
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

14

A Review of various k-Nearest Neighbor Query

Processing Techniques

S. Dhanabal

Asst. Professor, Dept. of CSE,

Jansons Institute of Technology,

Coimbatore, Tamilnadu, INDIA

Dr. S. Chandramathi
Professor & Head, Dept. of ECE,

Sri Krishna College of Engineering & Technology,

Coimbatore, Tamilnadu, INDIA

ABSTRACT
Identifying the queried object, from a large volume of given

uncertain dataset, is a tedious task which involves time

complexity and computational complexity. To solve these

complexities, various research techniques were proposed.

Among these, the simple, highly efficient and effective

technique is, finding the K-Nearest Neighbor (kNN) algorithm.

It is a technique which has applications in various fields such

as pattern recognition, text categorization, moving object

recognition etc. Different kNN techniques are proposed by

various researchers under various situations. In this paper, we

classified these techniques into two ways: (1) structure based

(2) non-structure based kNN techniques. The aim of this paper

is to analyze the key idea, merits, demerits and target data

behind each kNN techniques. The structure based kNN

techniques such as Ball Tree, k-d Tree, Principal Axis Tree

(PAT), Orthogonal Structure Tree (OST), Nearest Feature Line

(NFL), Center Line (CL) and Non-structured kNN techniques

such as Weighted kNN, Condensed NN, Model based k-NN,

Ranked NN (RNN), Pseudo/Generalized NN, Clustered k-

NN(CkNN), Mutual kNN (MkNN), Constrained RkNN etc.,

are analyzed in this paper. It is observed that the structure

based kNN techniques suffer due to memory limit whereas the

Non-structure based kNN techniques suffer due to computation

complexity. Hence, structure based kNN techniques can be

applied to small volume of data whereas Non-structure kNN

techniques can be applied to large volume of data.

KEYWORDS
Query processing – Nearest Neighbor - kNN

1. INTRODUCTION
Query processing technique is usually applied to the smallest

datasets which follows any of the in-memory algorithms like

B+tree, R-trees etc., to get the result. But, when the datasets are

large, high dimensional or uncertain, it is highly impossible for

traditional query processing technique to retrieve the required

data within the stipulated time. The nearest neighbor

techniques play a vital role in these situations. The nearest

neighbor (NN) technique is very simple, highly efficient and

effective in the field of pattern recognition, text categorization,

object recognition etc. It has so many advantages like

simplicity, robust to noisy training data, improved query time

and memory requirements etc., and also have disadvantages

like Computation Complexity, Memory limitation and high

cost in execution of algorithm. The nearest neighbor (NN) rule

identifies the category of unknown data point on the basis of its

nearest neighbor whose class is already known. This rule is

widely used in pattern recognition [1,2], text categorization [3-

5], ranking models [6], object recognition [7] and event

recognition [8] applications. A number of methods have been

proposed for efficient processing of nearest neighbor queries

for stationary points. The k-nearest neighbor lies in first

category in which whole data is classified into training data and

sample data point. Distance is evaluated from all training

points to sample point and the point with lowest distance is

called nearest neighbor. This technique is very easy to

implement but value of k affects the result in some cases. The

NN training data set can be structured using various techniques

to improve over memory limitation of kNN. The kNN technique

can be implemented using ball tree [19, 20], k-d tree [21],

nearest feature line (NFL) [22], tunable metric [24], principal

orthogonal search tree [26], axis search tree [27] and

Continuous RkNN[47]. In tree structure, training data is divided

into nodes, whereas in techniques like NFL and tunable metric,

the training data set is divided according to planes. These

algorithms increase the speed of basic kNN algorithm.

Non-structured k-NN technique has been improved to meet the

increase in dimensionality of the data space. T. M. Cover et al.

proposed that the nearest neighbor can be calculated based on

the value of k which specifies the number of nearest neighbors

to define a class of sample data point[9]. Later, it was improved

based on weights [33]. The training points are assigned weights

according to their distances from sample data point. The

computational complexity and memory requirements are the two

main issues related to the above techniques. To overcome

memory limitation, size of data set is reduced by the repeated

patterns, which do not add extra information and the data points

which do not affect the result are eliminated from training data

set. Apart from the time and memory limitation, the value of k

is mainly considered to find the category of the unknown

sample. To improve speed of classical kNN, many techniques

such as ranking, false neighbor information, clustering etc., are

used. Non-structured k-NN techniques are further amplified in

the areas of moving object which uses query indexing

technique instead of object indexing. Object indexing

technique is not suited for the database where the objects are

continuously moving and so uses Query indexing. Most of the

indexing techniques such as R-trees, B+ trees etc., are based on

the disk-based indexing which is not well-suited for moving

objects for the following reasons:- (i) updating the index

when the object moves; (ii) Frequent revaluation of queries

when any object moves; and (iii) achieving minimum

execution times for large number of moving objects and

queries. Also, the cost of executing these algorithms from

main memory is high. In both the cases, kNN techniques are

well suited for finding the solution. Reverse kNN technique is

the complementary problem to that of finding the k-nearest

neighbors (k-NN) of a query object whose goal is to find the

influence object of the whole dataset [41-46]. Continuous

RkNN[47], Constrained RkNN [48], Mutual k-

NN(MkNN)[50], are some of the k-NN techniques used in the

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

15

continuous moving object datasets whereas Aggregate

kNN[49] is used to find the nearest neighbor using aggregate

functions.

