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ABSTRACT   
Identifying the queried object, from a large volume of given 

uncertain dataset, is a tedious task which involves time 

complexity and computational complexity. To solve these 

complexities, various research techniques were proposed. 

Among these, the simple, highly efficient and effective 

technique is, finding the K-Nearest Neighbor (kNN) algorithm. 

It is a technique which has applications in various fields such 

as pattern recognition, text categorization, moving object 

recognition etc.  Different kNN techniques are proposed by 

various researchers under various situations. In this paper, we 

classified these techniques into two ways: (1) structure based 

(2) non-structure based kNN techniques. The aim of this paper 

is to analyze the key idea, merits, demerits and target data 

behind each kNN techniques. The structure based kNN 

techniques such as Ball Tree, k-d Tree, Principal Axis Tree 

(PAT), Orthogonal Structure Tree (OST), Nearest Feature Line 

(NFL), Center Line (CL) and Non-structured kNN techniques 

such as Weighted kNN, Condensed NN, Model based k-NN, 

Ranked NN (RNN), Pseudo/Generalized NN, Clustered k-

NN(CkNN),  Mutual kNN (MkNN), Constrained RkNN etc., 

are analyzed in this paper. It is observed that the structure 

based kNN techniques suffer due to memory limit whereas the 

Non-structure based kNN techniques suffer due to computation 

complexity. Hence, structure based kNN techniques can be 

applied to small volume of data whereas Non-structure kNN 

techniques can be applied to large volume of data. 
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1. INTRODUCTION 
Query processing technique is usually applied to the smallest 

datasets which follows any of the in-memory algorithms like 

B+tree, R-trees etc., to get the result. But, when the datasets are 

large, high dimensional or uncertain, it is highly impossible for 

traditional query processing technique to retrieve the required 

data within the stipulated time. The nearest neighbor 

techniques play a vital role in these situations. The nearest 

neighbor (NN) technique is very simple, highly efficient and 

effective in the field of pattern recognition, text categorization, 

object recognition etc. It has so many advantages like 

simplicity, robust to noisy training data, improved query time 

and memory requirements etc., and also have disadvantages 

like Computation Complexity, Memory limitation and high 

cost in execution of algorithm.  The nearest neighbor (NN) rule 

identifies the category of unknown data point on the basis of its 

nearest neighbor whose class is already known. This rule is 

widely used in pattern recognition [1,2], text categorization  [3-

5], ranking models [6], object recognition [7] and event 

recognition [8] applications. A number of methods have been 

proposed for efficient processing of nearest neighbor queries 

for stationary points. The k-nearest neighbor lies in first 

category in which whole data is classified into training data and 

sample data point. Distance is evaluated from all training 

points to sample point and the point with lowest distance is 

called nearest neighbor. This technique is very easy to 

implement but value of k affects the result in some cases. The 

NN training data set can be structured using various techniques 

to improve over memory limitation of kNN. The kNN technique 

can be implemented using ball tree [19, 20], k-d tree [21], 

nearest feature line (NFL) [22], tunable metric [24], principal 

orthogonal search tree [26], axis search tree [27] and 

Continuous RkNN[47]. In tree structure, training data is divided 

into nodes, whereas in techniques like NFL and tunable metric, 

the training data set is divided according to planes. These 

algorithms increase the speed of basic kNN algorithm.  

Non-structured k-NN technique has been improved to meet the 

increase in dimensionality of the data space. T. M. Cover et al.  

