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Abstract.

Mental-Tasks based Brain-Computer Interfaces (MT-BCIs) allow their users
to interact with an external device solely by using brain signals produced through
mental tasks. While MT-BCIs are promising for many applications, they are
still barely used outside laboratories due to their lack of reliability. MT-BCIs
require their users to develop the ability to self-regulate specific brain signals.
However, the human learning process to control a BCI is still relatively poorly
understood and how to optimally train this ability is currently under investigation.
Despite their promises and achievements, traditional training programs have been
shown to be sub-optimal and could be further improved. In order to optimize
user training and improve BCI performance, human factors should be taken into
account. An interdisciplinary approach should be adopted to provide learners with
appropriate and/or adaptive training. In this article, we provide an overview of
existing methods for MT-BCI user training - notably in terms of environment,
instructions, feedback and exercises. We present a categorization and taxonomy
of these training approaches, provide guidelines on how to choose the best methods
and identify open challenges and perspectives to further improve MT-BCI user
training.

Keywords: Brain-Computer Interfaces (BCI), Electroencephalography (EEG), mental
imagery, mental task, feedback, training tasks, instructions, learning, user.



A Review of User Training Methods in Brain Computer Interfaces based on Mental Tasks 2

1. Introduction

Brain-computer interfaces (BCIs), also referred to as
neural interfaces or brain-machine interfaces (BMIs),
enable a direct communication pathway between
one’s brain and an external device [127, 194, 250].
Non-invasive BCIs based on electroencephalography
(EEG) [9, 224] have proven promising for numerous
applications [250], ranging from rehabilitation (e.g.
motor rehabilitation after a stroke) [238] and assistive
technologies (e.g. communication or smart wheelchair
control) [75, 127, 128, 192] to non-medical applications
(e.g. video games) [73, 112, 125].

EEG-based BCIs can rely on a variety of neural
mechanisms. One of the most common active
BCI paradigms [218] measures the Event Related
De/Synchronization (ERD/ERS) of oscillatory EEG
activity [10, 16, 46, 48, 50] generated during the
performance of cognitive tasks [26]. BCIs based on this
paradigm have sometimes been referred to as Mental
Imagery-based BCIs. Here, we will rather use the
term Mental Task (MT-)based BCIs as some of these
tasks may not always involve imagery. To control MT-
BCIs, users are instructed to perform MTs such as, for
instance, mental rotation (e.g. of 3D shapes), mental
calculation [79] or Motor Imagery (MI) [17, 29, 42].
The latter consists in mentally rehearsing movements
without performing them [116].

While promising, MT-BCIs are not reliable
enough yet for being used in real-world applications,
outside laboratories. Indeed, the decoding of users’
mental commands is subject to high error rates [87,
89]. Moreover, it is estimated (based on experiments
performed mainly on healthy naive participants with
current standard training protocols) that 10 to 30% of
BCI users would not be able to control current MT-
BCI applications at all [32, 87, 89, 165]. The literature
often refers to these unsuccessful interactions as BCI
deficiency, BCI inefficiency, or “illiteracy” [59, 89, 111,
136] - although labeling users this way erroneously
suggest that the problem necessarily comes from them
[259].

In order to increase MT-BCI reliability, BCI
researchers have dedicated a lot of efforts to the
improvement of both hardware (e.g. sensors) and
software (e.g. signal processing algorithms) solutions.
It has led to the broad adoption of machine
learning approaches [44, 71, 244] which rely on a
decoder/classifier “trained” on user data collected

beforehand and/or over the course of the training for
co-adaptive MT-BCIs [51, 53, 63, 82]. The use of
such classifiers has enabled BCI researchers to shorten
the user training duration compared to the first MT-
BCIs where users had to adapt themselves to a fixed
system [7, 9, 21, 23] through a trial-and-error operand
conditioning approach [1].

Although these efforts reduced the time required
to achieve a given classification accuracy, they may not
be sufficient to enable MT-BCIs to be used in practice.
Extensive studies dedicated to the decoding of BCI
commands from EEG signals may have overshadowed
the importance of user training, whose purpose is to
enable users to develop or improve their BCI control
skills. Indeed, the efficiency of MT-BCIs inherently
depends on the users’ ability to successfully encode
mental commands into their brain signals. In other
words, it relies on the users’ ability to produce EEG
patterns which are stable each time they intend to
send one same command, and distinct between the
different mental commands [193]. If the user cannot
produce distinct EEG patterns, then no machine
learning algorithm would be able to detect them.
Stability, on the other hand, seems essential for mental
commands to be efficiently decoded by current systems,
although the need for completely stable patterns may
be overtaken by future decoding algorithms (e.g. by
considering past and present brain states).

As human learning appears very relevant for BCI
reliability, there is a growing interest in user training.
Improving user training, and thereby MT-BCI relia-
bility, requires understanding the cognitive and neuro-
physiological processes underlying this ability to effi-
ciently encode mental commands through the perfor-
mance of MTs, i.e. to produce stable and distinct EEG
patterns. In addition, it also requires understanding
the human-computer interaction processes involved in
training procedures, and their influence on users’ per-
formances and processes underlying learning. Studying
MT-BCI user training is crucial to better apprehend
the extent to which MT-BCI users can learn when and
how to modify their MT strategy, and thereby their
brain patterns, so that their mental commands are rec-
ognized as well as possible by the system.

Efforts have already been made to investigate
these various aspects and to summarize the advances
on the topic, notably in an introductory paper on MT-
BCI human learning [199] and in a short review specif-
ically addressing motor imagery [236]. The present
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paper aims to provide a broader, comprehensive re-
view of the MT-BCI training procedures which have
been reported in the literature. The efficiency of these
procedures is described as reported in the papers, and
analysed based on learning models from the fields of
psychology and instructional design in order to pro-
vide recommendations for the design of future training
procedures.

This paper is organized as follows. First, Section
2 sets the background by presenting a framework
of MT-BCI user training and by addressing the
existing models related to the MT-BCI user learning
process which led to this framework. Based on
this framework, the review is afterwards organized
in the major components of MT-BCI user training,
namely: environment (Section 3), instructions (Section
4), feedback (Section 5), and training exercises (Section
6). Finally, we provide a summary of the guidelines and
open challenges in this field of research in Section 7,
some perspectives in Section 8 and conclude the paper
in Section 9.

2. Learning to control MT-BCIs

In this first part, the framework used to organize this
review is presented. Then, we discuss the existing
models related to MT-BCI user learning and MT-
BCI training procedures. Discussing these models and
theories is fundamental in order to contextualize the
components of BCI training in relation to user learning.

2.1. A Framework to study BCI user training

We provide a general framework and taxonomy
to summarize and compare existing BCI training
methods, as well as to identify gaps in the existing
literature.

In the framework introduced in Figure 1, the
MT-BCI training program is structurally represented
through different nested stages related to the time
period, i.e. sessions, runs, and trials. BCI training
is composed of one or more sessions that are composed
of runs, which are themselves a sequence of trials.

Sessions refer to specific training days with a
given BCI setup (e.g. sensors’ type, location, number).
For example, [252] reported 35 training sessions over
seven months, approximately twice a week, to train
a competitor for the BCI Cybathlon race. Each run
is a sequence of trials. Here, the term trial refers
to a defined time window associated with one specific
command, during which the user should perform an
MT. The MT execution can be, for a synchronous
training sequence, preceded by a cue, i.e. a stimulus at
the beginning of a trial associated with the expected
command.

In a given MT-BCI training procedure, we
identified four main components that define this
training: environment, instructions, feedback and
training exercises.

The environment refers to the context in which
training takes place, e.g. with the user alone or with
other BCI trainees, in the lab or out-of-the-lab. The
instructions refer to information provided to BCI users
to explain them about how to use the BCI and about
the tasks to be performed. For instance users can be
instructed to perform visual or kinesthetics MI. The
feedback refers to how users are informed about how
well they can control the MT-BCI. For instance, users
can receive either a continuous visual feedback (e.g.
using a visual gauge) or a discrete tactile feedback
(e.g. a vibration on the hand) to inform them about
which MT was recognized by the BCI. Finally, MT-
BCI training exercises refer to what MT-BCI users
are expected to do, i.e. what control skill they should
practice, and how to practice it. For instance, a given
training exercise can consist in having users practice
left hand MI versus rest, in a synchronous way, whereas
another exercise would have them practice left hand
versus right hand MI together, in a self-paced way, to
control a specific application. Exercises can vary across
trials, runs or sessions.

In the remainder of this paper, we will review
existing MT-BCI user training works along these four
main components.

2.2. Learning involved

Unfortunately, while studied for a long time [21, 31],
the cognitive processes underlying the ability to learn
to self-regulate specific brain patterns, and thereby
to learn to control an MT-BCI, are not yet fully
understood [201, 231].

This learning process is still unclear and improve-
ments in BCI performance over time are not always
observed in recent MT-BCI experimental studies with
few sessions [95]. However, it is widely acknowledged
that the ability to use an MT-BCI is a skill involv-
ing learning [31, 35, 83, 86, 114, 248, 252, 270] and
thus that it seems to require deliberate practice, i.e.
users intentionally engaging their efforts in structured
activities/tasks in order to improve their level of per-
formance in a specific domain [11]. Indeed, it seems
that the more MT-BCI users practice, the better they
can master the system through the self-regulation of
specific brain patterns [161]. This was demonstrated
in the competitive training described in [252] where
statistically significant differences are shown in mean
command accuracy between the first and last sessions
(from 53.8% to 93.8% and from 81.9% to 96.8% for
both pilots respectively).

In MT-BCI user-training programs, the goal
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Figure 1. A representation of a taxonomy of MT-BCI control training construction, according to the time scale of each component
(training, sessions, runs, trials). Based on this framework, we afterwards present a review of the major components of MT-BCI user
training, namely : environment (Section 3), instructions (Section 4), feedback (Section 5), and training exercises (Section 6).

is to provide the user with the opportunity to
practice through the use of a neurofeedback, i.e.
a feedback representing the modulations of one’s
brain activity. User learning can be reinforced using
various behavioral learning paradigms such as operant
conditioning [1].

To better understand and describe it, the BCI
learning process can be related to learning processes of
other complex cognitive tasks in other fields with which
it seems to share similarities such as verbal learning
[210, 231] or motor learning [117, 142, 231]. Hammer
et al suggested to bring together elements from operant
identification of a latent strategy and motor learning
[117] using Lacroix’s dual process theory [6]. As it
is extensively described by Wood et al [161], learning
self control of brain activity might not only involve
automatic processes. Thus, dual-process models might
be a good framework to describe BCI learning. In
dual process theory [6], type I (non-conscious, e.g.
demonstrated in [134]) processes are supplemented by
type II processes (controlled processes), i.e. regulated
self-instruction which relies on metacognitive abilities.
In this framework, users’ conscious efforts (declarative
knowledge, motivational processes) are part of BCI
learning.

These comparisons might not be perfectly accu-
rate since, in contrast to learning situations such as
motor learning, BCI learners do not usually get exam-
ples nor corrections of a properly executed mental task.
In addition, they do not perceive any internal feed-
back (e.g. visual, auditory, proprioceptive, etc.) [120].

Nonetheless, mental imagery of motor tasks was exten-
sively studied in sport psychology and related to motor
learning [69]. Finally, as discussed as perspectives at
the end of the paper (Section 8), major questions re-
main open regarding the links between machine learn-
ing and user learning, how they influence each other,
and how to quantify user learning independently of ma-
chine performances.

2.3. Modelling MT-BCI users

The typical/standard model of a BCI is the one which
represents the “BCI loop” and focuses almost exclu-
sively on the machine: it generally depicts the interac-
tion pipeline which contains signal acquisition, signal
pre-processing (e.g. artifacts removal), feature extrac-
tion and selection, classification/decision, followed by
another round of acquired neural activity, and so on
[30, 86, 151]. This representation pays little attention
to how users produce mental commands or how they
process/react to feedback. Yet the user is a fundamen-
tal element in Brain-Computer Interactions.

This is why a couple of user-oriented models have
been developed based on instructional design [110, 173,
199], which led to the development of a cognitive model
[91] by [219]. Such conceptual modelling enables a clear
visualization of the cognitive processes which seem to
be involved in MT-BCI learning, the extrinsic/intrinsic
factors affecting them [201], consequently allowing for
the design of training procedures adapted to each user.

To include user-related factors in this type of



A Review of User Training Methods in Brain Computer Interfaces based on Mental Tasks 5

model, it is required to investigate predictors of per-
formance, i.e. factors which may explain users’ MT-
BCI performances generally measured with classifica-
tion accuracy [165, 173, 201]. These predictors can
be included in (computational) models of MT-BCI
user training which could predict users’ performance
or progress over time, based on different factors, e.g.
user-technology relationship, attentional and motiva-
tional traits or states or previous performances [117,
149, 201, 219, 265, 271].

