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A theoretical basis for static and dynamic operation of tilting pad journal bearings (TPJBs) has evolved over the last 50 years.
Originally demonstrated by Lund using the pad assembly method and a classic Reynolds equation solution, the current state
of the art includes full thermoelastohydrodynamic solutions of the generalized Reynolds equation that include fluid convective
inertia effects, pad motions; and thermal and mechanical deformations of the pads and shaft. The development of TPJB theory is
reviewed, emphasizing dynamic modeling. The paper begins with the early analyses of fixed geometry bearings and continues
to modern analyses that include pad motion and stiffness and damping effects. The development of thermohydrodynamic,
thermoelastohydrodynamic, and bulk-flow analyses is reviewed. The theories of TPJB dynamics, including synchronous and
nonsynchronous models, are reviewed. A discussion of temporal inertia effects in tilting pad bearing is considered. Future trends
are discussed, and a path for experimental verification is proposed.

1. Introduction

Rotating machinery such as pumps, compressors, fans,
turbines, and generators are ubiquitous in industrial set-
tings. Fluid film journal bearings are suited to applications
experiencing higher speeds and loads, often in excess of
90 m/s surface velocity and with typical bearing specific
loads of 700 kPa–3.5 MPa. In these bearings, hydrodynamic
action is used to support the rotor on a thin lubricating
film. Typical film thicknesses between the rotor and the
bearing surface are on the order of 100 µm. This compares
to shaft diameters on the order of 25 mm to 1 m, leading
to typical diametral clearance ratios for fluid film bearings
of 1-2 µm/mm. With the dimensions and rotational speeds
for high-speed applications, lubricating flows are at the low
end of the turbulent regime for oil lubricants. There is not a
single accepted Reynolds number corresponding to the onset
of turbulence in bearing lubrication. The prior literature
indicates a range, with turbulence onset taken to occur over
a range of Re from 1000 to 1500 [1–5]. Some applications
use water or other low-viscosity process fluid as the bearing
lubricant, which results in a highly turbulent lubricating
flow.

The hydrodynamic action in fluid film bearings is fun-
damentally a fluid-structure interaction effect. When these
effects are linearized and perturbed in the two orthogonal
radial directions relative to the shaft, they result in equivalent
lateral stiffness and damping coefficients which can then be
used in lateral vibration analysis of rotors.

Tilting pad journal bearings are a source of both static
support and dynamic stiffness and damping. Tilting pad
journal bearings have a number of pads, typically four or
five. A four pad bearing is shown in Figure 1. Each pad
in the bearing is free to rotate about a pivot and cannot
support a moment. As a result, the destabilizing forces are
greatly reduced or eliminated, and the bearings are no longer
a potential source of rotordynamic instability. This feature
has made tilting pad journal bearings the standard fluid-film
bearing for most high-speed applications.

High-speed rotordynamic applications often have rotors
that pass through one or two bending critical speeds as
the machines are accelerated to the operating speed. The
damping from the fluid film bearings is required to safely
pass through these bending critical speeds as the rotating
element is accelerated. The damping also helps suppress
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Figure 1: Tilting pad journal bearing.

potentially destabilizing forces from sources such as radial
seals, balance pistons, impeller eye seals, internal friction fits,
and unbalanced electromagnetic forces [6].

Characterization of the dynamic response of tilting pad
bearings is vital to successful design of high-speed rotating
machinery. Theoretical models exist for prediction of the
dynamic response. These are particularly important at the
design stage of modern high-speed rotating machinery.
These models have evolved from analytical solutions of the
lubricating film of fixed geometry bearings to full finite ele-
ment and finite difference numerical solutions that include
analysis of the lubricating flow; the energy balance between
the lubricant, the bearing, and the rotor; and mechanical and
thermal deformations of the shaft and bearing pads.

Additionally, there is still some controversy within the
rotordynamic community over the proper dynamic model-
ing method for tilting pad journal bearings. Some researchers
question whether consideration of excitation frequencies
other than rotor operating speed is necessary. There is also
continued discussion on the number of degrees of freedom to
retain within the bearing, either implicitly or explicitly, when
nonsynchronous dynamic models are considered. The issue
of the presence of fluid temporal inertia effects also arises as
part of these discussions. This paper will review and discuss
those issues.

This paper is organized into nine sections. In Section 2,
the history of the development of tilting pad bearing dynamic
theory is briefly discussed, including a stiffness-damping
bearing model. This discussion considers the history of lubri-
cation theory with an emphasis on development of bearing
dynamic models. Section 3 reviews initial developments of
bearing dynamic models, including key developments in
fixed geometry bearings and synchronously reduced tilting
pad bearing dynamic models. Section 4 reviews later devel-
opments, including nonsynchronous tilting pad bearing
dynamic models, thermohydrodynamic (THD) lubrication
analysis, and thermoelastohydrodynamic (TEHD) lubrica-
tion analysis.

Many of the investigators of bearing dynamics were
concerned with the onset of rotordynamic instability, so
stability assessments in the literature are common. Less
common are predictions of critical speeds and unbalance
response. The previous work considered in this paper is
not comprehensive, but is representative of developments
of bearing models. The works cited in this paper and their
references do give a comprehensive treatment of bearing
modeling developments.

Section 5 summarizes the current state of the art for
the thermoelastohydrodynamic (TEHD) lubrication theory
for bearings. The effects of the hydrodynamics due to
fluid flow, the energy equation for heat transfer within
the bearing, mechanical deflections, and thermal growth
are summarized. Section 6 summarizes the averaged flow
approaches, including the mixing length theory originally
proposed by Constantinescu, and the bulk flow approach
proposed by Hirs. In these approaches, the properties of the
lubricant film are averaged. The TEHD analysis described
in Section 5 is based on a differential equation approach
to characterization of the lubricating film and the bearing
components. As a result, the flow characteristics are modeled
locally, including across the lubricant film. The averaged flow
approaches described in Section 6, which can be extended to
THD analyses, rely on averaging of flow properties across the
lubricating film.

Section 7 summarizes the current state of the art in
tilting pad bearing theory for bearing dynamics. Tilting
pad bearings are the only practical bearings used in high-
speed flexible rotor industrial machines. The three tilting
pad bearing dynamic models that appear recently in the
literature are also considered. These dynamic models, (1)
the full stiffness-damping model (full KC); (2) the reduced
order stiffness-damping-mass (KCM) model; (3) the syn-
chronously reduced model, are described in Sections 5.4–
7.4. The frequency-dependent stiffness damping (frequency-
dependent KC), an implicit version of the full KC model, is
also considered.

Section 8 discusses two approaches to fluid temporal
inertia effects in fluid film bearings and the relative impor-
tance and limitations to their analysis.

Discussion and conclusions are provided in Section 9.
This summarizes the evolution of bearing modeling and
discusses future trends and opportunities for experimental
confirmation.

2. Tilting Pad Bearing Modeling Development

2.1. Early Lubrication Theory and Nondimensionalization.
The fundamental lubrication equation was originally for-
mulated by Reynolds in 1886 [7]. He developed the theory
that explained the experimental results of Tower and Petroff.
Reynolds assumed that the flow could be treated as isoviscous
and laminar. These assumptions were well justified due to
typical bearing operating conditions in the late 1800s. He
also assumed that since the lubricating film was thin in the
radial direction compared to the circumferential and axial
directions that there was no pressure gradient across the film
radially. The dominant flow characteristic was then due to
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Figure 2: Plain slider.

shearing effects. By simplification of the fluid Navier-Stokes
and continuity equations consistent with the assumptions, a
single equation describing lubricating flows was derived:
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Equation (1) is the classic Reynolds equation, expressed
in terms of a single pad local coordinate system. In (1), η is
the local coordinate direction along the slider, h is the film
thickness, p is the developed pressure in the lubricating film,
µ is the lubricant dynamic viscosity, z is the axial direction,
Uo and U1 represent the relative velocity between slider and
pad in the η direction, and V1 represents the squeeze velocity
between the slider and the pad. The geometry and velocity
vectors for a plain slider is shown in Figure 2. Reynolds noted
that since the lubricating film thickness is small compared to
the radius of curvature of typical bearings, (1) can be written
in a Cartesian coordinate system without significant loss of
accuracy. Reynolds was able to provide some series solutions
to (1) to find the pressure field within the bearing, but the
first closed-form solution to Reynolds equation was found
by Sommerfeld [8]. Sommerfeld also developed a group of
bearing parameters for nondimensionalization of the results.
The Sommerfeld number is

So =
µNLD

W

(
D

cd

)2

. (2)

The Sommerfeld number recognizes the effect of the net
force applied to the shaft at the bearing,W , the projected area
of the bearing LD, the clearance ratio cd/D, the rotational
speed in rev/s N , and the dynamic viscosity of the lubricating
fluid µ as parameters that affect bearing operation in the
laminar regime. Many of the theoretical results in the
literature use (2) for nondimensionalization.

One of the assumptions in arriving at the Sommerfeld
number is that the lubricating flow is laminar. While
appropriate for lower surface speed bearings where the
laminar flow assumption can be justified, the assumption is
increasingly violated due to the high rotational speeds typical
for many modern bearings. An additional dimensionless
group for evaluating bearings operating in the turbulent
regime is the Reynolds number using the bearing diametral

clearance cd as the characteristic length, and ωD as the
characteristic velocity:

Re =
ρωDcd

µ
, (3)

where ρ is the density of the lubricant, ω is the shaft
rotational speed, and D is the diameter of the shaft. However,
the Reynolds number in this form overemphasizes the effect
of the shaft diameter, so an alternative reduced Reynolds
number is also typically defined:
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d

µ
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Both Re and Re∗ consider the effect of the fluid density but
do not include the load on the bearing. However, Re and Re∗

are the currently accepted methods of nondimensionalizing
the lubricating flow turbulence characteristics in modern
bearing treatments. Recent papers often report the bearing
specific load W/(LD) in conjunction with Re or Re∗ when
describing results instead of using the Sommerfeld number.

The analyses of Reynolds and Sommerfeld focused solely
on the solution to the hydrodynamic flow field problem,
described by (1). Later research included simultaneous
solutions of the energy equation, resulting in a thermo-
hydrodynamic (THD) analysis. Another refinement to the
problem was to include mechanical deformation effects due
to applied pressures and thermal growth, resulting in the
thermoelastohydrodynamic (TEHD) theory. The historical
development of these theories is discussed briefly in Sections
3-4.

2.2. Geometric Considerations. Other bearing design geo-
metric properties will enter the discussion. The dynamic
properties of bearings are affected by the bearing design
geometry. The geometric properties are as follows.

(i) Bearing preload, m = 1 − cb/cp. The difference
between the bearing clearance cb and the pad clear-
ance cp form a converging hydrodynamic wedge
purely through geometry, even for a centered rotor.

(ii) Pivot location: pivot location relative to the leading
edge of the pad expressed as a percentage of pad arc
length

(iii) Load orientation: napplied load relative to the
bearing pads. Load on pad and load between pad
configurations are typical.

