) is a simplified version of the Long-Term
Short Memory (LTSM) algorithm. The BI-AT-GRU algorithm results achieved a high accuracy score of
94.5%. This research shows how depth images can be used to identify the tachypnea breathing patterns
observed in COVID-19 patients in real time. The process map for this research is shown in Figure 5.
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Figure 5. Flow chart of work for detection of COVID-19 from Depth Camera Image (Reproduced
from [36]).

The primary disadvantage of using this method is the cost of thermal and depth cameras and the
camera operators. Although the price of these cameras is falling gradually, it remains substantially
high [57]. The cost of the equipment is of course less expensive than methods such as CT and X-ray
scanning, but still more expensive than other methods discussed further in this paper. The research
done with cameras has shown that the devices can be used with AI in the detection of COVID-19 and
without contact with the body. This allows for more techniques to be implemented where diagnosis of
COVID-19 can be achieved in a safe manner without increasing the risk of spreading the disease.

2.4. Ultrasound Technology

Ultrasound technology can be applied to detect respiratory failure of the lungs. An ultrasound
machine is a device that uses high-frequency sound waves to image body movements [58]. The sound
waves bounce off different parts of the body which create echoes that are detected by the probe
and used to create a moving image. Lung ultrasounds have seen great development in recent
years [59]. The use of ultrasound technology can be used in the detection of COVID-19 in a
non-contact method where the risk of healthcare professionals becoming infected from patients can be
decreased [60,61]. Ultrasound technology becomes contactless by using an ultrasound transmitter
and receiver. Respiratory movement can then take place between the transmitter and receiver and
creates a Doppler affect. This can then be used to create a contactless breathing monitor [62–64].
Ultrasound technology can be performed using smartphones for the signal and processing of
ultrasound images in a portable setting [65]. The disadvantage of ultrasound technology is that
patients must prepare themselves before an ultrasound can effectively create an image of the body [66].
This preparation can include not eating for a few hours before.

The work of Born, Jannis, et al. [46] shows that ultrasound technology can be used in deep-learning
models to distinguish the differences in COVID-19, pneumonia, and no infection within the lungs.
The research collects a data set of lung ultrasound images which contain video recordings of lung
ultrasound scans. The data set includes a total of 64 video recordings with 39 of the recordings
of COVID-19 patients, 14 videos of pneumonia patients and 11 videos of non-infected patients.
The paper has developed a deep-learning convolutional neural network named POCOVID-Net.
The deep-learning algorithm was able to achieve an accuracy score of 89%. These ultrasound devices
can diagnose 4 to 5 patients per hour. Figure 6 shows a simplified flow graph of the experiment
undertaken in this paper.
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Figure 6. Flow chart of work for detection of COVID-19 from Ultrasound Technology (Reproduced
from [46]).

2.5. Radar Technology

Radar technology can be used to monitor the respiratory system within a home environment
and provide a quick response if abnormalities are found, which suggests COVID-19 being present.
Radar systems use frequency-modulated continuous wave (FMCW) to observe the Doppler effect when
a person moves [67–70]. This can be used to monitor the fine movements associated with breathing.
This is achieved by using the images captured by the radar systems then applying AI to classify the
images. AI models can be used to give real-time classification on new images [71–73]. Research done
shows that radar technology can achieve 94% accuracy for the detection of breathing rates and 80%
accuracy for heart-rate detection [34,74,75]. The Israeli military force has made use of radar systems for
monitoring the vital signs of COVID-19 patients. The goal of using this method is to prevent medical
staff from becoming infected while caring for patients [40,76]. Tachypnea is a symptom of COVID-19
and can be detected in a patient by using radar sensing technology [63,68,77]. Using radar technology
to monitor vital signs can provide non-interference monitoring; however the disadvantage of radar
systems is that it has high power requirements and the technology comes at a high cost [78].