However, predicting performance through such
human predictors has yielded inconclusive results,
which would require further studies in order to
determine reliable prediction models [237]. Some
findings could not be replicated, e.g. kinesthetic
imagination score used in [104, 141] is not a
performance predictor in [255]. Similarly, opposite
effects could be found for the same factor, e.g. the
locus of control positively [45] or negatively [144]
correlated with performance. Finally, disparities
across experiments make it difficult to reliably predict
performance based on users’ traits [265]. Finally,
disparities across experiments make it difficult to
reliably predict performance based on users’ traits
[265]. There is no gold standard for quantifying human
learning in MT-BCIs and few studies are conducted
on the topic. Currently, performances are reported in
terms of classification accuracy and progression is often
estimated by analysing the slope of this classification
accuracy’s regression line computed across runs or
sessions. However, classification accuracy mixes both
user and machine performances. Thus, as discussed
further in section 8, future research should define
more user-related metrics such as signal stability [245]
to evaluate a user’s BCI proficiency and progress
specifically.

Furthermore, the numerous states depicted in
user models are most probably not independent from
one another, nor from longer-lasting attributes (e.g.
psychological profile), nor from the environment (e.g.
social context, see Section 3) or from system and task
properties such as feedback or instructions. Some of
them also depend on the time of measurement or the
measurement method (e.g. physiological metrics or
self-assessment questionnaires).

2.4. Adaptive training procedures

Other conceptual models raised the possibility of
adapting BCI training tasks to directly affect users’
states and in turn steer the neurophysiological changes
in the direction in which both performances and
satisfaction (e.g. ease of use) would increase [249].

There is evidence that BCI self-regulation learning
is influenced by subjective psychological factors, i.e.

the cognitive processes and states experienced by
MT-BCI users during their training. These include
motivation [99, 109, 157], or flow [225], inter alia.
Instructional design literature states that the amount
of guidance provided during training should be adapted
to the expertise of the learner [153]. This relates to
concepts such as Flow theory [3, 130] or the Zone of
Proximal Development [5]. These concepts suggest
that the users’ skills must match the challenge of
the activity, which implies that learning progress may
generate intrinsic motivation [58, 119, 203]. Learners
are more intrinsically motivated to accomplish the task
if they are confident they would eventually succeed at
it. Accordingly, enhanced expectancy or prospective
confidence has been linked to motor skill acquisition
[213, 221]. In other words, the learning progress
is intertwined with users’ perception of the task
outcomes.

Another user state worth considering is (per-
ceived) mental fatigue, which correlates to a decrease
in MI EEG separability [278]. Statement from instruc-
tional design suggests that the interface content and
task difficulty should be adapted if the user is in a state
of fatigue. Indeed, an overload of the learner’s cogni-
tive system might lead to negative effects on learning,
performance and motivation [20, 57]. Recommenda-
tions from this field and applied to MT-BCIs were ex-
tensively discussed in [136, 176, 199].

2.5. Challenges and perspectives

Overall, three approaches to improve BCI training
tasks and programs intertwine and complement each
other.

The first approach aims to refine training
parameters by capturing the key characteristics of
effective training procedures developed outside the
field of BCIs (e.g. human-computer interactions,
instructional design) in order to formulate guidelines
and implement recommendations [136]. The second
approach aims at reshaping training procedures
through a whole training-wise user-centered approach
[152, 241, 254]. The third approach is to personalize
training procedures, particularly by taking into
account the users’ skills or profile (session-wise adapted
training) or states (run-wise or trial-wise adaptive
training) when designing tasks and feedback [219, 249].

Modelling users could enable researchers to
design training procedures which yield better MT-BCI
usability and performance, as they would be tailored
specifically to each user. The final step would be
implementing (mathematically and computationally)
such conceptual models, as data-driven, action-
perception models (e.g. machine actions depend on
the user reactions to feedback), as suggested in [287].

In this section, we introduced the background
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of user-training and learning in MT-BCI. The rich
literature on user learning supports the importance
of well-designed BCI training procedures. We argue
that identifying and defining the various parameters
composing a BCI training (and their interaction), as
represented in Figure 1, might shed light on the gaps
in user training and provide levers to positively impact
users’ understanding, perceptions, motivation, etc.

For this reason, we conducted a review on the
training components we presented (Section 2.1). In
the following sections, we provide an overview of
the existing practices, challenges and perspectives
for MT-BCI user-training environment (Section 3),
instructions (Section 4), feedback (Section 5), and
exercises (Section 6).

Presumably, the reported practices should apply
to all types of users, as they target BCI learning in
general and do not focus on a specific application.
On the other hand, the vast majority of BCI studies
reviewed in this paper are conducted on healthy naive
users with motor-imagery (MI) tasks and with few
(often one) sessions.

3. Environment in MT-BCI training

In the fields of psychology and ergonomics, it is
understood that users’ activity takes place in a context.
This context is one of the components of the interaction
[64] and as such plays a role on users’ perceptions
and emotions. As shown in Figure 1, our MT-
BCI user training framework identified the training
environment, i.e. the context in which the training
takes place, as one of the key elements to consider for
designing MT-BCI training protocols. Although the
environment as a training parameter is generally not
apparent in BCI models, it can be found for example
in a recent framework for BCI systems usability
evaluation [254]. However, their model includes the
modality (specific to the task feedback) which is not
encompassed in what we describe as the “training
environment”.

In this section, we discuss two main aspects: first,
the physical characteristics of the environment (e.g.
temperature or auditory/visual distractors) and in a
second part, the psycho-social context in which the
training takes place.

3.1. Physical environment

First of all, we discuss the physical environment in
which the training session takes place. Apart from
the extensively studied issue of electrical and magnetic
signals which may interfere with EEG recording [202],
the influence of the contextual environment on MT-
BCI training is not well established.

From a theoretical point of view, beyond
the BCI sphere, it has been shown that contex-
tual/environmental factors (e.g. acoustical, thermal,
lightning or olfactory comfort, air quality, ergonomics,
aesthetics) could together explain up to 16% of the
variation in pupils’ academic progress achieved in class-
room [166]. Thus, these many aspects of actual and
perceived conditions of physical environment can in-
fluence human proficiency and this may apply to some
extent to a MT-BCI context.

In the BCI field, there are some other contextual
variables whose effects have been discussed. Regarding
the perceived qualities of the environment, one of
the perspectives identified in [179] was the positive
role of aesthetics in MT-BCI technology acceptance.
Furthermore, the training environment could induce
cognitive overload and thereby prevent BCI users
from learning or controlling efficiently the BCI. For
example, some task-irrelevant visual and auditory
stimuli could have a detrimental effect on training.
It has been shown that the perceived cognitive
load induced by visual distractors had a strong
negative correlation with classification accuracy for
low-performance participants [284]. It has also been
shown that background music may be responsible for
decreasing performance in an experiment [225].

However, BCI studies rarely report this kind of
environmental variables. This thus makes it difficult
to study their effects since the physical environment is
generally not the object of dedicated research questions
in BCI, at least not yet.

3.2. Psycho-social environment

Another important aspect of the environment is the
psycho-social context, notably the social presence, i.e.
the subjective experience of being in presence of a
person with thoughts and emotions [251]. Indeed,
studies in social neuroscience have shown that social
presence, e.g. a person or android, favours learning
[186].

Both theoretical [122, 136, 186] and experimental
[289] research stressed out that social presence is an
important element in BCI training and recommended
to further take advantage of the potential benefits it
could bring, such as improving the user-experience,
effectiveness and engagement of BCI users [129, 289].
For this purpose, multiplayer and collaborative BCI
games were explored. Collaborative and competitive
training procedures , involving several users [129, 180]
or a single BCI user and an artificial agent [252] have
been designed. One study showed an increase in BCI
performance and motivation for the best performing
users [129] but further experiments are required to
investigate the influence of BCI multi-user training.
We also designed a social agent [289] providing social
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presence and (positive) emotional feedback through
spoken sentences and facial expressions (see Section 5).

In addition to social contexts where one would
interact with other BCI users, we argue that experi-
menters are a main source of social presence and emo-
tional feedback in experimental settings throughout
the user training. Some experimenters report acting
on cognitive and motivational factors, e.g. “we tried
to keep the subjects motivated and attentive by pro-
viding non-alcoholic beverages, sweets and fresh air”
[117]. Other experimental protocols directly include
the social feedback given by the therapist [178, 181].
Though, the influence of experimenters on experimen-
tal outcome has only recently been explored for MT-
BCI user training, showing that an interaction between
the experimenters’ and participants’ gender could in-
fluence the evolution of the participants’ performance
[275]. In addition, a recent study on neurofeedback
suggests that psycho-social factors such as locus of con-
trol in dealing with technology, i.e. how strongly people
believe they have control over technology, could have
a different influence depending on the experimenters’
and participants’ gender [260].

3.3. Guidelines for the MT-BCI training environment

Overall, several recommendations can be made about
the environment.

First, regarding the physical environment, users
should not be disturbed or overloaded by task-
irrelevant stimuli [225, 284]. When designing new
training programs, the guidelines from BCI user-
centered design literature can be applied [152, 241,
254] to assess the influence of the learning context on
usability and user experience.

Concerning the social context, the idea that
trainer-trainee interpersonal relations seem to be
decisive for learning progress was suggested in
Neurofeedback [158]. However, it remains difficult
to provide evidence-based recommendations on how
to optimize MT-BCI training environment since very
few BCI studies formally addressed this aspect.
Nonetheless, it is recognized that the overall social
environment (e.g. significant others) influences the
patients’ BCI learning [174]. Therefore, it is important
to take into account psychosocial context while
designing experimental protocol. In addition, assessing
and reporting its influence on BCI performance would
increase the reproducibility of studies as it has been
suggested to have a differential impact depending on
the characteristics of the participants, e.g. gender or
autonomy [275, 289]. Furthermore, when enough data
is available on the matter, it will enable a rigorous
estimation of the influence that social interactions have
on BCI learning and performance.

3.4. Open Challenges and perspectives regarding
MT-BCI training environments

So far, the environment and its effect on MT-BCI
training has not been extensively studied and how
much benefit could arise from this is still mostly
unknown. Therefore, there are several open challenges
which could be addressed on this topic.

Notably, such open challenges include identifying
which training environment parameters are relevant for
BCI user training, and to understand their influence
on users’ performance and learning-related states, e.g.
motivation or cognitive load. One could theoretically
use the environment as a lever to adaptively influence
users [271]. The psychosocial context should also be
investigated further to determine its precise influence
on users’ experience, learning and performance. The
next step is therefore to formally identify the effects of
each parameter. This involves controlling the physical
aspects in usability studies, but also controlling the
psychosocial aspects as described in the guidelines
section.

4. Instructions in MT-BCI training

Although not systematically detailed in BCI papers,
user training requires information about how the
interaction should be done or the system operated. In
this section, we thus formalize what these instructions
given to users can be by suggesting a categorization.
We also discuss what has been explored so far, and then
provide guidelines, challenges and perspectives based
on this literature review.

4.1. A categorization of instructions

To categorize instructions, we argue that they can
be divided into several concepts according to the
time scale at which they are provided as shown in
Figure 1. For example, instructions provided at
the training level, e.g. during presentation of the
BCI system, can be distinguished from those given
at the session or exercise level, e.g. explanations
regarding the session outline or the behavior users
should adopt. Herein-after we suggest a categorisation
of the instructions which are provided along an MT-
BCI training procedure.

First, general instructions refer to the instructions
given at the training and session level, e.g. the
presentation of the system, the description of what the
training will be, etc. Although it might differ from one
exercise to another, we also include the explanations
about the meaning of feedback and stimuli, e.g. what
will be on the screen throughout the session.

Then, instructed task and guidance are directly
associated with the mental tasks, hence the BCI
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control commands. The instructed task refers to
a more or less precisely-defined instruction about
what mental task(s) users will have to perform, e.g.
“performing right hand motor imagery”. The guidance
refers to instructions on how to shape the cognitive
strategy associated with an instructed mental task, e.g.
timing, perspective, along with dimensional, emotional
or sensory characteristics of the task. It is common
for the number of instructed tasks to change, for
example between a screening exercise and subsequent
BCI exercises. In a BCI with multiple commands,
controls generally differ in terms of instructed tasks
(e.g. hand imagery vs. mental calculation). However,
it is also possible to encode commands by using two
identical instructed tasks with different guidance (e.g.
short duration vs. long duration of left-hand imagery
[98]).

The following sub-sections discuss these different
types of instructions, i.e. first the general instructions
(Section 4.2), then what mental tasks can be instructed
(Section 4.3) and what guidance can be given on how
to perform these mental tasks (Section 4.4).

4.2. General instructions

As defined herein-before, general instructions do not
directly apply to the mental task being performed,
but rather to the training as a whole. Although
these instructions may have an influence on user
understanding and technology-related stereotypes,
these practices are usually not reported in papers and
their potential influence on MT-BCI training has not
been formally assessed yet.