3. Fixed Geometry and Synchronously Reduced
Bearing Dynamics

The solutions by Reynolds and Sommerfeld were for the
pressure field and the net forces of the lubricating oil
film. Most analysts of the era considered the rotor to be
simply supported at the bearings. As the understanding
of the linearized bearing response improved, researchers
recognized the equivalent stiffness and damping effects
provided by the lubricating film.
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The first attempts to quantify the dynamic response of
the lubricating film itself were made by Stodola [9] and
by Stodola’s student Hummel [10]. Stodola and Hummel
were able to obtain a solution for the oil film stiffness
and correctly obtained analytical linearized direct and cross-
coupled stiffness terms based on the Sommerfeld closed
form solution to (1). However, they did not recognize
the damping effect of the oil film, and their predictions
indicated that an unstable rotor would have vibration levels
that increased without bound. This is a limitation of linear
analysis that does not consider the nonlinear behavior of the
oil film under large excursions or practical considerations
such as contact between the rotor and the stator. Hummel
acknowledged in his thesis that the rotor vibration remained
finite but did not provide a specific mechanism.

Another early analysis that recognized the effect of
bearing flexibility on critical speeds was reported by Linn and
Prohl [11]. While not referring to oil film flexibility explicitly,
a general bearing flexibility was assumed and the resulting
lowering of the critical speeds compared to a rigid support
assumption was demonstrated.

Fixed geometry radial bearings were standard in the
first half of the 20th century, and tilting pad bearings only
saw significant adoption begin during the 1960s. However,
the tilting pad thrust bearing was invented independently
by Kingsbury and Michell. Michell also invented the tilting
pad journal bearing and installations of the tilting pad
journal bearing appear as early as 1916 [12]. An installation
of a combined tilting pad journal and thrust bearing on
the H.M.S. Mackay of the British Royal Navy, which was
launched in 1918, is shown in Figure 3. Fixed geometry
bearings remained the standard in the first half of the 20th
century due to reduced cost for fixed geometry installations,
the higher parasitic losses associated with tilting pad bearings
compared to fixed geometry bearings, lower load capacity
of tilting pad bearings [13], and lower operating speeds
that could tolerate the destabilizing effects of fixed geometry
bearings. Boyd and Raimondi in particular stated [14]:

“[T]he plain journal bearing compares favorably
with the pivoted-pad bearing and by many
criteria is somewhat superior to the latter.”

Because of these factors, the perceived drawbacks to
tilting pad bearings outweighed the benefits.

The advantages of tilting pad bearings in removing the
bearings as a source of self-excited vibrations was originally
recognized by Hagg in 1946 [15]. Hagg presented experi-
mental results for several tilting pad bearings, including 3-
pad, 4-pad, 5-pad, and 6-pad bearings. However, the fluids
model that Hagg employed to explain the stabilizing features
of these bearings was fundamentally incorrect. A linear flow
profile was assumed that did not account for the Reynolds
equation, (1).

While the development reported by Hagg was significant,
many analysts continued to work with plain journal bearings.
The benefit of improved stability margin was still not
significant enough to designers of the era to overcome
the perceived drawbacks discussed previously. Additionally,

Figure 3: Michell Combined Tilting Pad Journal and Thrust
Bearing [12].

noncircular bearing bores were discovered to enhance the
stability margin and were a lower cost option to a tilting pad
arrangement.

Sternlicht [16] presented a finite difference solution to
the Reynolds equation based on an isoviscous lubricant. The
finite difference solution was used to calculate the developed
pressure field, which was then integrated to calculate forces.
The force solution was then perturbed to determine eight
stiffness and damping coefficients based on rotor motion at
the journal. These eight coefficients are widely accepted as
a proper model for fixed geometry journal bearings where
temporal inertia is not important.

Solutions to the perturbed Reynolds equation also began
to appear in textbooks, including the ones by Smith [17],
Pinkus and Sternlicht [18], and Tondl [19]. Smith’s treatment
of the subject was brief, but did include the eight stiffness
and damping coefficients. Pinkus and Sternlicht investi-
gated the stability of rotors supported in plain journals,
but the solutions were performed in polar coordinates.
Modern rotordynamics analyses are performed in cartesien
coordinates for simplicity and for direct comparison to
vibration measurements. Tondl’s text was an investigation of
various sources of rotordynamic instability, of which fixed
geometry bearings were a significant contributor. Tondl’s
treatment accounted for direct stiffness, direct damping, and
cross-coupled stiffness terms. His investigation included a
treatment of the perturbed Reynolds equation for both linear
and nonlinear rotor vibrations. Tondl also considered the
benefits of noncircular fixed geometry bearing stator profiles,
including lobed bearings.

Even with the improvements to fixed geometry designs to
enhance stability, there is still a limit where the destabilizing
forces are high enough to overcome the damping and drive
the rotor unstable. Typically, the limit is reached when the
operating frequency is greater than twice the first bending
natural frequency [15]. These limits began to be reached on
a more consistent basis in the 1960s. The advantage of the
stabilizing effect of the tilting pad bearing was then seen
to overcome the drawbacks of decreased load capacity and
higher parasitic losses.
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Adoption of tilting pad bearings was also made easier
by analytical solutions that allowed designers to understand
the dynamic properties. One of the major advances in
understanding the dynamics of tilting pad bearings came
from Lund’s landmark paper in 1964 [20]. Based on analyses
of fixed pads, which are essentially partial arc bearings,
stiffness, and damping coefficients were calculated. The
equations of motion for the pads were then considered based
on the calculated fixed pad stiffness and damping values,
which were then summed vectorially to calculate the full
bearing coefficients. This pad assembly method was not a
simultaneous solution of the lubrication problem for all
the pads. The pad assembly method is less computationally
expensive and more approximate. However, this approach
was suitable for the computers available in the 1960s. The
dynamic coefficients were then reduced synchronously, or
using the shaft rotational frequency as the excitation fre-
quency of interest, to obtain the eight stiffness and damping
coefficients related to rotor motion. Results were presented
for four-pad, five-pad, and six-pad tilting pad bearings. Lund
recast rotations of the pads as equivalent translations. Later
solutions treated pad rotations as rotational motion.

The landmark work by Lund led to a significant
research effort to extend the analyses of tilting pad bearings.
Thermohydrodynamic and TEHD solutions and turbulence
corrections for high rotational speeds also begin to appear
for tilting pad bearings. The use of synchronously reduced
coefficients to described the linearized dynamics became the
norm, following the results reported by Lund [20].

Orcutt [21] followed the same basic approach as Lund
[20] by developing a partial arc bearing solution. He
accounted for turbulence effects in the lubricating film using
the analysis of Ng and Pan [22]. Similar to Lund, Orcutt
solved the lubrication problem for each pad individually and
then performed a synchronously reduced assembly method
similar to Lund. While not a comprehensive formulation,
modifications to (1) were included to account for turbulence
effects in the lubricating film without resorting to a full
Navier-Stokes solution. Orcutt considered different lubri-
cants, different numbers of pads, and different pad preloads.
Orcutt’s analysis indicated that symmetry in the tilting pad
bearing leads to isotropic bearing dynamic properties. This
is not strictly correct, since a simultaneous TEHD solution
and operating experience indicates differential heating of
the tilting pads, but symmetric tilting pad bearings such
as four-pad bearings in a load-between-pad configuration
are nearly isotropic. Orcutt’s results were plotted against
the Sommerfeld number. He also suggested that the results
showed that operation above the first bending critical was
possible, which was generally avoided by designers of the era
to avoid stability problems. Including pad preload was also
claimed to improve dynamic characteristics. It was shown
later [23, 24] that low preload leads to more stable systems.

Nicholas et al. [25] developed stiffness and damping
coefficients for the five pad tilting pad journal bearing.
Several bearing configurations were considered, including
load on pad and load between pad, different pivot offsets
ranging from 0.5 to 0.55 and different bearing preloads
from 0 to 0.5. The reported effective stiffness and damping

coefficients were synchronously reduced. A finite element
formulation of (1) was used, so it was an isoviscous, laminar
analysis. The finite element method was used to produce
single pad solutions with pad assembly similar to Lund [20].
The reduced stiffness and damping coefficients were plotted
versus Sommerfeld number. The pad inertia effects were
neglected in the analysis.

Nicholas and Kirk [26] examined several fixed and
tilting pad bearings, including four-pad and five-pad tilting
pad bearings, for application to axial compressors. The
synchronously reduced stiffness and damping coefficients
were used for unbalance and stability analyses. This paper
explored the effect of manufacturing tolerances on the per-
formance of the several bearing types. For a four-pad tilting
pad bearing the synchronously reduced stiffness was shown
to vary by 50 percent and synchronously reduced damping
by half an order of magnitude due to typical manufacturing
tolerances, though that was an extreme case. Variations of 10
percent in the dynamic coefficients were more typical. The
effect of bearing preload on the compressor stability margin
was investigated, and lower preload was determined to
enhance stability because the bearing stiffness was reduced,
allowing more motion for the damping to be effective. The
four-pad bearing configuration for axial compressors was
explored further in [27]. Nicholas and Kirk again used the
synchronously reduced bearing dynamic coefficients for both
unbalance response and stability margin.

Jones and Martin [28] performed another geometric
study of tilting pad bearing characteristics, considering
different preloads; bearing L/D ratios; 3, 5, and 7 tilting
pads; and load orientation. The analysis was used to calculate
minimum oil film thickness, average pad temperatures,
bearing parasitic power losses, and the synchronously
reduced stiffness and damping coefficients. The analysis was
described as quasi-THD, since average pad temperature was
used to calculate the average oil viscosity for each pad. The
modeling included turbulence effects and was performed
using finite difference methods.

Ettles [13] developed a TEHD analysis of tilting pad
bearings. The analysis included a generalized Reynolds equa-
tion solution using the turbulence model of Constantinescu
[29] and the local calculated Reynolds number to obtain an
effective viscosity. The energy equation was simplified into a
1D solution, and the relative error compared to a 2D solution
was calculated to have a maximum value of 3.52 percent for
an L/D ratio of 9.9. Elastic deformation of the pads due to
applied loads and thermal expansion were also considered.
Ettles’ solution was a simultaneous, iterative solution for all
the bearing pads. The nondimensional dynamic coefficients
were reduced synchronously and were plotted as a function
of Sommerfeld number. The results were compared to
dynamic experiments by Malcher [30] for four pad bearings.
The theoretical results were within 10 percent of the reported
measured values. The reduction of effective film stiffness and
damping due to pad flexibility was noted. A stability analysis
of the pad motion as a check for pad flutter was also included.

Hashimoto et al. [31] also developed a TEHD analysis
suitable to large scale tilting pad bearings with two pads.
The large generator application could be supported on two
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lower bearing pads in a load between pad configuration,
so the top pads were eliminated. The generalized Reynolds
equation with a turbulence model relating effective viscosity
to local Reynolds number was solved simultaneously with a
1D energy equation and a deformation model for the bearing
pads. Pad preloads of 0, 0.1, and 0.2 were considered, and the
pads were centrally pivoted for all cases. The results assuming
a laminar fluid were compared to the result obtained when
the turbulence model was included. The bearing stiffness for
the turbulent case was up to 20 percent lower for Sommerfeld
number up to about 0.4. For higher Sommerfeld numbers,
the stiffness for the turbulent case was higher than the
laminar case by as much as 100 percent. A similar trend
was observed in the damping coefficients, but the crossover
point was at a Sommerfeld number of 0.1-0.2. The dynamic
coefficient reduction method was not explicitly stated but
the reported coefficients are consistent with synchronous
reduction.

