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Abstract: This paper aims to provide an overview of the capabilities of unmanned systems to
monitor and manage aquaculture farms that support precision aquaculture using the Internet of
Things. The locations of aquaculture farms are diverse, which is a big challenge on accessibility.
For offshore fish cages, there is a difficulty and risk in the continuous monitoring considering the
presence of waves, water currents, and other underwater environmental factors. Aquaculture farm
management and surveillance operations require collecting data on water quality, water pollutants,
water temperature, fish behavior, and current/wave velocity, which requires tremendous labor cost,
and effort. Unmanned vehicle technologies provide greater efficiency and accuracy to execute these
functions. They are even capable of cage detection and illegal fishing surveillance when equipped
with sensors and other technologies. Additionally, to provide a more large-scale scope, this document
explores the capacity of unmanned vehicles as a communication gateway to facilitate offshore cages
equipped with robust, low-cost sensors capable of underwater and in-air wireless connectivity. The
capabilities of existing commercial systems, the Internet of Things, and artificial intelligence combined
with drones are also presented to provide a precise aquaculture framework.

Keywords: drone technology; aquaculture; precision aquaculture; aquaculture monitoring; aquacul-
ture drones; internet of things

1. Introduction

Fisheries and aquaculture play an essential role in feeding the growing population
and are critical for the livelihood of millions of people in the world. Based on the long-term
assessment by the Although the Food and Agriculture Organization (FAO) has assessed
the continuous declination of marine fish resources [1], many interventions were made by
government institutions, private organizations, and individuals to increase awareness of
the importance of the world’s fishery resource. Strict implementation of fishing regulations
and water environment conservation has increased fishery production and sustainability.
Despite these developments and with the expected increasing population of 8.5 billion by
2030, the increase in demand for marine commodities cannot be sustained any longer by
wild fish stocks. Aquaculture is involved in farming of fish, shellfish, and other aquatic
plants and have been a great help in food security. In the past years, it is the fastest-growing
product in the food sector [2] and is emerging as an alternative to commercial fishing [3].
With this trend, the expansion of aquaculture plays a significant role in ensuring food
sufficiency, improved nutrition, food availability, affordability, and security.

In 2018, world aquaculture reached 114.5 million tons of production record [1], making
this industry marketable and promising. However, with the increasing global population,
aquaculture production must also continue to increase to meet the food demand of the
growing population. With this significant contribution of the aquaculture industry in allevi-
ating poverty [4–6] and increasing income [5,6], employment [3,7], economic growth [8–10],
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reducing hunger for food, and increasing the nutrition of the population [9,11,12], one of
the main challenges in aquaculture production is sustainability [13].

1.1. Challenges in Aquaculture Production, Supervision and Management

One of the indicators of the success of an aquaculture venture depends on the correct
selection of the aquaculture site. Aquaculture farm types vary from small-scale rural farms
to large-scale commercial systems. For choosing a farm location, a good quality water
source is a must since surface water such as river, stream, or spring is prone to pollutions.
They are also intermittently available since it is affected by weather such as drought or
typhoons. Aquaculture farms are in lakes, rivers, reservoirs (extensive aquaculture), coastal
lagoons, land-based coastal, in-shore, and offshore areas [14].

Coastal lagoons are shallow estuarine systems; they are productive and highly vul-
nerable [15]. Aquaculture in coastal lagoons is more heterogeneous in terms of cultivated
species, techniques, extent [16], which can lead to reduced water quality, habitat destruction,
and biodiversity loss which limits or restricts fish and shellfish farming concessions [17].
Land-based farming is also becoming famous due to less environmental impact on coastal
areas and reducing the cost of transportation. Compared with open-water fish farming,
monitoring is easy due to accessibility, and quick adjustments can be made to achieve
optimal living conditions of aquaculture products [18]. Despite this, land-based coastal
aquaculture is more constrained [14], and mass mortalities due to disease spread is fast,
and sudden change in water temperature is also apparent.

In-shore farm locations are close to the open fishing grounds with minimal shore
currents. However, concerns such as wind and wave protection currents brought by small
boat fishers [19] are also evident. Offshore aquaculture farms’ locations are in the deep-sea
water. Since they are far from the shore, this reduces the negative environmental impact of
fish farming. Despite the higher investment requirements for this farm location and some
requiring importation of cages and equipment from other countries [14], its utilization
offers a great potential to expand the industry in many parts of the world. Currents and
greater depths generally increase the assimilation capacity and energy of the offshore
environment and offer vast advantages for aquaculture farming. Since offshore cages are
far away from the coast, there is an increased cost in terms of management and daily
routine operations for farm visits and monitoring [20]. Recent technological innovations in
offshore cage systems make it possible for aquaculture operations in the open ocean, and
this industry is rapidly increasing in different parts of the world.

Aquaculture production is very costly considering the requirement in terms of human
labor and feeds. The big aquaculture farms are located offshore in deep and open ocean
waters, allowing them to produce with a large number. Many of the offshore fish cages
are submerged in water and they can only be reached by boats and ships. This method
limits the accessibility with additional capital costs [21]. Meanwhile, feeds have the highest
share during the production period [22]. Farming systems are also diverse in terms of
methods, practices, and facilities. The presence of climate change highly affects the quality
of aquaculture production (e.g., change in water temperature, water becomes acidic);
it has now become a threat to sustainable global fish production [2]. Global food loss
and waste are also severe problems and concerns. Proper handling from production,
harvest to consumption is also essential to prevent the identified problems and preserve
the production quality [1].

Aside from feeding, farming in the grow-out phase involves tasks such as size grad-
ing and distribution of fish to maintain acceptable stocking densities, monitoring water
quality and fish welfare, net cleaning, and structural maintenance. All these operations
are significant to obtain good growth to ensure fish welfare. Attaining profitability and
sustainability in production requires a high degree of regularity in all these operations [23].

Offshore aquaculture farms that have large-scale productions require high manual
labor and close human interactions to perform monitoring and management. Proper farm
management requires regular monitoring, observation, and recording. For example, to
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monitor the growth of the fish, the farmer must evaluate the utilization of the feeds utilized
and assess the fish growth to optimize stocking, transfer, and harvests. According to FAO,
the extent of farm monitoring depends on the educational level and skill of the farmer,
the farmer’s interest in good management and profit, the size and organization of the
aquaculture farm, and the external assistance available to farmers. Commercial farms need
a close monitor of fish stocks. Farmers should also be aware of various parameters for
growth measurement, production, and survival of aquaculture stocks. In ensuring this
achievement, farms visits should be at least once a day to check if water quality is good and
if fish are healthy. Close fish monitoring determines growth, the efficiency of feeding, and
adjustment of daily feeding ratio to save feed costs. Checking the adequacy of the stocking
rate will enable the transfer of larger fish or marketed immediately and if the stock has
reached the target weights, production and harvesting schedule can be changed [24].

According to Wang et al. [25], intelligent aquaculture is now moving beyond data
toward decision-making. Intelligent aquaculture farms should be capable of carrying out
all-around fine control on various elements such as intelligent feeding, water quality control,
behavior analysis, biomass estimation, disease diagnosis, equipment working condition,
and fault warning. It is significant to collect data from the aquaculture site to monitor and
use technologies, such as sensors and unmanned systems to integrate artificial intelligence
(AI) for a smarter fish farm. As an example, with feeding management considerations, feed
cost has the highest share in the production period [22]. So, there is a need to reduce the
cost to maximize the profit by making sure that the fish is not overfed, which is an added
cost, or making sure that fish is not underfed, which affects the fish growth and density,
thus, affect the production quality. Bait machines help automate the feeding process, but
for it to be fully optimized, information is required of the level of fish feeding satiety or
hunger. Information such as disturbance on the water surface can be a basis to determine
the level of fish hunger or feeding intensity. Such information can be captured by the UAV
using its camera sensors and sends the information to the cloud to perform data analysis
using AI services such as deep learning techniques to evaluate the fish feeding intensity
level. The analysis results will be forwarded to the baiting machine to determine how much
food to dispense. If fish feeding intensity is high, the feeding machine continues to give
food, and otherwise, when it is none, it will stop giving food [26].

1.2. Aquaculture’s Technological Innovation for Precision Farming

With the challenges mentioned for aquaculture production, there is a need to identify
and adopt various strategies. To address these previously mentioned issues, technology
integration in the past decades has become famous for automating or helping aquaculture
farmers monitor and manage their farms for improved aquaculture sustainability. Tech-
nological innovations (such as breeding systems, feeds, vaccines) and non-technological
innovations (e.g., improved regulatory frameworks, organizational structures, market
standards) have enabled the growth of the aquaculture industry. Radical and systemic inno-
vations are necessary to achieve the ecological and social sustainability of aquaculture [27].
Integrating smart fish farming as a new scientific method can optimize and efficiently use
available resources. It will also promote sustainable development in aquaculture through
deep integration of the Internet of Things (IoT), big data, cloud computing, artificial intel-
ligence, and other modern technologies. A new mode of fishing production is achieved
with its real-time data collection, quantitative decision making, intelligent control, precise
investment, and personalized service [28]. Various technological innovations are already
available to improve aquaculture production and management [29]. The availability of
unmanned vehicles equipped with aerial cameras, sensors, and computational capability is
very famous for site surveillance [30].

Precision fish farming described by Føre et al. [31] aims to apply control engineering
principles in fish production to improve farm monitoring, control, and allow documenta-
tion of biological processes. This method makes it possible for commercial aquaculture to
transition from a traditional experience-based production method to a knowledge-based
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production method using emerging technologies and automated systems that address the
challenges of aquaculture monitoring and management. Precision fish farming aims to
improve the accuracy, precision, and repeatability of farming operations. The preciseness
facilitates more autonomous and continuous biomass/animal monitoring. It also provides
higher reliable decision support and reduces dependences from manual labor and sub-
jective assessments to improve worker safety and welfare. Furthermore, O’Donncha and
Grant [32] described precision aquaculture as a set of disparate and interconnected sensors
deployed to monitor, analyze, interpret, and provide decision support for farm operations.
Precision farming in the ocean will help farmers respond to natural fluctuations and impact
operations using real-time sensor technologies and will no longer rely on direct human
observations and human-centric data acquisition. Thus, artificial intelligence (AI) and IoT
connectivity now support farm decision-making.

Unmanned vehicles or aircraft is one of the emerging technologies for various per-
sonal, businesses, and governments, particularly in the military field intended for different
purposes. Recently, it has become well-utilized in agriculture and aquaculture in man-
aging and monitoring fish due to its availability and affordability [33]. They are capable
of reaching remote areas requiring a small amount of time and effort. Users can control
the flight or navigation using only a remote control or a mobile application. When UAVs
were introduced around the 20th century, their intended function was for military pur-
poses [34–36]. However, in the last few years, drones’ capability has prospered and is
now capable of accomplishing multiple and simultaneous functions. Such capabilities are
aerial photography [37], shipping and delivery [38–40], data collection [41,42], search and
rescue operations during disasters or calamities [43], agricultural crop monitoring [44],
natural calamity monitoring, and tracking [45]. UAVs were also successfully integrated
into marine science and conservation. In the paper of de Lima et al. [46], the authors
provided an overview of the application of unoccupied aircraft systems (UAS) to conserve
marine science. As part of their study, they used electro-optical RGB cameras for multi-
spectral, thermal infrared, and hyperspectral systems. Their applications of UAS in marine
science and conservation include animal morphometrics and individual health, animal
population assessment, behavioral ecology, habitat assessment and coastal geomorphology,
management, maritime archaeology and infrastructure, pollutants, and physical and bio-
logical oceanography. Some of these mentioned applications could also be utilized in the
aquaculture environment.