2. K-NEAREST NEIGHBOR
TECHNIQUES
k-NN techniques are classified in two types i) Structure based

kNN and ii) Non- structure based kNN.

2.1 Structure based k-NN Technique
Structure based k-NN technique uses tree structures to

represent the training datasets. Berchtold proposed a method on

Voronoi cells which is built specifically for nearest neighbor

queries [10]. Range queries uses index structures that works

based on Branch-and-bound methods. Roussopoulos proposed

an influential algorithm [11], for finding the k nearest

neighbours in which an R-tree [12] indexes the points, and

depth-first traversal of the tree is used. During the traversal,

entries in the nodes of the tree are ordered and pruned based on

a number of heuristics. Cheung and Fu [13] simplified this

algorithm without reducing its efficiency. To better suit the

nearest neighbor problems, branch-and- bound algorithms are

modified by various methods especially when applied for high-

dimensional data [14]. Next, a number of incremental

algorithms for similarity ranking have been proposed that can

efficiently compute the (k +1)-st nearest neighbor, after the k

nearest neighbors are returned [15, 16]. They use a global

priority queue of the objects to be visited in an R-tree. More

specifically, Hjaltason et al. [16] proposed an incremental

nearest neighbor algorithm, which uses a priority queue of the

objects to be visited in an R+-tree [17]. They show that such a

best-first traversal is optimal for a given R-tree. A very similar

algorithm was proposed by Henrich [15], which employs two

priority queues. For high-dimensional data, multi-step nearest

neighbor query processing techniques are usually used [18].

Ball Tree concept was proposed by Ting Liu. It is a binary tree

in which, leaves contain information and the internal nodes are

used to efficiently search through leaves. This can be shown in

the Figure.1. It follows top down approach and has a better

speed over kNN[19,20].

Fig1. An Example of a Ball-tree

In the k-dimensional trees, the training data are divided into

right node and left node. According to query records. left or right

side of tree is searched. Once the terminal node is reached,

records in that node are examined to find the closest data node

to query record [21]. Stan Z.Li et al. proposed the concept of

NFL [22] which divides the training data into plane. It is used

to enhance the representational capacity of a sample set of

limited size by using the feature lines which passes through

each pair of the samples belonging to the same class. An

example to illustrate the NFL classification method is given in

Figure.2 The evaluated distances are sorted into ascending

order and the NFL distance is assigned as rank 1. An

improvement made over NFL is Local Nearest Neighbor,

proposed by W. Zheng et al., evaluates the feature line and

feature point in each class, for points only, whose corresponding

prototypes are neighbors of query point[23]. Yongli Zhou et al.

introduce [24] new metric, called ―Tunable Metric‖, which is

used for evaluating distances for NFL rather than feature line.

At first stage it uses tunable metric to calculate distance and

then implement steps of NFL. Center Based Nearest Neighbor

[25] is improvement over NFL and Tunable Nearest Neighbor

in which Center base Line [CL] connects sample point with

known labeled points. CL is calculated based on the straight

line passing through training sample and center of class and

then distance is evaluated from query point to CL and nearest

neighbor is evaluated. Principal Axis Tree [PAT] [26] divide the

training data in an efficient manner in terms of speed for nearest

neighbor evaluation. It consists of two phases 1) PAT

Construction 2) PAT Search. PAT uses principal component

analysis (PCA) and divides the data set into regions containing

the same number of points. Once tree is formed kNN is used to

search nearest neighbor in PAT. The regions can be determined

for given point using binary search. The Orthogonal Search

Tree [OST][27] uses orthogonal vector. It is an improvement

over PAT to speed up the process. It uses concept of ―length

(norm)‖, which is evaluated at first stage. Then orthogonal

search tree is formed by creating a root node and assigning all

data points to this node. Then the left and right nodes are

formed using pop operation.

Figure.2 An example to illustrate the NFL classification

method. The feature points p1, p2, p3 and p4 are the

projections of query q on the feature lines x1x2, x2x3, x1x3

and x4x5, respectively.