Knight and Barrett [32] presented a THD analysis of four
pad tilting pad bearings with central pivots in a load on
pad configuration. No turbulence model was considered in
calculating the results. The solution was based on a finite
element solution to the classic Reynolds equation combined
with a finite difference solution to the 2D energy equation.
A simultaneous solution for the pads was developed. The
effective viscosity for each bearing pad was based on the
cross-film average temperature for each bearing pad. This
average viscosity was then treated as constant in the Reynolds
solution. Heat transfer through the pads was treated as radial
conduction and shaft surface temperatures were based on the
overall average film temperature. The full bearing coefficients
were calculated, which were reduced synchronously for
presentation of the results. When compared to an isother-
mal calculation, a difference of 10–35 percent in dynamic
properties was reported. This demonstrated the effect of
temperature and viscosity on the stiffness and damping
coefficients.

Brugier and Pascal [33] also investigated tilting pad bear-
ings for large turbogenerator sets. The bearings considered
had three tilting pads. The TEHD model accounted for ther-
mal effects in the lubricant as well as mechanical and thermal
deformations of the bearing pads. The model included a
generalized Reynolds equation and energy equation similar
to that described in detail in Section 5. The solution for the
dynamic coefficients was based on numerical differentiation
and simulated shaft perturbations within the code. The
description of coefficient extraction method was unclear, but
the plots in the paper are consistent with synchronously
reduced coefficients. The solution was obtained using finite
difference techniques with overrelaxation. There was no
indication that a turbulence model was used. The paper also
showed a drop in effective stiffness and damping due to pad
deformation, which acts like a spring in series with the oil
film.

Ettles [34] presented another THD analysis of tilting pad
bearings. The synchronously reduced coefficients were cal-
culated and compared to results reported by Brockwell and
Dmochowski [35]. Ettles considered the transition region
for turbulence in the lubricating flow to be in the range

of 1100–1400. Turbulence was accounted for by lowering
the inlet oil temperature into the pad, which was justified
by measurements showing the improved heat transfer in
the bearing due to the onset of turbulence. As a result, the
treatment of turbulence was purely empirical with no formal
turbulence model. The model also accounted for thermal and
mechanical deformations of the bearing pads and showed
the resulting drop in effective stiffness and damping due
to deformation. A finite difference solution was employed.
Fillon et al. [36] also demonstrated the need to consider
bearing element deformation to obtain accurate predictions
of bearing behavior.

Brockwell et al. [37] developed a THD solution similar
to that of Ettles [34]. The two-dimensional THD model
included pad thermal expansion and elastic deformations,
along with pivot flexibility. Beam theory was used to model
pad flexibility. Nondimensional forms of the hydrodynamic,
energy, and heat transfer equations were presented. The
viscosity terms were averaged across the film thickness,
resulting in a bulk-flow approach to the lubrication prob-
lem. Dynamic coefficients were calculated for synchronous
excitations based on a perturbed Reynolds solution. Static
and dynamic results were compared to a test of a five-pad
tilting pad bearing in a load-between-pad configuration. The
running speeds tested were 900, 1800, 2700, and 3600 rpm.
Qualitative trends were matched by the predictions, with
differences of 10–15 percent between theory and experiment
for equivalent bearing stiffness and damping. The agreement
was improved by including the effect of shaft flexibility in the
overall identification and analysis procedures.

Hopf and Schüeler [38] performed investigations of the
transition from laminar to turbulent flow in large turbine
bearings. The THD analysis was not described in detail, but
was able to predict measured temperatures in the bearing
tilting pads. The sudden drop in bearing local temperature
due to the onset of turbulence or Taylor vortices and the
resulting enhanced heat transfer was documented.

Hyun et al. [39] also developed a THD solution to the
tilting pad bearing performance. The generalized Reynolds
equation was solved, using Reichardt’s wall formula and
the turbulence model presented by Ng and Pan [22] to
model turbulence. A three-dimensional model was used for
the energy equation, with correction factors for cavitation.
Predictions were compared to experimental measurements
of film pressure, film temperature, pad temperature, and load
capacity, with agreement within 5 percent for a four-pad
tilting pad bearing in a load-between-pad configuration.

Nicholas and Wygant [40] presented results and design
considerations for highly loaded bearings, with specific
loads of up to 3.45 MPa (500 psi). The paper focused on
pivot design, specifically steel pivots with bronze pads and
steel pivots with steel pads. The synchronously reduced
stiffness and damping coefficients were used to facilitate the
discussion on the effect of pivot stiffness on the dynamic
coefficients. The effective stiffness and damping were lowered
since the pivot acts as an additional spring in series with the
oil film. Hertzian contact theory was used to calculate the
effective pivot stiffness.
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Several researchers have investigated transient effects in
tilting pad bearings. These studies were influenced in part
by a review of bearing failures presented by Conway-Jones
and Leopard [41]. In their review of failure modes, Conway-
Jones and Leopard determined that thermal transients as
a function of oil inlet temperature and rotational speed
led to bearing seizure failures. A theoretical study of the
phenomena was performed by Monmousseau and Fillon
[42]. Their TEHD analysis was based on the generalized
Reynolds equation described in Section 5, and transient
forms of the energy and heat transfer equations. Thermal
growth was modeled using a plane stress assumption and
free boundary conditions on expansion. Finite difference
techniques were used in the solution. The pivot flexibility
model developed by Kirk and Reedy [43] was also used in
the model. The theoretical study predicted seizing after 53
seconds of operation for a rotor was accelerated from 0 to
10,000 rpm over 5 s, with oil lubricant inlet temperature of
20◦C. The time to seizure was extended or eliminated by
reducing the rate of shaft acceleration and increasing the oil
inlet temperature in the analysis.

Transient effects were also considered by Monmousseau
et al. [44] in the analysis of tilting pad bearings. The TEHD
analysis again included the generalized Reynolds equation,
and transient forms of the energy and heat transfer equa-
tions, with thermal growth included in the overall model.
Finite difference techniques were used in the solution. A step
change in bearing specific load was modeled. Predictions
were compared to pad babbitt temperature measurements,
with 10–15 percent difference using the TEHD model. The
thermal transient period was on the order of 60 s, while
the mechanical transient period was on the order of one
shaft rotation at a running speed of 4,000 rpm. The authors
concluded that thermal and elastic effects should be modeled
to accurately capture bearing transient behavior.

4. Nonsynchronous Bearing
Model Development

The work by Lund in 1964 [20] reported synchronously
reduced bearing coefficients for the tilting pad journal
bearing. While appropriate for unbalance response analysis
since the unbalance forcing frequency is driven by shaft
rotation, the synchronous coefficients are not appropriate
in general. The proper reduction method is based on
overall system excitation frequency which is in general
nonsynchronous with shaft rotation. This distinction was
made clear during the presentation of Nicholas et al. [23],
which reported results for the stability analysis of an 11-stage
compressor. Nicholas et al. used the synchronously reduced
bearing coefficients to estimate the compressor stability
margin. During the discussion of the paper, Lund told the
presenter that the use of synchronously reduced coefficients
for stability margin was mathematically incorrect and that
reduction at the rotor natural frequency was correct [24].
This comment spurred much research into the development
of nonsynchronous bearing dynamic models.

Shapiro and Colsher [45] examined the effect of bearing
preload on the dynamic response to tilting pad bearings.

They addressed the fact that synchronous reduction was
typical at the time but indicated that it would lead to erro-
neous stability predictions. This allowed for the possibility of
nonsynchronous dynamic reduction of bearing coefficients.
However, the analysis only considered the onset of instability,
where the real part of the rotor-bearing system eigenvalues
is zero. Only the imaginary part of the eigenvalue was
considered in the reduction, which is not the most general
linear solution. The most general solution includes the real
part of the eigenvalue. Shapiro and Colsher presented the
full stiffness and damping matrices for a five-pad tilting pad
bearing, resulting in 28 stiffness and 28 damping coefficients.

Allaire et al. [46] presented a pad assembly method for
tilting pad bearings that explicitly included the motion of
the pads and the resulting stiffness and damping coefficients.
The solution was based on perturbing the shaft or pad as
appropriate for several applied loads and static eccentricities
to develop a table of data. The overall equilibrium point
and resulting dynamic coefficients were then found through
linear interpolation. This method is valid for isoviscous,
laminar analyses but needs modification to account for
thermal and turbulence effects. The analysis did not account
for hot oil carryover, where oil exiting one pad affects the oil
entering the next pad. The full coefficient matrix for tilting
pad bearings was developed which was independent of the
pad inertia and excitation frequency. Results were presented
for a five-pad bearing with load on pad and zero-pad preload.
Most of the plots were of the full stiffness and damping
coefficients as a function of Sommerfeld number, but one set
of synchronously reduced plots was presented.

Parsell et al. [47] further explored the frequency effects
in tilting pad bearings. The authors postulated that syn-
chronously reduced bearing coefficients may be an accept-
able engineering approximation for rotordynamic stability,
though it was mathematically incorrect. The synchronous
coefficients have since been shown to give a nonconservative
estimate of stability, for example, [48]. The main purpose
of the paper was to plot reduced bearing stiffness and
damping coefficients as a function of whirl frequency ratio,
which is the ratio of excitation frequency to running speed.
Sommerfeld numbers of 0.1, 1, and 10 were considered for
five-pad load between pad configurations. Preloads of 0 and
0.3 were also considered. The frequency dependence was
reduced for low Sommerfeld number and for high preload.
For high Sommerfeld number and zero preload, the reduced
coefficients were highly frequency dependent, and effective
stiffness and damping approached zero for whirl frequency
ratios from 0.3 to 0.5. This effect was postulated later [49]
to be due to light bearing load compared to running speed.
In that case, the shaft runs nearly centered in the bearing, so
negligible pressure forces act on the shaft.

Rouch [50] presented a method for modeling pivot
flexibility as a spring in series with the effective oil film
dynamic coefficients. The pad assembly method was used to
determine the oil film dynamic characteristics. A full matrix
including the effect of pad rotations and pad translations
was presented. Dynamic reduction was performed nonsyn-
chronously. Plots of effective reduced stiffness and damping
as a function of excitation frequency were presented. The
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pivot stiffness reduced the effective stiffness and damping by
up to 50 percent due to a spring in series with the oil film. The
effect was most pronounced when the effective pivot stiffness
was the same order of magnitude as the oil film stiffness. A
stability analysis of a flexible rotor was also performed using
the nonsynchronous and synchronous bearing coefficients.
It was shown that the nonsynchronous coefficients gave a
more conservative estimate of rotor stability compared to
synchronously reduced coefficients.