Today, drones have been successful in collecting environmental data and fish behavior
at the aquaculture site for monitoring [47]. In the work of Ubina et al. [30], an autonomous
drone performs visual surveillance to monitor fish feeding activities, detect nets, moorings,
cages, and detect suspicious objects (e.g., people, ships). The drone is capable of flying
above the aquaculture site to perform area surveillance and auto-navigate based on the
instructions or commands provided. The autonomous drone can understand the position
of the target objects through the information provided by the cloud, which makes it more
intelligent than the usual drone navigation scheme. It becomes an intelligent flying robot
to capture distant objects and valuable data. The drone can also execute a new route
based on the path planning generated by the cloud, unlike the non-autonomous drone,
which only follows a specific path [30]. Their autonomous capability reduces the need
for human interactions; actual site monitoring and inspection activities can be controlled
or reduced [23].

The paper is organized as follows: Section 2 is the methodology; Section 3 provides the
unmanned vehicle system platforms. Section 4, on the other hand, presents the framework
of the aquaculture monitoring management using unmanned vehicles while in Section 5 is
the unmanned vehicles capability as communication gateway and IoT device data collector.
Section 6 provides how unmanned vehicles are used for site surveillance, Section 7 is
for aquaculture farm monitoring and management function, and Section 8 contains the
regulations and requirements for unmanned vehicle system operations. Lastly, Section 9 is
the challenges and future trends, and Section 10 is the conclusions.
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2. Methodology

This paper’s purpose is to conduct a review of literature and studies conducted for
unmanned systems’ applicability to perform aquaculture monitoring and surveillance.
The majority of the literature search was made using the Web of Science (WOS) database.
Factors considered in the preference of articles include relevance to the related keywords
provided for the search and the number of paper citations. There were no restrictions on
the date of publication. Figure 1 is the taxonomy used for keyword extraction in the Web of
Science database to determine the trend and the number of works involving unmanned
vehicle systems for aquaculture. The authors also used Google Scholar, IEEE Xplore and
Science Direct to search for related works.

Figure 1. Taxonomy for keyword extraction in the database search.

The articles from the keyword search were the basis in identifying the capabilities,
progress, gaps, and challenges of unmanned vehicle systems for aquaculture site monitoring
and management. We also conducted data analysis based on the search results from the
WOS database to know the trend or research interest based on the number of published
journal articles for each year. Graphs were generated to present the result of the analysis.
Samples of the results are in Figures 2–4.

Figure 2. Publication result by year using the keyword aquaculture precision farming.
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Figure 3. Publication result by year using the keywords “aquaculture precision” and “unmanned
vehicle” or “unmanned system”.

Figure 4. Publication result by country using the keywords “aquaculture” and “unmanned vehicle”
or “unmanned system”.

3. Unmanned Vehicle System Platforms

Unmanned vehicles can improve mission safety, repeatability and reduce operational
costs [48]. The tasks performed by unmanned vehicles are typically dangerous or relatively
expensive to use humans to execute. In addition, they are assigned jobs that are simple but
repetitive and less expensive to implement without humans [49]. Low-cost, off-the-shelf
systems are now emerging, but many still require customization [48] to meet the specific
requirement for aquaculture monitoring and management. The work of Verfuss et al. [50]
provides the detail of the current state-of-the-art autonomous technologies for marine
species observation and detection. Although it does not focus on aquaculture, underlying
principles, and requirements can be adopted in aquaculture monitoring.

In this paper, the authors describe the capabilities and limitations of unmanned vehicle
systems to perform monitoring and management of aquaculture farms. The functions are
to assess water quality, water pollutants, water temperature, fish feeding, water currents,
drones as a communication gateway, cage detection, farm management, and surveillance
of illegal fishing are content of this review paper as a mechanism to achieve precise aqua-
culture. There are different classifications of unmanned vehicles considered in this paper
for aquaculture monitoring and management: unmanned aircraft systems, autonomous
underwater vehicles, and unmanned surface vehicles. Each of the unmanned vehicle
systems has its respective capabilities and limitations. However, they can be used together
to collaborate and attain the goal of aquaculture monitoring and management. The strength
of unmanned vehicles can address the issues or limitations of the other types to increase
robustness and efficiency.
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3.1. Unmanned Aircraft Systems (UAS)

Unmanned aircraft systems (UAS) or unmanned aerial vehicles (UAVs) provide an
alternative platform that addresses the limitations of manned-aerial surveys. According
to Jones et al. [51], UAS does not require hundreds of hundreds of dollars to perform
surveillance and works best for geospatial accuracy of the acquired data and survey
repeatability. A potential advantage of UASs is lower operating costs and consistency of
flight path and image acquisition. UAS should be small, with an electric motor, easy to use,
affordable, and record and store onboard data to prevent data loss or degradation from
the transmission [50]. For real-time monitoring, UAS should send data using its wireless
capability. Since they are pilotless aircraft, they can operate in dangerous environments
inaccessible to humans [52]. For surveillance and monitoring, they have sensors such as
cameras flying into the sky to monitor the target interests [53]. Cameras installed in UAVs
can also serve as data collectors and send them into a repository system. Additionally,
recent developments in UAS provide longer flight durations and improved mission safety.
Although UAS has strong potential for aquaculture monitoring, its success still depends
on various factors such as aircraft flight capability, type of sensor, purpose, and regulatory
requirements for operations for a specific platform [54].

At the highest level, the three main UAS components are unmanned aerial vehicles,
ground control, and the communication data link [55]. Low-cost or multi-rotor drones are
easy to control and maneuver with the ability to take off and land vertically. Multirotor UAS
has lightweight materials such as plastic, aluminum, or carbon fiber to increase efficiency,
and wingspans range from 35 to 150 cm. They can be ideal for small areas and can be
controlled from the deck of a small boat [56], but they are limited in terms of flight time and
capacity to withstand strong wind conditions. An alternative to multi-rotor drones is single
rotor or helicopter drones [57]; they are built for power and durability, with long-lasting
flight time with heavy payload capability. However, single rotor drones are harder to fly,
and they can be expensive and with more complex requirements.

Fixed-wing drones can travel several kilometers and fly at a high altitude and speeds
and cover larger areas for surveillance. They can also carry more payloads, have more
endurance which can perform long-term operations. They can be fully autonomous and
do not require piloting skills [58]. Like the single rotor drones, fixed-winged drones are
expensive and need the training to fly non-autonomous aircrafts. Aside from being difficult
to land, they can only move forward, unlike the other two drones that can hover in the
target area.

3.2. Autonomous Underwater Vehicles (AUVs)

Autonomous underwater vehicles (AUVs) or remotely operated underwater vehicles
(ROV) are waterproof and submersible in the water as they are equipped with cameras to
capture images and videos and other sensors to collect data such as water quality. Some of
the capabilities of sensors in ROV can perform data collection such as water temperature,
depth level, chemical, biological, and physical properties. They are equipped with lithium-
ion batteries that enable longer or extended time [59] for navigation or data collection.
AUVs are now preferred to use human divers to perform underwater inspections, which
is lesser in cost and provides better safety. They can provide a 4D view of the dynamic
underwater environment capable of carrying a wide range of payloads or sensors. As the
ROV moves to the water, its sensors can perform spatial and time-series measurements [60].

One of the challenges of AUVs since it is submerged underwater is high navigational
precision [61], communication, and localization due to the impossibility of relying on radio
communications and global positioning systems [62]. There are many devised alternatives
in dealing with these challenges. One of them is the integration of geophysical maps to
match the sensor measurements known as Geophysical Navigation [63]. In addition, UV
navigation that uses a differential-Global Navigation System (DGPs) is with high precision.
When submerged in water, its position is estimated by measuring its relative speed over
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the current or seabed using an Acoustic Doppler Current Profiler (ADCP). For more precise
navigation, an inertial navigation unit is used with positioning from a sonar system [60].

Vehicle endurance is also one of the requirements of AUVs and should be less depen-
dent on weather and water current or pressure. AUVs should be equipped with reliable
navigation to perform surveillance functions such as fishnet inspections and fish moni-
toring. In the paper of Bernalte Sánche et al. [64], the authors presented the summary of
navigation and mapping of UAV embedded systems for offshore underwater inspections
where sensors and technologies are combined to create a functional system for improved
performance. Niu et al. [60] listed in their paper the specifications of candidate sensors
embedded in AUVs such as salinity, hydrocarbons, nutrients, and chlorophyll.

3.3. Unmanned Surface Vehicles (USVs)

Unmanned surface vehicles (USVs) or autonomous surface craft [65] operate on the
water without human intervention. They were developed to support unmanned operations
such as environmental monitoring and data gathering [62]. USVs should be easy to handle
and durable in the field environment. USVs can get up close to objects or targets to quickly
close to gather high-resolution images. It is also fast-moving, can cover large accurate
sensors, and execute run-time missions [66]. However, the autonomy level of USVs is
still limited when being deployed to conduct multiple tasks simultaneously [67]. For
USV to form immense heterogeneous communication and surveillance networks, they can
cooperate with other UVs such as UAVs. One unique potential of USV is to simultaneously
communicate with other vehicles located either above or below the water surface areas.
USVs can also act as relays between vehicles operating underwater, inland, in air, or
in space [68].

Combining various unmanned vehicle systems can maximize their strengths to col-
laborate and perform more expansive tasks and coverage to address the limitations of
each type. In its collaboration, UAVs and USVs can cruise synergically to provide richer
information functioning as an electronic patrol system. A USV-UAV collaborative technique
can perform tasks such as mapping and payload transportation. In this way, it can handle
more complex tasks with increased robustness through redundancy, increased efficiency
by task distribution, and reduced cost of operations [66]. These heterogeneous vehicles
can work collaboratively to achieve large-scale and comprehensive monitoring. Although
there are still many open research issues for heterogeneous vehicle collaboration [69], the
possibility of its exploration should increase performance, adaptability, flexibility, and
fault tolerance [66].

4. Unmanned Vehicles and Sensors

Unmanned systems’ navigation and monitoring capabilities concerning several quan-
tities in their environment strictly depend on their sensors [70], measurement systems, and
data processing algorithms. Sensor fault detection is also essential to ensure safety and
reliability. UVs have different numbers, types, and combinations of sensors mounted in
various ways to measure information using specific, diverse, and customized algorithms.
Therefore, finding an optimal sensor that can perform various tasks, applications, and types
is an unsolvable problem. Individual sensor specifications and characteristics affect the per-
formance of UV aside from other factors such as operating conditions and environment [71].
One of the primary purposes of the sensor is to collect data relevant to a mission beyond
plat-form navigation. Examples of data collected by sensors include acoustic profiles, radar,
and infrared signatures, electro-optical images, local ocean depth, and turbidity. Major
sensor subtypes are sonar, radar, environmental, and light or optic sensors [72]. Gener-
ally, aerial systems rely on electro-optical imaging sensors, while underwater and surface
vehicles mostly rely on acoustic methods [48].

UAV’s flight position and orientation are determined by combining accelerometers,
tilt sensors and, gyroscopes [71]. Aside from GPS, and based on Table 1, USVs can also use
radars or inertial navigation systems (INS) if the satellite signal is unavailable. Since UAVs
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are vulnerable to weather conditions such as rain or wind, they should be equipped with
wind-resistant equipment. Visual cameras can have shockproof and waterproof casings
for protection. Extreme wind, rain, or storms can cause UAVs to deviate from intended
missions, or small UAVs cannot operate in such weather conditions. UAVs must adapt to
atmospheric density and temperature changes to preserve their aerodynamic performance.

Table 1. Navigational payloads characteristics.

Major Subtype Capability Design Trade-Off Challenges or Limitations Source

Inertial

Data collection from accelerometers
and gyroscopes to determine

position, orientation, and velocity;
measures line accelerations and

angular velocities;
provides high-frequency time.