2.2 Non-structure based KNN Techniques
Kollios et al. [28] proposed an elegant solution for answering

nearest neighbor queries for moving objects in one dimensional

space. Their algorithm uses a duality transformation, where the

future trajectory of a moving point x(t) = x0 + vx t is

transformed into a point (x0, vx) in a so-called dual space. The

solution is generalized to the ―1.5- dimensional‖ case where the

objects are moving in the plane, but with their movements

being restricted to a number of line segments (e.g.,

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

16

corresponding to a road network). However, Tian Xia and

Donghui Zhang [47] investigated the processing of Continuous

RNN (CRNN) queries when k=1. Their method is based on the

60-degree-pruning technique. The monitoring region of a

CRNN query is defined as six pie-regions (determined by the

query point and the six candidates) and six cir-regions

(determined by the six candidates and their nearest neighbors).

Then for a CRNN query: in each sub-space a continuous

constrained nearest neighbour query is used to monitor the

candidate in that sub-space, called continuous filter. For each

candidate, a continuous nearest neighbor query is used to do

continuous refinement. Frequent Updated R-Tree (FUR) and

the hash tables are used to store the cir-region whereas

optimization techniques like lazy-update and partial-insert are

also proposed to avoid unnecessary NN searches and reduce

the updates on the FUR-tree. The work of Albers et al. [29]

investigated Voronoi diagrams of continuously moving points,

relates to the problem of nearest neighbor queries. Even though

such diagrams change continuously as points move, their

topological structures change only when certain discrete events

occur. The authors show a non-trivial upper bound of the

number of such events. They also provide an algorithm to

maintain such continuously changing Voronoi diagrams.

Song et al. [30] proposed a solution for finding the k nearest

neighbors for a moving query point. However, the data points

are assumed to be static. In addition, the time is not assumed to

be continuous instead a periodical sampling technique is used.

The time period is divided into n equal-length intervals. When

computing the result set for some sample, the algorithm tries to

reuse the information contained in the result sets of the

previous samples. Whereas Raptopoulou et al. [31] and Tao et

al. [32] considered the nearest neighbor problem for a query

point moving on a line segment for static and for moving data

points.

Bailey [33] uses weights with classical kNN and proposed

weighted kNN (WkNN) algorithm. WkNN evaluates the

distances as per value of k and a weight is assigned to each

calculated value, and then nearest neighbor is decided and class

is assigned to sample data point. The Condensed Nearest

Neighbor (CNN) algorithm stores the patterns one by one and

eliminates the duplicate ones. Hence, CNN removes the data

points which do not add more information and show similarity

with other training data set [34]. The Reduced Nearest

Neighbor (RNN) is an improvement over CNN; it includes one

more step to eliminate the patterns which are not affecting the

training data set result[35]. The another technique called Model

Based kNN selects similarity measures and create a ‗similarity

matrix‘ from the given training set. Then, in the same category,

largest local neighbor is found that covers large number of

neighbors and a data tuple is located with largest global

neighborhood. These steps are repeated until all data tuples are

grouped. Once data is formed using model, kNN is executed to

specify category of unknown sample[36].

Subash C et al. [37] improved the kNN by introducing the

concept of ranks. The method pools all the observations

belonging to different categories and assigns ranks to each

category of data in ascending order. Then observations are

counted on the basis of rank and class is assigned to unknown

sample. It is very much useful in case of multi-variants data. In

Modified kNN, which is a modification of WkNN, validity of

all data samples in the training data set is computed,

accordingly weights are assigned and then validity and weight

both together set basis for classifying the class of the sample

data point[38].

Yong zeng et al. [39] defines a new concept to classify sample

data point. The method introduces the pseudo neighbor, which

is not the actual nearest neighbor; but a new nearest neighbor is

selected on the basis of value of weighted sum of distances of

kNN of unclassified patterns in each class. Then Euclidean

distance is evaluated and pseudo neighbor with greater weight

is found and classified for unknown sample. In this technique

proposed by Zhou Yong [40], Clustering is used to calculate

nearest neighbor. In the first step, samples which are nearer to

the border of the training set are removed. Then, each training

dataset are clustered based on the ‗k‘ value and all cluster

centers form a new training set. Then, weights are assigned to

each cluster according to number of training samples in

clusters.

3. REVERSE KNN TECHNIQUES
A reverse k-nearest neighbor (RkNN) query returns the data

objects that have the query object in the set of their k-nearest

neighbors. It is the complementary problem to that of finding

the k-nearest neighbors (k-NN) of a query object. The goal of a

reverse k-nearest neighbor query is to identify the ‖influence‖

of a query object on the whole data set. Although the reverse k-

nearest neighbor problem is the complement of the k-nearest

neighbor problem, the relationship between k-NN and RkNN is

not symmetric and the number of the reverse k-nearest

neighbors of a query object is not known in advance. A naive

solution of the RkNN problem requires the running time of

O(n2) whereas kNN requires the running time of O(n).Also

RkNN is more expensive than k-NN queries.

Several different solutions have been proposed for computing

RNN queries for non-moving points in two and higher

dimensional spaces. Stanoi et al. [41] present a solution for

answering RNN queries in two-dimensional space.

Definition 1:

Let p be an NN point of q among the points in Si. Then, either

q is an NN point of p (and then p is an RNN point of q), or q

has no RNN point in Si .