Lund and Pedersen [51] presented an approximate
method for including pad deformations and pivot flexibility
in the overall dynamic response of tilting pad bearings. An
isoviscous solution to (1) was obtained using a finite dif-
ference method. The pad deformations were approximated
as the deformation of a beam under a distributed pressure
load, and the pivot flexibility was obtained using Hertzian
contact theory. The model incorporated the effect of pad
deformation by an increased effective clearance between the
pad and the shaft. The effective clearance was also treated as
dynamic and harmonic, using the vibrational motion of the
pad deflections to calculate the effective clearance. The pivot
flexibility was treated as a spring in series, and the overall
bearing coefficients were dynamically reduced. The authors
advocated nonsynchronous reduction of bearing coefficients
in general, but synchronously reduced bearing coefficients
were presented in the results. The reduction in stiffness and
damping due to flexibility effects by up to 50 percent was
demonstrated.

Branagan [52] presented a TEHD finite element solution
for fixed geometry and tilting pad journal bearings. Poly-
nomial profiles for the thermal and viscosity solutions were
assumed in the axial and cross-film directions, leaving a 1D
solution in the circumferential direction. A simultaneous,
iterative solution procedure for the Reynolds equation, the
energy equation, and the deformation model was performed
to obtain accurate estimates of the changes in boundary
conditions due to hot oil carryover. The full bearing coef-
ficients were calculated, and a damped eigenvalue analysis
was used to reduce the full bearing coefficients to the
eight coefficients related to the shaft degrees of freedom.
The dynamic reduction was performed to improve the run
times for subsequent rotordynamic analyses. Reduction of
the computational expense for rotordynamic models in this
fashion is not important with modern computers, where
a full eigenvalue analysis of a rotor beam model with full
bearing coefficients has a run time of less than 10 s [53]. It
was demonstrated that inclusion of pad and pivot flexibility
effects could reduce the calculated stiffness and damping
coefficients by up to 50 percent.

Barrett et al. [54] provided an extension to reduction of
full tilting pad bearing coefficients to the eight frequency-
dependent stiffness and coefficients. In their analysis, Barrett
et al. included the real part of the eigenvalue to allow for
general damped analyses. The analysis considered bearings
in a load between pad and treated pad inertia as negligible.
Single pad solutions similar to Lund [20] were developed,
and the pad assembly method was applied. Pad rotations
were treated as equivalent translations due to small angle per-
turbations. The dynamic reduction was performed in the pad

local coordinate system for each pad, with transformation to
global coordinates as the final step. An excitation frequency
dependence in reduced stiffness and damping coefficients
was demonstrated. The bearings considered had effective
stiffness that decreased by about 20 percent from 0.5X to 1X,
where X is the excitation frequency corresponding to shaft
rotational speed. A difference in effective bearing coefficients
depending on the distance from the stability margin was
also demonstrated. This demonstrated that consideration of
both the real and imaginary parts of the eigenvalues give a
more general treatment in stability analysis, since the only
case that has a purely imaginary eigenvalue is the neutrally
stable solution. The neutrally stable solution is appropriate
for the onset of instability, but is not appropriate for stable
or unstable systems.

Earles et al. [55] developed a finite element solution
for a single tilting pad including the lubricating film and
pad deformation effects. The lubricating flow was treated
as laminar, isoviscous, and incompressible. Thermal effects
were not considered. The pad was modeled using plane strain
isoparametric finite elements, and the pressure solution for
the lubricant was solved simultaneously to determine the
flow field and the final pad dimensions. The pad degrees of
freedom were reduced to a single coordinate using Guyan
techniques; the single coordinate represented the final pad
radius of curvature. The stiffness and damping coefficients
were found through numerical perturbation of the shaft
and pad positions and deformations. The result for the
single pad was then transformed to local coordinates, which
implied usage of the results for pad assembly solutions.
The mechanical deformations were shown to lower effective
stiffness and damping coefficients and were within 5 percent
of the coefficients reported by Lund and Pedersen. A
damped eigenvalue solution similar to Barrett et al. [54]
was employed. The single pad model was extended to a
full tilting pad bearing model with lubricating film and
pivot flexibility effects [56]. The full stiffness and damping
matrices with flexibility effects were presented. Additional
terms to account for pivot flexibility and pad deformation
effects were incorporated into the global bearing stiffness and
damping matrices. The full coefficients were used to perform
a damped eigenvalue analysis.

White and Chan [57] presented a finite element THD
bearing analysis with turbulence correction. Turbulence
correction factors were based on bulk flow theory proposed
by Hirs [58]. The full stiffness and damping coefficients
were found from the perturbed Reynold’s equation and the
reduction method of Parsell et al. [47] was used for reduction
to the eight stiffness and damping coefficients. The Parsell et
al. method only uses the imaginary part of the eigenvalue
to perform the dynamic reduction. The method is correct
for forced response analyses and analyses to determine the
onset of instability, but is not correct for a general free
response analysis with damped eigenvalues. White and Chan
compared the effective stiffness and damping coefficients
for synchronous and half-whirl reduction frequencies and
showed a reduction in effective damping for half-frequency
whirl of up to 20 percent. They also showed that the effective
damping was reduced for off-center pivots. Nondimensional
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dynamic coefficients were plotted as a function of Sommer-
feld number.

Brockett and Barrett [59] presented a tilting pad bearing
dynamic reduction method suitable for transfer matrix
analyses. The reduction resulted in a second-order transfer
function with a fourth-order residual frequency dependent
stiffness. The reduction admitted damped eigenvalue solu-
tions. Results of the bearing representation in a transfer
matrix model were compared to a finite element solution
for a flexible rotor with the full bearing coefficients modeled
explicitly. Agreement within 1 percent of the system eigen-
values was obtained, but the transfer matrix method missed
highly damped modes.

Kim et al. [60] presented a nonsynchronous reduction of
tilting pad bearing coefficients, including pad deformation
effects. The pad deformation model reduction was achieved
through modal representation of pad movement, with modal
truncation. Further dynamic reduction of the oil film
and mechanical flexibility effects was performed nonsyn-
chronously to obtain the eight frequency-dependent stiffness
and damping coefficients. The analysis accounted for thermal
effects on lubricant viscosity as well as pivot flexibility, pad
rotations, and pad deformations. A turbulence model was
not included. Variable viscosity due to temperature changes
was accounted for. The theoretical results were compared to
results reported by Brockwell et al. [37], and the analysis
predicted the measured drop in stiffness and damping due
to mechanical deformations. The theory agreed with the
Brockwell et al. data within 10 percent. Theoretical results
were also compared to experimental results reported by
Fillon et al. [61]. The effects of the TEHD model on the
coefficients was shown in separate plots with synchronously
reduced coefficients. A stability estimate for an eight-stage
gas reinjection compressor was performed and compared
to results presented by Wilson and Barrett [62]. It was
shown that use of the frequency-dependent stiffness and
damping coefficients in the rotor bearing model resulted in a
lower stability margin compared to a synchronously reduced
bearing model, which agreed with the Wilson and Barrett
results.

5. Thermoelastohydrodynamic Tilting Pad
Bearing Lubrication Theory

Tilting pad bearing lubrication theory has evolved, from
fixed geometry isoviscous analytical solutions, to advanced
finite element solutions including hydrodynamic, energy,
and deformation effects. The modifications to (1) and
additional equations to model the energy balance and
turbulence modeling are summarized in Sections 5.1–5.3.

5.1. Generalized Reynolds Equation. Modern tilting pad
bearing lubrication theory is based on thermoelastohy-
drodynamic models that include equations describing the
hydrodynamic flows, heat transfer and shear heating, and
mechanical deformations [63–66]. Whiles these solutions
evaluate temperature effects in the lubricant film and pad
deformations, they do not involve the advanced elasto-
hydrodynamic solutions found for ball or roller bearings.

The following discussion does not consider mechanical
deformations, which are geometry specific. A very brief
discussion of the key equations follows. A comprehensive
derivation of the equations is provided in [63]. While
more recent work has further refined the TEHD analysis,
particularly with the inclusion of a 3D energy equation [67],
these refinements have only been applied to fixed geometry
bearing analyses.

Reynolds’ equation, (1), is the fundamental equation for
lubricating flows assuming a laminar, isoviscous lubricant.
The generalized Reynolds equation results from the fluid
continuity and momentum equations, with the assumption
that the pressure profile is constant across the lubricating
film. The generalized form includes convective inertia effects
through an eddy-viscosity model and allows for cross-film
variations in viscosity. The formulation of the generalized
Reynolds equation in terms of pad local coordinates is [63–
66]

∂

∂η

{
h3
Γ
(
η, z, Re∗

)∂p
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}
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∂
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)∂h
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.

(5)

In (5), Γ and G represent generalized local effective viscosity
functions with turbulence effects included, and U represents
the motion of the journal relative to the bearing pad.
Equation (5) has been modified from [63] to include the
effect of reduced Reynolds number Re∗ = (ρωh2)/µ, where ρ
is the lubricant density and ω is the rotational speed. This is
to account for turbulence effects, especially those due to the
low viscosity of the lubricating fluid for some process fluid
lubricated bearings. For example, the viscosity of water is two
orders of magnitude less than the viscosity of oil [68].

The effective cross-film viscosities Γ and G, as a function
of the journal radial and axial positions, are given by [63]
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(6)

where χi represent intermediate viscosity functions, µe
represents the effective turbulent viscosity, ξ represents the
local pad squeeze direction, and ξ′ represents the dummy
variable of integration.
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The flow profile in the bearing is treated as a combination
of Couette and Poiseuille flow, which is expressed as:
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(8)

where u represents local velocity in the sliding direction,
w represents local velocity in the axial direction, and U
represents the surface velocity of the shaft relative to the pad.

The solutions to (5)–(8) result in the pressure field
developed in the lubricating film as a function of radial
and axial position. The pressure across the film is assumed
constant since it is small compared to the radial and axial
length scales. Integrating the pressure field over the area of
the bearing surfaces yields the net forces in the bearing.

5.2. Energy Equation. The viscosity of many lubricants is a
strong function of temperature. The developed pressures in
hydrodynamic bearings are not large enough to significantly
affect the viscosity. To account for temperature effects, the 2D
energy equation, including shear heating terms, is considered
in the model presented in [63–66].
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(9)

where v is the fluid velocity in the squeeze direction, Cp is the
specific heat of the lubricant, T is the lubricant temperature,
k is the heat conductivity of the lubricant, and ke is the
effective heat conductivity of the lubricant corrected for
turbulence. The relative importance of the shear heating

term, µe[(∂u/∂ξ)
2

+ (∂w/∂ξ)
2
], in (9) is dependent on the

lubricant considered. For oil-lubricated bearings operated at
high speed, shear heating effects are significant and viscosity
variation due to temperature must be considered in the
analysis. For many process fluid lubricants such as water, the
shear heating effects can often be neglected due to the low
lubricant viscosity, allowing for isoviscous analyses.

5.3. TEHD Solution Turbulence Modeling. The turbulence
model implemented by He [63] was based on models

developed by Elrod and Ng [69], with a modification by
Suganami and Szeri [1] to account for transition flow. The
turbulence is modeled using an eddy viscosity law. The
effective viscosity is found by.