First, the presentation of the BCI technology
made before experimental or clinical experiments may
trigger technology-related stereotypes, i.e. precon-
ceived ideas or images of a specific type of person re-
garding the technology. This could prove important,
especially since ethical questions raised by the field
[239, 268, 276, 279] or some technical achievements
may have reached the media with varying degrees of
distortion or misrepresentation. Thus, new BCI users
may arrive with damaging misconceptions [126], e.g.
on the accuracy which can be achieved. It has been
suggested by studies relying on P300-BCIs that ex-
plaining the relevance of the experimental protocol for
BCI research could induce greater intrinsic motivation
for the participants [133, 157]. It has also been hypoth-
esized [160] that showing live recordings of EEG data
could influence the sense of agency of MT-BCI users,
i.e. how much they feel in control of the system’s out-
put.

Then, the general instructions also include details
about the exercise as a whole, e.g. what goal should be
achieved, when should the user send commands, what
will appear on the screen and what is its meaning, etc.

However, a vast majority of papers do not report if
and how the BCI technology was introduced to the
participants. In other words, the instructions provided
to explain the meaning of the cues/stimulations and of
feedback (e.g. content, modality, timing, as detailed
in Section 5), the functioning of the BCI system and
the goals and performance criteria, are most often not
reported. Satellite instructions, such as remaining still
to minimize EEG noise, or meta-information such as
the duration of a given exercise or the differences with
a previous exercise, are usually not reported neither.

Broadly speaking, there is a lack of knowledge on
how to design a presentation of the system (training
level), but also explanations regarding training goals or
feedback meaning (at the session and exercise levels).

4.3. Instructed mental tasks

In contrast to guidance which will be discussed in
the next sub-section, we described the notion of
“instructed task” as what mental task(s) users will have
to perform, e.g. mental rotation (e.g. of 3D shapes),
mental calculation [79] or limb motor imagery [17, 29,
42]. In this subsection, we first discuss the presence
and the role of this instructed task in MT-BCI training,
and then present an overview of the tasks which have
been explored so far.

4.3.1. Why giving instructions at all?
Depending on the BCI purpose, the question of the

instructed task does not exactly arise in the same way.
First, when it comes to acting directly on

the control of brain rhythms (NeuroFeedback (NF)
training), it has been suggested that explicitly
instructing users not to force mastery but instead to
aim at a state of effortless relaxation may improve their
performance [144] for sensori-motor rhythms (SMR)
regulation. However, NF training does not always
involve mental tasks. The goal of NF training, most
of the time, is to improve the clinical condition of
patients (e.g. cognitive abilities or emotional state).
Therefore, operant conditioning is used in order to
enable them to define cognitive strategies which induce
modulations of the target brain patterns underlying a
specific condition.

Second, for MT-BCIs used for control applica-
tions, the goal is to determine cognitive strategies
which enable users to produce stable and distinct
brain patterns in order to provide reliable mental com-
mands to an application. Here, unlike NF training, the
EEG rhythm modulated does not matter so much as
long as different strategies induce distinct modulations.
Therefore, the aim is primarily to differentiate the com-
mands sent, often with machine learning. As such, the
instructed tasks are generally pre-defined, reported in
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papers, and associated with specific brain area, as de-
tailed in subsequent sections. The following sections
show that MT-BCI performance seems to benefit from
explicitly instructed MI tasks, which are known to be
(theoretically) underlain by distinct brain patterns.

It was showed in P300 studies that congruent
control-display mapping (CDM) is necessary between
the tasks users have to perform and the final
application (i.e. commands output) in order to reduce
error numbers, to quicken response time and reduce
cognitive load [124], hence potentially making the
learning process easier. However, even in BCI aiming
for control, using a specific task might be a starting
point and not an end since proficient users (10+
sessions) tend to report not using explicit imagery
anymore [97, 134, 248].

4.3.2. Motor-imagery tasks
Motor imagery [18, 29] is a very common and widely

used command for BCI applications [164]. The range
of possible instructed imagined motor tasks is very
wide, including “imagined hand movement” commands
[17], but also for example imagined tongue or feet
movements [43, 52, 66, 70, 97]. Other imagined
movements, such as swallowing, were proven to be
detectable by EEG [162].

Recently, MT-BCI researchers also explored
“high-level commands” based on complex imagined
movements, arguing that these control tasks would be
more natural, intuitive, and would allow for a greater
number of MI tasks. Examples include MI tasks of the
right hand such as flexion, extension, supination and
pronation [77, 169], MI tasks of the entire right limb
such as hand grip, forearm flexion/extension and full-
arm target reaching/grasping [281], or MI tasks based
on hand swings, such as left and right hand swings
clock-wise and anticlockwise [282]. All MT described in
this paragraph relate to “what” should be performed.
The variations within a given instructed motor task
will be further explored in the subsection focused on
guidance (Section 4.4).

Finally, although the task may no longer be
strictly a pure mental command, there are contexts
where some users may be asked to perform quasi-
movements (maximally reduced movements indistin-
guishable through ElectroMyoGraphy (EMG) mea-
sures [74]), which seems promising to gradually train
users to perform motor imagery. In the context of
neuroprostheses or stroke-rehabilitation applications,
users suffering from motor impairments can also be
asked to perform attempted movements instead of
imagined movements [272]. However, it is uncertain
how the recommendations reported in the present re-
view apply to training non-mental tasks.

4.3.3. Task association
In order to increase the number of commands
without increasing the number of unique mental
imagery tasks, it is possible to associate commands
to different combinations of these mental tasks. Task
combination can be performed in two different ways.
First, by performing tasks simultaneously [68, 102, 175,
277], e.g. with only 2 MI tasks (left and right hand
MI), 4 combinations (and therefore 4 commands) can
be defined: left only, right only, both, none. Second,
mental tasks can be performed sequentially, e.g. by
using two different MI tasks for a 3-class BCI: both
hands, both feet, and a quick sequence of both hands
then both feet [227, 252]. However, adding more classes
tend to decrease the overall accuracy [222]. Although
the associations we described are for imagined motor
tasks, the concept of task combination could also be
applied to cognitive (non-motor) tasks such as those
described in the following paragraph.

4.3.4. Cognitive tasks
There are numerous mental tasks which are not

motor imagery, apart from the relax state usually
used as no-control command/state. Examples of these
cognitive tasks include mental problem solving such as
mental subtraction, letter-cued silent word generation
or name generation, mental counting, mental writing
of a letter to a friend or relative, human face imagery,
auditory imagery (melody of a familiar tune), spatial
navigation (orientation task), speech imagery (reciting
a poetry, vowel speech imagery), dynamic visualization
(mental rotation of a 3-dimensional figure). For typical
applications of these tasks, see, e.g. [8, 28, 33, 37, 78,
131]. It has been suggested that spatial navigation
around a familiar environment or auditory imagery
tasks may yield better results than motor imagery
paradigms [37], and more importantly that multiclass
BCI would benefit from involving both imagined motor
task and cognitive ones [131] as described in the
subsection dedicated to the screening (Section 4.3.5).

The efficiency of other types of cognitive tasks
to control an MT-BCI have been assessed in the
literature. Some seem to be showing promising results
such as Somatosensory attentional orientation (SAO)
tasks, i.e. imagined tactile sensation of left hand,
right hand or both hands [214]. Other approaches,
such as self-induced emotions, seem to lead to lower
BCI decoding performances than motor imagery [283].
Another approach is visual motion imagery. While
pure visual imagery of dots motion [232] classified
offline seems to be promising, recent studies [269]
suggest that further research on the brain areas
to be targeted should be conducted in order to
achieve classification of visuospatial information such
as motion imagery. Other studies trained participants
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to perform conceptual visual imagery [243] which
resulted in quite low accuracy, i.e. the two visual
imagery tasks used could only be distinguished with
52% classification accuracy, which is under the 65%
statistical chance level reported in the paper. In
addition to all these tasks studied in MT-BCI, some
other tasks seem to be detectable by EEG, such as
olfactory imagery [170, 182], although there is a lack
of BCI studies on the subject.

4.3.5. Screening
Screening corresponds to a preliminary stage of

training for which user-centered adaptation of in-
structed mental tasks is made. The different training
stages are described in more detail in Section 6.

Overall, it is globally understood that different
users will obtain better BCI performances with
different BCI tasks. In other words, the MI tasks
which will lead to an optimal BCI control are specific
to each user [131, 183]. This means it is relevant to
select an instructed task (or pair of tasks, triplet, etc.)
among several predefined ones through a screening
phase before the training. As described in [30], the
standard Graz BCI protocol starts with a preliminary
step during which the user tries several mental tasks,
e.g. motor imagery of right hand, left hand, feet
or tongue movements. A number of studies report
selecting a subject-specific task pair out of three motor
tasks, e.g. [54] or [117].

Task selection as a BCI optimization problem
was the subject of different research works [78, 132,
154, 183]. Among the general findings, it has been
suggested that “hand vs. feet” seem to lead to
better classification compared to “right vs. left hand”
motor imagery [98] and that a pair-wise combination
of “brain-teaser” (cognitive tasks) and “dynamic
imagery” (motor imagery) might increase classification
performance compared to paired tasks inside these
categories [183]. In [154], the study notably showed
that the optimal task pair in two-class BCI seems
to vary intra-subject between sessions, although these
variations (inter-session transfer loss) are reduced as
the subject learns. In any case, user-specific mental
task selection proved promising both for healthy users
[131, 132] and motor-impaired ones [183] for whom
the classical MI task pair (hand vs. feet) lead to
15% lower classification accuracy than user-specific
instructed tasks.

In addition to knowing whether a task (or pair)
is the most efficient from an analysis and classification
point of view, the user’s choice may also come into
play. Though it was not the focus of these studies
and has not been formally tested, there are some
examples of papers reporting a protocol where users
themselves “chose to work” with two tasks out of five

(two motor imagery tasks and three cognitive tasks)
suggested instructed tasks [41]. In another study [103],
a mix of the two approaches is used: the two chosen
tasks (out of three) are selected via prior data for
some participants and are chosen by the subjects for
novices. The exact effect of choice on performance,
learning, engagement, perceived load or judgment of
control is not known. In a research on a MT-BCI
BCI game [90], the authors compared different tasks
and indicated that user preference for certain mental
tasks is based on: the recognition of the mental activity
by the system, the effort it takes to execute the task,
and the immersion / mapping between the task and its
effect, i.e. how easy is the task to interpret and how
well it fits with the context, e.g. a game.

Such a screening step allows for potentially more
adapted practice runs in which users could learn more
efficiently.

4.4. Guidance

In our categorisation, guidance refers to instructions
on how to perform the task such as timing (e.g. speed)
or perspective (e.g. first vs. third person), along with
emotional and sensory characteristics of the task. In
this section we discuss five main aspects of guidance:
level of specificity, complexity, familiarity, focus and
context.

4.4.1. Specificity and familiarity
Depending on the research, the specificity of the

instructions can vary significantly. Consider the
example of a very common yet rather vague instructed
control task: hand motor imagery. There are
multiple ways of performing hand motor imagery, e.g.
visual/kinesthetic, first/third perspective, different
types of movements with different amplitudes and
frequency. The strategy adopted by the BCI user will
most likely be influenced by the users’ habits/expertise,
but also depend on the instructions they have been
provided with, e.g. typically orienting the choice by
asking users “whether they are familiar with specific
movements from sport-related activities or playing a
musical instrument” [183]. User strategies can also be
limited with guidelines, e.g. asking users “to keep their
attention on the MI task and avoid imagining very fast
or very slow movements” [183]. Note that the degree of
freedom and specificity in the instructed task can vary
according to the modality of trial cues or feedback since
realistic feedback implies a specific task.

It is often recommended to instruct familiar
mental tasks, presented to the subjects according
to their daily manual tasks, to improve training.
Indeed, familiarity with the task was shown to
positively influence BCI classification in some cases
(e.g. Chinese character writing [228]) or not to
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influence it alone but only when coupled with task
complexity [147]. It has also been suggested [167]
that both impersonal arbitrary instructed tasks with
specific guidance (“squeeze a stress ball in your hand”)
and personalized hand imagery tasks (selected by the
subjects before the experiment) might yield better
results than an unspecific and undefined instructed
“hand imagination task”. These results suggest that
guidance in instructions is highly relevant in MT-BCIs
training, although more formal testing is needed with
more subjects and more trials/sessions.

4.4.2. Complexity
Complexity can vary for cognitive tasks, for example,

the number of digits in a calculation task, as in motor
imagery tasks. It has for example been suggested that
mental imagery of complex motor actions, i.e. mental
tasks which involve both sequences of movements
and more than one body part, seems to result in
significantly better classification performances (69.6%)
compared to simpler MI tasks (66.34%) [147].

4.4.3. Focus
Even within a given task, e.g. hand imagery, not all

strategies may be equally effective and it is possible to
direct the focus of users’ attention towards a specific
aspect of the mental task.