proposed that the nearest neighbor can be calculated based on 

the value of k which specifies the number of  nearest neighbors  

to define a class of sample data point[9]. Later, it was improved 

based on weights [33]. The training points are assigned weights 

according to their distances from sample data point. The 

computational complexity and memory requirements are the two 

main issues related to the above techniques. To overcome 

memory limitation, size of data set is reduced by the repeated 

patterns, which do not add extra information and the data points 

which do not affect the result are eliminated from training data 

set. Apart from the time and memory limitation, the value of k 

is mainly considered to find the category of the unknown 

sample. To improve speed of classical kNN, many techniques 

such as ranking, false neighbor information, clustering etc., are 

used. Non-structured k-NN techniques are further amplified in 

the areas of moving object which uses query indexing 

technique instead of object indexing. Object indexing 

technique is not suited for the database where the objects are 

continuously moving and so uses Query indexing. Most of the 

indexing techniques such as R-trees, B+ trees etc., are based on 

the disk-based indexing which is not well-suited for moving 

objects for the following reasons:-        (i) updating the index 

when the object moves; (ii) Frequent revaluation of queries  

when any object moves; and (iii) achieving minimum 

execution times for large number of moving objects and 

queries. Also, the cost of executing these algorithms from  

main memory is high. In both the cases, kNN techniques are 

well suited for finding the solution. Reverse kNN technique is 

the complementary problem to that of finding the k-nearest 

neighbors (k-NN) of a query object whose goal is to find the 

influence object of the whole dataset [41-46]. Continuous 

RkNN[47], Constrained RkNN [48], Mutual k-

NN(MkNN)[50], are some of the  k-NN  techniques used in the 
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continuous moving object datasets whereas Aggregate 

kNN[49] is used to find the nearest neighbor using aggregate 

functions.  

2. K-NEAREST NEIGHBOR 
TECHNIQUES 
k-NN techniques are classified in two types i) Structure based 

kNN and ii) Non- structure based kNN. 

2.1 Structure based k-NN Technique 
Structure based k-NN technique uses tree structures to 

represent the training datasets. Berchtold proposed a method on 

Voronoi cells which is built specifically for nearest neighbor 

queries [10]. Range queries uses index structures that works 

based on Branch-and-bound methods. Roussopoulos   proposed 

an influential algorithm [11], for finding the k nearest 

neighbours in which an R-tree [12] indexes the points, and 

depth-first traversal of the tree is used. During the traversal, 

entries in the nodes of the tree are ordered and pruned based on 

a number of heuristics. Cheung and Fu [13] simplified this 

algorithm without reducing its efficiency. To better suit the 

nearest neighbor problems, branch-and- bound algorithms are 

modified by various methods especially when applied for high-

dimensional data [14 ]. Next, a number of incremental 

algorithms for similarity ranking have been proposed that can 

efficiently compute the (k +1)-st nearest neighbor, after the k 

nearest neighbors are returned [15, 16]. They use a global 

priority queue of the objects to be visited in an R-tree. More 

specifically, Hjaltason et al. [16] proposed an incremental 

nearest neighbor algorithm, which uses a priority queue of the 

objects to be visited in an R+-tree [17]. They show that such a 

best-first traversal is optimal for a given R-tree. A very similar 

algorithm was proposed by Henrich [15], which employs two 

priority queues. For high-dimensional data, multi-step nearest 

neighbor query processing techniques are usually used [18].  

Ball Tree concept was proposed by Ting Liu. It is a binary tree 

in which, leaves contain information and the internal nodes are 

used to efficiently search through leaves. This can be shown in 

the Figure.1. It follows top down approach and has a better 

speed over kNN[19,20].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig1. An Example of a Ball-tree 

 

In the k-dimensional trees, the training data are divided into 

right node and left node. According to query records. left or right 

side of tree is searched. Once the terminal node is reached, 

records in that node are examined to find the closest data node 

to query record [21]. Stan Z.Li et al.  proposed the concept of 

NFL [22] which divides the training data into plane. It is used 

to enhance the representational capacity of a sample set of 

limited size by using the feature lines which passes through 

each pair of the samples belonging to the same class. An 

example to illustrate the NFL classification method is given in 

Figure.2 The evaluated distances are sorted into ascending 

order and the NFL distance is assigned as rank 1. An 

improvement made over NFL is Local Nearest Neighbor, 

proposed by W. Zheng et al.,  evaluates the feature line and 

feature point in each class, for points only, whose corresponding 

prototypes are neighbors of query point[23]. Yongli Zhou et al.  

introduce [24] new metric, called ―Tunable Metric‖, which is 

used for evaluating distances for NFL rather than feature line. 