µe
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η, ξ, z
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= µ

(
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ǫm

ν

)
, (10)

where ν is the kinematic viscosity. The eddy viscosity ǫm is
calculated from

ǫm

ν

= κ
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)]
. (11)

In (11), based on turbulent boundary layer theory, κ = 0.4
and δ+

l = 10.7. These constants were found empirically and
are reported in Elrod and Ng [69]. The nondimensional
distance from the wall ξ+ is defined as:

ξ+ =
ξ

ν

√
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ρ
. (12)

And the local shear stress in the lubricant in (12) is found
from:

τ = µe
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The inclusion of the effective viscosity µe is implicit in
(10)–(13), so the shear stress distribution and the effective
local viscosity in the turbulent regime is typically found
iteratively, such as in the finite element code developed by
He [63]. By including the eddy-viscosity model in the TEHD
code, convective inertia effects are approximated in the
solution. However, temporal inertia effects are not currently
considered in the analysis.

Equations (10)–(13) are valid for fully developed tur-
bulent flows [69]. To account for low levels of turbulence
and transitional flows, Suganami and Szeri proposed an
additional factor γ, which modifies (10) as [1].
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)
. (14)

The factor γ is dependent on the maximum Reynolds’
number in the lubricating flow and is defined as.
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(15)

where Remax = (ρuh)/µ is the maximum local Reynolds’
number in the lubricant and u is the local fluid velocity, ReL is
the critical Reynolds’ number for the onset of transition flow
from laminar flow and ReH is the critical Reynolds’ number
for the onset of turbulence. There is not a consensus in the
literature on the critical Reynolds’ numbers ReL and ReH ,
corresponding to the onset of transition flow and turbulent
flow, respectively [63]. Proposed values of Reynolds’ number
for the onset of transition flow range from about 500–1000
and range from about 800–1500 for the onset of turbulent
flow [1–5].
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5.4. Perturbed Reynolds Equation. Once the pressure profile
solution is found, the generalized Reynolds equation is per-
turbed. The first-order perturbation results in the equivalent
stiffness and damping coefficients, ki j and ci j , respectively,
which have the general form [63–66].

ki j = −
∂ f

∂ui j
, ci j = −

∂ f

∂u̇i j
. (16)

The specific stiffness and damping coefficients are defined by
He [63].

When (5)–(16) are considered, it is apparent that the
turbulence model chosen significantly affects the predicted
dynamic coefficients for the tilting pad bearing.

6. Averaged Flow Approaches

Another approach to the lubrication problem is the averaged
flow method, where the properties of the lubricant across
the film are averaged. First proposed by Constantinescu [70]
in terms of turbulent mixing length theory, the model was
refined in several follow-on papers [29, 71–73].

Other authors have used predominantly empirical bulk
flow approaches, including Hirs [58] and San Andrés [74–
76]. In all of the averaged-flow formulations, the temporal
inertia term ρ∂u/∂t is retained from the Navier-Stokes
equations and is incorporated into the analysis.

The averaged flow approaches rely on averaging of the
fluid properties across the film, including average velocity
and viscosity. For example, the formulations typically con-
sider an average fluid velocity of the form:

1

h

∫ h

0
udy = uavg. (17)

Section 6.1 considers the mixing length theory approach.
Section 6.2 considers the empirical approaches.

6.1. Mixing Length Theory. Constantinescu published a
series of papers [29, 70–73] detailing the application of
mixing length theory to the turbulent lubrication problem.
His focus was on high Reynolds number flows, with Re ≥
1000. The Reynolds number is defined as Re = (ρωDh)/µ,
where h is the local film thickness. The turbulence was
modeled by treating all variables associated with the flow as
a mean value, defined by (17) plus a fluctuation. Turbulent
stress terms resulted from the simplification of the Navier-
Stokes equations. To model these stresses, Prandtl’s mixing
length theory was employed, which produced results that
agreed with experimental data on Poiseuille flow. Analytical
solutions for average film properties were possible with this
assumption. This can be extended for other average film
properties, such as viscosity, in THD analyses similar to those
proposed by San Andrés [74–76].

The series of papers culminated in a journal bear-
ing lubrication theory published by Constantinescu and
Galetuse in 1982 [73]. In this paper, a modification to
the Reynolds equation was proposed that included the

contribution of turbulent stresses. In nondimensional form,
the proposed model was
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Implicit in (18) is the shear stress at the boundaries. The
term multiplied by Re∗ in (18) is the contribution of fluid
inertia in terms of turbulent stresses. In (18), Gη and Gz are
parameters dependent on the average Reynolds number of
the flow Re, R is the radius of the bearing, L is the axial length
of the bearing, and cr is the radial bearing clearance. The

gradient operator ∇̂ is defined as
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and the averaged flow profiles I have the following defini-
tions:
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(20)

In (20), Um represents the mean fluid velocity in the slider
direction, Wm represents the mean fluid velocity in the axial
direction, u, v, and w represent local fluid velocities, and the
coefficients α, β, γ, and δ and their primes are dependent on
the Reynolds number of the flow. The assumed flow profile
used in the definitions of the I terms is a parabolic profile
which is interpreted as a Poiseuille mean velocity.

For laminar flows, Gη = Gz = 1/12, α = α′ = α′′ = 6/5,
β = δ = 2/15, and γ = 1/5. For turbulent flows (Re > 5000)
[73], the coefficients are functions of the mean Reynolds
number of the flow:

1
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1
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α = α′ = α′′ = 1,

β =
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Re0.367 ,

γ = γ′ = 0,
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1.95

Re0.43 .

(21)
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The Constantinescu approach allows for rapid solutions to
the lubrication problem, but there are some drawbacks. The
system of equations relies on a minimum of six empirical
coefficients to characterize turbulence, which requires exten-
sive experimental data to validate. The approach also relies
on an assumption that the average of the product of flow
profiles is the product of the averages, that is,

∫ h

0
u2dy = hU2,

∫ h

0
uwdy = hUW ,

∫ h

0
w2dy = hW2

(22)

which cannot be justified as noted by Szeri [77]. Constanti-
nescu acknowledged that (22) was at best only approximately
correct [71].

6.2. Empirical Approaches. Hirs [58] proposed a model
that was predominantly based on experimentally measured
bulk-flow properties relative to a surface or wall and the
corresponding shear stresses at the boundaries based on a set
of flow conditions. The method does not consider the shape
of internal flow profiles or fluctuations within the lubricating
film.

By solely considering the average flow properties and
the boundary conditions, Hirs developed a set of pressure
equations for sliding surfaces as
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where Uη and Uz represent dimensionless mean flow veloc-
ities, and the constants n0 and m0 are found empirically
from representative flows. In a subsequent paper, Hirs [78]
delineated the various flow regimes requiring experimental
data to determine these constants and summarized results
for experiments that were already available in the literature.
The minimum Reynolds number for any of the empirical
coefficients was 1000.

In terms of friction factors, the Hirs approach can
generally produce more accurate results for the lubrication

transition flow regime because experimental data is fitted to
the model, assuming such data is available for that bearing
configuration and flow condition. The transition region is
where many modern oil-lubricated bearings operate. The
key drawback is that the method totally relies on empirical
data. The types of experiments that would be required to
obtain a complete set of empirical coefficients were alluded
to by Hirs [78]. However, it is not clear how extensive the
experimental support would have to be, especially when
factors such as shaft eccentricity ratio, pivot offset, thermal
effects and bearing preload are considered. Thermal effects
make the estimation of an average Reynolds number difficult.
Pivot offset and nonzero bearing preload will alter the
shape of the converging wedge. Hirs indicated that high-
eccentricity bearings gave less accurate results [58]. The
combination of moderate operating eccentricity and high
bearing preload may mimic a zero-preload, high-eccentricity
bearing in terms of shape of the converging wedge.

6.3. Comparison of Approaches. Taylor and Dowson [79]
directly compared the mixing length approach of Constan-
tinescu, the eddy-viscosity model of Ng, Pan, and Elrod, and
the empirical bulk-flow approach of Hirs. When comparing
the predicted factors Gη, all three methods gave close
agreement for Reynolds number greater than 2000. The
Constantinescu model overpredicted Gη by up to 50 percent
when compared to Elrod and Ng and Hirs. All three models
deviated from each other in for 1000 ≤ Re ≤ 2000. Based on
these results, Taylor and Dowson concluded that the eddy-
viscosity model proposed by Elrod and Ng [69] was more
accurate than the model proposed by Constantinescu [72].

The transition region from laminar flow to turbulent
flow presents challenges to the both the eddy-viscosity model
and the bulk flow approaches. Suganami and Szeri [1] were
able to address this challenge in part with an additional
scaling factor in the effective viscosity obtained from the
eddy-viscosity model, represented by (11). The Suganami
and Szeri scaling factor was able to model temperature rise
in a bearing that was run in the transition flow region more
accurately than either the laminar or turbulent models. This
scaling factor, although empirical, reduces the discrepancy
between the Elrod and Ng model and the Hirs model in the
transition region.

Bouard et al. [80] compared three turbulence models
using a finite difference solution to the generalized Reynolds
equation, the energy equation, and the heat transfer equa-
tion. The three models compared were the Ng and Pan
model, [22], the Elrod and Ng model [69], and the Constan-
tinescu model [29]. The comparison was performed within a
common finite difference framework, which is distinct from
the bulk-flow approach used by Constantinescu. The three
models were compared to experiments reported by Taniguchi
et al. [4]. All three models overpredicted temperatures in
the laminar flow regime, which was attributed to poor
characterization of the experimental boundary conditions.
All three models matched the experiment within 2 percent
at operating speeds above 3,600 rpm. All three models gave
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Figure 4: Free body diagram, dhaft translational degrees of
freedom, and rigid pivots.

similar predictions of power loss. The Constantinescu turbu-
lence model gave predictions closest to measurement for film
thickness and babbitt temperature. The authors concluded
that all three models gave similar predictions and that
Constantinescu should be used because the computational
run times were shorter. The TEHD analysis performed by
He gave better predictions in the laminar regime [63], using
the Elrod and Ng model with the modification proposed by
Suganami and Szeri [1] in the transition region.

7. Review of Tilting Pad Bearing
Dynamic Models

The tilting pad dynamics developed from various TEHD
models are based on explicit modeling of the motion of
the pads. The modeling procedure is summarized in the
following section. The development of the bearing model
reduced to the shaft degrees of freedom and an experimen-
tally identified two-degree-of-freedom bearing model are
also summarized.

7.1. Single Pad Bearing Dynamics. The lubricating film is
typically represented with stiffness and damping coefficients
in linear analyses. To illustrate this concept, two free-body
diagrams are provided. The first, Figure 4, shows rigid shaft
interactions with a single tilting pad through the oil film. The
springs and dampers in Figure 4 are shown schematically for
clarity of the figure. The actual reactions are fluid structure
interaction forces between the shaft, the lubricating film, and
the pad [77].

The second free-body diagram, Figure 5, shows the
linearized fluid-structure interactions between the pad and
the shaft, and between the pad and ground. The free body
diagrams are shown separately because the linearized stiff-
ness and damping coefficients are in general non-selfadjoint.
In Figures 4 and 5, a single pad is shown for clarity of the
figures. A typical bearing would have four or five pads.
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Figure 5: Free body diagram, pad rotational degrees of freedom,
and rigid pivots.