It has been mentioned earlier that variations
in the same task can be differentiated, for example
in motor imagery when users are asked to vary
imaginary hand movements [169, 281, 282] or to
change other parameters such as the imagined speed
[139], which could be better discriminated than
changes in the nature of movement [80]. In addition,
motor imagery can rely on different perspective
modalities (independently or by combining them):
“kinesthetic (based on sensory information normally
generated during actual movement), haptic (using
cutaneous information to recreate the interaction with
external objects), visual (with external and internal
perspectives), or auditory” [230]. Studies have found
that first-person kinesthetic motor imagery (KMI)
induces more distinct patterns, in contrast to third-
person visual imagery (VMI) [42] and allowed better
classification rates for KMI (67%) than for VMI
(56%). The most commonly used mental task
instruction is therefore to kinesthetically imagine
body part movements. Hence, involving the sensory
part of the imagination task is potentially valuable.
This is supported by recent studies on non-motor
paradigms discussed earlier in the paper. For example,
recent work from [263] showed that a combination
of two hand-related tasks, left hand somatosensory
attentional orientation [214] and right hand MI, led to
greater classification accuracies than the MI paradigm

alone for both hands.
Regarding the different modality approaches on

attentional orientation, further studies are needed
to assess to what extent they can be distinguished,
differentiated, combined. The focus matter naturally
extends to other cognitive tasks, although this was not
explored yet to our knowledge.

4.4.4. Context
The context might potentially be an important
guidance parameter. For example, in [167], subjects
in the “participant specific” task group were asked to
describe a hand motor task they typically preform,
i.e. a preferred movement or a familiar movement
from daily activity, and then asked to bring an object
associated with the chosen task, which was placed
in front of the participants to aid them in their
imagination of this specific movement. The task
was therefore coupled with a context. In recent
years, several studies in motor imagery addressed this
question and showed that the involvement of objects
in the MI tasks led to more vivid tasks and broader
activation in motor-related areas. Interestingly
enough, this is dependant on the type of object,
whether it is abstract or real, e.g. in EEG [211] and
functional Magnetic Resonance Imaging (fMRI) [257],
manipulable or not, e.g. in EEG [123] and fMRI [24],
within range/graspable or not [229], affective or not,
e.g. inducing pain or disgust in fMRI [261], etc. The
inclusion of another person in the imagery might also
matter since clear distinct neural patterns were found
for joint vs. single action MI in fMRI [212].

4.5. Guidelines for the instructions in MT-BCI
training

In this section, we present a number of guidelines for
MT-BCI training instructions.

First of all, in order to avoid the introduction of
negative biases and perhaps exploit the positive effects
of the general instructions, standardized approaches
to introduce the participants to the technology
should be developed and assessed in the future.
Theoretical recommendations on user training [57,
76] suggest that MT-BCI control training might
benefit from being goal-oriented since it is considered
important to present tasks with clear learning
objectives [136], and the meaning of feedback should
be explained, particularly for non-intuitive feedback
such as classifier output [136]. Likewise, cognitive
support such as offering examples is theoretically
encouraged [171]. Furthermore, taking into account
the potential influence of general instructions on
technology-related stereotypes might contribute to
diminish misconceptions [126], induce greater intrinsic
motivation [133, 157] or judgment of agency [160].
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Overall, concerning the instructed task, many
factors have been explored and the wide number of
parameters makes it difficult to extract guidelines
since there is a lack of formal comparisons. We
do advise if possible to conduct screening (user-
centered task selection) with a set of tasks, including
motor imagery and cognitive tasks [37, 78, 131].
It is also recommended to activate prior knowledge
instead of asking the user to perform an unfamiliar
task [228], possibly to instruct complex tasks [147]
and to use specific rather than a vague instruction
[167]. Finally, although the nature of appropriate
guidance is still unclear and might depend on users’
individual characteristics, one aspect which received
some attention is the focus in motor imagery, where it
seems that kinesthetic imagery is better than purely
visual imagery [42].

4.6. Open Challenges for the instructions in MT-BCI
training

First, one of the major challenges lies in the general
instructions, i.e. how to introduce the BCI system
and session outline to foster users’ understanding
and engagement. The influence that instructions
might have on users, for example in relation to the
technology-related stereotypes, has not been really
evaluated yet. It is not clear yet what a good overall
instruction design could look like in BCI and it would
be beneficial to instigate this further, for example by
drawing on theoretical recommendations from other
areas. Note that another challenge, closely related
to the first, involves the evaluation of users’ reaction
to instructions, such as ensuring understanding and
memorization - which is under-explored so far.

Concerning task-related instructions, many in-
structions were experimented, but the link between the
instructed task, the guidance, users’ cognitive strategy
and the EEG patterns stability and distinctiveness is
still unclear and should be further studied. Thus, we
do not yet know what a properly executed mental task
should be for a BCI to successfully decode it, partly
because users’ precise cognitive strategies are scarcely
assessed or reported in papers. However, we do not
know what is the most appropriate method to retrieve
users’ strategies, neither do we fully know the way MT
strategies relate to performances or to the states of the
user.

This general lack of knowledge on the right
strategies limits our insight on which instructions
are best adapted globally, but there is also a lack
of knowledge about how to adapt the instructions
individually (cf. next section). It can also be added
that it is not known yet whether or how instructions
could be adapted throughout the training, e.g. based
on learning progress.

4.7. Perspectives for the instructions in MT-BCI
training

In the following subsections, we describe four perspec-
tives axis which could improve the effectiveness of in-
structions for MT-BCI user training.

4.7.1. Adapted instructions
Instructions can for example vary in terms of
modality (e.g. oral vs. written) and narrative. Since
there is little or no mention of these procedures in BCI
papers, no further inquiry was conducted into them to
our knowledge. However, theoretical evidence in the
literature indicate that the instructions currently in
use may not be appropriate enough [136, 176, 198].
Indeed, literature in educational design states that
the amount of guidance provided during the training
should be adapted to the experience of the learner
(expertise reversal effect, [153]). Furthermore, different
people do not learn in the same manner. The study
in [36] has shown for example that, when learning
to use a video game, strategy can be internally or
externally oriented (i.e. reading a manual vs. asking
for help, respectively). Similarly, BCI learners may
prefer explanations provided by the system or the
experimenter according to personality or psychosocial
factors, e.g. anxiety [289] or gender interactions [260,
275]. Furthermore, in some contexts, it might be
possible to leave the choice to the user on what
they want to do or in which order they will do it
(e.g. allowing patients to choose between different
training modes according to their needs in upper limb
rehabilitation [280]) although the effect of choice was
not assessed.

4.7.2. Understanding
In order to improve instructions, one approach could

be to evaluate users’ understanding of what has been
explained. Similarly, formalizing the presence (or
absence) of re-explanation periods between runs or
at the beginning of a new session could improve
reproducibility and cross-subject comparisons. In fact,
the evaluation of the learnability/memorability of the
BCI skills and instructions is very rare [198, 223].
On a related topic, [160] discussed the availability
of the instructions during the experiment. In their
study (with auditory feedback), they allowed the
participant to look at a paper to see what needed to be
imagined when a certain instruction was heard. They
hypothesised that it may compensate for the lack of
transparency between the mental task and performed
action by reducing the memory load. However, this
was not formally tested.

4.7.3. Strategy variations
As described in Section 2.2, conscious efforts (declar-
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ative knowledge, motivational processes) influence
MT-BCI learning, thereby highlighting the importance
of direct external guidance such as self-instructions or
cognitive feedback to find a good strategy. One re-
search direction would therefore be to explore the pos-
sibility of facilitating these conscious processes. In-
deed, in MT-BCI/NF studies, users are generally in-
structed to find the “right” task. In doing so, they
establish some kind of control-of-variables strategies
(CVS) [4], i.e. the cognitive and procedural skills as-
sociated with being able to isolate and select good pa-
rameters in MT execution out of different trials. The
idea that users dispose of a motor activation model for
the task which evolves according to their findings is
defended in [134]. However, there has not been any
attempt to our knowledge to support the process of
strategy adoption/rejection on the user side. Such cog-
nitive support (i.e. “guidance to find a good strategy”)
was encouraged in recent papers [219, 253] in line with
theoretical evidence [136, 176, 198] that instructions
should include clear goals of progressing complexity.
As pointed out in [253], this could be done with di-
rect semiotic training. Such a training, as described
in [188, 210], consists in assisting users to establish
the connection between the “signifier” (the chosen MT
strategy as conceptualized by the user), the “meaning”
(the effective desired command) and the “reference”
(resulting behavioral BCI response, e.g. feedback).
The authors provide a comparison between learning
self-regulation of brain activity and language learning,
highlighting the importance of “training introspection”
[188], or metacognition. Reporting users’ strategy se-
lection and strategy variations is all the more crucial
since researchers have very little information on users’
behavior (which is a covert behavior) in the context of
BCI training.

4.7.4. Task selection
User-centered screening phases, aimed at selecting

the best (set of) task(s), generally involve broad (un-
specific) instructions. It could be interesting to con-
sider changing the granularity of the instructions dur-
ing this screening phase, with guidance variation lead-
ing to an appropriate pair-wise combination of cog-
nitive strategies possibly showing more discriminative
EEG patterns.

Finally, it is worth mentioning that user-centered
task selection, when it occurs, is mostly done offline.
For example, [79] proceeded by comparing (offline)
several classifiers, choosing the best one for each
subject, and then selecting the most discriminatory
task based on the best classifier. On the contrary,
online automatic selection of mental tasks was scarcely
explored in the BCI field outside of [132]. This work
showed it was possible to automatically select a task

for a single brain-controlled switch during the course
of the training but it has not been done yet for the
selection of a pair (or a triplet) of tasks.

5. Feedback in MT-BCI training

Feedback provides an information to the learners re-
garding aspects of their performances or their under-
standing of the task/skills to learn [57]. Depending
on the theory on the underlying mechanisms of MT-
BCI process which is considered, feedback aims at con-
sciously or unconsciously enabling the learners to pro-
duce a brain activity which is recognizable by the com-
puter [273]. It is a fundamental component of MT-BCI
protocols [101, 290].

A typical MT-BCI feedback consists of a rapidly
extending bar or moving cursor which represents how
well the system recognizes the task performed by
the learner and how confident the system is in its
recognition (see Figure 2).

Figure 2. Example of feedback often provided to users during
MT-BCI training. In this example, the user has to train to
imagine left-hand movement, performing mental calculation and
imagining an object rotating [171]. At the moment the picture
was taken, the user had to imagine moving their left-hand. The
blue bar location and direction indicates the task which has been
recognized. The bar length indicates how confident the system
is in its recognition: the longer the bar, the more confident the
system. Here the system correctly recognizes the task that the
user is performing and is quite confident about it.

While it is acknowledged that feedback can
improve the learning outcome, its effects are variable
and can even be detrimental [92]. These variations in
the efficiency of feedback have notably been associated
with its different characteristics [136, 273]. Based on
our study of the literature, we argue that feedback
can be defined using three main characteristics: (1)
its content, i.e. which information it conveys (2) its
modality of presentation, i.e. how this information is
provided and (3) its timing, when and how frequently
this information is provided [273].

It is recommended for feedback to have (1) a
content that is both informative (provide advice) and
supportive (have a social presence/emotional feedback)
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(2) to be multimodal (provided on several modalities)
and finally (3) to be timely (provided when the learners
most need it). However, the most current typical MT-
BCI feedback is evaluative, non-supportive, unimodal
and highly frequent [136, 273].

While the typical feedback presented above is
broadly used by the MT-BCI community, other types
of feedback have been tested in order to improve the
user training outcomes, i.e. MT-BCI performances
and user-experience. The following subsections focus
on each of the three characteristics of feedback, i.e.
its content, modality of presentation and timing. We
first provide a definition of the characteristic. Then,
based on a review of the literature we provide insights
regarding the leads that were explored in order to
improve each characteristic of feedback. Finally, in the
last section, we present the main open challenges which
hamper the improvement of feedback.

5.1. Feedback content

First of all, feedback can be defined by its content,
which varies depending on the information that
feedback conveys to the learner regarding the task or
their comprehension of the task. We have distinguished
at least two types of information that MT-BCI
feedback conveys. First, it conveys information
regarding the results/performances of the users. If
feedback conveys information regarding an achieved
result or a deviation from the desired result, then it is
called “feedback of results” [14]. However, if feedback
provides specific information on how to improve the
results, then it is called a “feedback of performances”
[14]. Second, it can also convey a supportive content,
i.e. social presence and emotional feedback. The two
following subsections present results from the literature
regarding these types of feedback content.

5.1.1. Feedback of results
During MT-BCI training, current standard feedback

is mostly about results as it conveys information
regarding how well the system recognizes the task
performed by the learner, and how confident the
system is in its recognition. Research on skill learning
in other fields informs us that feedback of results
is particularly useful to skilled learners who already
possess a sufficiently elaborated cognitive model of the
task to interpret feedback and translate it into relevant
adaptations of their cognitive strategy [14]. During
MT-BCI user training, feedback is generally based on
the BCI classifier output, which is typically some form
of probability that the current trial belongs to a given
MI class [199, 245]. However, most MT-BCI users are
not familiar with the notion of classifier output. It does
not represent anything concrete for the learner who has
to understand and interpret feedback. Therefore, users

might particularly struggle to interpret feedback and
translate it into the necessary behavioral modifications
[198].