At first stage it uses tunable metric to calculate distance and 

then implement steps of NFL. Center Based Nearest Neighbor 

[25] is improvement over NFL and Tunable Nearest Neighbor 

in which Center base Line [CL] connects sample point with 

known labeled points. CL is calculated based on the straight 

line passing through training sample and center of class and 

then distance is evaluated from query point to CL and nearest 

neighbor is evaluated. Principal Axis Tree [PAT] [26] divide the 

training data in an efficient manner in terms of speed for nearest 

neighbor evaluation. It consists of two phases 1) PAT 

Construction 2) PAT Search. PAT uses principal component 

analysis (PCA) and divides the data set into regions containing 

the same number of points. Once tree is formed kNN is used to 

search nearest neighbor in PAT. The regions can be determined 

for given point using binary search. The Orthogonal Search 

Tree [OST][27]  uses orthogonal vector. It is an improvement 

over PAT to speed up the process. It uses concept of ―length 

(norm)‖, which is evaluated at first stage. Then orthogonal 

search tree is formed by creating a root node and assigning all 

data points to this node. Then the left and right nodes are 

formed using pop operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2 An example to illustrate the NFL classification 

method. The feature points p1, p2, p3 and p4 are the 

projections of query q on the feature lines x1x2, x2x3, x1x3 

and x4x5, respectively. 

2.2 Non-structure based KNN Techniques 
Kollios et al. [28] proposed an elegant solution for answering 

nearest neighbor queries for moving objects in one dimensional 

space. Their algorithm uses a duality transformation, where the 

future trajectory of a moving point x(t) = x0 + vx t is 

transformed into a point (x0, vx ) in a so-called dual space. The 

solution is generalized to the ―1.5- dimensional‖ case where the 

objects are moving in the plane, but with their movements 

being restricted to a number of line segments (e.g., 
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corresponding to a road network). However, Tian Xia and 

Donghui Zhang [47] investigated the processing of Continuous 

RNN (CRNN) queries when k=1. Their method is based on the 

60-degree-pruning technique. The monitoring region of a 

CRNN query is defined as six pie-regions (determined by the 

query point and the six candidates) and six cir-regions 

(determined by the six candidates and their nearest neighbors). 

Then for a CRNN query: in each sub-space a continuous 

constrained nearest neighbour query is used to monitor the 

candidate in that sub-space, called  continuous filter. For each 

candidate, a continuous nearest neighbor query is used to do 

continuous refinement. Frequent Updated R-Tree (FUR) and 

the hash tables are used to store the cir-region whereas 

optimization techniques like lazy-update and partial-insert are 

also proposed to avoid unnecessary NN searches and reduce 

the updates on the FUR-tree. The work of Albers et al. [29] 

investigated Voronoi diagrams of continuously moving points, 

relates to the problem of nearest neighbor queries. Even though 

such diagrams change continuously as points move, their 

topological structures change only when certain discrete events 

occur. The authors show a non-trivial upper bound of the 

number of such events. They also provide an algorithm to 

maintain such continuously changing Voronoi diagrams.  

Song et al.  [30] proposed a solution for finding the k nearest 

neighbors for a moving query point. However, the data points 

are assumed to be static. In addition, the time is not assumed to 

be continuous instead a periodical sampling technique is used. 

The time period is divided into n equal-length intervals. When 

computing the result set for some sample, the algorithm tries to 

reuse the information contained in the result sets of the 

previous samples. Whereas Raptopoulou et al. [31] and  Tao et 

al. [32] considered  the nearest neighbor problem for a query 

point moving on a line segment for static and for moving data 

points.  

Bailey [33] uses weights with classical kNN and proposed 

weighted kNN (WkNN) algorithm. WkNN evaluates the 

distances as per value of k and a weight is assigned to each 

calculated value, and then nearest neighbor is decided and class 

is assigned to sample data point. The Condensed Nearest 

Neighbor (CNN) algorithm stores the patterns one by one and 

eliminates the duplicate ones. Hence, CNN removes the data 

points which do not add more information and show similarity 

with other training data set [34]. The Reduced Nearest 

Neighbor (RNN) is an improvement over CNN; it includes one 

more step to eliminate the patterns which are not affecting the 

training data set result[35]. The another technique called Model 

Based kNN selects similarity measures and create a ‗similarity 

matrix‘ from the given training set. Then, in the same category, 

largest local neighbor is found that covers large number of 

neighbors and a data tuple is located with largest global 

neighborhood. These steps are repeated until all data tuples are 

grouped. Once data is formed using model, kNN is executed to 

specify category of unknown sample[36]. 

Subash C et al. [37] improved the kNN by introducing the 

concept of ranks. The method pools all the observations 

belonging to different categories and assigns ranks to each 

category of data in ascending order. Then observations are 

counted on the basis of rank and  class is assigned to unknown 

sample. It is very much useful in case of multi-variants data. In 

Modified kNN, which is a modification of WkNN, validity of 

all data samples in the training data set is computed, 

accordingly weights are assigned and then validity and weight 

both together set basis for classifying the class of the sample 

data point[38]. 