Data-processing
capability, power
inefficient, sensor

calibration.

Requires data processing and
data fusion from multiple

sensors to correct drift errors;
accuracy deteriorates along

time when operating in
stand-alone mode.

[72,73]

GPS Continuous 3D positioning in the
coverage area.

Data rate of
communication link,

signal frequency

GPS is susceptible to intercept
and jamming and is not

available in the
underwater environment;

suffers from numerical errors,
atmospheric effect, and

multipath errors.

[72,74]

Acoustics

Uses acoustic transponders to
determine the position relative to

receivers or features (e.g., seafloor);
enables accurate and reliable

positioning even in low
visibility environment;

robustness to
environmental disturbances.

Sensor geometry

Some sensors require fixed
infrastructure and bottom-lock;
water presents environmental
constraints, and some systems

have speed restrictions.;
Limited to performing

surface navigations.

[72,75,76]

Radar Combines radar imagery with sea
charts to determine the positioning.

Sensor geometry,
power inefficiency, and

data-processing
capability;

aircraft size.

Using radar as a navigational
tool requires feature-rich

environments and is limited to
use above water.;

Its accuracy decreases as the
size of the aircraft decreases.

[72,77]

Depth

Measure of ambient pressure of the
water column to calculate depth;
insensitive to changes in lighting
conditions with 3D information;

provides the metric distance;
provides low-level stability control

and high-level navigation and
motion planning.

Sensor configuration;
Sensor fusion.

Limitations are minimal.
measurement sensors will

function at lower depths than
projected platforms are

intended to go.

[72,78,79]

Orientation
Calculate the heading of the

platform using one or
several sensors.

Power inefficient Degraded performance
when accelerated. [72,80]

Light and optics

Uses environmental features or
landmarks (e.g., stars, pipeline) to

determine position;
low cost, high reliability, high

accuracy, and real-time performance.

Data-processing
capability

Environmental constraints,
such as water and fog,

limit accuracy.
[72,81,82]

The most common sensor payload is cameras. Although smaller cameras are lighter
and easier to deploy, larger cameras provide better image quality. RGB digital cameras
provide high-spatial-resolution. The spatial resolution of the RGB sensor determines
the quality of the acquired images [71]. The work of Liu et al. [83] provided a detailed
discussion of the various sensors shown in Table 2.
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Table 2. Characteristics of exteroceptive sensors; adapted from Balestrieri et al., Liu et al. and
Qiu et al. [71,83,84].

Characteristics

Type of Sensor

Lidar Radar Ultrasonic Monocular
Camera

Stereo
Camera

Omni-
directional

Camera

Infrared
Camera Event Camera

Illumination - - - Yes Yes Yes No Yes
Weather Yes No - Yes Yes Yes Yes Yes

Color and texture No No No Yes Yes Yes No No
Depth Information Yes Yes Yes No Yes No No No

Area of coverage
(m) <200 m <200 m <5 m

Range
operational

environment
dependent

<100 m

Range
operational

environment
dependent

Range
operational

environment
dependent

Range
operational

environment
dependent

Level of accuracy High Medium Low High High High Low Low
Size Large Small Small Small Medium Small Small Small

Affordability Low Medium High High High High High High

One of the challenges to facilitate image and video collection in the underwater
environment is data quality, and AUV should be capable of collecting high-definition data
for monitoring. Image captures of AUV are affected by the amount of light available in the
underwater environment is poor due to the scattering light or turbidity for shallow coastal
water [71]. AUVs are not capable of GPS signals; instead, they depend on acoustics, sonar,
cameras, INSs, or combinations of such systems to navigate. For sonars, they are highly
utilized for detection, tracking, and identification, but it is limited since sound propagation
depends on temperature and salinity, and calibration is also required [72].

For unmanned surface vehicles, the water environment is affected by wind, waves,
currents, sea fog, and water reflection [85]. There are remedies or solutions to dealing
with these environmental disturbances to make the USV more robust. Monocular vision is
strongly affected by weather and illumination conditions, which requires a high amount of
calculating costs when obtaining high-resolution images [71]. Image stabilization, image
defogging, wave information perception, and multi-camera methods are some solutions
to deal with the factors affecting image quality due to weather conditions. For stereo
vision, its lenses can calculate the flight time to generate a depth map that serves as an
obstacle map for near-field collision avoidance. They can also extract color and motion
from the environment but can be affected by weather and illumination conditions such as
a narrow field of view. Likewise, infrared visons can operate during day and night since
they can overcome problems caused by light conditions (night and fog). Omnidirectional
cameras can have a large field view but require high computational cost; images from
this type of camera are affected by illumination and weather conditions, as well. Infrared
cameras also have good quality performance at night but are limited to providing color
and texture information, and their accuracy is low. Event cameras are good in reducing the
transmission and processing time but generate low-resolution outputs, and like others, it is
affected by weather and illumination conditions [85]. Table 3 shows the advantages and
limitations of various USV sensors.
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Table 3. Advantages and limitations of various sensors for USVs.

Type of Sensor Advantages Limitations Source

Radar

Long detection range;
not affected by weather and

broad-area imagery;
high depth resolution and accuracy.

Skewed data from fast turning maneuvers;
limited small and dynamic target

detection capability;
affected by high waves and

water reflectivity.

[71,85]

LIDAR

Performs well for near-range
obstacle detection;

suitable for spatial classification
(position and speed);

it can present point cloud data of the
surface features with high accuracy and

high resolution.

Sensor noise and calibration errors;
affected by the weather environment and

vehicle movements.
[71,84,85]

Acoustics No visual restrictions;
High depth resolution and accuracy.

Limited detecting range in each scanning;
affected by noise from near-surface area;

low spatial resolution.
[85,86]

Visual sensor
High lateral and temporal resolution;

simple and low weight in
practical application.

Low depth resolution and accuracy;
challenge to real-time implementation;

dependent on light and weather conditions
such as rains.

[71,84,85,87]

Infrared sensor
Applicable for dark condition;

low power requirement;
small size and easy deployment.

Indoor or evening use only;
sunlight interference;

low accuracy;
impressionable to interference

and distance.

[71,85]

Inertial
Measurement Unit

(IMU) Sensors

Small size, low cost, and efficient power
consumption;

better performance for dynamic
orientation calculation.

Sensitive to accumulated error and
magnetic environment, or signal noise;

regular calibration maintenance.
[85,88]

GPS/Differential
GPS

Small size, low acquisition cost, and
efficient power consumption.

Susceptible to closed or covered area and
magnetic environment;

Delays, orbital errors and receiver
clock errors.

[85,89]

To determine underwater quality sensors, factors to be considered are physical, chem-
ical, and biological parameters [90]. In the paper of Bhardwaj et al. [91], the authors
enumerated the requirements for aquaculture sensors. First, sensors should sense data
over long periods without being cleaned, maintained, or replaced. Second, they should
have a low energy demand to maximize the energy or power of the UV to perform longer
monitoring. Third, sensors require waterproof isolation or the requirement such as avoiding
corrosion and biofouling. Fourth, since organisms in the sea can alter the sensor surface
and change the transparency and color, the potential flight path must be properly designed.
Fifth, sensors should have no harmful effect on the fish. Avoid sensors that use ultraviolet
light, acoustic beams that can be felt by the fish, and magnetic fields that can disturb fish
activities. In addition, sensors should not alter fish swimming or feeding activities. Sen-
sors must then be low maintenance, low cost, low battery-consuming, robust, waterproof,
non-metallic, withstand biofouling, and have no effects on organisms. Modern real-time
water quality sensors such as optical and bio-sensors have higher sensitivity, selectivity,
and quick response time with the possibility of real-time analysis of data [92].

Although sensor fusion is possible, it could add cost to the operation and UV pay-loads.
Its integration will complement the various strengths and capabilities to achieve higher
accuracy and increased system robustness. When selecting a sensor, one must consider the
cost, specifications, application requirements, power, and environmental conditions.
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5. Framework of the Aquaculture Monitoring and Management Using
Unmanned Vehicles

The architecture presented in Figure 5 provides a framework on how a drone works
with sensors such as underwater cameras and water quality devices. These sensors are
installed in the fish cage to collect data through a WIFI communication channel to transmit
data to a cloud system. The cloud server serves as a repository and is equipped with data
processing and analytics capabilities using AI-based techniques (e.g., computer vision, deep
learning). The enormous amount of data collected from the underwater environment using
sensors provides a non-invasive and non-intrusive method. This approach can achieve real-
time image analysis for aquaculture operators [47]. Different data can be collected from the
aquaculture site using these sensors to monitor the behavior of fish and the water quality
of the aquaculture farm. The collected data informs the aquaculture farmers and enables
them to provide immediate farm interventions to ensure farm produce and processes are
optimized and of high quality to help increase production and income. The data collected,
such as the level of food satiety of fish, as a specific example, are analyzed and transformed
into meaningful information to dispense food from the smart feeding machine. A high
level of satiety means continuous dispensing of food, while a low level of satiety means
the amount of food dispensed is reduced or stopped. Real-time information with these
mechanisms will achieve optimal aquaculture performance.

Figure 5. Architecture for aquaculture monitoring and management using drones.

In addition to the ability of the unmanned vehicles to capture or collect data from
the aquaculture site, its mobility could be used as a communication channel connecting
underwater cameras and sensors to the cloud as a Wi-Fi gateway that provides more
services for precise aquaculture. Since the cameras installed in aerial drones have limitations
and cannot capture underwater events, fish cages are equipped with stationary cameras
(e.g., sonar, stereo camera systems) and other sensors to perform specific tasks. The
drone now eliminates long cables for connection with improved reliable connection and
communication [30]. Aerial drones work best for functions that involve mapping, site
surveillance, inspection, and photogrammetric surveys. AUV and USV, on the other hand,
can do other monitoring and assessment functions such as water quality and conditions
that cannot be fully addressed by aerial drones. There are additional costs and technical
requirements for this method. However, one can take advantage of its more extensive area
and scope for monitoring functions.

With this ability, users, such as aquaculture farm owners, can remotely monitor their
aquaculture farms and assess fish welfare and stock. With the vast and varied amount
of data collection from the aquaculture site, data-driven management of fish production
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is now possible. This scheme improves the ability of farmers to monitor, control, and
document biological processes on their farms so that they can understand the environmental
conditions that affect the welfare and growth of fish [93].

6. Unmanned Vehicles as Communication Gateway and IoT Device Data Collector

In developed countries where access to the Internet is not a problem, the Internet
of Things (IoT) is helpful to farmers. This new connectivity help increase production,
reduce operating costs, and enhance labor efficiency. The Internet of Things (IoT) has
made promising and remarkable progress in collecting data and establishing real-time
processing through the cloud using wireless communication channels. With the presence
of 5G technology, it is a great advantage to combine UAVs and IoT to extend coverage
to rural or remote areas [94], which are the locations of aquaculture farms; thus, it is just
appropriate to exploit this capability. The presence of LTE 45/5G networks and mobile edge
computing now broadens the coverage of UAVs [95] and is even capable of performing
real-time video surveillance [96].

The drone as a flying gateway is equipped with LTE cellular networks to base stations
and a lightweight antenna to collect data. UAVs acts as the intermediate node allowing
data collection from sensors and transmitting them to their target destinations. The drone
then flies to the location of the IoT devices to offer additional coverage or support to the
aquaculture farm in case there are problems with the wired connection of the devices.
The gateway can receive sensor data and send these collected data to the servers [94] to
integrate additional processing strategies, such as artificial intelligence and deep learning
techniques. A drone can also serve as a node of the wireless sensor network where IoT
communication is not available to receive the collected data from the node. Then it moves
to an area where wireless IoT communication is possible and transfers the data to the IoT
server [97]. Various sensor devices can connect to aquaculture cages and farms, such as
underwater cameras and water quality sensors; Arduino [94] and Raspberry Pi can be
embedded as part of an IoT platform, as shown in Figure 6.