Stanoi et al. has proved this property [41]. These observations

enable a reduction of the RNN problem to the NN problem. For

each region Si, an NN point of q in that region is found. In

another solution for answering RNN queries, Korn and

Muthukrishnan [42] use two R-trees for the querying, insertion,

and deletion of points. In the first, the RNN-tree, the minimum

bounding rectangles of circles having a point as their centre

and the distance to the nearest neighbor of that point as their

radius are stored. The second, the NN-tree, is simply an R*-

tree that stores the data points.

Yang and Lin [43] improve the solution of Korn and

Muthukrishnan by introducing an Rdnn-tree, which makes it

possible to answer both RNN queries and NN queries using a

single tree. Structurally, the Rdnn-tree is an R+-tree, where

each leaf entry is augmented with the distance to its nearest

neighbor (dnn), and where a non-leaf entry stores the

maximum of its children‘s dnn‘s. Maheshwari et al. [44]

proposed main memory data structures for answering RNN

queries in two dimensions. For each point their structures

maintain the distance to its nearest neighbor. In contrast to the

approach of Stanoi et al., updates of the database are

problematic in the last three approaches mentioned. On the

other hand, the approach of Stanoi et al. does not easily scale

up to more than two dimensions because the number of regions

where RNN candidates are found increases exponentially with

the dimensionality. To alleviate this problem, Singh et al. [45]

proposed an algorithm where RkNN candidates are found by

performing a regular kNN query. The disadvantage of such an

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

17

approach is that it does not always find all RkNN points. The

recent approach by Tao et al. [46] fixes this problem. Their so-

called TPL algorithm, similar to Stanoi et al., works in two

phases—a filtering phase and a refinement phase—but no

subdivision of the underlying space into regions is necessary in

the refinement phase. Thus, the algorithm gracefully scales to

more than two dimensions.

Tobias Emrich et al. proposed a new RkNN technique based on

some constrains. In this, they formalize the novel concept of

Constrained Reverse k-Nearest Neighbor (CRkNN) search on

mobile objects (clients) performed at a central server. The

CRkNN query computes the set RkNN(q) of objects, for a

given query object q, having q as one of their k-nearest

neighbors, if and only if the result set exceeds a specific

threshold, say ‗m‘, else the query reports an empty result.

Their approach minimizes the amount of communication

between clients and central server by using the approximation

of the positions to identify true hits and true drops. This

approach provides only approximate results for bichromatic

cases.[47]. An example of Constrained Reverse RkNN for

monochromatic and bichromatic cases is shown in [Figure.3].
It illustrates the concept of CRkNN queries in both cases. The

mono-chromatic CR1NN query [Figure.3a] for point q returns

point 1 and 4 if, for some threshold value m є {1, 2} or nothing

if m ≤ 3. Points 2 and 3 are not returned for any choice of m,

because they do not find q as their 1-nearest neighbor. In the

bi-chromatic case, two object sets Dred (red objects) and Dblue

(blue objects) are considered. The bi-chromatic CRkNN query

returns all elements of Dred that have the query point as on of

their k-nearest neighbors if all other red objects are

ignored.Figure.3b shows the bi-chromatic CR1NN query for a

set of lions (red objects R1, R2, and R3) and a set of potential

prey (blue objects B1, B2, and q). The query object q (from the

blue object set) could be a young elephant that is not yet able to

defend itself. In this example, the bi-chromatic CR1NN query

yields no results for any value of m, because each lion observes

another animal as nearest neighbour.

4. OTHER NEAREST NEIGHBOR
TECHNIQUES
Dimitris Papadias et al. [48] deals with the aggregate nearest

neighbor technique which states that for the given two spatial

datasets P (e.g., facilities) and Q (queries), an aggregate

nearest neighbor (ANN) query retrieves the point(s) of P with

the smallest aggregate distance(s) to points in Q. They provide

algorithms for memory-resident queries and cost models that

accurately predict their performance in terms of node accesses

and also developed methods for disk-resident query sets and

approximate retrieval. But the cost for implementing disk-

resident query model is very high because of the multiple reads

of Q required by this processing technique.

Yunjun Gao et al.[49] proposed a technique on finding the

mutual nearest neighbor which deals with the given set ‗D‘ of

trajectories, a query object q, and a query time extent C, a

mutual (i.e., symmetric) nearest neighbor (MNN) query over

trajectories from D, the set of trajectories that are among the k1

nearest neighbors (NNs) of q within C, and will have q as one

of their k2 NNs. They proposed two types of MNN queries,

i.e., MNNP and MNNT queries, which are defined with respect

to stationary query points and moving query trajectories,

respectively. They utilize the batch processing and reusing

technology to reduce the I/O cost (i.e., number of node/page

accesses) and CPU time significantly and also proposed

techniques to tackle historical continuous MNN (HCMNN)

search for moving object trajectories, which returns the mutual

nearest neighbors of q (for a specified k1 and k2) at any time

instance, say ‗c‘.But this algorithm doesn‘t deal with the

bichromatic datasets and can be further pruned to increase the

performance.Comparisons of various kNN techniques are

given in table 1.