Yong zeng et al. [39] defines a new concept to classify sample 

data point. The method introduces the pseudo neighbor, which 

is not the actual nearest neighbor; but a new nearest neighbor is 

selected on the basis of value of weighted sum of distances of 

kNN of unclassified patterns in each class. Then Euclidean 

distance is evaluated and pseudo neighbor with greater weight 

is found and classified for unknown sample. In this technique 

proposed by Zhou Yong [40], Clustering is used to calculate 

nearest neighbor. In the first step, samples which are nearer to 

the border of the training set are removed. Then, each training 

dataset are clustered based on the ‗k‘ value and all cluster 

centers form a new training set. Then, weights are assigned to 

each cluster according to number of training samples in 

clusters. 

3. REVERSE KNN TECHNIQUES             
A reverse k-nearest neighbor (RkNN) query returns the data 

objects that have the query object in the set of their k-nearest 

neighbors. It is the complementary problem to that of finding 

the k-nearest neighbors (k-NN) of a query object. The goal of a 

reverse k-nearest neighbor query is to identify the ‖influence‖ 

of a query object on the whole data set. Although the reverse k-

nearest neighbor problem is the complement of the k-nearest 

neighbor problem, the relationship between k-NN and RkNN is 

not symmetric and the number of the reverse k-nearest 

neighbors of a query object is not known in advance. A naive 

solution of the RkNN problem requires the running time of 

O(n2) whereas kNN requires the running time of O(n).Also 

RkNN is more expensive than k-NN queries.  

Several different solutions have been proposed for computing 

RNN queries for non-moving points in two and higher 

dimensional spaces. Stanoi et al. [41] present a solution for 

answering RNN queries in two-dimensional space.  

Definition 1: 

Let p be an NN point of q among the points in Si. Then, either 

q is an NN point of p (and then p is an RNN point of q), or q 

has no RNN point in Si .  

Stanoi et al. has proved this property [41]. These observations 

enable a reduction of the RNN problem to the NN problem. For 

each region Si, an NN point of q in that region is found. In 

another solution for answering RNN queries, Korn and 

Muthukrishnan [42] use two R-trees for the querying, insertion, 

and deletion of points. In the first, the RNN-tree, the minimum 

bounding rectangles of circles having a point as their centre 

and the distance to the nearest neighbor of that point as their 

radius are stored. The second, the NN-tree, is simply an R*-

tree that stores the data points. 

Yang and Lin [43] improve the solution of Korn and 

Muthukrishnan by introducing an Rdnn-tree, which makes it 

possible to answer both RNN queries and NN queries using a 

single tree. Structurally, the Rdnn-tree is an R+-tree, where 

each leaf entry is augmented with the distance to its nearest 

neighbor (dnn), and where a non-leaf entry stores the 

maximum of its children‘s dnn‘s. Maheshwari et al. [44] 

proposed main memory data structures for answering RNN 

queries in two dimensions. For each point their structures 

maintain the distance to its nearest neighbor. In contrast to the 

approach of Stanoi et al., updates of the database are 

problematic in the last three approaches mentioned. On the 

other hand, the approach of Stanoi et al. does not easily scale 

up to more than two dimensions because the number of regions 

where RNN candidates are found increases exponentially with 

the  dimensionality. To alleviate this problem, Singh et al. [45] 

proposed an algorithm where RkNN candidates are found by 

performing a regular kNN query. The disadvantage of such an 
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approach is that it does not always find all RkNN points. The 

recent approach by Tao et al. [46] fixes this problem. Their so-

called TPL algorithm, similar to Stanoi et al., works in two 

phases—a filtering phase and a refinement phase—but no 

subdivision of the underlying space into regions is necessary in 

the refinement phase. Thus, the algorithm gracefully scales to 

more than two dimensions. 

Tobias Emrich et al. proposed a new RkNN technique based on 

some constrains. In this, they formalize the novel concept of 

Constrained Reverse k-Nearest Neighbor (CRkNN) search on 

mobile objects (clients) performed at a central server. The 

CRkNN query computes the set RkNN(q) of objects, for a 

given query object q, having q as one of their k-nearest 

neighbors, if and only if the result set exceeds a specific 

threshold, say ‗m‘,  else  the query reports an empty result. 