Several leads have been explored in order to
improve the content of such cognitive feedback.
One of them consists in biasing feedback, i.e.
in artificially increasing or decreasing the users’
(perceived) performances. In line with the literature
regarding flow and the zone of proximal development,
the use of such feedback which adapts the (perceived)
difficulty of the task is expected to impact the
immersion and intrinsic motivation of the users [88,
225]. Influencing the perceived difficulty of the
task has been done by providing positive feedback
only [27] or by biasing feedback [88, 258]. Biased
feedback seems to benefit novice users but impede
the performances of experts [27, 88, 249]. In this
regard, researchers suggested to adapt feedback to
the expertise of the users [184]. Though further
research using a control group is necessary to evaluate
the efficiency of such feedback. Some research also
focused on enriching feedback, for instance by adding
information related to muscular relaxation [185] or the
stability of the EEG signals [208]. A two-dimensional
feedback encompassing information regarding contra
vs ipsilateral activity and contralateral activity during
rest vs during mental imagery was also used in a
neurofeedback study [190]. Studies with control groups
found mixed results [185, 208]. Schumacher et al. did
not find any significant influence on the performances
[185]. Sollfrank et al. found that a more complex
feedback enabled significantly better performances
during the first session but this difference did not last
for the next four sessions [208]. While assessing the
influence on the user-experience, Sollfrank et al. found
that their complex feedback enhanced motivation and
minimized frustration throughout the sessions [208].

5.1.2. Supportive feedback
Another approach to improve the feedback content

has been explored by providing some support to the
users. Social presence and emotional feedback are
considered as supportive content [273].

Currently, BCI feedback contains little or no
supportive content. Few studies have used smileys to
provide supportive content during MT-BCI training
[27, 60, 264]. Only one has formally compared such
feedback to a plain one [264]. Their results do not
indicate any improvements of the performances or
control over SMR with the use of a smiley. However,
neurophysiological studies as well as theoretical
MT-BCI studies demonstrate the importance of a
supportive content [177, 186].

Recent studies have explored the impact of more
complex forms of supportive feedback [253, 275, 289].
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For instance, we designed and tested a learning
companion dedicated to MT-BCI user training [289].
It was called PEANUT for Personalized Emotional
Agent for Neurotechnology User Training. PEANUT
provided a social presence and an emotional feedback
to the users in between trials through interventions
which were composed of both spoken sentences and
displayed facial expressions. Its interventions were
selected based on the performances and progress, i.e.
evolution of performances, of the users. The results
indicated that PEANUT had a beneficial impact on
the perception that users had of their ability to
learn and memorize how to use MT-BCI, which is
a component of the user-experience [197]. PEANUT
also had a different influence on MT-BCI performances
depending on the level of autonomy of the participants.
Non-autonomous participants, i.e. participants who
would rather learn in a social context, had worse
performances than autonomous participants when
PEANUT was not present. However, when PEANUT
was present, non-autonomous participants had better
performances than autonomous participants.

In another recent study, we investigated the im-
pact that experimenters had on their own experimen-
tal results [275]. Indeed, experimenters are the main
source of social presence and emotional feedback dur-
ing a MT-BCI user training. Our results indicate a dif-
ferential evolution of trial-wise MT-BCI performances
over a session depending on experimenters’ and partic-
ipants’ gender. An interaction of experimenters’ and
participants’ gender has also been found in a neurofeed-
back study [260]. Though, whereas we found a positive
effect of women experimenters on the evolution of BCI
users’ performances over a training session, they found
that women participants training with women exper-
imenters tended to have lower performances than the
other participants. Therefore, this interaction should
be further explored in future studies.

5.2. Feedback modality

The second main characteristic of feedback is its
modality, i.e. how the information is presented to the
user.

Standard feedback for MT-BCI user training
is often conveyed through the visual modality, e.g.
a moving object or an extending bar, that users
learn to control (see Figure 2). Nevertheless,
realistic and embodied feedback, including 3D realistic
visualisations [187], seems to be associated with
better performances [138] or at least better subjective
experience [191].

Vision is the sense on which daily life perception
relies the most. It is also the modality which is
the most represented at the cortical level and one
for which we have the most finesse in the distinction

of information [13]. Such characteristics make this
modality very relevant to provide feedback. Though,
in an ecological settings, visual resources dedicated to
vision, visual attention or gaze focus, would be engaged
by the interaction with the environment. For example,
when controlling a wheelchair, a great amount of
visual resources are dedicated to the monitoring of the
surroundings. Therefore, relying on visual feedback
only might not be suitable for the application phase of
the MT-BCI. However, visual feedback can be used
during the training phase with an adaptation and
transition of feedback before moving to the application
phase.

Numerous research studies have been led to
assess the efficiency of providing feedback through
other modalities than the visual one, i.e. auditory
feedback [72], proprioceptive feedback [189, 285]
or vibrotactile feedback [55, 172, 247]. Overall,
vibrotactile feedback may be comparable to visual
feedback [55] and even improve MT-BCI performances
when the visual attention or cognitive load is high
[55, 148, 172]. However, auditory feedback seems to
enable comparable [155] or worse performances [49]
than visual feedback in healthy controls.

The modality of feedback presentation for MT-
BCI user training can also be adapted to the sensory
abilities of the target population. For example, the
choice of auditory feedback was made for people with
visual impairments [163].

Studies led in motor skill learning have shown that
the complexity of the motor task to be learnt, as well as
the skills of the learner, have a major influence on the
type of modalities to favour [140]. The more complex
a motor task, the more effective the use of multimodal
feedback [140]. In everyday life, the brain relies on
information arising from multiple senses which often
complement and confirm each other. This redundancy
increases the degree of confidence associated with the
perception [12]. Different studies explored the use of
multimodal feedback for MT-BCI training [168, 208,
215]. Combining visual and proprioceptive feedback
seems to improve the classification accuracy [106, 118,
168, 215] and enable more stable ERDs [215]. However,
the results of combining visual and auditory feedback
seem less conclusive. It might impede the learning [39]
or be as efficient as unimodal visual feedback [208] in
terms of performances. Finally, a congruence between
task and feedback is highly important [124]. The
integration of the multiple and incongruent sources of
information can increase the amount of cognitive load
and errors [124].

5.3. Feedback timing

The third and final dimension of feedback that we
analysed is its timing, i.e. when and how often
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feedback is provided.
Usually, feedback is continuously presented to the

MT-BCI learners while they train and it is updated
very frequently [273]. The frequency depends on the
amount of acquired data related to the performances
of the learner. For MT-BCIs, the amount of data
depends on the sampling rate used to record the
brain activity from the participant. Most often, it
ranges from around one data per second in fMRI
to hundreds or thousands of samples per second in
EEG. Feedback is based on the processing of a time-
window including several samples of these brain data.
Feedback is considered discrete, or terminal, if it is
provided at the end of one or several trials. It is
considered continuous, or concurrent, if participants
receive information during the trial, while they are
performing the mental imagery task. There is little
information in the MT-BCI literature regarding the
timing that feedback should have. One study suggests
that continuous feedback is more efficient for MT-
BCI user training than a discrete feedback [22].
Further research is needed to confirm this result and
investigate at which frequency feedback should be
provided depending on the expertise of the MT-BCI
user. Studies on motor learning have shown that
the frequency of feedback should decrease with the
increasing skills of the learners [140]. A study in
neurofeedback with participants up regulating their
alpha rhythm during ten sessions also indicates that
providing feedback at the end of a session regarding
the trial-by-trial performances in addition to some
feedback after each trial seems beneficial [2].

Also, feedback might benefit from taking into
account the cognitive state of MT-BCI users, e.g.
attention or workload. For instance, the more
frequent feedback is, the more attentional resources are
necessary to process it [65]. Previous MT-BCI studies
indicate that participants’ attentional skills have an
influence on their ability to control MT-BCIs [108,
115, 149]. It has been hypothesised that continuously
adjusting the frequency of feedback according to the
users’ attentional states could improve the training
outcome. According to the model of van Zomeren and
Brower there are four different attentional states, e.g.
selective or divided attentional states are respectively
involved when one or several stimuli are monitored [15].
One of our study suggests that the attentional states
described in this model can be distinguished with an
accuracy of 67% using only EEG data [273]. Such a
result could be used in the future to adapt the timing
of the feedback to the attentional state of the users.

5.4. Guidelines for feedback in MT-BCI training

In the introduction of this section, we argued that it is
recommended for feedback to be informative (provide

advice), supportive (have a social presence/emotional
feedback), multimodal (provided on several modalities)
and timely (provided when the learners most need
it). All of these recommendations can be drawn
from fundamental and/or experimental research in
education and MT-BCIs [136, 273].

Currently, MT-BCI users are provided with
feedback of results. However, the literature in
skill learning indicates that such feedback does not
benefit every learner. For instance, novice users
may not yet have the skills to translate feedback of
results into the necessary corrections to make to their
behavior [14]. It is recommended to use informative
feedback also known as “feedback of performances”
[219, 273]. In other words, feedback should provide
information to the users regarding why a task has
been recognized and how to improve their performance.
Though, very few studies have explored the use
of feedback that can be considered as feedback of
performances, and did so with a low number of training
sessions only [185, 208]. Overall, their results do
not reveal much influence on MT-BCI performances
compared to traditional feedback. More development
on this matter is necessary (see next section: “Open
Challenges”). When keeping feedback based on MT-
BCI performances, biasing feedback seems promising
for novice users [88, 258].

Recent MT-BCI experimental results indicate that
using a learning companion to provide a feedback with
supportive content can be useful for non-autonomous
users [289]. The few studies testing the influence of
supportive feedback indicate that the profile of the
learners should particularly be assessed to prevent any
bias and to adapt the supportive feedback [275, 289].

The recommendation concerning the use of
multimodal feedback over unimodal one is more
debatable. The experimental results are in accordance
when considering multimodal feedback composed of
both visual and tactile or somatosensory stimuli
compared to unimodal visual one [106, 118, 168,
215]. However, multimodal feedback composed of
both visual and auditory stimuli does not seem more
appropriate than unimodal visual one [39, 113, 208].
When considering visual feedback, an embodied and
realistic feedback seem more effective [138, 191]. All
of these results should be considered with care as
the presence or absence of a difference between two
feedback presented on different modalities might also
be associated to other characteristics of feedback, e.g.
its content, presentation or timing.

Finally, very few recommendations can be drawn
from the literature regarding the timing that feedback
should have. Initial results indicate that continuous
feedback could be more efficient for MT-BCI user
training than discrete feedback [22]. Providing
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feedback at the end of a session in addition to feedback
after each trial could also be beneficial [2].

5.5. Open challenges for feedback in MT-BCI training

In the previous section we have recommended the
development of feedback of performances that provides
specific information on how to improve the results.
Though, we currently lack the necessary knowledge
regarding the underlying mechanisms of MT-BCI skills
acquisition as well as knowledge on how to improve
this skills acquisition to provide such feedback of
performances. Furthermore, the content of feedback
is currently based on the classifier output, which may
not be appropriate to assess the users’ acquisition of
MT-BCI related skills [245]. Therefore, we first need
to deepen our understanding of the skills that are
acquired throughout the training. There is also a
need for new metrics enabling to better evaluate the
acquisition of such skills. Finally, we need to have
a better understanding of how the characteristics of
feedback impact the acquisition of such skills.

Furthermore, an impact of the learners’ character-
istics has been found on the efficiency of different feed-
backs [273]. For instance, the users’ expertise might
need to be taken into account when biasing feedback
[27, 88, 271]. Therefore, in order to have an adapted
and adaptive feedback, we need a comprehensive model
encompassing how the characteristics of the users and
of the feedback interact with the acquisition of MT-
BCI skills. However, to have a comprehensive model
of the learners, numerous states might need to be moni-
tored. Assessing states using EEG presents some chal-
lenges that remain to be overcome. First, the states
that influence MT-BCI training must be defined and
identified despite the inter and intra personal variabil-
ity. Then, behavioural, neurophysiological and physio-
logical markers must be identified to assess these states.
Reliable methods must be found to assess these mark-
ers. Finally, the different states and their evolution
throughout the training must be included in models to
improve the feedback and the training accordingly.

Also, new forms of feedback are often compared
to simple and traditional forms of visual feedback.
This is a first step toward a comprehensive view of
the impact of the different characteristics of feedback
and their interaction. Future studies should provide
more information on how to combine the different
characteristics of feedback.

5.6. Perspectives for feedback in MT-BCI training

In previous sections, we have stated that the
development of feedback of performances is limited
by the lack of knowledge regarding the advice which
should be provided to the learners to improve the

acquisition of MT-BCI related skills. Learning
companions, which we introduced previously for their
usefulness in providing a social presence and emotional
feedback during MT-BCI training, could also be
used for developing feedback of performances, i.e.
informative feedback. Indeed, example-based learning
companions elaborate their feedback by comparing
the current strategy of the user with some previous
correct and incorrect strategies [81]. Such companions
could be used despite the current lack of information
regarding MT-BCI skills acquisition. Furthermore,
researchers working on learning companions have being
developing methods to adapt the behavior of their
companions to the learners’ states [196]. It might be
worth leveraging such knowledge to adapt MT-BCI
user training to the learners’ states [200].