When a force balance is considered on the free body
diagrams, the resulting equations of motion can be expressed
in matrix form as [46, 81]

⎡
⎢⎢⎢⎣

Ms 0 0

0 Ms 0

0 0 Jp

⎤
⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

η̈
ξ̈
θ̈

⎫⎪⎬
⎪⎭ +

⎡
⎢⎢⎢⎣

cηη cηξ cηθ

cξη cξξ cξθ

cθη cθξ cθθ

⎤
⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

η̇
ξ̇
θ̇

⎫⎪⎬
⎪⎭

+

⎡
⎢⎢⎢⎣

kηη kηξ kηθ

kξη kξξ kξθ

kθη kθξ kθθ

⎤
⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

η
ξ
θ

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

fη
fξ
0

⎫⎪⎬
⎪⎭,

(24)

where ki j represents lubricant equivalent stiffness, ci j repre-
sents lubricant equivalent damping, Ms represents the mass
of the shaft, Jp represents the mass moment of inertia of
the pad about the pivot, η and ξ represent the orthogonal
directions in the pad local coordinate system, x and y
represent the global coordinate system, and θ represents
rotations of the bearing pad about the pivot. For brevity, (24)
can be rewritten in matrix form as

M′
pv̈p + C′pv̇p + K′

pvp = f ′p. (25)

Primed matrices refer to the pad local (η, ξ) coordinate
systems, and unprimed matrices refer to the fixed (x, y)
coordinate system. The vector vp represents the rotor and
pad motion in pad local coordinates. The tilting pad bearing
dynamics are typically transformed to the global shaft
coordinate (x, y) system for the purposes of rotordynamic
analyses. The coordinate transformation from local to global
coordinates for the local pad degrees of freedom is given by
[46]:

⎧⎪⎨
⎪⎩

x
y
θ

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎢⎣

− sinψ − cosψ 0

cosψ − sinψ 0

0 0 1

⎤
⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

η
ξ
θ

⎫⎪⎬
⎪⎭, (26)
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where ψ is the angle between the x-axis and the pivot
location. In matrix form, (26) can be rewritten as up = QTvp,
or alternatively Qup = vp, where Q represents the single-
pad coordinate transformation matrix and up represents
the vector of single pad dynamics expressed in global

coordinates, or up = [x y θ]T . The total transformation
from local to global coordinates on a per-pad basis is then
given by

fp = QT f ′p = QTM′
pQüp + QTC′pQu̇p + QTKpQup

= Mpüp + Cpu̇p + Kpup.
(27)

7.2. Assembled Tilting Pad Equation of Motion. Once the
individual pad equations of motion are transformed to
global coordinates, the overall equations of motion can be
assembled [46]. The fundamental equation of motion with
no fluid temporal inertia effects, rigid pads, and rigid pivots
expressed in terms of shaft degrees of freedom and pad
rotations for an Np pad bearing is [46, 82, 83]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ms 0 0 0 · · · 0
0 Ms 0 0 · · · 0

0 0 J1 0 · · · 0

0 0 0 J2
. . .

...
...

...
...

. . .
. . . 0

0 0 0 · · · 0 JNp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ
ÿ

θ̈1

θ̈2

...

θ̈Np

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cxx cxy cxθ1 cxθ2 · · · cxθNp

cyx cyy cyθ1 cyθ2 · · · cyθNp

cθ1x cθ1 y cθ1θ1 0 · · · 0

cθ2x cθ2 y 0 cθ2θ2

. . .
...

...
...

...
. . .

. . . 0
cθNp x cθNp y 0 · · · 0 cθNp θNp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ
ẏ

θ̇1

θ̇2

...

θ̇Np

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kxx kxy kxθ1 kxθ2 · · · kxθNp

kyx kyy kyθ1 kyθ2 · · · kyθNp

kθ1x kθ1 y kθ1θ1 0 · · · 0

kθ2x kθ2 y 0 kθ2θ2

. . .
...

...
...

...
. . .

. . . 0
kθNp x kθNp y 0 · · · 0 kθNp θNp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
y

θ1

θ2

...
θNp

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fx
fy

0
0
...
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(28)

Equation (28) is described explicitly for a five pad tilting pad
bearing in Appendix A. The stiffness and damping terms in
(28) are also described in terms of the local pad contributions

and the coordinate transformations in Appendix A. Equation
(28) can also be written in matrix notation as

Mü + Cu̇ + Ku = f . (29)

7.3. Tilting Pad Bearing Model Reduction. Equation (28) has
not been traditionally used to describe tilting pad journal
bearing behavior in rotordynamic analyses. It is typically
reduced dynamically to the shaft degrees of freedom asso-
ciated with the bearing, and the pad degrees of freedom are
not explicitly considered. Historically, there are a few reasons
for this choice. Older rotordynamics analyses were based on
the transfer matrix method, originally described separately
by Myklestad [84] and Prohl [85]. The method, based on
beam theory, can be modified to include a discrete stiffness
from a bearing as long as it is related to the appropriate
beam degree of freedom. The transfer matrix method is not
capable of admitting a full-coefficient representation of a
tilting pad bearing unless it is transformed into an equivalent
transfer function. This exact transfer function was developed
by Brockett and Barrett [59]. However, it was published in
1993, when computer power was reaching a point where
desktop finite element analyses of rotors were feasible. It was
also published after the use of less sophisticated reduced-
order bearing models had become the industry standard.
Modern rotordynamic analysis packages using finite element
formulations such as [53] are capable of using the full
coefficient representation.

There were also some fundamental misunderstandings of
the tilting pad journal bearing results originally presented by
Lund in 1964 [20]. The design curves presented by Lund were
reduced synchronously, or using the shaft running speed as
the reduction frequency. While not intended to be used in
general [51], the synchronous coefficients as an excitation-
frequency-independent representation of tilting pad bearing
dynamics became the industry standard. Manufacturers
developed design tools based on the synchronously reduced
coefficients for rotating machinery. This has been encoded
in industry standards such as API 617 for centrifugal
compressors [86]. However, future editions of the API
standards will reflect nonsynchronous tilting pad bearing
coefficients [87].

For the purposes of this discussion, (28) will be reduced
to the shaft degrees of freedom. The shaft degree of freedom
approach was also heavily influenced by the performance
of fixed geometry fluid film bearings, which do not have
the additional degrees of freedom associated with the pads.
Equation (28) is partitioned into shaft and pad degrees of
freedom. It can be rewritten in block matrix format as

⎡
⎣Ms 0

0 Jp

⎤
⎦
{

üs

θ̈

}
+

⎡
⎣Cuu Cuθ

Cθu Cθθ

⎤
⎦
{

u̇s

θ̇

}
+

⎡
⎣Kuu Kuθ

Kθu Kθθ

⎤
⎦
{

us

θ

}

=

{
fs

0

}
,

(30)
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where Ms is the diagonal matrix of shaft masses, Jp is the
diagonal matrix of pad inertias, Cuu, Cuθ , Cθu, Cθθ represent
the damping submatrices, Kuu, Kuθ , Kθu, Kθθ represent
the stiffness submatrices, us represents the shaft translation
degrees of freedom, θ represents the pad rotation degrees of
freedom, and fs represents externally applied forces to the
shaft. By expanding (30), the resulting tilting pad bearing
model equations take the form:

Msüs + Cuuu̇s + Cuθ θ̇ + Kuuus + Kuθθ = fs,

Jpθ̈ + Cθuu̇s + Cθθ θ̇ + Kθuus + Kθθθ = 0.
(31)

Dynamic reduction is performed in the frequency
domain by assuming a solution of the form us = Usest, θ =

Θest, fs = Fsest. The damped excitation frequency s = p + jq
is in general nonsynchronous except in the case of unbalance
response. Use of the Laplace transform allows for a general
damped solution to the reduction problem [47, 52, 54, 63].
By substituting the assumed solution into (31), the following
equations in the frequency domain are found

(sCuu + Kuu)Us + (sCuθ + Kuθ)Θ = Fs − s2MsUs, (32)

(sCθu + Kθu)Us +
(
s2Jp + sCθθ + Kθθ

)
Θ = 0. (33)

Next equation (33) is solved in terms of the pad rotations Θ
as

Θ = −
(
s2Jp + sCθθ + Kθθ

)−1
(sCθu + Kθu)Us. (34)

Then by back substitution of (34) into (32), the bearing
coefficients are expressed in terms of the shaft degrees of
freedom Us as

[sCuu + Kuu − (sCuθ + Kuθ)

×
(
s2Jp + sCθθ + Kθθ

)−1
(sCθu + Kθu)

]
Us = Fs − s2MsUs.

(35)

Using the individual stiffness and damping coefficients from
the full tilting pad representation, (35) can be written out in
detail as

⎡
⎣scxx + kxx − Axx scxy + kxy − Axy

scyx + kyx − Ayx scyy + kyy − Ayy

⎤
⎦
{
X
Y

}

=

{
Fx − s2MsX
Fy − s2MsY

}
.

(36)

The four A coefficients are defined for rigid pivots as

Axx =

Np∑

i=1

(
scxθi + kxθi

)(
scθix + kθix

)

s2Jpi + scθiθi + kθiθi
, (37)

Axy =

Np∑

i=1

(
scxθi + kxθi

)(
scθi y + kθi y

)

s2Jpi + scθiθi + kθiθi
, (38)

Ayx =

Np∑

i=1

(
scyθi + kyθi

)(
scθix + kθix

)

s2Jpi + scθiθi + kθiθi
, (39)

Ayy =

Np∑

i=1

(
scyθi + kyθi

)(
scθi y + kθi y

)

s2Jpi + scθiθi + kθiθi
. (40)

For a forced response analysis, where s = jΩ, the reduced
direct horizontal stiffness as a function of excitation fre-
quency is then

kxx(Ω) = kxx − Re

⎡
⎣

Np∑

i=1

(
kxθi + jΩcxθi

)(
kθix + jΩcθix

)

kθiθi −Ω2Jpi + jΩcθiθi

⎤
⎦,

(41)

where Re is the real part, and the reduced direct horizontal
damping as a function of excitation frequency is

cxx(Ω) =
1

Ω
Im

⎡
⎣ jΩcxx −

Np∑

i=1

(
kxθi + jΩcxθi

)(
kθix + jΩcθix

)

kθiθi −Ω2Jpi + jΩcθiθi

⎤
⎦,

(42)

where Im denotes the imaginary part. The reduced stiffness
and damping terms kxy , kyx, kyy , cxy , cyx, cyy are found
similarly to (41), (42). Returning to the time domain via
an inverse Fourier transform, the reduced model of bearing
dynamics then becomes:

⎡
⎣Ms 0

0 Ms

⎤
⎦
{
ẍ
ÿ

}
+

⎡
⎣cxx(Ω) cxy(Ω)

cyx(Ω) cyy(Ω)

⎤
⎦
{
ẋ
ẏ

}

+

⎡
⎣kxx(Ω) kxy(Ω)

kyx(Ω) kyy(Ω)

⎤
⎦
{
x
y

}
=

{
fx
fy

}
.

(43)

For a free response analysis where fx = fy = 0, the effective
stiffness and damping can be found numerically in the form:

kxx(s) = Re

⎛
⎝kxx + scxx −

Np∑

i=1

(
scxθi + kxθi

)(
scθix + kθix

)

s2Jpi + scθiθi + kθiθi

⎞
⎠,

cxx(s) = Im

⎡
⎣1

s

⎛
⎝kxx + scxx

−

Np∑

i=1

(
scxθi + kxθi

)(
scθix + kθix

)

s2Jpi + scθiθi + kθiθi

⎞
⎠
⎤
⎦.