Their approach minimizes the amount of communication 

between clients and central server by using the approximation 

of the positions to identify true hits and true drops. This 

approach provides only approximate results for bichromatic 

cases.[47]. An example of Constrained Reverse RkNN for 

monochromatic and bichromatic cases is shown in [Figure.3]. 
It illustrates the concept of CRkNN queries in both cases. The 

mono-chromatic CR1NN query [Figure.3a] for point q returns 

point 1 and 4 if, for some threshold value m є {1, 2} or nothing 

if m ≤ 3. Points 2 and 3 are not returned for any choice of m, 

because they do not find q as their 1-nearest neighbor. In the 

bi-chromatic case, two object sets Dred (red objects) and Dblue 

(blue objects) are considered. The bi-chromatic CRkNN query 

returns all elements of Dred that have the query point as on of 

their k-nearest neighbors if all other red objects are 

ignored.Figure.3b shows the bi-chromatic CR1NN query for a 

set of lions (red objects R1, R2, and R3) and a set of potential 

prey (blue objects B1, B2, and q). The query object q (from the 

blue object set) could be a young elephant that is not yet able to 

defend itself. In this example, the bi-chromatic CR1NN query 

yields no results for any value of m, because each lion observes 

another animal as nearest neighbour. 

4. OTHER NEAREST NEIGHBOR 
TECHNIQUES 
Dimitris Papadias et al. [48] deals with the aggregate nearest 

neighbor technique  which states that for the given two spatial 

datasets P (e.g., facilities) and Q (queries), an aggregate 

nearest neighbor (ANN) query retrieves the point(s) of P with 

the smallest aggregate distance(s) to points in Q. They provide 

algorithms for memory-resident queries and cost models that 

accurately predict their performance in terms of node accesses 

and also developed methods for disk-resident query sets and 

approximate retrieval. But the cost for implementing disk-

resident query model is very high because of the multiple reads 

of Q required by this processing technique. 

Yunjun Gao et al.[49] proposed a technique on finding the 

mutual nearest neighbor which deals with the given set ‗D‘ of 

trajectories, a query object q, and a query time extent C, a 

mutual (i.e., symmetric) nearest neighbor (MNN) query over 

trajectories from D, the set of trajectories that are among the k1 

nearest neighbors (NNs) of q within C, and will have q as one 

of their k2 NNs. They proposed two types of MNN queries, 

i.e., MNNP and MNNT queries, which are defined with respect 

to stationary query points and moving query trajectories, 

respectively. They utilize the batch processing and reusing 

technology to reduce the I/O cost (i.e., number of node/page 

accesses) and CPU time significantly and also proposed 

techniques to tackle historical continuous MNN (HCMNN) 

search for moving object trajectories, which returns the mutual 

nearest neighbors of q (for a specified k1 and k2) at any time 

instance, say ‗c‘.But this algorithm doesn‘t deal with the 

bichromatic datasets and can be further pruned to increase the 

performance.Comparisons of various kNN techniques are 

given in table 1. 

Figure.3 An example of Constrained Reverse RkNN 
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TABLE I. COMPARISON OF VARIOUS K-NEAREST NEIGHBOR TECHNIQUES 

S. No Technique Concept Merits Demerits Applications 

1 
Ball   Tree   k   
nearest neighbor     
(BTKNN) [19,20]    

To improve 
the speed  

1.Compatibile with  
high  dimensional 
Objects. 
2. Represented data are 
tuned well to structure 
3.Simple to implement 
4. Especially used for 
geometric learning 

1. Implementation cost 
is high. 
2. When distance is 
increased,    
    performance is 
decreased. 

Robotic, vision, 
speech, graphics 

2 
k-d       tree       
nearest neighbor 
(kdNN) [21] 

To divide 
the training 
data sets 
into  two 
halves 

1.Perfect balanced  
trees are formed 
2.It is fast and 
simple 

1.Computational 
complexity  
2.Exhaustive search is 
required 
 3. Chance of misleading 
the points as it blindly 
splits the points into two 
halves. 

Multidimensional data 
points. 