Figure 6. IoT platform using drone as a communication gateway.

In maximizing the drone’s capability, it is significant to optimize its energy consump-
tions. The work of Min et al. [97] proposes a dynamic rendezvous node estimation scheme
considering the average drone speed and data collection latency to increase the data collec-
tion success rate. Many devices can be embedded on the drone to provide a better wireless
communication network. The Lower Power Wide Area Network (LPWAN) gateway on-
board can be installed in the UAV. The LoRa gateway is famous for its coverage and lower
power consumption in its deployment.

Short-range communication devices are convenient to enable communication between
sensors and gateways, such as Bluetooth, ZigBee, and Wi-Fi. However, with drones as
a communication gateway, Lower Power Wide Area Network (LPWAN) is much of an
advantage to provide extended communication coverage. The different types of LPWAN
in Table 4 present their advantages and disadvantages. A comparative study with LP-
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WAN technologies for large-scale IoT deployment and smart applications based on IoT
is utilized [98,99]. In the work of Yan et al. [100], a comprehensive survey was made
on UAV communication channel modeling, taking into account the propagation losses
and link fading, including the challenges and open issues for the development of UAV
communication.

Table 4. Comparison of LPWAN wireless technologies.

Type of LPWAN
Technology Coverage Data Rate Pros Cons Source/s

LoRa Urban: 5 km
Rural: 20 km 50 kbps

Wider coverage;
Low power consumption;

Low cost

Not open standard;
No direct connection

between devices.
[94,95,101–103]

SigFox Urban: 10 km
Rural: 40 km 100 kbps

Lowest bandwidth;
Open standard;

Low power consumption;
High receiver sensitivity;

Widest coverage;
Low cost

High latency in
communication;
Small quantities

of data

[101–105]

NB-IoT Urban: 1 km
Rural: 10 km 200 kbps

Low bandwidth;
High airtime;

Strong signal; low energy
consumption;

Excellent security

Higher cost as
compared to other

LPWAN
technologies

[101,103]

With this capability of drones as a communication gateway, it can now serve as a
medium to help achieve the goal of precise aquaculture. The drone can now provide
wireless communication for IoT devices to send data to the cloud for processing, thus acting
as a data collection medium. Data acquisition using UAVs is less expensive and more
convenient than hiring manned aircraft, especially in remote and inaccessible places such
as offshore aquaculture farms. UAVs, when combined with deep learning, can provide
tremendous innovation for aquaculture farm management.

With all the identified potentials of drones as a communication channel [106], cameras,
and sensors (e.g., stereo camera system, sonar devices) to capture the underwater environ-
ment is promising. The drone collects and then sends the data to the cloud to employ AI
services using computer vision and deep learning techniques. The processed information
provides information to users about the current conditions of the aquaculture farms. Fish
survey activities [107] that can be performed includes fish behavior detection such as
schooling [108–110], swimming [111–113], stress response [110,114,115], tracking [116,117],
and feeding [112,118,119]. To determine the satiety or feeding level of fish used for demand
feeder includes fish feeding intensity evaluation [26,120] and detection of uneaten food
pellets [120,121]. The video collected from the aquaculture site through the drones can help
estimate fish growth [122,123], fish count [124–126], and fish length and density estima-
tion [127–131] as a device to transmit this information to the cloud for processing and data
analytics to make predictions or estimates [132,133].

7. Aquaculture Site Surveillance Using Unmanned Vehicles

Illegal fishing is a global problem that threatens the viability of fishing industries and
causes profit loss to farmers. On-the-ground surveillance is the typical way to monitor or
minimize this practice [134], but with a very high operational cost. Submersible drones and
UAVs are now capable of detecting illegal fishing activities [135] and are lower in terms
of cost [136,137].

An unmanned system surveillance composed of fish farmers, vessels, and fish stocks
was used to detect unauthorized fishing vessels [138] with an advantage in speed and
size, making them capable of being unnoticed when performing surveillance. Automatic
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ship classification is relevant for maritime surveillance in detecting illegal fishing activities,
which immensely affects the income of aquaculture farmers. Gallego [139] uses drones
to capture aerial images for the detection and classification of ships. In the work of
Marques et al. [140], aerial image sequences acquired by sensors mounted on a UAV
detect vessels using sea vessel detection algorithms. A surveillance system framework
was proposed using drone aerial images, drone technology, and deep learning [141] to
eliminate illegal fishing activities. The ship is detected to identify its position and then
classify the hull plate vessels to determine among them are authorized or not. The drone
provides visual information using its installed camera. Additionally, crabs are highly
valued commercial commodities, and also used drones with infrared cameras to detect crab
traps and floats [134,135] to prevent illegal activities.

Remote sensing platforms or technologies with global positioning system capabilities,
such as drones, have the ability for marine spatial planning to provide a wide spatial-
temporal range for marine and aquaculture surveillance [142]. The drone is also applied to
3D mapping [143], aerial mapping [144], and low-altitude photogrammetric survey [145].
A semantic scene modeling was integrated to manage aquaculture farms using autonomous
drones and a cloud-based aquaculture surveillance system as an AIoT platform. The scene
modeling algorithm transfers information to the drone using the aquaculture cloud to
monitor fish, persons, nets, and feeding levels daily. The drone acts as an intelligent flying
robot to manage aquaculture sites [146].

The UAV with an onboard camera was also used for cage detection. The UAV’s GPS is
a guide to approximate the location of the cages, and applying image recognition methods
follows to obtain the fish cage and the relative position of the UAV. This collected informa-
tion will be the basis of the drone to adjust its position and proceed to the target object [147].
Additionally, UAVs could also be used for cage farming environment inspection [29] with-
out requiring the installation of a hardware system in each cage which entails a higher cost
in farming. Even a single UAV system can fly around all fish cages to capture data of the
aquaculture cage environment, thus, a drastic reduction of the aquaculture operation cost.
An inventory of salmon spawning nests is executed using UAVs to capture high-resolution
images and videos to identify spawning locations and habitat characteristics; its abundance
and distribution are metrics to monitor and evaluate adult salmon populations [148].

In Japan, they developed an agile ROV to perform underwater surveillance that
provides real-time monitoring. The designed ROV is for easy transport, short startup
time, effortless control, capable of high-resolution images at a low cost [149]. Drones are
also applied to fishery damage assessment of natural hazards. It can survey fish groups,
assist in salvage operations, and conduct aquaculture surveys and management after
disasters [150]. In India, an autonomous AUV replaced the expensive sonar equipment
to perform surveillance and relays the data and the global positioning system location.
The drone provides a mechanism to serve as a bird’s eye view to monitor the surrounding
ocean surface like a person with normal vision can see [151]. Autonomous vehicles are also
applied to increase spatial and temporal coverage. They can transit remote target areas with
real-time observations with more potential than traditional ship-based surveys. Unmanned
surface vehicles with two sail drones (USVs) were equipped with echo sounders to perform
acoustic observations [152].

In the work of Livanos et al. [153], an AUV prototype was proposed as an IoT-enabled
device. Machine vision techniques were incorporated to enable correct positioning and
intelligent navigation in the underwater environment where GPS locations are limited due
to its physical limitation to transmit communication signals through wireless networks.
The AUV was programmed to record video and scan the fish cage net area and save this
information in its onboard memory storage. Its navigation scheme is based on a combined
optical recognition/validation system with photogrammetry as applied to a reference target
of known characteristics attached to the fishnet. The AUV captures video data of the fish
cage area under a relatively close distance successively to address the fishnet consistency
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problem. The AUV architecture is cost-effective to automate the inspection of aquaculture
cages equipped and accomplished a real-time behavior capability.

In the work of Kellaris e al. [154], drones were evaluated as monitoring tools for
seaweeds using a low-cost aircraft. Compared to satellites and typical airborne systems as
sources of images, drones achieve a very high spatial resolution that addresses the problems
on habitats with high heterogeneity and species differentiation, which apply to seaweed
habitat. A sample of the captured image for aquaculture site surveillance using a drone is in
Figure 7. With the application of drones in surveying, it is now more accessible with a more
large-scale range and scope of integration to aquaculture, fisheries, and marine-related
applications. Table 5 shows the different types of drones and the embedded sensors for site
surveillance and their corresponding applications.

Figure 7. Aerial view of in-land aquaculture site with scene modelling with detected objects such as
fish pen, cages and house for site surveillance.

Table 5. Unmanned vehicles and its application to aquaculture site surveillance.

Type of Unmanned Vehicle Used Applications Attached Sensors Reference/s

Customized and augmented UAV
with delta wing design Surveillance Thermal camera, location

transmitter, RF signal generator [151]

Customized ROV Underwater surveillance GoPro HD Hero2 [149]

Hexacopter AUV Cage detection On-board camera [147]

Customized rotorcraft AUV Cage inspection Lidar [29]

Customized AUV using BlueROV2 Inspection of aquaculture net pens to
identify holes or fouling of nets AUV camera [153]

Phantom 3 Professional senseFly eBee Mapping Sony EXMOR 4K RGBCanon
PowerShot S110 RGB [144]

Customized UAV Photogrammetric survey Super-wide-angle camera [145]

Phantom 4 Pro V2.0 Scene modeling Built-in camera [146]

UAV type not specified Ship classification and detection Color camera and
wide-angle lens [140,141]

DJI Phantom 3 Professional
quadcopter drone Sea-weed habitat mapping Sony EXMOR camera [154]
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As much as possible, the position of offshore aquaculture cages is relatively close
to onshore facilities to minimize distance-related costs of transport and maintenance ser-
vices [155]. Table 6 provides the characteristics of the three aquaculture farm locations:
coast, off-coast, and offshore based on physical and hydrodynamical settings. In the ta-
ble, the work of Chu et al. [156], they provided a review on the cage and containment
tanks designs for offshore fish farming and Holmer [157] provided the characteristics. The
limitations in terms of accessibility to aquaculture farms is affected by weather conditions.

Table 6. Characteristics of coast, off-coast, and offshore aquaculture farms; adapted from Chu et al.,
Holmer and Marine Fish Farms [156–158].

Location of the
Aquaculture

Farm

Characteristics

Physical Exposure

Distance from
the Shore

Visibility from
the Shore Waves Accessibility

Coastal <500 m Visible Small to moderate
exposure 100%

Off-Coast 500 m to 3 km Usually visible High to huge
exposure >90%

Off-Shore >3 km Not visible Huge exposure >80%

The data provided in the table, especially the distance of the cages from the shore, are
significant since they help determine the capability of the unmanned vehicle to perform
navigation and monitoring. In Taiwan, the distance from the shore to the offshore cages
range from 2 to 11 km, while the inshore cages are one kilometer away. The distance of
the fish cages from the shore is significant in terms of the amount of time the unmanned
vehicle needs to travel. Commercial UAVs are widely used for inspection since they are
low-cost, but they are limited in terms of flight hours and payload capacity. Table 7 shows
the characteristics of the UAV’s performance measures.

Table 7. Characteristics of UAV types; adapted from Gupta et al., Fotouhi et l., Shi et al. and
Delavarpour et al. [58,159–161].