6. Exercises in MT-BCI training

6.1. A taxonomy and survey of MT-BCI exercises

While it has not been really formalized so far, and while
their impact was not much formally studied yet, MT-
BCI training exercises can come in a variety of types
and formats, with different goals and effects. Thus, this
section formalizes what these training exercises can be
by suggesting a taxonomy. We also survey the types
of BCI exercises which have been explored so far, and
what influence they have on BCI user performances
and learning, if feasible.

In terms of taxonomy, we argue that BCI training
exercises can vary along three main dimensions: the
training stage, the skill(s) trained and the parameters
of this training. The training stage refers to the
advancement of the trainee, and thus to whether the
exercises are initial and/or introductory, for ongoing
BCI training or for the final application control
training. The skill(s) to be trained refer to what BCI
skill or BCI-related skill the exercise is dedicated to.
For instance, what mental command, set of mental
commands or characteristic of that mental command
the exercise trains. Finally, the training parameters
provide additional information about how this training
is presented, e.g. in open or closed-loop, with which
type of feedback, or in a self-paced or system-paced
manner. These dimensions and their elements are
represented on Figure 3 and are described herein-after.

6.1.1. Training stage
Regarding the training stage targeted by the exer-

cise, we identified 3 main stages: familiarization and
screening, MT-BCI control training and application
control training.

Familiarization and screening: This first stage usu-
ally aims at getting a new BCI user familiar with what
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Figure 3. A representation of a taxonomy of BCI training exercises, according to the stage of training (section 6.1.1), the skill
being trained (section 6.1.2) and the parameters of the exercise (section 6.1.3). Each stage can target several skills and the training
of these skills can vary according to the indicated parameters.

a BCI is, and at identifying whether this user can use a
given BCI and/or what type of BCI this user would be
the most proficient with, see, e.g. [98, 233, 252]. Typi-
cally, the user may be asked to perform different types
of mental tasks [131], in order to identify which subset
of them can be discriminated the most accurately in
EEG signals. Interestingly enough, this screening for
the best mental tasks for a given user can be done man-
ually by systematically testing each mental task for a
given number of trials, or can be quickened by using
machine learning (e.g. bandit algorithms) to present
mental tasks in an order and amount maximizing the
likelihood of quickly identifying the best ones [132].

MT-BCI control training: MT-BCI control training
could be considered the main stage of the training. It
consists in training the BCI user to get control over the
selected MT-BCI system in a generic way, i.e. to learn
to perform the selected mental tasks so that they would
be accurately recognized by the BCI. This training is
application-independent and often based on simple bar
or cursor control feedback [9, 29].

Application control training: Finally, once users
acquired some control over the selected MT-BCI,
they can be trained to control a specific application
using it. For instance, the user can be trained

to control a prosthesis [98] or an asynchronous
multi-class racing game [252] using the BCI. This
stage is an application-specific, goal-oriented training,
which often requires more advanced MT-BCI control,
e.g. multiclass, multicommand and/or asynchronous
control [98, 252]. Note that this stage is also very
important, as application-independent training (the
previous training stage) may not transfer immediately
to application control training, and usually requires
additional specific training. Indeed, Perdikis et al
[252] explicitly showed that standard MT-BCI control
training and application control training both led
to measurable and substantial learning effects. The
authors argued that both BCI user training exercises
were key elements that led to their victory at the
Cybathlon BCI competition 2016.

6.1.2. Skill(s) trained
During the MT-BCI control training stage, as well

as during the application control stage (although to
a lesser extent), the exercises can be made to train
different skills. We describe herein-after what skills
have been or could be trained.

Set of mental tasks: A given MT-BCI is controlled
by using several mental tasks. When training users
to control an MT-BCI, it might be too hard to start
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training all mental tasks at once (see also Section 6.2).
Thus, a given training exercise can consist in training
a subset or even a single one of them, while more
advanced exercises would later include more mental
tasks. This was for instance explored in [135] and [97],
who used training exercises with 1D, 2D and 3D BCI-
based control, in a progressive way.

MT temporal-coding training: In addition to training
users to perform mental tasks so that they are correctly
classified by the BCI, users can also be trained to
sustain the mental task (and thus the associated brain
activity pattern) for a specific targeted duration. For
instance, users could perform a MT so that it is
recognized for either a short or long time. This is called
“temporal coding” of MT patterns in [98]. This makes
it possible to design a BCI with multiple commands
from a single MT: the same MT can be associated
to different commands depending on the duration for
which the MT was sustained (and detected by the
BCI).

Delivery speed training: Another MT-BCI skill that
can be trained is the speed of delivery at which a given
MT will be performed and recognized by the BCI.
Indeed, for ideal MT-BCI control, the MT performed
by the user should not only be recognized accurately
and robustly by the BCI, but also as fast as possible,
so that the BCI control is both effective and efficient
[207, 252]. MT-BCI users can thus be trained explicitly
for that, to send MI-based BCI commands as fast as
possible. The goalkeeper paradigm was introduced for
that purpose in [84]. With this approach, the user can
move a bar (acting as a goalkeeper) left or right, only
once per trial, using left or right hand MI, to catch
a ball going left or right. The ball goes increasingly
faster as training goes on, thus forcing the user to issue
increasingly faster MI-BCI commands. Such training
could indeed increase the command delivery speed as
well as the command accuracy for most users [84].

Non-BCI training: Since different predictors of per-
formance have been identified in the literature (e.g.
spatial or attentional abilities) [201], several non-BCI
training tasks might prove useful to improve non-BCI
skills associated to those predictors, and thus, possibly
to good BCI performances. For instance, attentional
abilities could be trained using mind-body awareness or
mindfulness meditation training. Interestingly enough,
several studies showed that meditators tend to have
better MI-BCI performances than non-meditators or
that mindfulness meditation training could improve
MI-BCI performances [38, 40, 47, 67, 146, 159]. On the
contrary, short or long (week-long) progressive muscle
relaxation training or visuo-motor coordination train-

ing did not improve BCI performances, even though
the ability to concentrate on a task and two-hand
visuo-motor error duration were both found to be pre-
dictors of SMR-BCI performance [216, 266]. It has
also been shown that the ability to gain control over
brain activity with SMR-Neurofeedback [220] is facili-
tated for people who engage in more regular spiritual
practice (prayers).

After results suggesting that fronto-parietal
gamma-range oscillations was a predictor of MI-BCI
performance [108, 115], Grosse-Wentrup et al trained
gamma-power attenuation using neurofeedback [107]
with three subjects and showed with offline analysis
that it might be beneficial for SMR modulation and
thus potentially MI-BCI.

Finally, spatial abilities (SA) were found to be
positively related to MT-BCI performances [171, 198].
Thus, an attempt was made to train BCI users’ SA
in [209]. However, this pilot study could not show
any improvement in MT-BCI performances with SA
training, which might be due to the very small number
of participants or to the significant difference in their
initial mental rotation score [209].

Other MT-BCI sub-skills training: Finally, like any
skill, MT-BCI control skills are likely to involve a
number of sub-skills, e.g. as strength or flexibility
are important sub-skills to master a given martial
art. Such MT-BCI sub-skills could be, for instance,
how different EEG patterns for different MT tasks
are from each other, or how stable a given MT
EEG pattern can be produced [245]. To the best
of our knowledge, there is currently no BCI training
exercise targeted at improving EEG pattern stability
for instance. However, it seems relevant to design and
study such sub-skills training exercises for improving
MT-BCI user training in the future. Also, as discussed
in section 4.7.3, the conscious and declarative part of
the training (i.e. the set of commands/mental tasks as
conceptualized by the user) could be trained separately,
at least for BCI applications where users have sufficient
ability to report their subjective experience.

6.1.3. Training parameters
Finally, whatever the training stage, or the skill(s)

trained, the MT-BCI training exercise can have various
properties depending on how the training is conducted.
In the following we describe various (non-exclusive)
parameters which can be used to describe these
properties.

Difficulty levels: First, different exercises can have
different difficulty levels, and thus be targeted at
beginners or experts for instance. This difficulty
can be modulated, e.g. by varying the number of
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MT to control simultaneously [97, 135], by reducing
the allowed duration for the tasks to be performed
(increasing delivery speed) [84], limiting the accuracy
needed to complete a trial [150] or by biasing feedback,
to make users believe they are doing better or worse
than what they are really doing, thus changing the
perceived difficulty [88] (see also Section 5.1 on this
last point).

Open-loop vs close-loop: Any MT-BCI training task
can be performed open-loop, i.e. without any online
feedback, or close-loop, i.e. with online feedback.
Typically, screening exercises are performed open-loop,
as no BCI classifier is available yet [233, 252]. Note,
that open-loop exercise could be interesting even when
a classifier is available, as it could be a way to test
how much users rely on feedback, and whether they
can control a BCI without this feedback [19].

Gamified or not: A MT-BCI training exercise, or
an application training exercise, can be based on a
“classical” BCI environment and feedback, e.g. bar
feedback, and/or with the real targeted application.
Alternatively, these exercises can be gamified and/or
performed in an enhanced environment, e.g. Virtual
Reality (VR) [121]. There are indeed many video
games which can be controlled using a BCI, see [137,
240] for reviews, and which can thus be used as
BCI training exercises. Interestingly enough, using
VR and games has been shown to improve BCI user
motivation and training performances [85] on average,
but may not be suitable for all users [242]. From
a theoretical point of view, offering an inherently
motivating and relevant environment to the learner
is considered important [136] and gamification is a
known way to elicit notions such as appeal of novelty,
challenge or aesthetic value [25, 61]. However, the
supposed positive effects of game-like environment
are scarcely studied in BCI applications [242] and
there might be some potential unknown shortcomings
caused by complex stimuli, e.g. cognitive overload
or additional processing effects on the brain [217].
Furthermore, numerous gamified BCI training report
used exercises similar to the Graz MT-BCI protocol
for calibration data collection, followed by an enhanced
environment for the “feedback” exercise. It has
been suggested that differences between calibration
environment and testing environment might result in
decreased performances [51, 225].

Self-paced vs synchronous: Most MT-BCI training
exercises are synchronous, a.k.a. system-paced, in the
sense that the system imposes to users when they
should do which MT. Alternatively, a BCI system or
BCI training exercise can be self-paced, i.e. users

decide by themselves which MT they want to practice,
and when they want to do so [56, 62, 96]. This requires
a BCI able to handle such self-paced control, which
usually comes at the price of a lower accuracy, and
prevents from having a ground truth since we cannot
know what the user is trying to do. However, allowing
self-paced practice is a general recommendation from
instructional design (independently of BCI training)
[25, 76]. Furthermore, allowing such self-paced
(or “self-managing” [254]) practice proves beneficial
for users suffering from motor impairments in [34].
However, whether this is beneficial for all BCI users
on average has not been formally tested yet.

Duration: MT-BCI exercises can also have different
durations, e.g. to be able to offer short but numerous
diverse exercises or to offer long exercise to train
user endurance and familiarity with BCI control. In
synchronous BCIs, this duration can be modulated
by trial parameters, e.g. their own duration or
their number. Applied to trials, adaptive decision
related to timing were explored, e.g. inhibiting BCI
interactions until specific requirements were met using
EEG markers correlated to attention level [105] or pre-
estimated command delivery time (CDT) as showed in
both healthy users [206] or users suffering from motor
impairments [207]. Shorter timing could, however,
increase workload and/or stress level [207]. Note that
the impact of MT-BCI exercises or trial duration has
never been formally evaluated, though delayed trials
and/or duration manipulation was discussed in several
papers [165, 185, 249].

Environment: As mentioned in Section 3, the envi-
ronment can vary in many ways in MT-BCI training.
As such, a given MT-BCI training exercise can vary in
contextual parameters, e.g. ambient noise, presence of
one or more (un)known individuals in the room, etc.

Instructions: Similarly, as described in Section 4,
various instructions can be provided to the user, and
these can also vary for different training exercises, e.g.
depending on the training stage of users, their past
performances, or the information they may need.

Feedback: As mentioned in Section 5, many different
feedback types can be used in MT-BCI. As such a given
BCI training exercise can vary in which feedback to
use, depending, e.g. on feedback content or modality
which can benefit the BCI user the most at a given
time.

Preparation: Exercises can also vary according to how
users are prepared for this exercise or for each MT.
Indeed, one method explored to improve MT-BCI
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training was to directly induce desirable user states
through preparation. For example, suggestive hypnosis
has been tested to increase MI-BCI users’ attentional
focus [274]. However, experimental results found a
statistically significant ERD disappearance during the
MI task during hypnosis leading to lower classification
accuracy. Another type of trial-wise preparation would
be “brain tuning”, i.e. stimulating users in order
to shift their current brain state to a more optimal
one using e.g. electrical stimulation. This has been
shown to be beneficial for MI-BCI training [143, 234].
Another approach of this kind (i.e. with pre-stimulus)
would be to instruct users to perform two consecutive
tasks. For example, [145] showed that doing two tasks
consecutively (tactile selective attention first, then MI)
resulted in a better classification of MI, with a 10%
improved classification. Yet another example would be
the use of physical preparation: it has been shown that
short physical exercise enhances neural correlates of MI
in novice participants [262].