2.6. Radio Frequency Signals

The use of radio frequency (RF) signal sensing can detect the vital signs of individuals by sensing
the minute movements of the chest made while breathing as the heart beats ( [73,79–82]). This technique
can be used for monitoring the vital signs of patients independent of their activities [83]. The RF signals
detect the movement by observing the Channel State Information (CSI), which can show amplitudes
of the RF signals while movement occurs between a RF transmitter and receiver [84,85]. The Emerald
system has been developed to monitor COVID-19 patients using RF signals. The system uses RF
signals to detect the breathing rate of COVID-19 patients and then uses AI to infer the breathing rate of
the patient. This allows for doctors treating the patients to be able to monitor the patient from a safe
distance. This method prevents the risk of infection to staff and provides the patient comfort as they
do not need to wear monitoring devices [43]. RF signals have been used in previous research to detect
breathing rates. RF signals can be used to detect abnormal breathing patterns such as tachypnea [86],
which is a symptom of COVID-19 [36]. Systems have been developed to allow for real-time monitoring
of breathing patterns using RF signals [87]. RF signals can be vulnerable to other movements within
the room. The other movements create noise in the Channel State Information which can then in turn
cause false readings [88,89].
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2.7. Thermography

Thermography is a widely used non-contact technique within the medical community [90,91].
It has been used for mass screening of people in other pandemics such as H1N1 and Ebola so it can be
applied in this current pandemic of COVID-19 [92]. Thermography works by using infrared radiation
to calculate the temperature of the human body [93]. Abnormal body temperatures are a well-known
indication of infection [94]. Symptoms of COVID-19 have been found to include high temperatures
over the normal body temperature of 36–37 degrees Celsius [95,96]. Thermography can also be used
to monitor the respiratory systems of patients and provide detection of breathing patterns such as
bradypnea or tachypnea using AI [97]. Thermography has been recommended as an early detection
strategy for COVID-19 among large amounts of people in places such as in airports [98]. Deep learning
has been applied to thermal images where classifications on new images can be made in under a
second [99,100].

2.8. Terahertz

Terahertz sensing technology is the process of directing terahertz beams to a person’s body
to detect the motion of the chest created by a heart beating or lungs inhaling or exhaling
breath [101,102]. Terahertz sensing is a non-contact method which can achieve superior penetration
depth [103]. This can be helpful when penetrating a patient’s clothes. These terahertz systems
can be produced in a similar fashion to how the radar imaging takes place, except with
using terahertz waves and observing the Doppler effect of the Terahertz wave while a patient
performs the breathing issue [104]. Terahertz waves refer to electromagnetic frequencies around
0.1–10 Terahertz(THZ) [103,105]. The use of terahertz can detect disease such as COVID-19 [106].
This will work similarly to the radar system with AI being used to make classifications on the
images showing the Doppler effect of terahertz waves. Deep learning can be applied to these
images and give fast classifications of new models once an AI model has been fully trained.
Terahertz radiation is considered the first choice in radiation exploitation due to the non-harmful
properties to living cells [107]. A terahertz spectroscopy is an example of a powerful tool in medical
research and diagnosis used for analysis of human breath samples and it offers a low cost [108].

2.9. Comparison to Contact Methods

The methods discussed in this paper have looked at non-contact techniques for diagnosing
COVID-19. Due to the nature of the disease, it has been widely acknowledged that reducing contact
between people is the best action to reduce the spread. Therefore non-contact technologies for diagnosis
are the preferred method. Wearable devices can also be used for monitoring vital signs [109,110].
This monitoring of vital signs can therefore be used to detect any displays of COVID-19 symptoms.
Popular devices such as AppleWatch, FitBit and Oura ring are highly available and provide monitoring
of the heart rate [111]. The Oura ring has been found to show changes in body temperature associated
with COVID-19 and has led to several studies being conducted into the use of Oura rings in early
detection of COVID-19 [112,113]. These technologies are known as personal health trackers and in
terms of COVID-19 detection, these devices will be better for self-diagnosis. If these devices can
inform users that they are displaying COVID-19 symptoms then the user can take action. Non-contact
methods will serve healthcare workers better as they can provide assistance to patients while still
reducing contact with the patient and thus reducing risk of infection.