Characteristics Rotary-Wing Fixed-Wing Hybrid

Weight (kg) 0.01 to 100 0.1 to 400,000 1.5 to 65
Payload (kg) 0 to 50 0 to 1000 0 to 10

Ceiling altitude (km) 4 0.1 to 300 -
Endurance (m) 6 to 180 60 to 3000 180 to 480

Range 0.05 to 200 km 2 to 20 mil -
Power source Battery Fuel or battery Fuel or battery

Hover Yes No Yes
Autonomy Yes No Yes

Take-off/Landing Vertical Conventional Vertical
Control Complexity Simple Complex Most Complex

Flight System Simple Complex Complex
Energy Efficiency Less More More

Since the battery life of UAVs to perform extended navigation is limited most especially
those with small size [162] (16 to 30 min for commercial drones), this restricts its operational
range. For example, DJI Mavic Air 2, a quadcopter drone UAV that costs approximately
$800, has only 34 min flight time. Meanwhile, military drones have longer flying times,
but cost millions of dollars. Fixed-wing drones with longer flight hours (120 min), such
as Autel’s Dragonfish [163], cost around $99,000. Hybrid drones such as the SkyFront
Perimeter 8 multirotor can fly up to 5 h [164]. UAV’s flying time is also affected by the
payload it carries; the fewer payloads, UAV will have a longer navigation time.
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UAVs are also limited in their capacity to fly during bad weather. There are commer-
cially available drones that can fly in windy conditions. But this scenario can be extremely
difficult and challenging. One has to undergo a drone training course to make sure that
setups are optimized to fly in difficult conditions, or one has to purchase high-end AUVs
that cost hundreds of thousands of dollars, but many could not afford or might find it not
practical. There are consumer-grade drone models that are available for windy conditions.
The DJI Mavic Pro 2 can handle up to 15 mph though there are claims that it can reach a
wind resistance up to 24 mph. Some commercially available drones can still fly in windy
conditions but cannot withstand a tropical depression or a typhoon with at least sustained
gusts of 30 mph. Although there are many efforts and studies for commercial-grade un-
manned vehicle systems to advance their robustness and adapt to harsh weather conditions,
this vision remains a challenge.

The capability of commercial-grade UVs to perform long-term mission is a challenge
as well. The locations of coastal farms are close to the shore, so the flight time is shorter,
and more time to perform navigation and its assigned mission compared to offshore farms,
which are kilometers from the shore. In the case of offshore farms, if a UV takes off from the
shore, it can no longer maximize its power once it reaches its destination since the battery
is consumed for traveling. Thus, only limited time is available to perform its supposed
function. However, there are many ways to extend and maximize their performance, such
as lower altitude and smaller payloads. Instead of taking off from the shore or land area,
they can take off from the barge. To assist the smart feeding machine for the fish feeding
process, as an example, UV can take off from the barge or ship and does not need to travel
a long distance from the shore. The operator can fly or control the UAV from the barge; it
can return when finished monitoring. With this, there will be more time for the desired or
target mission.

Aquaculture farms need to be visited at least once a day, and this is done during
feeding time. The duration of a UV’s mission depends on the function it must perform.
Performing a water quality will not require some hours since the UV can get a water sample
and perform analysis right away if it is equipped with sensors to measure water quality.
On the other hand, monitoring the feeding activity requires longer hours; large offshore
aquaculture farms have 24 cages where each cage is 100 m (standard size) in terms of the
circumference. For each cage, there is an approximate distance of 5 m away from each other.
To perform feeding in such conditions, it takes around 15 to 20 min to feed one cage, and
24 cages require almost a day of feeding activity. With the amount of time to monitor the
feeding of the fish, one commercial-grade UV is not sufficient since it has limited power.
Thus, multiple vehicles are needed to carry out a complete monitoring mission and data
collection. During harsh weather conditions, fish cages are submerged in the water, and no
fish feeding activity is carried out.

8. Aquaculture Farm Monitoring and Management

Drones are capable of monitoring fish farms in aquaculture, especially on offshore
sites. Its affordability and mobility have allowed for a more open scope and access to
difficult areas to reach and with high risks. The continued mechanization and automation
of farm monitoring using drones, sensors, and artificial intelligence will enable farmers to
inspect their farms, acquire more information needed for decision making, manage and
interact with their farms efficiently. Furthermore, with the rapid growth of the aquaculture
industry, drones will enable the monitoring of the growing farm site. Drones can replace
the supply and demand for laborers and high-cost work in the aquaculture industry, thus
ensuring that the management of the fish farm becomes stable by reducing farm deaths.
To enable monitoring of the growing environment at the aquaculture farm site, using a
drone as an image collection device, an integrated controller for posture stabilization and a
remote device to control drones can capture underwater images in real-time [165].

An aquatic platform [166] composed of USVs and buoys has a self-organizing capabil-
ity performing a mission and path planning in the water environment. This platform can
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communicate with other devices, sense the environment (water or air), and serve as a com-
munication channel using data gateways stations (DTS). The data taken by the USVs and
Buoys using the attached sensors are forwarded to the server to be accessible to aquaculture
workers to improve or maintain the aquaculture performance. Sousa et al. [167] designed
and developed an innovative electric marine ASV (autonomous surface vehicle) with a
simplified sail system controlled by electric actuators. This vehicle is capable of exploration
and patrolling. Aside from reducing cost, since no fuel is required, it will be capable of
endless autonomy, maximizes the limited energy to manage sails using propulsion power
using solar cells and wind generators.

Aerial and underwater drones also have enormous potential to monitor offshore
kelp aquaculture farms. Giant kelps with their same growth rate and versatility make
them an attractive aquaculture crop that requires high-frequency monitoring to ensure
success, maximize production, and optimize its nutritional content and biomass. Regular
monitoring of these offshore farms can use sensors mounted to aerial and underwater
drones. A small unoccupied aircraft system (sUAS) can carry a lightweight optical sensor.
It can then estimate the canopy area, density, and tissue nitrogen content based on time
and space scales, which are significant to observe changes in kelp. To provide a natural
image of the kelp forest canopy, sUAS have sensors such as color, multispectral and
hyperspectral tcameras [168].

An integrated system to count wild scallops based on vision was developed by
Rasmussen et al. [169] to measure population health. Sequential images were collected
using AUV and used convolutional neural networks (CNNs) to process those collected
images for object detection. The images used as a dataset were captured by a downward-
pointing digital camera installed in the nose of the AUV. In the work of Ferraro [170], UAV
was also used to collect color photos and side-scan sonar images of the seafloor to perform
a quantitative estimate of incidental mortality using a precise and non-invasive method for
sea scallops. AUV was also used to capture a reliable image of the seafloor to determine
the density and size of the scallops, thus providing an accurate set of data for site surveys.
It also offers an efficient and productive platform to collect sea scallop images for stock
assessment since it can be quickly deployed and retrieved [171].

Oysters were also detected and counted using ROVs for small-size aquaculture/oyster
farms with robotics and artificial intelligence for monitoring. The ROV’s front is mounted
with a camera and two led lights. The camera feed streams to the remote machine, then used
by the operator to perform underwater navigation. Additionally, the ROV was equipped
with an additional GoPro camera and LED lights to view the seafloor. A graphic user
interface called Qground Control (QGC) was installed to acquire underwater images of
oysters by the ROV. The QGC sends commands to the device and receives the camera and
other sensory information on the ground station machine or remote machine; the ROV can
be controlled manually or automatically controlled. For manual control of the ROV, control
commands are sent to the QGC through a wireless controller [172]. The Argus Mini, an
observation class ROV built for inspection and intervention operations in shallow waters
and can be used in offshore, inshore, and fish farming industries. It is equipped with six
thrusters in which four are placed in the horizontal plane, and two are in the vertical plane
to guarantee actuation in 4 degrees of freedom to resist water surges, sways, heaves, and
yaw. The ROV is equipped with sensors to perform net cage inspection [173].

An underwater drone was developed integrating 360 degrees panoramic camera,
deep learning, and open-source hardware to investigate and observe the environment
such as the sea, aquarium, and lakes for fish recognition in real-time. The drone was also
equipped with Raspberry Pi to compute module with GPU for processing and achieving
real-time panoramic image generation [174]. Other application of UV includes periodic
fish cage inspection [175], fish behavior observation [176], salmon protection [177], and
fish tracking [178]. Table 8 presents the different application of unmanned vehicles for
aquaculture farm monitoring and management.
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Table 8. UVs and its application to aquaculture farm monitoring and management.

Application Type of UV Used Attached Devices/Sensors Reference/s

Oyster detection and counting BlueRobotics BlueROV2 GoPro camera and led lights [172]

Assessment of the population/
stocks of wild scallops

Gavia AUV Downward-pointing digital camera [169]

Telegavia UAV a Point Grey Grasshopper 14S5C/M-C
model with Sony ICZ285AL CCD [170]

Teledyne Gavia AUV
Nose cone camera, GeoSwath phase

measuring bathymetric sonar, Marine Sonic
side-scan sonar)

[171]

Monitoring of the growth
environment at the farm site Customized ROV USB camera based on LIFI [165]

Offshore kelp monitoring DJI Phantom 4 Pro 20 MP (1” CMOS sensor, 84◦ FOV)
color camera [168]

Recognition of fish species Underwater drone
(type not specified)

360-degree panoramic camera with two
235-degree fisheye lenses [174]

Salmon protection Underwater laser drone Stereo camera system [177]

Fish cage inspection BlueROV2 of BlueRobotics Camera [175]

Observation of fish behavior Customized UAV Cameras with power LEDs and water
quality sensors [56]

Fish tracking AggieAir
Visual camera, near-infrared (NIR) camera,

thermal infrared camera, and air
quality sensors

[178]

8.1. Fish Feed Management

The welfare of fish in aquaculture comes from improving standards and quality for
fish production technologies and aquaculture products. The well-being of fish has direct
implications for production and sustainability. Fish under good welfare conditions are
less susceptible to disease, hence, manifest better growth and higher food conversion rate
providing better quality [179]. There are many indicators to assess fish welfare, such as fish
behavior and characteristics.

Many developed technologies can automate processes, such as underwater cameras
to observe fish behavior and characteristics and provide visual observations in fish cages.
However, installation and configuration of underwater cameras are laborious, particularly
in an offshore area. They should be equipped with cables for communication and transmis-
sion and power source for continuous data collection. There are underwater cameras that
are equipped with batteries but can only work for a limited time. For such cameras, it is
necessary for physical installation, and it will be difficult to keep changing and charging
the battery now and then. For underwater cameras with a power source (e.g., solar power),
when the source malfunctions, these devices cannot perform data collection and surveil-
lance. With these limitations, drones become helpful as an alternative or added support for
underwater cameras to provide visual functionalities for fish behaviors and characteristics.

Feeding management in aquaculture is a challenging task since the visibility of the
feeding process is limited, and it is laborious to have a precise measurement. Machine
feeders became available to assist fish farmers in dispensing food. However, such a
mechanism, when not accurately monitored, would lead to food waste and profit loss.
Feeding using pellets that floats above the water should be observed when to discontinue
or continue feeding. In the work of Ubina et al. [26], a drone equipped with an RGB camera
captures the surveillance video of the water surface using optical flows to measure fish
feeding level as shown in Figure 8. The authors conducted various experiments such as the
different altitudes and viewing angles to determine the best visuals and features of the fish
feeding. The images were processed using a deep convolutional neural network to classify
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the different feeding levels. The drone provides a non-invasive way for fish observation,
which is more reliable than human investigations and observations.

Figure 8. Image capture of the drone to evaluate fish feeding intensity using four different feeding
intensity levels and the detected optical flow [26].

For a typical fish feeding to offshore locations, the feeds are transported in a boat
or ship (see Figure 9). Then the pellets are dispensed using machine feeders, creating
an annular feed distribution pattern across the water surface, and covering a limited
percentage of the surface area. As an alternative method to determine the distribution
of the pellets in the water surface, a UAV of Skøien et al. [121] was used to observe and
characterize the motion and measure the spatial distribution of the pellets of the feed
spreaders in sea cage aquaculture where the camera is always perpendicular to the water
surface. The UAV also recorded the pellet surface impacts from the air together with
the position and direction of the spreader. For this work, the UAV is fast with minimal
equipment installation and a viable alternative in collecting pellets which can help farmers
achieve feeding optimization.