Figure.3 An example of Constrained Reverse RkNN

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

18

TABLE I. COMPARISON OF VARIOUS K-NEAREST NEIGHBOR TECHNIQUES

S. No Technique Concept Merits Demerits Applications

1
Ball Tree k
nearest neighbor
(BTKNN) [19,20]

To improve
the speed

1.Compatibile with
high dimensional
Objects.
2. Represented data are
tuned well to structure
3.Simple to implement
4. Especially used for
geometric learning

1. Implementation cost
is high.
2. When distance is
increased,
 performance is
decreased.

Robotic, vision,
speech, graphics

2
k-d tree
nearest neighbor
(kdNN) [21]

To divide
the training
data sets
into two
halves

1.Perfect balanced
trees are formed
2.It is fast and
simple

1.Computational
complexity
2.Exhaustive search is
required
 3. Chance of misleading
the points as it blindly
splits the points into two
halves.

Multidimensional data
points.

3
Nearest feature
Line Neighbor (NFL)
[22]

To have
multiple
template per
class for
classificatio
n

1.Accurate
classification
2.Effective algorithm
for small datasets.
3.Ignored information
in nearest neighbor are
used

1.Chance of failure if
the model in NFL is
far away from query
point
 2.Computational
Complexity
 3. Hard to illustrate the
feature point in straight
line.

Face Recognition
problems

4
Local Nearest
Neighbor [23]

To focus on
nearest
neighbor
prototype
of query
point

1.Overcomes the

limitations of NFL

1.Increase in number of

computations
Face Recognition

5
Tunable Nearest
Neighbor (TNN) [24]

Calculates
the distance
first and
then
implements
the steps of
NFL

1.Effective for small

data sets

1.Large number of

computations
Bias problems

6
Center based Nearest
Neighbor (CNN) [25]

To connect
sample
point with
known
labeled
points on a
center line

1.Highly efficient for

small data sets

1. Large number of

computations
Pattern Recognition

7
Orthogonal
Search Tree Nearest
Neighbor [26]

To speed
up the
process ,
Orthogonal
search trees
are used

1.Less
Computation
time 2.Effective
for large data
sets

1.Query time is more Pattern Recognition

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

19

8
Principal Axis
Tree Nearest
Neighbor (PAT) [27]

Uses PAT

construction

and PAT

search

1.Good
perform
ance
2.Fast
Search

1.Computational Time

is more
Pattern Recognition

9.
k Nearest Neighbor
(kNN) [9]

To find the
nearest
neighbor
based on ‗k‘
value

1.Training is very fast
2.Simple and easy to
learn
3.Robust to noisy
training data
4 .Effective if
training data is large
5.It is symmetric.

1. Biased by value of k
2.Computation
Complexity
3.Memory limitation
4.Being a supervised
learning lazy
algorithm i.e. runs
slowly
5.Easily fooled by
irrelevant
attributes

Large sample data

10.

Weighted k
nearest
neighbor
(WkNN) [33]

To assign
weights to
neighbors
based on
distance
calculated

1. Overcomes
limitations of kNN by
 assigning equal
weight to k neighbors
 implicitly.
2. Uses all training
samples not just k.
3. Makes the algorithm
global one

1.Computational
complexity increases
in calculating weights
2.Slow in execution

Large sample data

11.
Condensed
nearest neighbor
(CNN) [34]

To eliminate
data sets
which show
similarity
without
adding
extra
information

1. Reduce size of
training data
2. Improve query time
and memory
 requirements
3. Reduce the
recognition rate

1.CNN is order
dependent; it is
unlikely to pick up
points on
boundary.
2. Computational
Complexity

Data set where
memory
requirement is a main
concern

12.
Reduced
Nearest Neighbor
(RNN) [35]

To remove
patterns
which do
not affect
the training
data set
results

1. Reduced size of
training data and
 eliminate templates
2. Improved query
time and memory
 requirements
3. Reduced
recognition rate

1.Computational
Complexity
2.Cost is high
 3.Time
Consuming

Large data set

13.
Model based k
Nearest Neighbor
(MkNN) [36]

To construct
a model
from data
and classify
new data
using these
model

1. More classification
accuracy
2.Value of k is selected
automatically 3.Highly
efficient due to reduced
number of data points

1.Do not consider
marginal data outside
the region

Dynamic web mining
for large repository

14.
Rank nearest neighbor
(kRNN) [37]

To assign
ranks to
training data
for each
category

1.Performs better when
there are too much
variations between
features 2.Robust as
based on rank