(44)
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If the perturbation frequency s = jΩ is taken to be the
rotational speed of the machine, then (41), (42) represent
the direct horizontal synchronously reduced stiffness and
damping coefficients. The synchronously reduced kxy , kyx,

kyy , cxy , cyx, cyy are found similarly. If the eigenvalue s =
p+ jq is treated as a general perturbation frequency not equal
to the machine rotational speed, then the coefficients are
the nonsynchronously reduced coefficients at the excitation
frequency of interest. The resulting coefficient matrices are
non-self-adjoint. The destabilizing tangential forces due to
fluid structure interactions are represented as cross-coupled
stiffnesses kxy and kyx. However, these cross-coupled stiffness
terms are generally 3 orders of magnitude less than the
direct stiffness terms in tilting pad bearings and typically
neglected. In the frequency domain, the effective tangential
forces due to damping, proportional to Ωcxx, Ωcyy , are also
much greater than the cross-coupled stiffness terms, which
indicates that the destabilizing forces are small and do not
adversely affect bearing dynamic performance.

The reduced-order model with pad dynamics considered
implicitly, (43), is applicable to rigid pivot bearings. Repre-
sentation of pivot flexibility in tilting pad bearings requires
consideration of additional degrees of freedom. Treatments
of the pivot flexibility case have been addressed by several
authors, including [43, 50].

7.4. Reduced Order Nonsynchronous Bearing Models. An
alternative experimental approach to characterizing TPJB
behavior is based on an experimentally identified model in
the frequency domain. The experimentally derived model is
based on measurement of force inputs and bearing housing
outputs. The shaft is held rigidly in rolling element bearings,
and the bearing is allowed to move radially. The bearing
housing is perturbed and displacements of the bearing
relative to the shaft are measured. The method, originally
applied to fixed pad hydrostatic bearings [88, 89], has been
applied recently to flexible pivot bearings [90, 91] and four-
pad and five-pad tilting pad journal bearings [92–95]. A
brief description of the experimental identification method
follows. A detailed description is available in the above
references.

The system identification method employed in [92–
95] assumes that the bearing dynamic properties can be
modeled as a two degree-of-freedom system based on tilting
pad bearing housing (x, y) translations. The identification
procedure described in [88–95] is accomplished in the
frequency domain by applying a sinusoidal excitation of
the form x = Xe jΩt, y = Ye jΩt, fx = Fxe jΩt, fy =

Fye jΩt, where the excitation frequency Ω is in general non-
synchronous. Excitation is accomplished by simultaneously
applying several sinusoidal forces to the bearing housing with
mass M, resulting in a pseudorandom perturbation [88, 89].
The resulting complex impedance is then determined as a
function of excitation frequency. In the frequency domain,
the net bearing response is expressed in terms of complex
impedances Zi j in the form:

⎡
⎣Zxx Zxy

Zyx Zyy

⎤
⎦
{
X
Y

}
=

{
Fx + Ω2MX
Fy + Ω2MY

}
. (45)

The real and imaginary parts of the complex impedance
functions zi j are then plotted as a function of frequency. The
method is capable of discerning frequency dependence in
both real and imaginary parts of the complex impedances,
within the limits imposed by measurement uncertainty and
repeatability. The subscripts i, j represent the appropriate
rotor degree of freedom. Power spectral density functions are
used to reduce the effects of noise on the measurements. For
the TPJB bearings reported in [92–94], the trends in the data
resulted in an adequate (r2 ≥ 0.95) model described by

Re
(
Zi j

)
= k̃i j −Ω

2m̃i j ; Im
(
Zi j

)
= Ωc̃i j . (46)

The complex impedance of the system then takes the form:

Zi j = k̃i j −Ω
2m̃i j + jΩc̃i j . (47)

Then, by substituting (47) into (45), and performing an
inverse Fourier transform to return (45) to the time domain,
the resulting model for TPJB behavior is given by

⎡
⎣M + m̃xx m̃xy

m̃yx M + m̃yy

⎤
⎦
{
ẍ
ÿ

}
+

⎡
⎣c̃xx c̃xy

c̃yx c̃yy

⎤
⎦
{
ẋ
ẏ

}

+

⎡
⎣k̃xx k̃xy

k̃yx k̃yy

⎤
⎦
{
x
y

}
=

{
fx
fy

}
,

(48)

where the m̃i j represent the identified lubricant mass coeffi-
cients, the c̃i j represent the identified damping coefficients,

and the k̃i j represent the identified stiffness coefficients.
Equation (48) will be referred to as the KCM model.
The second-order representation has been proposed as
a nonsynchronous representation of TPJB behavior with
twelve frequency-independent dynamic coefficients and two
degrees of freedom [92–94], which is in contrast with the
frequency-dependent KC model presented in Section 7.3.
The effect of pad dynamics on the overall tilting pad bearing
dynamics is not considered explicitly in this formulation.

These results were reviewed by Childs [96]. In this paper,
the results from several bearing tests were reviewed, and the
author stated that there was no apparent frequency depen-
dency other than that captured by the KCM model, with
the exception of the bearing originally reported in Childs
and Harris [94], where an apparent frequency dependence in
the damping coefficient was observed. However, this paper
did not address the negative identified lubricant inertia
coefficients reported for several tests in [92–94].

When the frequency response data for flexible pivot
bearings reported in [90, 91] and tilting pad bearings [92–
94] is interpreted using (48) by the respective authors, several
common themes emerge. The reported data are compared to
two models: a tilting pad bearing model based solely on the
classic Reynolds equation, (1), and a thermohydrodynamic
bulk-flow analysis developed by San Andrés and presented
in [74–76]. The model developed by San Andrés is based on
theories developed by Hirs [58] and Constantinescu [29, 70]
that include temporal and convective inertia terms from
the Navier-Stokes equations averaged across the lubricating
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film. The quadratic behavior observed in the real part of the
impedance occurs with both the Reynolds equation and the
bulk flow models. The data generally have better agreement
with the bulk-flow model than with the Reynolds equation
model, for example, [90], so the improved agreement is at-
tributed to both temporal and convective fluid inertia effects.

8. Temporal Inertia Effects

The inclusion of temporal inertia effects in the bulk flow
model is justified in [90–94] using the work of Reinhardt
and Lund [97]. Reinhardt and Lund retained the temporal
and convective inertia terms in their nondimensional for-
mulation of the lubrication problem and obtained a solution
that indicated that temporal inertia effects were important in
lubricating flows with Re ≥ 100. This is in contrast to results
presented by Szeri et al. [98] for squeeze film dampers and
Szeri [77] for fluid film bearings. A detailed discussion of the
difference in the two models and the underlying physics is
presented in [83] and is repeated in Section 8.1.

The theory proposed by San Andrés is in contrast to the
TEHD analysis based on the generalized Reynolds equation
proposed by He [63] and summarized in Section 5. The
generalized Reynolds equation presented by He accounts for
convective inertia effects, but not temporal inertia effects,
through the use of an eddy viscosity model. The eddy
viscosity model used in the TEHD analysis by He [63] has
an effect on both the fluid effective stiffness and damping,
but the TEHD theory does not predict inertia coefficients.

A discussion of the effect on stability analysis is also
presented in [90–94]. All of the papers discuss the use
of synchronous versus nonsynchronous coefficients in sta-
bility analyses and state that a frequency-dependent KC
model requires an iterative solution to calculate the system
eigenvalues. This is correct for older rotordynamic analyses,
especially transfer matrix analyses. However, modern rotor-
dynamic codes such as the one documented by [53] are finite
element based and can easily accept the additional degrees
of freedom required to represent pad motion for implemen-
tation of the full KC TPJB model. Since the pad degrees
of freedom are explicit within this framework, an iterative
eigenvalue solution is not required. It has been recently
shown that the KCM model is not guaranteed to produce a
conservative estimate of flexible rotor stability [99].

8.1. Comparison of Reinhardt and Lund to Szeri. There have
been two distinct approaches to temporal inertia effects in
hydrodynamic lubrication documented in the literature. The
two approaches were compared originally in [83], and the
discussion is repeated here for completeness.

Both Reinhardt and Lund [97] and Szeri et al. [98]
considered the effects of fluid inertia on journal bearing
lubricating flows by investigation of the convective and
temporal inertia terms in the Navier-Stokes equations. Szeri
et al. [98] considered the analysis for squeeze film dampers,
but expanded the analysis to journal bearings in [77].

Both analyses agree on the nondimensional form of the
perturbed N-S equations with inertia terms. The general
approach to calculate rotordynamic coefficients is to perform

a Taylor series expansion about the reduced Reynolds num-
ber, resulting in an x-direction force:

f̂x = f̂ (0)
x0 + Re∗ f̂ (1)

x0 +
(
k̂(0)
xx + Re∗k̂(1)

xx

)
∆x̂

+
(
k̂(0)
xy + Re∗k̂(1)

xy

)
∆ ŷ +

(
ĉ(0)
xx + Re∗ĉ(1)

xx

)
∆ ˙̂x

+
(
ĉ(0)
xy + Re∗ĉ(1)

xy

)
∆ ˙̂y + Re∗

(
m̂xx∆

¨̂x + m̂xy∆
¨̂y
)

+ O
[(

Re∗
)2
]
.

(49)

The hat symbol in (49) indicates nondimensional quantities.
The y-direction force is similar.

Both analyses also essentially agree on the nondimen-
sionalization of force, damping coefficients, and stiffness
coefficients, with minor differences in expression of rota-
tional speed:

f̂i =
fi(

µωLR2/πc2
r

) ,

k̂i j =
ki j[(

µLω/π
)
(R/cr)

3
] ,

ĉi j =
ci j[(

µL/π
)
(R/cr)

3
] .

(50)

There is a key difference in the two approaches to the inertia
terms at this point. Reinhardt and Lund [97] considered the
fluid density when nondimensionalizing the inertia terms,
resulting in

m̂i j =
mi j[(

ρπR2L/π2
)
(R/cr)

] . (51)

When using (51) to dimensionalize results, Reinhardt and
Lund derived a dimensional expansion with no influence of
reduced Reynolds number on the inertia terms, resulting in
[97].

fx = f (0)
x0 + Re∗F(1)

x0 +
(
k(0)
xx + Re∗k(1)

xx

)
∆x

+
(
k(0)
xy + Re∗k(1)

xy

)
∆y +

(
c(0)
xx + Re∗c(1)

xx

)
∆ẋ

+
(
c(0)
xy + Re∗c(1)

xy

)
∆ ẏ + mxx∆ẍ + mxy∆ ÿ.

(52)

However, Szeri et al. [98] and Szeri [77] considered the
fluid viscosity when nondimensionalizing the inertia terms,
resulting in:

m̂i j =
mi j[(

µL/πω
)
(R/cr)

3
] . (53)

This choice of nondimensionalization results in a dimen-
sional expansion that indicates that reduced Reynolds num-
ber is a coefficient on the dimensional inertia terms, or

fx = f (0)
x0 + Re∗ f (1)

x0 +
(
k(0)
xx + Re∗k(1)

xx

)
∆x

+
(
k(0)
xy + Re∗k(1)

xy

)
∆y +

(
c(0)
xx + Re∗c(1)

xx

)
∆ẋ

+
(
c(0)
xy + Re∗c(1)

xy

)
∆ ẏ + Re∗

(
mxx∆ẍ + mxy∆ ÿ

)
.