Figure 9. The aerial footage using UAV to facilitate optimized feeding using feeders transported
in boats.
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To estimate the spatial distribution of feed pellets in salmon fish cages, a UAV provides
a simple and faster setup, as it covers a large area of the surface of the sea cage. The UAV
captures the aerial videos using a 4K camera from a top-view position of the hamster wheel
in the fish cage during the feeding experiment. The UAV used for this work was DJI Inspire 1
and was positioned above the rotor spreader. But images taken outdoors are challenging,
and it needs immediate adjustment to lighting conditions changes. These difficulties are
induced by the reflection of the clouds on the water surface area and sometimes caused
by slight variations in the camera position. For accurate estimations, the splashes of the
dropping pellets must be identified and extracted to count or measure the splashes relative
to the spreader in the image. A technique was integrated using top-head imaging as a
processing step to extract brighter pixels from the image corresponding to splashes [180].

8.2. Fish Behavior Observation

A bio-interactive (BA-1) AUV monitors fish interactively and can stay in the environ-
ment where the fish resides. It can be swimming together with the fish to monitor their
movements in a pen-free offshore aquaculture system. The vehicle can provide a stimulus
to the fish and observe their behavior caused by stimulation. The UAV was designed to
have hovering and cruising capability with bio-interactive functionality with an LED light-
ing system. It can also operate simultaneously with other BA-1 AUVs as its multiple AUVs
capability feature. The BA-1 is equipped with sensors to perform navigation, collision
avoidance, localization, self-status monitoring, and payload. The device was tested in tanks
and aquaculture pens with sea bream species. Once the fish becomes familiar with the
vehicle, it can come close to the demand feeding system to receive the bait [181] and assist
in the smart feeding process.

A UAV device with GoPro cameras for its video recording tracks monitors the behavior
in space and time of GPS-tagged sunfish. For communication, the vehicle uses Wi-Fi or
GSM/HSDPA. Remotely sensed environmental characteristics were extracted for each
position of sunfish and used as parameters to determine their behavioral patterns [182].
Spatial movements of fish are vital in maintaining fish populations and monitoring their
progress. A multi-AUV state-estimator system helps determine the 3D position of tagged
fish, also its distance and depth measurements. The system is composed of two AUVs with
a torpedo-shaped vehicle. The attached rear propeller in the UAV determines the location,
and the four fins control the pitch, raw, and yaw of the device. It is also equipped with two
processors that communicate with the sensors and actuators [183]. A stereovision AUV
was utilized to assess the size and abundance of ocean perch in temperate water. The AUV
hovers above the target area with a constant altitude of 2 m and with a slow flying speed
above the seafloor as it captures images using a pair of downward-looking Pixelfly HiRes
(1360 × 1024 pixel) digital cameras [184].

8.3. Water Quality and Pollutants Detection and Assessment

Fish are in close contact with water, which is one of the most critical factors for
fish welfare, which requires continuous and close monitoring. Poor water quality can
lead to acute and chronic health and welfare problems, so water quality should be at
optimal levels. Aquaculture is also significantly affected by climate change which results in
changes in abiotic (sea temperature, oxygen level, salinity, and acidity) and biotic conditions
(primary production and food webs) that will significantly cause disturbance in growth
and size [1]. Parameters that reflect water quality [179] include temperature, conductivity,
pH, oxygen concentration, and nitrogenous compounds such as ammonia, nitrate, and
nitrite concentration. Traditional water assessments and predictions collect water samples
and submit them for laboratory inspections, or some have physical-chemical test devices
carried [185]. This method is a burdensome one and requires a physical presence to
conduct water quality assessments. Many aquaculture farms rely on mechanical equipment
to ensure water quality, which includes oxygenation pumps, independent rescue power
systems, and aeration/oxygenation equipment. Although they are helpful, they have
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limitations when installed in open-sea cages or offshore aquaculture sites and require
additional configurations and setup. Drones have become very helpful to perform on-
site water monitoring, sampling, and testing due to their high mobility, reliability, and
flexibility to carry water quality sensors. A combination of UAV and wireless sensor
network (WSN) in the work of Wang et al. [186] was designed for a groundwater quality
parameter and the acquisition of drone spectrum information. Their proposed approach
provides a new mechanism on how remote sensing with UAVs can rapidly monitor water
quality in aquaculture.

An electrochemical sensor array to predict and assess water quality data using the pH
of the water, dissolved oxygen, and ammonia nitrogen is carried by a floating structure
UAV in T shape that can take off and land on the water surface. The sensor bears the
capability of real-time detection and transmits its result to the sever backstage using the
cloud server through a wireless network [185]. Furthermore, catastrophic events such as
spills of hazardous agents (e.g., oil) in the ocean can cause massive damage to aquaculture
products. To detect similar leaks like the fluorescent dye in the water, Powers et al. [187]
used USV by mounting a fluorescence sensor underneath for detection. An unmanned
aircraft system (UAS) visualized the fluorescent dye, and the USV takes samples from
different areas of the dye plume.

Water sample collection based on in situ measurable water quality indicators can
increase the efficiency and precision of collected data. To achieve the goal of preciseness, an
adaptive water sampling device was developed using a UAV with multiple sensors capable
of measuring dissolved oxygen, pH level, electrical conductivity, temperature, and turbidity.
The device was tested using seven locations and was successful in providing water quality
assessment [188]. In addition, in the works of Ore et al. [189], Dunbabin et al. [190] and
Doi et al. [191], UAVs were used to obtain water samples that require less effort and faster
data collection.

An extensive study on how drone technology assists in water sampling to achieve
the goal of biological and physiological chemical data from the water environment can
be found in the work of Lally et al. [192] and was characterized mainly using remote
sensing. Spectral images captured by UAV were also used to assess water quality, such
as algae blooms, to determine the chlorophyll content of the water [193], turbidity, and
colored dissolved organic matter [194]. Other studies also show the use of drones with
attached thermal cameras, such as miniaturized thermal infrared [195], to capture images
for measuring surface water temperature, and environmental contamination [196].

The work of Sibanda et al. [197] shows a systematic review to assess the quality and
quantity of water using UAVs. In Table 9, dissolved oxygen, turbidity, pH level, ammonia
nitrogen, nitrate, water temperature, chlorophyll-a, redox potential, phytoplankton counts,
salinity, colored dissolved organic matter (CDOM), fluorescent dye, and electrical conduc-
tivity were among the collected parameters for water monitoring. Additionally, the DJI
brand of drones is the commonly used commercial type. Some UAVs have sensors specific
to their functions (e.g., dissolve oxygen sensors test dissolve oxygen). Many customized
UAVs were also used to perform a water quality assessment to meet the specific needs of
each work and as an improvement to existing commercial capabilities such as navigation,
strength, and mobility capabilities.
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Table 9. Type of UVs and parameters used for water quality assessment and monitoring.

Measurement
Indicators

Type/Brand of;
UV Used Sensors/Devices Installed Sampling Location Reference/s

Dissolved oxygen

DJI M600 pro k4 multispectrometer camera Inland [186]

Customized Six-rotor UAV Dissolved oxygen sensor Open sea [185]

AUV Tantan Conductivity, temperature,
and depth (CD) sensors Open sea [198]

Customized multi-rotor UAV Sensor nodes, water
sampling cartridge Ponds, lakes [188]

Customized multirotor UAV
with hovercraft Dissolved oxygen sensor Lake [199]

Turbidity

DJI M600 pro k4 multispectrometer camera Inland [186]

AUV Tantan Conductivity, temperature,
and depth (CD) sensors Open sea [198]

Customized multirotor UAV Sensor nodes, water
sampling cartridge Ponds, lakes [188]

Quad-copter (DJI Phantom 2
Vision Plus) and hexa-copter
(DJI Spreading Wings S800

RGB Camera Open sea [170]

Customized multirotor UAV
with hovercraft Turbidity sensor Lake [199]

pH Level

Six-rotor UAV pH nitrogen sensor Open sea [185]

AUV Tantan Conductivity, temperature,
and depth (CD) sensors Open sea [198]

Customized multirotor UAV Sensor nodes, water
sampling cartridge Ponds, lakes [188]

Customized multirotor UAV
with hovercraft pH level sensor Lake [199]

Ammonia nitrogen Six-rotor UAV Ammonia nitrogen sensor Open sea [185]

Customized UAV Ammonia nitrogen sensor Lake [200]

Nitrate Customized AUV “Dorado” Gulper water samples Bay and offshore water [201]

Temperature

UAV Tantan Conductivity, temperature,
and depth (CD) sensors Open sea [198]

DJI Octocopter UAV FLIR T450sc Thermal camera;
Infrared camera Coastal water [202]

Customized multirotor UAV Sensor nodes, water
sampling cartridge Ponds, lakes [188]

Chlorophyll-a

UAV Tantan Conductivity, temperature,
and depth (CD) sensors Open sea [198]

Customized AUV “Dorado” Gulper water samples Bay and offshore water [201]

Remo-M UAV

Sequoia multispectral sensor
with 4 cameras to capture

spectral images (algae
blooms)

Streams [193]

Customized UAV Portable fluorometers Streams [193]

Quad-copter (DJI Phantom 2
Vision Plus) and hexa-copter
(DJI Spreading Wings S800).

RGB Camera Open sea [194]

Redox Potentia UAV Tantan Conductivity, temperature,
and depth (CD) sensors Open sea [198]
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Table 9. Cont.

Measurement
Indicators

Type/Brand of ;
UV Used Sensors/Devices Installed Sampling Location Reference/s

Phytoplankton counts Customized AUV “Dorado” Gulper water sampler Bay and offshore water [201]

Salinity
DJI Octocopter UAV FLIR T450sc Thermal camera

and infrared camera Coastal water [202]

DJI Phantom 3 Professional
UAV

MicaSense RedEdge-M
multispectral camera

Lagoon ;
(Shallow water) [203]

Colored dissolved
organic matter

(CDOM)

Quad-copter (DJI Phantom 2
Vision Plus) and hexa-copter
(DJI Spreading Wings S800

RGB Camera Open sea [194]

Fluorescent dye

Clearpath Robotics
Kingfisher M200 USV (dye
detection and tracking) and

DJI Phantom UAV
(image capture)

Fluorometer
(fluorescence sensor) Freshwater lake [187]

Electrical conductivity
Customized multirotor UAV Sensor nodes, water

sampling cartridge Ponds, lake [188]

Customized multi-rotor UAV
with hovercraft Electrical conductivity sensor Lake [199]

8.4. Water Quality Condition

Aquaculture farms have raised environmental concerns, and an increase in aquaculture
production will pose a huge environmental challenge. Climate change is considered a
threat to aquaculture production [21]. Sea-level rise, frequent and extreme weather (e.g.,
winds and storms) events are also projected to increase in the future [1]. For sustainable
growth in aquaculture production, it is necessary to adapt to climate to produce more fish,
and environmental impacts could not affect its operations.

UVs are commonly applied for image acquisition in the field of geophysical science
to generate high-resolution maps. There is an increasing demand for high-performance
geophysical observational methodologies, and UV technology combined with optical
sensing to quantify the character of water surface flows is a possibility. Water surface
flow affects the growth and health of aquaculture products with its environmental impacts
from sea lice, escaped fish, and release of toxic chemicals and organic emissions to the
water area [204]. It is also essential for farming fish in cages for replenishment of oxygen
and removal of organic waste [156]. Water velocity also has a profound impact on fish
metabolism, growth, behavior, and welfare. A higher velocity can boost the growth of
farmed fish. In the work of Li et al. [205], it determines the protein content of the fish muscle
using moderate swimming exercise. Using moderate water velocity exhibited a higher
level of the protein content of the fish muscle. The growth performance of Atlantic salmon
was also monitored using lower salinity and higher water velocity with positive effects
on the growth of the salmon [98]. Another positive influence of higher velocity on fish
welfare is in the work of Tauro et al. [204], where improvements of flesh texture, general
robustness, and lower aggression lead to a reduced stress response. On the other hand,
very high velocities increase oxygen need and anaerobic metabolism and cause exhaustion,
reduced growth, and affect fish welfare. Moreover, excessive current flow causes the fish to
excessively use its energy in swimming. Outrageous waves in an offshore environment, on
the other hand, damages cage structures and moorings and can cause fish injury. A severe
wave condition can be a hazardous situation and can cause an interruption in the routines
or operations of farmers [156].