1.Multivariate kRNN
depends on distribution
of the data

Class distribution of
Gaussian nature

15.
Modified k nearest
neighbor (MkNN)
[38]

To classify
nearest
neighbor
based on
weights and
validity of
data point

1.Partially overcomes
low accuracy of
WkNN
2.Stable and robust

1.Computational

Complexity
Methods facing
outlets

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

20

5. CONCLUSION
In this paper, the various types of structure based k-Nearest

Neighbor techniques and Non-structure based k-Nearest

Neighbor techniques are compared based on key ideas. Their

merits and demerits are analyzed and the results are given in

table 1. Limited memory allocation and more execution time

are the two main issues of structure based algorithms such as

Ball Tree, k-d Tree, Principal Axis Tree (PAT), and

Orthogonal Structure Tree (OST), Nearest Feature Line

(NFL), and Center Line (CL) techniques. But they are easy to

construct and cost effective. Non structure based kNN

techniques like simple k-NN technique has the drawback of

16.
Pseudo/Generalized
Nearest
Neighbor (GNN) [39]

To utilize
information
of (n-1)
neighbors
also

1.Uses(n-1) classes
which consider the
whole training data set

1.Does not hold good
for small data
2.Computational
complexity

Large data set

17.
Clustered k
nearest neighbor [40]

To select the
nearest
neighbor
from the
clusters

1.Overcome defects
of uneven
distributions of training
samples 2.Robust in
nature

1.Selection of threshold
parameter is difficult
before running
algorithm 2.Biased by
value of k for clustering

Text Classification

18.
Reverse k nearest
neighbor [41-46]

Objects that

have the

query object

as their

nearest

Neighbour,

have to be

found.

1. Approximate results
can be obtained very
fast.
2. Well suited for 2-
Dimensional sets
3. Well suited for finite,
stored data sets
4. Provides decision
support

1. requires O(n2) time
2. do not support

arbitrary values of k
3. cannot deal
efficiently with database
updates,
4. are applicable only to
2D

Spatial data set

19
 Continuous RkNN
[47]

To monitor

the regions

upon

updates

using FUR

tree

1. Overcomes the
difficulties of using the
kNN and RkNN queries
on moving objects.
2. Best suited for
monochromatic cases

1. Not suited for
bichromatic cases
2. Not suited for large
population of
continuously moving
objects.
3. Memory Limitation

Moving object data set

20
Constrained RkNN
[48]

To find the

RkNN on

moving

objects

based on

constrains

1. Communication load
is minimized.
2. CRkNN can be
applied to both
monochromatic and
bichromatic cases.

1. Approximate result
can be obtained for
bichromatic cases.

Moving object data set

especially in GPS

21 Aggregate kNN [49]

To use

aggregate

function for

finding the

nearest

neighbor

1.Provides memory-
resident queries and
cost models that
accurately predict their
performance in terms of
node accesses

2.Approximate result
can be obtained for
disk-resident queries

1. Cost for evaluating
the disk-resident query
model is high.

2. Lazy algorithm

Spatial data set

22
Mutual Nearest
Neighbor [50]

To find the

Mutual

Nearest

Neighbor

using TB-

tree.

1 .Uses batch processing
and reuse technology for
reducing I/O cost and
CPU time.

2. HCMNN is used to
reduce the searching
time of all the data
again and again.

1. Applied only to the
monochromatic
datasets.

2. Computational
complexity

Moving object data set

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

21

memory limitation and biased by ‗k‘ value whereas Weighted

kNN, Condensed NN, Model based k-NN, Ranked NN

(RNN), Pseudo/Generalized NN, Clustered k-NN(CkNN),

Continuous RkNN, Mutual kNN (MkNN), Constrained RkNN

etc., are having more computational complexity. Moreover,

kNN techniques like Constrained RkNN, Continuous RkNN

and Mutual Nearest Neighbor are widely used in the moving

object datasets whereas Aggregate kNN and Reverse kNN

techniques are used in spatial dataset. Also, Constrained

RkNN is well suited for both monochromatic and bichromatic

datasets, Reverse kNN is especially used in 2D sets whereas

Mutual NN, Aggregate NN, Continuous RkNN are designed

for monochromatic datasets.In general, to reduce the time

complexity and computational complexity, various kNN

algorithms are proposed. Each algorithm is found to be

suitable for a particular situation. kNN techniques are not

suited for multidimensional environment because of large

volume of data involved in it. Only few algorithms are there to

reduce the dimensionality and is yet to be analyzed by the

researchers.

6. REFERENCES
[1] V.Vaidehi, S.Vasuhi, ― Person Authentication using Face

Recognition‖, Proceedings of the world Congress on

Engineering and Computer Science, 2008.

[2] Shizen, Y. Wu, ―An Algorithm for Remote Sensing Image

Classification based on Artificial Immune b-cell

Network‖, Springer Berlin, Vol 40.

[3] G. Toker, O. Kirmemis, ―Text Categorization using k

Nearest Neighbor Classification‖, Survey Paper, Middle

East Technical University.

[4] Y. Liao, V. R. Vemuri, ―Using Text Categorization

Technique for Intrusion detection‖, Survey Paper,

University of California.