2.10. Future Directions

This section will detail some of the future directions which may be suitable for expanding on
the research presented in this paper. The research has highlighted how the detection of COVID-19 is
possible using various techniques. This section will now discuss how this research can be taken further
to work within real-life scenarios.
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• One of the biggest challenges with CT scanning to diagnose COVID-19 is the lack of portability.
This means that although the method is non-contact, its use still requires individuals to travel to a
location where the machine is available. As the CT images can provide high resolution, the AI
can be used for the detection of COVID-19. Therefore, future directions of this method should
look to creating highly accurate models that can eventually lead to the automation of COVID-19
detection. This can allow for faster diagnosis, which can allow for more patients to be tested and
increase availability of staff operating and analyzing CT scans.

• X-rays, similarly to CT scans, are not portable. Like CT scans, professionals are required to
operate these machines and analyze the X-ray images. The research presented in this paper has
shown that AI can be used to make predictions if COVID-19 is present in the lungs. This can be
useful similarly to CT scans where AI can be applied to make the predictions and speed up the
process. The more data collected, the more advanced the model will become. Perhaps initially
the predictions will need to be confirmed by humans but eventually the checks can become less
frequent. Since the research above has displayed an ability of AI to distinguish between not just
COVID-19 and non-infected but also pneumonia at high accuracy, then the AI has proved to be
capable of accurate classifications.

• Thermal and depth cameras can detect the irregular breathing patterns that are associated with
COVID-19 symptoms. The issue here is that even though the camera can detect the irregular
breathing pattern, it is unable to categorically define COVID-19 as the cause for individuals
displaying the irregular breathing patterns. In a real-life situation, the camera method may be
better suited to monitoring vulnerable people who are considered high risk from COVID-19.
Then once the monitoring system has identified the irregular breathing patterns, an alarm can be
raised with a career or family member. Then, appropriate action can be taken for greater accuracy
such as diagnosis with CT scanning or X-ray scanning.

• Ultrasound technology can take moving images of the lungs and detect COVID-19. This can
also be made portable by using mobile devices. AI can be applied to recognize if COVID-19 or
pneumonia is present in the lungs. This research can be further applied to develop applications
on a mobile device that can capture an ultrasound of the lungs then compare it to an AI model to
predict if COVID-19 is present. Although not all phones may not have the necessary hardware
to achieve this, the non-contact method can allow for others to be able to use the devices for
diagnosis at a safe distance.

• Radar technology can identify the breathing patterns of individuals. Much like camera technology,
the identification of breathing patterns can raise cause of concern but it cannot isolate COVID-19 as
the sole cause. Radar technology can again be used to monitor individuals but due to the high costs
it is more likely to be used as a monitoring system within a hospital and not a home environment.

• Any future directions should consider the use of RF signals to detect the breathing patterns which
give indication of COVID-19 symptoms. The RF systems can be implemented inexpensively
using existing WiFi technology present within many homes. This allows for the monitoring of
individuals without the costs incurred in implementing radar or camera technologies highlighted
in this paper.

• Thermography has shown in previous research to be able to detect body temperatures of large
amounts of people in previous pandemics. Therefore, it can be implemented in mass screening in
the current COVID-19 pandemic. With the use of thermography being able to detect respiratory
issues, it is clear that these systems can also be implemented for COVID-19 detection.

• Terahertz can provide deeper penetration and detect smaller movements such as the chest
movements while breathing. This can therefore be used in early detection of COVID-19. The earlier
the disease is detected, the sooner isolation can begin and ensure that further spread is reduced.
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3. Conclusions

The works listed in this paper have shown that COVID-19 can be detected using contactless
techniques. Techniques such as CT scans and X-ray imaging provide high accuracy and high image
resolution, but the cost of the equipment is high and not portable. Thermal and depth camera
technology has been used to detect breathing patterns, which is associated with COVID-19 symptoms.
However, these cameras are expensive and need to be operated by a professional. Radar technology is
also able to detect breathing patterns but carries disadvantages of high operating expenses and capital
expenditures. RF signals provide low cost and high accuracy as compared with other non-invasive
technologies. The technologies can work on AI which can allow for skilled professionals to be
available to assist in other areas of healthcare during the pandemic. The non-contact methods also
protect healthcare workers from contracting the disease. The future direction of non-contact detection
should look at the use of RF systems as the cost is cheap and it is easier to implement within a home
environment in comparison to other methods. This gives the advantage of allowing the users to remain
within isolation.
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