(54)
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When considering a laminar lubricating type flow, the
flow results are dominated by fluid shear effects. As a result,
the fluid viscosity is more fundamental than fluid density
in nondimensionalizing and scaling the results. This would
imply that for low reduced Reynolds number, the fluid inertia
(added mass) effects are not significant. Using data derived
in [97] for a plain journal bearing with a typical diameter
of 127 mm and Re∗ = 0.077, (54) results in an added mass
coefficient of 1 kg, versus an added mass coefficient of 12 kg
using (52) [83].

The Taylor series expansion resulting in (50) is also
based on Re∗. For the Taylor series expansion to converge,
Re∗ < 1 [77]. Modern bearings are reaching surface speeds
where Re∗ ≥ 1, so the Reinhardt and Lund and Szeri
analyses of the relative effect of temporal inertia on fluid film
bearings are no longer valid as the series does not converge.
These analyses are also not valid for low-viscosity process
fluid lubricants such as water, where Re∗ ≫ 1 for typical
industrial applications. An alternative method will have to be
found for linearized nondimensional estimates of turbulent,
inertial flow.

Temporal inertia terms will be important for bearings
with low viscosity lubricants or high Re∗ oil bearings so
temporal inertia terms will be present. However, those inertia
terms are not very important in small amplitude linear
modeling of rotor dynamic calculations unless there is some
sort of significant radial acceleration in the shaft. There will
have to be major research done as to whether an extension
of Reynolds equation following Elrod and Ng, averaged film
relations following Hirs and Constantinescu, or new forms
of lubrication modeling will produce the most accurate
predictions of bearing performance.

9. Discussion and Conclusions

Since the original development of the lubrication equation
by Reynolds [7], there has been an increasing level of
sophistication in the calculation of bearing properties, due
to the inclusion of thermal heating effects, mechanical
and thermal deformations, and turbulence corrections. The
initial solutions only considered the fluid flow inside the
bearing. The thermal effects were added through solutions
to the energy equation and mechanical deformations were
included with deflection analyses. One of the key differences
between the TEHD model presented in Section 5 and the
bulk flow models presented in Section 6 is the treatment
of the lubricating film. The TEHD analysis proceeds from
a differential approach to the flow field. The mathemat-
ics involved are more easily justified than the averaging
approaches employed in mixing length theory model of
Constantinescu, which rely on an approximation of the
products of averages of the flow field. The Hirs model
gives good agreement with friction data because it is fit
to that data—hence it relies entirely on extensive empirical
data to be implemented. As a result, the approach requires
experimental data for each new application.

Generally, consideration of more complex lubrication
models followed the experience of industrial users. As the
classical Reynolds solution diverged from user experience,
the addition of energy and deformation effects into the
analysis became necessary to allow for reliable designs. The
factors requiring these modeling improvements, including
increasing speeds and bearing specific loads, are demands
by industrial users that continue to influence the need to
improve tilting pad bearing models.

There has been a similar evolution in the understanding
of the bearing dynamics, especially with tilting pad journal
bearings. Initially treated as simple supports, inclusion of
stiffness effects and later damping effects improved the
understanding of the bearing contribution to the overall
rotordynamic system. These improvements came as user
experience did not match with simpler bearing dynamic
models.

Tilting pad bearings were adopted to address self-
excited vibrations from the fluid structure interactions
within fixed pad bearings. The initial understanding was
that the synchronous response was a sufficient representation
of the bearing dynamics regardless of excitation frequency
based on a misinterpretation of the work by Lund. More
recent investigations, especially into rotordynamic stability,
indicate that the dynamic response is excitation-frequency-
dependent.

The nonsynchronous modeling presented in Sections
7.1–7.3 is not comprehensive since pivot flexibility and foun-
dation flexibility effects are not considered. The discussion
does cover the basic ideas in the current understanding of
bearing dynamic theory.

The KCM experimentally identified model is a funda-
mentally different model compared to the full bearing coeffi-
cient model. The full bearing coefficients are obtained from
first principles. The KCM model is based solely on system
identification experiments and arises from observation of the
system. The observations are consistent with a 12-coefficient
second-order nonsynchronous dynamic representation with
frequency-independent stiffness, damping, and mass coef-
ficients. This is a “black box” identification technique this
is suitable for obtaining a tentative system model and is a
technique that is also popular in the controls community for
developing an approximate model of a plant to be controlled.

The issue of the relative importance of temporal inertia
effects is still an open area of discussion. There are conflicting
treatments in the literature of the relative importance of the
temporal inertia term in the Navier-Stokes equations, and the
assumptions made in developing these treatments are being
invalidated by current and projected operating speeds and
loads in industrial bearings. Development of a new approach
to the generalized Reynolds equation or another simplified
form of the Navier-Stokes equations is an opportunity for
future research.

The proper dynamic model for tilting pad journal
bearings is another area of research and discussion in the
literature. This paper summarizes the two approaches, and
new methods have been developed to directly compare
the two approaches [100]. A new area of research is to
experimentally identify the pad transfer functions instead of
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relying solely on implicit treatments based on measurements
of rotor or bearing housing motion. Early work in this
area has been recently reported [101]. It is anticipated
that the inclusion of these measurements, in conjunction
with multiple-input-multiple-output system identification
techniques, will be useful in determining the correct TPJB
dynamic model.

Appendix

A. Stiffness and Damping Terms

A.1. Stiffness Matrices. Once the coordinate transformation
is applied, the single-pad stiffness matrix for a tilting pad
bearing with rigid pivots is

QTK′
pQ

=

⎡
⎢⎢⎢⎢⎢⎣

kηηsin2ψ +
(
kξη + kηξ

)
sinψ cosψ + kξξcos2ψ

(
kξξ − kηη

)
sinψ cosψ + kηξsin2ψ − kξηcos2ψ −kηθ sinψ − kξθ cosψ

(
kξξ − kηη

)
sinψ cosψ + kξηsin2ψ − kηξcos2ψ kηηcos2ψ −

(
kξη − kηξ

)
sinψ cosψ + kξξsin2ψ kηθ cosψ − kξθ sinψ

−kθη sinψ − kθξ cosψ kθη cosψ − kθξ sinψ kθθ

⎤
⎥⎥⎥⎥⎥⎦
.

(A.1)

For a five pad tilting pad bearing, the full stiffness matrix
becomes

⎡
⎣Kuu Kuθ

Kθu Kθθ

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kxx kxy kxθ1 kxθ2 kxθ3 kxθ4 kxθ5

kyx kyy kyθ1 kyθ2 kyθ3 kyθ4 kyθ5

kθ1x kθ1 y kθ1θ1 0 0 0 0

kθ2x kθ2 y 0 kθ2θ2 0 0 0

kθ3x kθ3 y 0 0 kθ3θ3 0 0

kθ4x kθ4 y 0 0 0 kθ4θ4 0

kθ5x kθ5 y 0 0 0 0 kθ5θ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.2)

The terms in (A.2) are defined as

kxx =

Np∑

i=1

[
kηηsin2ψ +

(
kξη + kηξ

)
sinψ cosψ + kξξcos2ψ

]
i
;

kxy =

Np∑

i=1

[(
kξξ − kηη

)
sinψ cosψ + kηξsin2ψ − kξηcos2ψ

]
i
;

kyx =

Np∑

i=1

[(
kξξ − kηη

)
sinψ cosψ + kξηsin2ψ − kηξcos2ψ

]
i
;

kyy =

Np∑

i=1

[
kηηcos2ψ −

(
kξη + kηξ

)
sinψ cosψ + kξξsin2ψ

]
i
;

kxθi =
(
−kηθ sinψ − kξθ cosψ

)
i
;

kθix =
(
−kθη sinψ − kθξ cosψ

)
i
;

kyθi =
(
kηθ cosψ − kξθ sinψ

)
i
;

kθi y =
(
kθη cosψ − kθξ sinψ

)
i
.

(A.3)

A.2. Damping Matrices. Once the coordinate transformation
is applied, the single-pad damping matrix for a tilting pad
bearing with rigid pivots is

QTC′pQ

=

⎡
⎢⎢⎢⎣

cηηsin2ψ +
(
cξη + cηξ

)
sinψ cosψ + cξξcos2ψ

(
cξξ − cηη

)
sinψ cosψ + cηξsin2ψ − cξηcos2ψ −cηθ sinψ − cξθ cosψ

(
cξξ − cηη

)
sinψ cosψ + cξηsin2ψ − cηξcos2ψ cηηcos2ψ −

(
cξη − cηξ

)
sinψ cosψ + cξξsin2ψ cηθ cosψ − cξθ sinψ

−cθη sinψ − cθξ cosψ cθη cosψ − cθξ sinψ cθθ

⎤
⎥⎥⎥⎦

(A.4)
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For a five pad tilting pad bearing, the full stiffness matrix
becomes

⎡
⎣Cuu Cuθ

Cθu Cθθ

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cxx kxy cxθ1 cxθ2 cxθ3 cxθ4 cxθ5

cyx kyy cyθ1 cyθ2 cyθ3 cyθ4 cyθ5

cθ1x cθ1 y cθ1θ1 0 0 0 0

cθ2x cθ2 y 0 cθ2θ2 0 0 0

cθ3x cθ3 y 0 0 cθ3θ3 0 0

cθ4x cθ4 y 0 0 0 cθ4θ4 0

cθ5x cθ5 y 0 0 0 0 cθ5θ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.5)

The terms in (A.5) are defined as

cxx =

Np∑

i=1

[
cηηsin2ψ +

(
cξη + cηξ

)
sinψ cosψ + cξξcos2ψ

]
i
;

cxy =

Np∑

i=1

[(
cξξ − cηη

)
sinψ cosψ + cηξsin2ψ − cξηcos2ψ

]
i
;

cyx =

Np∑

i=1

[(
cξξ − cηη

)
sinψ cosψ + cξηsin2ψ − cηξcos2ψ

]
i
;

cyy =

Np∑

i=1

[
cηηcos2ψ −

(
cξη + cηξ

)
sinψ cosψ + cξξsin2ψ

]
i
;

cxθi =
(
−cηθ sinψ − cξθ cosψ

)
i
;

cθix =
(
−cθη sinψ − cθξ cosψ

)
i
;

cyθi =
(
cηθ cosψ − cξθ sinψ

)
i
;

cθi y =
(
cθη cosψ − cθξ sinψ

)
i
.

(A.6)
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ment displacements onthermohydrodynamic characteristics
of tilting-pad journal bearings,” in Proceedings of the Japan
International Tribology Conference, pp. 635–640, Nagoya,
Japan, 1990.

[37] K. Brockwell, D. Kelinbub, and W. Dmochowski, “Measure-
ment and calculation of the dynamic operating characteris-
tics of the five shoe, tilting pad journal bearing,” Tribology
Transactions, vol. 33, no. 4, pp. 481–492, 1990.
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