[5] E. M. Elnahrawy, ―Log Based Chat Room Monitoring

Using Text Categorization: A Comparative Study‖,

University of Maryland.

[6] X. Geng et. al, ―Query Dependent Ranking Using k

Nearest Neighbor‖, SIGIR, 2008.

[7] F. Bajramovie et. al ―A Comparison of Nearest Neighbor

Search Algorithms for Generic Object Recognition‖,

ACIVS 2006, LNCS 4179, pp 1186-1197.

[8] Y. Yang and T. Ault, ―Improving Text Categorization

Methods for event tracking‖, Carnegie Mellon

University.

[9] T.M.Cover and P.E. Hart, ―Nearest Neighbor Pattern

Classification‖, IEEE Trans. Inform. Theory, Vol. IT-13,

pp 21-27, Jan 1967.

[10] Berchtold, S., Ertl, B., Keim, D.A., Kriegel, H.P., Seidl,

T.―Fast nearest neighbor search in high-dimensional

space‖ in Proceedings of the International Conference on

Data Engineering, pp. 209–218 (1998)

[11] Roussopoulos, N., Kelley, S., Vincent, F.: Nearest

neighbor queries. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp.

71–79 (1995)

[12] Guttman, A.: R-trees: A dynamic index structure for

spatial searching. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp.

47–57 (1984)

[13] Cheung, K.L., Fu, A.W.-C.: Enhanced nearest neighbor

search on the R-tree. ACM SIGMOD Record 27(3), 16–

21 (1998)

[14] Katayama, N., Satoh, S.: The SR-tree: An index structure

for high-dimensional nearest neighbor queries. In:

Proceedings of the ACM SIGMOD International

Conference on Management of Data,pp.369–380(1997)

[15] Henrich, A.: A distance scan algorithm for spatial access

structures. In: Proceedings of the Second ACM

Workshop on Geographic Information Systems, pp. 136–

143 (1994)

[16]. Hjaltason, G.R., Samet, H.: Distance browsing in spatial

databases. ACM Trans. Database Sys. 24(2), 265–318

(1999)

[17] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.:

The R*- tree: An efficient and robust access method for

points and rectangles. In: Proceedings of the ACM

SIGMOD International Conference On Management of

Data, pp. 322–331 (1990)

[18] Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest

neighbor search. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp.

154–165 (1998)

[19] T. Liu, A. W. Moore, A. Gray, ―New Algorithms for

Efficient High Dimensional Non-Parametric

Classification‖, Journal of Machine Learning Research,

2006, pp 1135-1158.

[20] S. N. Omohundro, ―Five Ball Tree Construction

Algorithms‖, 1989, Technical Report.

[21] R. F Sproull, ―Refinements to Nearest Neighbor

Searching‖, Technical Report, International Computer

Science, ACM (18) 9, pp 507-517. International Journal

of Computer Science and Information Security,Vol. 8, No.

2, 2010

[22] S. Z Li, K. L. Chan, ―Performance Evaluation of The

NFL Method in Image Classification and Retrieval‖,

IEEE Trans On Pattern Analysis and Machine

Intelligence, Vol 22, 2000.

[23] W. Zheng, L. Zhao, C. Zou, ―Locally Nearest Neighbor

Classifier for Pattern Classification‖, Pattern

Recognition, 2004, pp 1307-1309.

[24] Y. Zhou, C. Zhang, ―Tunable Nearest Neighbor

Classifier‖, DAGM 2004, LNCS 3175, pp 204-211.

[25] Q. B. Gao, Z. Z. Wang, ―Center Based Nearest Neighbor

Class‖, Pattern Recognition, 2007, pp 346-349.

[26] Y. C. Liaw, M. L. Leou, ―Fast Exact k Nearest Neighbor

Search using Orthogonal Search Tree‖, Pattern

Recognition 43 No. 6, pp 2351-2358.

[27] J.Mcname, ―Fast Nearest Neighbor Algorithm based on

Principal Axis Search Tree‖, IEEE Trans on Pattern

Analysis and Machine Intelligence, Vol 23, pp 964-976.

[28] Kollios, G., Gunopulos, D., Tsotras, V.J.: Nearest

neighbor queries in a mobile environment. In:

Proceedings of the International Workshop on Spatio-

Temporal Database Management, pp. 119–134 (1999)

[29] Albers, G., Guibas, L.J., Mitchell J.S.B, Roos, T.:

Voronoi Diagrams of moving points. Int. J. Comput.