With the mentioned importance of measuring water surface flow and velocity for fish
growth, drones can be integrated to perform such functions. Flying drones [204] were
used to observe the water environment to produce accurate surface flow maps of submeter
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water bodies. This aerial platform enables complete remote measurements for on-site
surveys. To measure the water velocities that integrate UVs, the work of Detertm and
Weitbrecht [99] shows its effectivity to perform such function. A technique on how a drone
can retrieve a two-dimensional wavenumber spectrum of sea waves from sun glitter images
was proposed by [206], which shows the potential of the drone to investigate the surface
wave field. Airborne drones were compared with satellite images to determine the state
of the sea in the ocean and the dynamics of the coastal areas. Optical technologies that
use spatial resolution optical images derive anomalies in the elevation of the water surface
induced by wind-generated ocean waves [207].

In Table 10, UVs are equipped with cameras to collect data from the water environ-
ment. The majority of UV used are the commercial DJI Phantom, which is famous for its
affordability and is sought-after but is reported to have a small amount of image distortion
that can affect the images. According to Streßer et al. [208] and Fairleyet al. [209], some
fixes were made with the gimbal pitch to make it independent of the aircraft’s motion.

Table 10. Application of UVs to perform water condition monitoring.

Application Type of UV Used Attached Sensors/;
Devices Environment Reference/s

Surface flow/current
measurement

DJI Phantom 2 quadrotor Zenmuse H3-2D gimbal and a
GoPro Hero 3 camera Open sea [204]

DJI Phantom III Professional Self-stabilizing camera gimbal River [208]

DJI Phantom 3 Professional Brushless gimbal and
4K video camera River [210]

Custom-built unmanned
aerial platform

Lightweight camera gimbal;
GoPro Hero 3

Water tunnel and
water stream [211]

AscTec Falcon 8 Sony NEX-5N River [212]
Custom built

torpedo-shaped AUV Pressure sensors Sea [213]

Measurement of
large-scale surface

velocity fields
DJI Phantom FC40 4K GoPro Hero 3+ Black

Edition camera River [99]

Speed of wave crest DJI Phantom 2 Vision+ Camera Coast [214]

Derive spatial and
dynamic characteristics

of waves.
DJI Mavic Pro Acoustic Doppler Current Profiler Coast [207]

Surface flow observation DJI Phantom 2
H3-2D gimbal, a GoPro Hero 3
camera, and a system of four

green lasers
Stream [215]

Field measurements of
tidal elevation (water

depth), wave spectrum,
wave height, and

wave period

DJI, S1000 Scanning lidar (Hokuyo,
UTM-30LX Coast [216]

Monitoring the
topography of a dynamic

tidal inlet
eBee flying wing Canon Powershot ELPH110 HS

RGB camera Coast [217]

Velocities of tidal streams DJI M210v2 RTK Zenmuse X7 lens Tidal stream [209]

Water surface detection
and cleaning Customized multi-function USV OmniVision Image Sensor; Pixy

CMUcam5 Shallow lake [213]

Flow velocity
and direction ATOMIC 792–4 p USB Camera River [218]

Surface gravity waves Wave Glider Float MicroStrain GPS + AHRS Bay [219]

Surface meteorology and
wind power density

Wave Glider—American Liquid
Robotics

Oceanographic
sensors Offshore-Ocean [220]

9. Legal Regulations and Requirements for Unmanned Vehicle Systems

Potential users of unmanned vehicle systems, especially unmanned aerial systems
(UAS), should be aware of the current and proposed regulations to understand their
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potential impacts and restrictions. The permitted sites for UAS should be first determined;
flight restrictions for UAS in the offshore locations of aquaculture sites should be within
the allowable time of the day. One of the challenges to consider when using UAS is that
regulations are not fully established and are currently changing. The user must always
check the updated rules in advance [54] of the scheduled flight or mission.

9.1. Standards and Certifications

New policies and regulations for UAS must be planned and implemented to ensure
there is a safe, reliable, and efficient use of the vehicles. Developing standards is one of the
most crucial issues for UAS since UAVs should be interoperable with the existing systems.
In managing the electromagnetic spectrum and bandwidth, it is critical of UAVs not to
be operating in crowded frequency and bandwidth spectrum. It is also essential to be
aware of the published standardization agreements by NATO for UAVs. This standard
defines the standard message formats and data protocols. It provides a standard interface
between UAVs and ground coalitions. It also represents the coalition-shared database that
allows information sharing between intelligent sources. In the US, the Federal Aviation
Administration (FAA) has provided certification for remote pilots, including commercial
operators [221]. UAVs used for public operations should have a certificate from the FAA;
operators must comply with all federal and laws, rules, and regulations of each area, state
or country [222].

9.2. Regulations and Legal Issues

In Canada, drones weighing from 250 g to 25 kg must be registered with Transport
Canada, and pilots must have a drone pilot certificate. Pilots must mark their drones with
their registration number before flying and drones should be seen at all times. While flying,
they should be below 122 m in the air. The places where drones are prohibited to fly include
5.6 km from airports or 1.9 km from heliports. In the US, each state has its respective laws
and regulatory requirements. In Taiwan, drones are prohibited to fly in sensitive areas such
as government or military installations. Drone flights are permitted only within a visual
line of sight and are limited to daylight hours between sunrise and sunset without prior
authorization. A drone operator permit is required if the drone weighs more than 2 kg. In
Germany, drones weighing more than 5 kg should obtain authorization from the aviation
authority. When applying for permission, a map indicating the launch area and operating
space, consent declaration from the property owner, timing, technical details about the
UAS, data privacy statement, and a letter of no objection from the competent regulatory or
law enforcement agency [223].

UAV regulations and policies of different countries have some common ground.
However, they still differ in many aspects in terms of requirements and implementation.
When used for a specific purpose, according to Demir et al. [222], aviation regulations
determine the rules for the AUV minimum flight requirements. In most countries, UAVs
are used in separate airspace zones. National regulations are also laid out to ensure safe
operations of different UAVs in their respective national airspaces.

The operation requirements for unmanned maritime vehicles are also not yet clearly
defined and regulated in terms of current domestic law or international conventions. There
is no definite legal framework exists to regulate its use since permits and licenses are
required based on a few narrow circumstances. The growing population and popularity of
unmanned vehicles do not indicate causing danger to the oceans, in the future, but with is
a possibility of potential implications of their widespread. Although there are regulatory
gaps, there are options available to obtain permission for AUV operations to make the
ocean a safer place for humans and animals [224]. Additionally, due to the varied types of
AUV and their wide range of applications, it is also challenging to know their respective
legal status for different operations, as their regulations vary significantly [225]. Operators
should be aware of the prohibitions of such vehicles to avoid future problems or legal
implications of their actions. The moral and ethical use of unmanned systems should also
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be considered by potential users to ensure that UAVs do not participate in illegal activities
or morally doubtful operations.

10. Challenges and Future Trends

Unmanned systems have shown significant contributions to aquaculture management
and monitoring to attain precision aquaculture. Table 11 shows the different functional-
ities identified in this paper with their strengths and limitations. However, despite all
the functionalities, unmanned systems still have drawbacks and shortcomings and how
improvements and modifications can be made to improve their performance.

Table 11. Application of drones to aquaculture management and monitoring to achieve precise
aquaculture with its corresponding advantages and disadvantages.

Application to
Aquaculture Advantages Disadvantages

1. Communication gateway and
data collector

n Provide wireless communication to IoT
devices installed in the aquaculture cage in
remote and high-risk areas.

n Less expensive than manned aircrafts in
collecting data.

n Can now provide wide coverage area using
LPWAN devices.

n High volume of data can be collected

n Limited power and energy source.
n Limited navigation time.

Aquaculture site surveillance and monitoring

a. Remote sensing
n Less atmospheric interference for remote

sensing applications than satellite images
n High spatial resolution for airborne image

captures

n Limited payload and capacity and difficulty in
processing large data sets such as
high-definition videos.

n Limited capacity in terms of memory,
processor, and energy.

n Trade-off between additional payload and
navigation time.

n Limited under undesirable weather conditions

b. Site surveillance
n Provides safe and effective alternative to

humans to conduct surveillance
n Bigger coverage area

2. Aquaculture farm management and monitoring

a. Fish feeding management n Can be integrated with cloud computing for
live monitoring.

n Noninvasive and noncontact method
of observation.

n Can replace humans and is accessible by
remote monitoring.

n Eliminates the cable requirement used by
underwater cameras installed in fish cages
for communication.

n Small-sized images are captured, which makes
it difficult to detect objects as compared to
underwater cameras when a drone is used to
capture images.

n Requires more stable and predictable weather
for efficient monitoring results.

n Determine the sufficient altitude to capture
small images.

b. Fish behavior observation

c. Water quality and pollutants
detection and assessment

n Remote sample collection, assessment and
monitoring of water quality.

n Does not require samples to be tested
in laboratories.

n Provide a real-time result.
n Spectral images can be evaluated

water quality.
n UAVs with hovercraft can glide on water

surface to gather water samples.

n Images captured by drones is affected by
weather conditions such as sun glint, wind
speed, and clouds.

n Glint, foam and shadows could be evident in
the images; need to consider suitable weather
condition in capturing images.

n Does not cover varied sampling capabilities.

d. Water condition
n Provides complete remote surveys.
n Can yield accurate surface flow maps of

the water.
n Low-cost data collection method.

n Camera shakes affects the distortion of images.
n Drones are limited by their physical instability

which indices motion.
n The captured images can be affected by

weather conditions.

UAVs utilized for wireless perspective can act as a base station in the cellular network
providing communication links to terrestrial users or functioning as a relay in a wireless
communication network. However, drones for wireless sensor networks have low trans-
mission power, and many may not wirelessly communicate for a longer range or duration.
There are technical challenges of providing a communication link between sensor nodes
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and drones, such as network planning, sensor positioning, drone battery limitations, and
trajectory optimization. With those challenges, there is a need to optimize the drone flight
path planning based on the locations of the sensors to minimize flight time and overcome
battery limitations [101]. To optimize path planning capability, algorithms such as the trav-
eling salesman problem, A Star (A*) algorithm [226], Dijkstra algorithm [226], and modified
and improved Dijkstra algorithm [227,228] could be utilized. Optimizing the drone’s flight
capability would reduce cost, faster execution of missions, and increase navigation time,
so there is a need to improve existing path planning algorithms to optimize the drone’s
navigation time.

To increase the battery life, the installation of more batteries may be a solution. How-
ever, such a remedy will increase the weight of the aircraft [58]; UAVs are designed to be
lightweight for efficiency, so they operate longer and can cover a wider area. Adding a
load to the drone can affect its weight shifting or create a disproportion of its structure. To
increase UAV navigation time and for prolonged flight endurance, solar-powered aircraft
can also be considered. With solar-powered batteries, there is no need to charge and refuel.
This scheme reduces drone operational costs, but heavy and bulky solar panels to collect
solar energies are not feasible for drones. In addressing such limitations, there are already
available next-generation solar panels that are flexible, thin, and lightweight called gallium
arsenide (GaAs) solar cells, which are highly efficient solar cells [229]. In the future, we
can see more developments of power-solar drones using next-generation solar panels. In
maximizing UAV’s potential, using low-cost components can be considered; programmable
microprocessors can connect the solar power source and a battery power source. In addi-
tion, there should be more investigation on auto-pilot settings such as airspeed, altitude,
and turning radius to optimize flight endurance [230].