Single vs collaborative vs competitive: As discussed in
Section 3, while the vast majority of MT-BCI training
exercises are performed with the user alone with the
MT-BCI exercise (single user mode), some works have
explored having the BCI user train by collaborating or
competing with another human user.

Other: Finally, there are certainly other parameters
which could be used to design and characterise MT-
BCI training exercises. We hypothesize that the
more we will understand MT-BCI user training, the
more refined and specific the training exercises could
become, leading to more effective and efficient MT-BCI
training. Many other exercise parameters are thus still
to be identified and invented.

6.2. MT-BCI training programs: sequencing exercises

To favor training in general, educational science
recommends varied and adapted exercises [136, 193].
Thus, to ensure a successful MT-BCI training program,
we argue that the BCI training exercises mentioned
previously should be arranged and sequenced in an
appropriate and adapted way.

To do so, a first idea is to gradually confront the
user with the BCI system and intended application.
As an example, the study in [235] described distinct
exercises, with a first look at brain signal modulation
using MI tasks and classical BCI feedback [29], followed
by an explanation of the functional role of the MI
task and then a transfer task with real online control.
Another more extensive example would be the study
in [195] in which users were gradually guided towards
a control task with different protocol components,
including VR interactions and robotic control.

This progressive approach may not be so
widespread, although some papers refer to the pres-
ence of a familiarization exercise, e.g. a simulation
mode with no input from the user [184]. Yet, carry-
ing out a complex control task might prove difficult
for novice BCI users attempting to acquire MT-BCI
skills. It might thus prove useful to have users prac-
tice on simpler elements before asking them to practice
on the whole control exercise. These simpler elements
could be based on the difficulty levels described in Sec-
tion 6.1.3, for example by training tasks separately in
a multi-class BCIs [97, 135].

This modulation of difficulty may not be limited
to differences between exercises. This could also,
for example, be explored inside a single exercise by
training users with a non-random order of MI tasks
to practice, as suggested in [249]. However, the
BCI literature currently lacks formal comparisons that
demonstrate the potential value of these practices.

Finally, while the sequencing of MT-BCI exercises
can be done manually as shown in the studies described
above, it could also be done automatically, by using
Machine Learning tools to identify dynamically the
best sequences of exercises for each user. Systems that
can do so are known as Intelligent Tutoring Systems
(ITS) [100], and their use for MT-BCI user training
was first advocated in [200]. Since then, an ITS
based on deep reinforcement learning was suggested in
[267] to automatically identify the best sequence of MI
exercises for MT-BCI user training. When assessed
on idealistic simulated BCI users, this ITS proved
superior to manual or random task exercise sequencing.
However, it is still unclear how it would behave on real
data, with noisy and non-stationary brain signals, and
with real and thus complex human users.

6.3. Guidelines for the exercises in MT-BCI training

Overall, from this survey of MT-BCI training exercises,
we can make the following recommendations. First,
screening exercises should be used to identify the best
mental tasks for each user [131, 183, 233, 252]. Users
should also be trained to both BCI control (application
independent) and to BCI-based application control
[98, 252]. In terms of skills to be trained, it seems
that Non-BCI training exercises improving attentional
abilities, notably mindfulness meditation, can be used
to increase BCI performances [146, 159]. In terms of
exercises parameters, it appears that game-based or
gamified BCI training exercise are useful to increase
user motivation and engagement [85, 242]. They
can also possibly improve MT-BCI performances, at
least for relatively young users enjoying games [85].
However, it is not clear yet whether all types of users
can benefit from games during BCI training, and if
so, from which type of game [242]. In addition,
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users’ needs may vary according to the population
(e.g. the nature of their motivation depending on
whether they are patients or not, as shown in a
P300 study [94]). Consequently, gamification is not
necessarily recommended for all training situations and
must be decided through UCD approaches. Then,
including self-paced training exercises is theoretically
recommended [25, 76] and was shown effective in
practice [34]. It has not been yet assessed in controlled
studies though.

Providing training exercise with other users in
a collaborative way can increase performances and
motivation, at least for some of them [129]. Finally,
progressive training, with increasing difficulty (notably
by increasing the number of MT to train) seems to
enable advanced and complex MT-BCI-based control
[97, 102, 252]. Note that formal comparisons without
such progressive training are missing though.

6.4. Open Challenges for the exercises in MT-BCI
training

So far, there have been relatively few studies of
different types and/or sequences of training exercises
for BCI. Thus, currently very little is known about
how to design, choose and arrange training exercises
in an optimal way. Consequently, there is a number
of open challenges which need to be solved on that
topic. Such open challenges include identifying which
non-BCI training task could improve skills useful for
MT-BCI control, as well as identifying MT-BCI sub-
skills and designing appropriate training exercises to
improve each of them. We also need to identify
which exercises parameters are relevant for BCI user
training, and to evaluate what their influence on
users’ BCI performance, learning and experience is.
Future studies should also provide more information on
appropriate trade-off between these parameters. Such
evaluations should be performed with each exercise
both alone and in combination with other exercises.

Furthermore, we have to identify the best sequence
of training exercises to train for a specific MT-BCI
control, or to design ITS algorithms to optimise
that training sequence for each user and MT-BCI
type. In the Motor Imagery literature, it has been
shown that users’ concentration decreases after 60
repetitions of imagined movements [93], that prolonged
motor imagery sessions induce mental fatigue [156]
and that prolonged sessions might decrease motor
imagery accuracy in terms of imagination duration
[205]. Consequently, it would seem interesting to
investigate the suitable order, speed, duration or
number of successive trials and exercises. Last but not
least, another challenge is to identify the best exercises
and exercise sequences for each users’ type, and each
user state.

6.5. Perspectives for the exercises in MT-BCI
training

Several of the challenges mentioned could be solved
by systematic and intensive evaluations of various
exercise types, during longitudinal user studies, to
formally assess and quantify their effects. However,
the number of parameters, exercise types and exercises
orders that could be tested is virtually infinite, so the
most theoretically promising options should be tested
first. Such evaluations should also be used to build
models of the effect of various exercises, so that the
influence of exercises types and sequences that have
not been tested could be predicted by such models. In
terms of finding the best exercises sequences for each
user, the BCI community should study the work from
the ITS community, to borrow tools, algorithms and
ideas to do so [100].

7. Discussion

In recent years, MT-BCI research has made significant
advances in user training. The variety of methods
presented in this paper are promising and there is
no doubt that training programs will further improve
in future research. In this paper, we introduced
a taxonomy of MT-BCI user training, according to
the time-scale of each component. We argue that
MT-BCI user training is a combination of several
distinct aspects: environment, instructions, feedback,
exercises. We reviewed the literature on MT-BCI
in light of this taxonomy. It appears that, though
extensive literature (theoretical or practical) deals with
these different aspects and provide guidelines, there
are still many challenging questions related to MT-BCI
user training methods.

In the remainder of the document, a summary of
these guidelines and challenges is therefore provided.
Please note that, as research perspectives are rather
specific to each aspect (i.e. instructions, feedback, etc.)
and are more difficult to summarize, we do not provide
a synthesis of the perspectives that are detailed in the
respective sections.

7.1. General guidelines

We provide general guidelines extracted from the
literature in Table 1. These guidelines are associated
to a degree of certainty ranging from (*) to (***),
according to whether they are purely theoretical (*)
or were shown promising in practice through initial
results in a few studies (**), or shown in a controlled
experimental context in several studies (***). Note
that formal assessments in controlled studies are
often missing and that further research based on the
challenges raised in the following section is expected to
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yield new valuable guidelines. It is also important to
keep in mind that most of the reviewed studies were
conducted on healthy naive users with MI-BCIs. As a
result, some aspects may be less relevant or may apply
differently to patients and to non-motor MTs.

7.2. General open challenges

In this paper, we identified and mentioned a number
of specific challenges that would need to be solved
to improve MT-BCI user training, notably at the
environment, instructions, feedback and exercise level.
Here, we summarize in Table 2 the main general
challenges to solve in order to better describe,
understand and improve MT-BCI user training.

8. Perspectives

This article already presented a number of perspectives
which are specific to each MT-BCI user training
component, i.e. environment, instructions, feedback
and exercises. However, there is also a number of
relevant perspectives which are more global and which
should be considered as well. We describe them herein-
after.

8.1. Defining and quantifying users’ MT-BCI skills

In order to understand and improve further user
training in MT-BCI, there is a need to be able to define
and quantify the skills which are learned during such
training [193, 246]. So far, these skills have mostly
been quantified by the BCI classification accuracy
or other related system performance metrics. These
are “behavioral performance” of the system, which
depends on neuro-bio-psychological, data analytical
and ergonomical aspects [110, 161].

Though, while such types of metrics can tell us
how well the user-machine pair performed, i.e. how
well the machine can decode the EEG patterns from
the user, it still quantifies the overall performance of
the interaction and not the performance of the user
independently from the system [245]. Yet, rather
poor performance with a user can have many possible
causes which do not depend on the protocol or on
the user MT-BCI skills, e.g. electrodes can sometimes
malfunction and EEG signals are likely to be noisy (due
to electronic devices, power line noise and subjects’ eye
movement or muscle activity), or the classifier may
not be adapted to the user’s current EEG signals.
Therefore, it is a poor metric to adequately study BCI
users’ skills and learning curve.

There is thus a need to define what precisely MT-

BCI skills‡ are, and to be able to quantify them, in
a way that is as independent of the BCI system (and
in particular of the BCI classifier) as possible. A first
step in this direction was presented in [245], with a
definition of users’ MT-BCI skills and some classifier
independent metrics. Other types of metrics were
used in [252] to quantify user learning at the EEG
features level, independently of the classifier. Such
efforts should be pursued in order to find relevant
metrics to quantify various aspects of MT-BCI skills
and user learning progress.

Tracking changes in user-related metrics might
enable a more informed decision on whether to switch
to a different exercise and/or whether it is possible
to move on from feedback training to a transfer task,
e.g. real BCI control application. Generally speaking,
defining and quantifying users’ MT-BCI skills can be
useful to refine our understanding of user training, and
thus to be able to further optimize it.

8.2. Machine learning and user learning in MT-BCI

This paper focused on various elements which are
dedicated to user training in brain-computer interfaces,
notably environment, instructions, feedback and
training exercises. It was not focused on another key
BCI element, that is usually more dedicated to train
the machine: the classifier and associated machine
learning algorithms. However, since all or part of
the feedback provided to MT-BCI users is currently
almost always the classifier output, those machine
learning algorithms also have a key - although indirect -
influence on user training. In particular, there is a need
to identify and understand the influence of the classifier
properties on the resulting user learning [246]. This
notably includes 1) identifying whether using some
specific EEG features and classifier types favors or
impedes user learning [244, 246] and 2) identifying if,
when and how to update classifiers with incoming data.

The influence of the classifier properties on user
learning has been barely studied so far, but a handful of
studies showed interesting results and raised interesting
questions. In particular, the study in [95], based on
a meta-analysis from 2010, suggested that for BCIs
based on machine learning, users learning effects were
essentially not visible in the publications analyzed,
as they did not show increasing BCI accuracy with
increasing practice. This was in contrast to previous
Neurofeedback-based BCI training studies, which did
show such users learning effects. This may thus

‡ Note that we are talking of multiple skills, as controlling a
BCI is not a single monolithic skill, but most probably a set of
multiple (sub-)skills, e.g. a separate set of skills to perform each
of the mental tasks, being able to produce EEG patterns which
are distinct, but also stable, being able to produce such patterns
as fast as possible, etc.
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Table 1. General guidelines extracted from the literature, with a degree of certainty ranging from (*) to (***), whether they
are purely theoretical (*) or shown promising in practice through initial results in a few studies (**), or shown in a controlled
experimental context in several studies (***).

Instructions and

social environment

General

instructions

(*) clearly explain the BCI technology and the research goal

(*) explain the meaning of feedback, convey clear goal

(*) demonstrate the skill to be learned

Instructed task

and guidance

(***) adapt the task to the user, e.g. through screening

(***) explicitly encourage kinesthetic motor tasks over visual ones

(**) provide specific guidance rather than unspecific instructions: activate prior
knowledge and use tasks which are familiar for users

Feedback

Content

(**) provide supportive feedback for non-autonomous users

(**) provide biased (positive) feedback for novice users

(*) provide feedback of performances which is clear, meaningful, explanatory and
specific

Modality (***) prefer multimodal (visual + tactile/somatosensory stimuli) rather than
unimodal

Timing (**) for trial wise feedback, provide continuous feedback rather than discrete feedback

Exercises

Training stage
(**) Use screening exercises to identify the best mental tasks for each user

(**) train users to both BCI control (application independent) and to BCI-based
application control

Trained skills (***) offer non-BCI training exercises improving attentional abilities, notably
mindfulness meditation, to increase BCI performance.