Geom. Appl. 8(3), 365– 380 (1998)

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.7, October 2011

22

[30] Song, Z., Roussopoulos, N.: K-nearest neighbor search

for moving query point. In: Proceedings of the

International Symposium on Spatial and Temporal

Databases, pp. 79–96 (2001)

[31] Raptopoulou, K., Papadopoulos, A., Manolopoulos, Y.:

Fast nearest-neighbor query processing in moving-object

databases. GeoInformatica 7(2), 113–137(2003)

[32] Tao, Y., Papadias, D.: Spatial queries in dynamic

environments. ACM TODS 28(2), 101–139 (2003)

[33] T. Bailey and A. K. Jain, ―A note on Distance weighted k-

nearest neighbor rules‖, IEEE Trans. Systems, Man

Cybernatics, Vol.8, pp 311-313, 1978.

[34] E Alpaydin, ―Voting Over Multiple Condensed Nearest

Neighbors‖, Artificial Intelligent Review 11:115-132,

1997.

[35] Geoffrey W. Gates, ―Reduced Nearest Neighbor Rule‖,

IEEE Trans Information Theory, Vol. 18 No. 3, pp 431-

433.

[36] G. Guo, H. Wang, D. Bell, ―KNN Model based Approach

in Classification‖, Springer Berlin Vol 2888.

[37] S. C. Bagui, S. Bagui, K. Pal, ―Breast Cancer Detection

using Nearest Neighbor Classification Rules‖, Pattern

Recognition 36, pp 25-34, 2003.

[38] H. Parvin, H. Alizadeh and B. Minaei, ―Modified k

Nearest Neighbor‖, Proceedings of the world congress on

Engg. and computer science 2008.

[39] Y. Zeng, Y. Yang, L. Zhou, ―Pseudo Nearest Neighbor

Rule for Pattern Recognition‖, Expert Systems with

Applications (36) pp 3587-3595, 2009.

[40] Z. Yong, ―An Improved kNN Text Classification

Algorithm based on Clustering‖, Journal of Computers,

Vol. 4, No. 3, March 2009.

[41] Stanoi, I., Agrawal, D., El Abbadi, A.: Reverse nearest

neighbor queries for dynamic databases. In: Proceedings

of the ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery, pp. 44–53

(2000)

[42] Korn, F., Muthukrishnan, S.: Influence sets based on

reverse nearest neighbor queries. In: Proceedings of the

ACM SIGMOD International Conference on

Management of Data, pp. 201–212 (2000)

[43] Yang, C., Lin, K.-Ip.: An index structure for efficient

reverse nearest neighbor queries. In: Proceedings of the

International Conference on Data Engineering, pp. 485–

492 (2001)

[44] Maheshwari, A., Vahrenhold, J., Zeh, N.: On reverse

nearest neighbor queries. In: Proceedings of the Canadian

Conference on Computational Geometry, pp. 128–132

(2002)

[45] Singh, A., Ferhatosmanoglu, H., Tosun, A.: High

dimensional reverse nearest neighbor queries. In:

Proceedings of ACM CIKM International Conference on

Information and Knowledge Management, pp. 91–98

(2003)

[46] Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in

arbitrary dimensionality In: Proceedings of the VLDB

Conference, pp. 744–755 (2004)

[47] T. Xia and D. Zhang. Continuous reverse nearest

neighbor monitoring. In :Processings of the IEEE

International Conference on Data Engineering. 2006.

[48] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger,

Matthias Renz, and Andreas Züfle,‖ Constrained Reverse

Nearest Neighbor Search on Mobile Objects ―,ACM GIS

‘09 , November 4-6, 2009

[49] Dimitris Papadias,Yufei Tao, Kyriakos Mouratidis and

Chun Kit Hui ,― Aggregate Nearest Neighbor Queries in

Spatial Databases‖, In: Proceedings of ACM

Transactions on Database Systems, Vol. 30, No. 2, June

2005, Pages 529–576.

[50] Yunjun Gao, Baihua Zheng, Gencai Chen, Qing Li, Chun

Chen and Gang Chen ―On efficient mutual nearest

neighbor query processing in spatial databases‖ ,Elsievier

Data & Knowledge Engineering, Vol. 68, May 2009,

Pages 70.

7. AUTHORS PROFILE
S. Dhanabal received the Master degree in Computer Science

and Engineering from Anna University, Chennai, India in

2008, and currently pursuing Ph.D. degree in Computer

Science and Engineering in Anna University of Technology,

Coimbatore, India. He is having more than 12 years of

experience in teaching. He is currently working as an

Assistant Professor of CSE department in Jansons Institute of

Technology, Anna University of Technology, Coimbatore,

India. His research interests include spatial databases,

spatiotemporal databases, mobile/pervasive computing, and

geographic information systems. He has presented 5 papers in

national conferences. He is a member of Computer Society of

India.

Dr. S. Chandramathi received her Ph.D. from College of

Engineering, Anna University - Chennai. She is having more

than 26 years of teaching experience. She is currently working

as Professor and Head of Electronics and Communication

department in Sri Krishna College of Engineering &

Technology, Anna University of Technology, Coimbatore,

India. Her research interests include Computer Networks,

Wireless Communication, Sensor Networks and Digital

Communication. She has published 8 papers in International

Journals and 40 papers in National / International

Conferences.