A docking station for drones as future development enables these vehicles of auto-
mated inductive charging of batteries at sea level. This station has a very narrow depth
within the fish cage that will act as a power supply and data up-loading/transfer from the
AUVG to the external servers for data processing. Once completed a mission or when the
battery level becomes critical, the AUV will be directed to the docking station. Without
any physical malfunctions, drones can permanently reside in fish cages and provide near
real-time information on the condition of aquaculture farms [153].

Satellite images have the widest coverage compared to drone-captured but with the
lowest quality and resolution. Although satellite images are best for mapping, they are
strongly affected by clouds and fogs. AUVs provide image captures with better resolution
and image quality for aquaculture site surveillance and monitoring. Many drones perform
in situ surveillance, but they are lightweight and small with limited computational re-
sources. Integrating AI and deep learning techniques could be computationally demanding
and increase the drone’s power consumption. It escalates its capacity for processing, the
required analysis shifts to the cloud for processing, and the drone now becomes a 24-h
surveillance system [231] with an increase in navigation time [232] and functionality [233].
Now that the high-volume data processing is eliminated, the drone can promptly collect a
high volume of data in just a few hours.

For UAVs with attached camera sensors used as image capture devices, there are prob-
lems with the quality of the detected images. Raw captured images have low contrast [169],
and small image size, which requires a post-processing procedure to improve image quality.
One of the challenges of drone captures is weather conditions, where image capture is
under suboptimal conditions, are highly variable, and is hard to predict. The sunglint
effect also affects the water surface. Image enhancement and corrections are needed to
improve the image quality and reduce noise [154]. Each image captured based on its
specific function can employ explicit techniques to address a particular issue. For example,
to solve the limitations of detecting objects, such as scallops, post-processing techniques
specifically for small-sized images could be integrated. Despite the availability of image
enhancement algorithms, underwater captured images continue to be a big challenge since
they suffer from low contrast, low visibility, and blurriness due to light attenuation [234].
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Water surface environments are active, and they continue to move, shrink, expand, or
change their appearance with time [235]. Addressing these difficulties could employ and
combine various techniques to process both underwater and above-water images. Each
sensor type (e.g., sonar, stereo camera) also requires different processing techniques, which
adds challenges to image enhancement integration. The use of sonar cameras depends
on the wavelength of sounds, and the images generated are low contrast, and objects are
blurred. For stereo camera systems, adjustments such as camera calibration are necessary.
The use of deep learning is a well-proven technique to improve the image quality of surface
water and underwater images to achieve a high precision rate. In practice, underwater
video cameras are the most affordable data collector and highest quality and resolution for
underwater surveillance, but they are difficult to install and configure.

There are many challenges in using unmanned systems to capture water movements
to measure water velocity, such as camera shakes that affect the distortions of images or
videos taken [99]. Physical instability of UAV induces motion in acquired videos that
can significantly affect the accuracy of camera-based measurements, such as velocimetry.
There are data-processing techniques or methods to deal with drone instability. The digital
image stabilization (DIS) method uses the visual information of the videos in the form of
physically static features to estimate and then compensate for such motions. In the work of
Ljubičić et al. [236], seven tools were carefully investigated in terms of stabilization accuracy
under various conditions, robustness, computational complexity, and user experience.
Future work should aim to provide stability to aerial devices. Sensors carried by drones to
perform meteorological surveillance combined with IoT, artificial intelligence, and cloud
technology connected through a mobile communication channel provide optimal impact to
the aquaculture industry, making it more sustainable and profitable.

One of the challenges of unmanned systems is to withstand typhoons with strong
winds, heavy rains, and other calamities to increase their autonomous capabilities. Un-
manned underwater vehicles (UUVs) should operate in harsh environments under high
ocean currents and heavy hydraulic pressure; their navigation and maneuverability can
still be strongly affected by oceans and water density [71]. Commercial graded are low-cost
UAVs but are limited since their design is for operation in a stable or controlled environ-
ment. Commercially graded UAVs are low-cost in terms of acquisition, but only a few are
with the capability to operate in such conditions. One of the few claims that their product
is capable of such bad weather conditions is bbcom secure Deutschland GmbH [237], a
company based in Germany. The company designed the unmanned aerial system (UAS) to
be easy to use with low operating cost and capable of real-time video up to 17 sea miles
away from the shore with 4 h of safe flying operation time even in harsh weather conditions.
It is also capable of a maximum speed of 90 mph and can perform vertical take-off and
landing and remote control with easy handling.

In the work of Elkolali et al. [238], a low-cost and solar-powered USV was designed
for water quality monitoring that can operate in conditions that are dangerous and risky
for human safety. However, adverse weather and water conditions such as rain and
extreme wind or rough and choppy water can strongly affect USV’s mission results and
operations. Many business solutions are offering specialized packages combining high-
quality unmanned vehicles and customized software applications for aquaculture farm and
water monitoring. Blueye [239] has a complete package including underwater drones and
software to perform aquaculture monitoring to reduce the risk and minimize the use of
divers to inspect aquaculture cages. The mini ROV has four powerful thrusters combined
with a unique hull design to perform high-quality underwater inspections in tough weather
conditions where very few ROVs are capable of doing it safely. Saildrone [220] developed a
USV that is a capable, proven, and trusted platform for collecting high-quality ocean data
for a wide variety of applications with uncrewed wind-powered vehicles using renewable
energy, wind, and solar. Their vehicles are equipped with state-of-the-art sensors for data
collection, and they can cover more than 500,000 nautical miles in the most extreme weather
conditions. Deep Trekker’s ROV is battery operated and ensures no contamination to the
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environment or fish health. It was tested in several locations where ROVs faced extreme
weather and sea conditions daily. Water samples can still be collected under the ice at
various depths [240]. FIFISH PRO W6, an industrialized class ROV platform, is equipped
with an all-new powerful and patented Q-Motor system, a depth of 350 m of dive, with an
intelligent stabilization system against strong currents [241].

11. Conclusions

This paper assesses progress and identifies opportunities and challenges of utilizing
unmanned systems to manage and monitor aquaculture farms. The different capabilities of
drones were identified as a communication gateway and data collector, aquaculture site
surveillance, and aquaculture farm management and monitoring. Some of the challenges
for offshore aquaculture site management and monitoring were also part of this paper. The
utilization of technological innovation using unmanned vehicle systems addressed these
difficulties to achieve the goal of precision aquaculture.

We also presented three platforms for unmanned vehicles with corresponding func-
tions and limitations. UAS or UAVs are best suited for aerial surveys, site surveillance,
monitoring and inspection, and photogrammetric surveys. However, there were also some
UAVs for water observation, such as the surface flow map. Unmanned vehicles equipped
with LTE cellular networks and LPWAN technologies can act as a communication gateway
and IoT data collector. Fairweather condition is a requirement for surveys and inspections.
Most AUVs have difficulties operating in a strong wind environment, and many cannot
fly during harsh weather conditions. AUVs capable to operate in such condition is very
expensive and highly complicated as it also requires government certifications and formal
training for operation.

AUVs, ROVs, and USVs equipped with sensors can collect data for analysis using wa-
ter temperature, depth level, chemical, biological, and physical properties. Some relevant
parameters to monitor water quality are temperature, oxygen level, salinity, acidity, con-
ductivity, pH level, oxygen concentration, and nitrogenous compounds such as ammonia,
nitrate, and nitrite concentration. USVs are widely utilized to monitor water conditions
such as surface flow and velocity measurement. DJI Phantom commercial unmanned sys-
tem is the most preferred type based on the collected works of literature. There were also
some customized unmanned systems. The common sensors used for UAVs are acoustic
cameras but there are also some vehicles equipped with thermal cameras. To provide
motion stability for data capturing using cameras, gimbal pitch can be added although this
concern should be further investigated to provide better stability, most especially for AUVs.
For water velocity captures, camera shakes are evident that causes distortions to images.
The capacity to operate despite a strong water current or pressure should be fully consid-
ered in selecting an underwater vehicle. There are AUVs and ROVs that were designed for
this condition, but it comes with a higher price. Others might consider choosing low-cost
vehicles with fewer capabilities and strengths for economic considerations. Furthermore,
UAVs are more sensitive to unpredictable weather conditions such as strong winds and
rains since they operate in the air.

Many unmanned system performances have limitations in terms of power or battery,
which affects the mission or operation due to longer navigation time and slower mission
execution. Many countermeasures were devised to optimize the navigation time of UVs.
Some integrate flight path planning to reduce flight time, sensor positioning, and trajectory
optimizations. There are also solar-powered UVs with efficient solar cells for an increased
power source for longer navigation coverage. Multiple drones could also be used during
surveillance to address the drone’s limitations in terms of navigation time. To correct image
blurriness, low contrast, low visibility, and small-sized captures, image enhancement,
and corrections to improve quality and reduce noise; deep learning and computer vision
techniques and algorithms are capable of such functions.

There is no unmanned system capable of performing all aquaculture operations and
functions. These systems can collaborate to perform complex tasks to increase robust-
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ness and efficiency. Collaboration of heterogeneous vehicles can achieve larger scale and
comprehensive monitoring. Despite many open issues for such kind of collaboration, the
possibility of exploring its capability can help achieve high performance, adaptability,
flexibility, and fault tolerance.

Different sensors were also presented, including their corresponding characteristics
and limitations. Sensors are also susceptible to harsh weather conditions. For AUVs, sensors
are affected by winds, waves, sea fog, and water reflection. There are various restoration
methods in dealing with these concerns, such as incorporating image stabilization or
image defogging. For water quality sensors, factors to consider in its integration can be
low maintenance, low cost, low battery consumption, robust, waterproof, non-metallic,
resistant to biofouling, and have no effects on organisms. The possibility of sensor fusion
can be exploited to take advantage of UVs potentials and achieve higher precision.

Practicing awareness and continuous updates on the regulations must be practiced to
avoid the legal implications of not following the law. The standardized policies for UVs
operations are still not mature since regulations are different in each country although there
are some common grounds. The wide range and varied types of UVs and their applications
is an added challenge that requires operators and owners to be aware of the legal status and
regulations of each operation. With a various and wide range of commercially available
UVs in the market, compromise and trade-offs between the type of vehicle, installed
sensors, power, manpower requirement, and cost are for the user’s decision to weigh how
to achieve maximum performance and potential based on their corresponding functions. To
maximize the potential of a UV, each type should be maximized based on its strength and
capabilities. There is no single unmanned system that can perform all the desired functions
at once for aquaculture management and monitoring. Thus, each type can collaborate to
achieve a bigger coverage for aquaculture monitoring and management. The integration of
unmanned systems can be exploited to serve as a cutting-edge technology to provide robust,
timely, efficient, reliable, and sustainable aquaculture. As these systems integrate more
and more technologies, they can extend their functionalities to perform more capability
for aquaculture production. UVs can be combined with sensors and robotics with artificial
intelligence and deep learning techniques to process big data.

Unmanned systems are already widely used in fisheries science and marine conserva-
tion, such as megafauna, but the literature and research work on the application of such
system in aquaculture can still be further explored to achieve maturity; more undertakings
should be made for successful integration of such systems in the field of aquaculture. Al-
though there were successful implementations that were stated in this work, state-of-the-art
technologies and devices should continue for unmanned systems to provide better and
more powerful aquaculture precision farming functionalities.
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