Training

parameters

(**) provide an engaging environment, e.g. game-based or gamified BCI training
exercise to increase user motivation, engagement and possibly improve BCI
performances (at least for relatively young users enjoying games)

(*) offer a diversified training, include a variety of tasks

(**) include self-paced training exercises

(**) offer a progressive training, with increasingly difficulty (notably by progressively
increasing the number of mental tasks to train)

Table 2. Summary of the General challenges extracted from our analysis of the reviewed articles. In this table, the expression
”training characteristics” refers to those described in depth in the article: environment (Section 3), instructions (Section 4), feedback
(Section 5), and other characteristics of training exercises (Section 6). To these training methods, other factors can be added such
as user profile (discussed in Section 2.3) and elements that are more related to the BCI system such as acquisition and machine
learning. Here the challenges are presented in chronological order (i.e. with the first challenges to be solved first).

1

• Identifying MT-BCI sub-skills.
• Designing user-related performance metrics.
• Studying the way they relate to system behavioral performances, EEG patterns, and user experience (extracted during

and after the interaction, e.g. through physiological measures or subjective reports).

2 • Investigating the influence of training characteristics* on MT-BCI performances and sub-skills.
• Studying how these training characteristics* interact with each other.

3 • Identifying which parameters can be manipulated and are relevant to improve MT-BCI sub-skills.
• Identifying what users’ states should be monitored (and how) to provide adapted/adaptive training.

4
• Designing appropriate training exercises and evaluating their effect, both alone and in combination with other exercises.
• Adapting training with properties that are best suited for each user type/profile or for each skill to be trained.
• Optimising training sequences dynamically, depending on users’ states and traits, e.g. by designing ITS algorithms.

suggest that whereas machine learning could help to
obtain high classification accuracy quickly, this may
also impede user learning over time. This hypothesis
was also somehow supported by the results from [270].
Indeed, in their study, the authors compared SMR-BCI
training over multiple sessions with either Laplacian
band power features or Common Spatial Patterns
(CSP) features, i.e. without or with machine learning
to define EEG spatial filters. Their results showed that
using CSP led to higher first session performances,

higher than with Laplacian channels, but that users
with a BCI based on Laplacian channels improved over
sessions, whereas those with CSP did not.

On the other hand, several recent BCI studies
based on machine learning demonstrated clear user
learning. Notably, in [252], the authors used fixed
classifiers for long term training of two quadriplegic
users and could demonstrate a robust learning, both in
terms of BCI performance, application performances
and neurophysiological changes. The authors argued
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that using a fixed classifier was a key element to enable
user learning, so as to provide consistent feedback to
the BCI users. Rather than using fixed classifiers,
another line of works explored co-adaptive methods
(reviewed in [256]), in which both the user and the
machine are continuously learning and adapting to
each other. In these cases, the classifiers and eventually
the features are adaptive and update their parameters
as new data become available. Such approaches were
shown to enable many subjects to reach good BCI
control relatively fast, including some users who could
not control the BCI with static fixed approaches [103,
256]. This was also recently shown to even lead to
quick brain plasticity in a single BCI session [288].
However, such approaches do not work for all users,
and notably not for users without any initial relevant
EEG patterns among the features used, nor for users
who cannot make sense of feedback nor when the
adaptation is either too slow or too fast [256]. While
co-adaptive approaches can certainly quickly improve
BCI performances over time, one study reported it
could lead to a decreased quality of users’ EEG
patterns and thus possibly to users’ BCI skills: the
users may rely too much on the machine adaptation,
and may not try to improve by themselves [204].

Overall, it seems that there are a number of
factors that influence whether the machine learning
algorithms will enable, favor or impede user learning,
notably the type of spatial filtering and classifier used,
whether and if so, how and how fast the features and/or
classifiers are adapted, whether the user can produce
some distinct enough EEG patterns from the start,
and whether the user can make sense of the feedback
resulting from the machine learning algorithm. So
far, there is no formal comparison to identify which
machine learning approach enables the most effective
and efficient learning, nor how far this learning can go.
There is also a lack of metrics, theories and models
(an exception is the relevant theoretical model of co-
adaptation presented in [226]. It needs to be validated
on real data though) to quantify and characterise how
the various factors mentioned above influence learning.
Such models and theories would enable to design
and choose the appropriate classifiers, and appropriate
adaptation schemes to ensure effective user learning
[246].

8.3. On the need for large scale longitudinal
evaluation of MT-BCI user training

As mentioned multiple times in this article, there is
still a lot we do not know about MT-BCI user training,
e.g. about why some users can learn efficiently to use a
BCI and some other cannot, about how to train users
effectively, about how to give each of them optimal
environment, instructions, feedback and exercises at

all time or about how far can MT-BCI users learn and
progress with training. This is partly due to a lack
of studies on several of these questions, as well as to
inconsistent results between studies about them. The
latter is probably due to large within and between-user
variability typically observed in BCI combined to the
often small sample sizes (in number of users and/or
training sessions) of current BCI studies. There is
thus a need for more experimental studies in MT-BCI
user training, and ideally for more extensive and larger
scale ones. Such studies should, ideally, train large
user populations (i.e. hundreds or thousands), that are
diverse in user types, and to train them over multiple
sessions (i.e. typically at least 10 sessions if not much
more, for each user). They should also record various
aspects of users’ profile, states and skills. Naturally, if
such large scale studies were to share their data in open
access, that would enable the whole BCI community to
benefit from them, and improve our knowledge.

8.4. On the need for models of MT-BCI user training

With increasing experimental data on MT-BCI user
training, the next steps would be to use them to
build both theoretical and computational models of
MT-BCI user training in order to be able to fully
understand and optimize this training. As mentioned
in Section 2, there are already some ongoing works on
these aspects, e.g. [110, 173, 219, 265]. However,
so far, there is still no comprehensive and robust
model able to explain BCI user training progress with
a given MT-BCI training protocol. Given the very
large number of parameters that could be explored
and combined in MT-BCI user training, it is virtually
impossible to fully optimize this training by following
an experiment intensive only approach, hence the need
for models that could - hopefully - generalize the
obtained experimental data to new situations. To be
able to build such models, it should be stressed that we
need both positive and negative results, i.e. to know
both what works and what does not work to improve
training [286].

9. Conclusion

Designing training procedures which take into account
the potential effect of all parameters remains a
challenge far out of our reach. With this article,
we tried to contribute to pull together the varied
literature on MT-BCI training into a comprehensive
framework, which will hopefully lead to improved
training procedures. We attempted at covering
the major key components of MT-BCI training
(i.e. environment, instruction, feedback, and other
characteristics of training exercises) and we provided
some suggestions on the potential research avenues
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that may contribute to our general understanding of
MT-BCI training, learning and performances.

Past and current MT-BCI studies that investigate
user learning mostly focus on classification accuracy
improvements. Many more studies will be needed
in order to be able to mobilize more factors, involve
a broader use of User Centered Design (UCD),
User eXperience (UX) design, usability studies and
subjective assessments [152, 241, 254, 259] and,
ultimately, drastically improve BCI effectiveness but
also users’ experiences. There are still many steps to be
taken and it is crucial to keep analysing and improving
all training aspects (environment, instructions, exercise
design, feedback, signal processing, classification, etc.)
in order to achieve useful, usable systems.
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G Pfurtscheller. “BCI Competition 2008–Graz data set
A”. In: Institute for Knowledge Discovery (Laboratory
of Brain-Computer Interfaces), Graz University of
Technology 16 (2008).

[67] P. Eskandari and A. Erfanian. “Improving the perfor-
mance of brain-computer interface through meditation
practicing”. In: 2008 30th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology
Society. IEEE. 2008, pp. 662–665.

[68] T. Geng, J. Q. Gan, M. Dyson, C. S. Tsui, and
F. Sepulveda. “A novel design of 4-class BCI using
two binary classifiers and parallel mental tasks”.
In: computational Intelligence and Neuroscience 2008
(2008).

[69] A. Guillot and C. Collet. “Construction of the motor
imagery integrative model in sport: a review and
theoretical investigation of motor imagery use”. In:
International Review of Sport and Exercise Psychology
1.1 (2008), pp. 31–44.

[70] V. Morash, O. Bai, S. Furlani, P. Lin, and M. Hallett.
“Classifying EEG signals preceding right hand, left hand,
tongue, and right foot movements and motor imageries”.
In: Clinical neurophysiology 119.11 (2008), pp. 2570–
2578.

[71] K.-R. Müller, M. Tangermann, G. Dornhege, M.
Krauledat, G. Curio, and B. Blankertz. “Machine
learning for real-time single-trial EEG-analysis: from
brain–computer interfacing to mental state monitoring”.
In: Journal of neuroscience methods 167.1 (2008),
pp. 82–90.

[72] F. Nijboer, A. Furdea, I. Gunst, J. Mellinger, D. J. Mc-
Farland, N. Birbaumer, and A. Kübler. “An auditory
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man training protocols for spontaneous brain-computer
interfaces: lessons learned from instructional design”. In:
Frontiers in Human Neuroscience 7 (2013), p. 568.

[137] D. Marshall, D. Coyle, S. Wilson, and M. Callaghan.
“Games, gameplay, and BCI: the state of the art”. In:
IEEE Transactions on Computational Intelligence and
AI in Games 5.2 (2013), pp. 82–99.

[138] T. Ono, A. Kimura, and J. Ushiba. “Daily training
with realistic visual feedback improves reproducibility
of event-related desynchronisation following hand motor
imagery”. In: Clinical Neurophysiology 124.9 (2013),
pp. 1779–1786.

[139] N. Robinson, A. P. Vinod, K. K. Ang, K. P. Tee,
and C. T. Guan. “EEG-based classification of fast and
slow hand movements using wavelet-CSP algorithm”.
In: IEEE Transactions on Biomedical Engineering 60.8
(2013), pp. 2123–2132.

[140] R. Sigrist, G. Rauter, R. Riener, and P. Wolf.
“Augmented visual, auditory, haptic, and multimodal
feedback in motor learning: a review”. In: Psychonomic
bulletin & review 20.1 (2013), pp. 21–53.

[141] A. Vuckovic and B. A. Osuagwu. “Using a motor
imagery questionnaire to estimate the performance of a
brain–computer interface based on object oriented motor
imagery”. In: Clinical Neurophysiology 124.8 (2013),
pp. 1586–1595.

[142] J. D. Wander, T. Blakely, K. J. Miller, K. E. Weaver,
L. A. Johnson, J. D. Olson, et al. “Distributed cortical
adaptation during learning of a brain–computer interface
task”. In: Proceedings of the National Academy of
Sciences 110.26 (2013), pp. 10818–10823.

[143] P. Wei, W. He, Y. Zhou, and L. Wang. “Performance of
motor imagery brain-computer interface based on anodal
transcranial direct current stimulation modulation”. In:
IEEE Transactions on Neural Systems and Rehabilita-
tion Engineering 21.3 (2013), pp. 404–415.

[144] M. Witte, S. E. Kober, M. Ninaus, C. Neuper, and
G. Wood. “Control beliefs can predict the ability to
up-regulate sensorimotor rhythm during neurofeedback
training”. In: Frontiers in human neuroscience 7 (2013),
p. 478.

[145] S. Ahn, M. Ahn, H. Cho, and S. C. Jun. “Achieving
a hybrid brain–computer interface with tactile selective
attention and motor imagery”. In: Journal of neural
engineering 11.6 (2014), p. 066004.

[146] K. Cassady, A. You, A. Doud, and B. He. “The impact
of mind-body awareness training on the early learning of
a brain-computer interface”. In: Technology 2.03 (2014),
pp. 254–260.

[147] R. M. Gibson, S. Chennu, A. M. Owen, and D.
Cruse. “Complexity and familiarity enhance single-
trial detectability of imagined movements with elec-
troencephalography”. In: Clinical Neurophysiology 125.8
(2014), pp. 1556–1567.

[148] K. Gwak, R. Leeb, J. d. R. Millán, and D.-S. Kim.
“Quantification and reduction of visual load during BCI
operation”. In: 2014 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE. 2014,
pp. 2795–2800.

[149] E. M. Hammer, T. Kaufmann, S. C. Kleih, B. Blankertz,
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L. Pillette. A BCI challenge for the signal processing
community: considering the user in the loop. 2018.

[247] M. Lukoyanov, S. Y. Gordleeva, A. Pimashkin, N.
Grigor’Ev, A. Savosenkov, A Motailo, et al. “The
efficiency of the brain-computer interfaces based on
motor imagery with tactile and visual feedback”. In:
Human Physiology 44.3 (2018), pp. 280–288.

[248] D. J. McFarland and J. R. Wolpaw. “Brain–computer
interface use is a skill that user and system acquire
together”. In: PLoS biology 16.7 (2018), e2006719.
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