3 
Nearest   feature   
Line Neighbor (NFL) 
[22] 

To have 
multiple 
template per 
class for 
classificatio
n 

1.Accurate 
classification 
2.Effective algorithm 
for small datasets. 
3.Ignored information 
in nearest neighbor are 
used  

1.Chance of failure if 
the model in   NFL is 
far away from query 
point 
 2.Computational 
Complexity 
 3. Hard to illustrate the 
feature point in straight 
line. 

Face Recognition 
problems 

4 
Local     Nearest 
Neighbor [23] 

To focus on 
nearest 
neighbor 
prototype          
of query 
point 

1.Overcomes the  

limitations of NFL 

1.Increase in number of 

computations  
Face Recognition 

5 
Tunable      Nearest 
Neighbor (TNN) [24] 

Calculates 
the  distance 
first and 
then 
implements 
the steps of 
NFL 

1.Effective for small 

data sets 

1.Large number of 

computations 
Bias problems 

6 
Center  based  Nearest 
Neighbor (CNN) [25] 

To connect 
sample 
point with 
known 
labeled 
points on a 
center line 

1.Highly efficient for 

small data sets 

1. Large number of 

computations 
Pattern Recognition 

7 
Orthogonal        
Search Tree Nearest 
Neighbor [26] 

To  speed 
up the 
process , 
Orthogonal 
search trees 
are used 

1.Less 
Computation 
time 2.Effective 
for large data 
sets 

1.Query time is more Pattern Recognition 
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8 
Principal    Axis    
Tree Nearest          
Neighbor (PAT) [27] 

Uses PAT 

construction 

and PAT 

search  

1.Good 
perform
ance 
2.Fast 
Search 

1.Computational Time 

is more 
Pattern Recognition 

9. 
k   Nearest    Neighbor 
(kNN) [9] 

To find the 
nearest 
neighbor 
based on ‗k‘ 
value 

1.Training is very fast 
2.Simple and easy to 
learn 
3.Robust to noisy 
training data 
4 .Effective if 
training data is large 
5.It is symmetric. 

1. Biased by value of k  
2.Computation 
Complexity  
3.Memory limitation 
4.Being a supervised 
learning lazy 
algorithm i.e. runs 
slowly 
5.Easily    fooled   by    
irrelevant 
attributes 

Large sample data 

10. 

Weighted    k    
nearest 
neighbor 
(WkNN) [33] 

To assign     
weights  to   
neighbors   
based on          
distance 
calculated 

1. Overcomes 
limitations of kNN by 
      assigning equal 
weight to k neighbors 
       implicitly. 
2. Uses all training 
samples not just k. 
3. Makes the algorithm 
global one 

1.Computational 
complexity increases 
in calculating weights 
2.Slow in execution 

Large sample data 

11. 
Condensed        
nearest neighbor     
(CNN) [34] 

To eliminate      
data sets 
which show 
similarity 
without   
adding     
extra 
information 

1. Reduce size of 
training data 
2. Improve query time 
and memory 
      requirements 
3. Reduce the 
recognition rate 

1.CNN is order 
dependent; it is 
unlikely   to   pick    up   
points    on 
boundary. 
2. Computational 
Complexity 

Data set where 
memory 
requirement is a main 
concern 

12. 
Reduced           
Nearest Neighbor 
(RNN) [35] 

To remove 
patterns 
which    do    
not affect              
the training 
data set 
results 

1. Reduced size of 
training data and 
        eliminate templates 
2. Improved query 
time and memory 
        requirements 
3.    Reduced   
recognition rate 

1.Computational 
Complexity 
2.Cost is high 
 3.Time 
Consuming 

Large data set 

13. 
Model based k 
Nearest Neighbor 
(MkNN) [36] 

To construct 
a model  
from data 
and classify 
new   data   
using these 
model 

1. More classification 
accuracy  
2.Value of k is selected 
automatically 3.Highly 
efficient due to reduced  
number of data points 

1.Do   not   consider   
marginal   data outside 
the region 

Dynamic web mining 
for large repository 

14. 
Rank nearest neighbor 
(kRNN) [37] 

To assign  
ranks  to 
training data 
for each 
category 

1.Performs better when 
there are too much 
variations between 
features 2.Robust as 
based on rank 

1.Multivariate   kRNN   
depends   on distribution 
of the data 

Class distribution of 
Gaussian nature 

15. 
Modified    k    nearest 
neighbor (MkNN) 
[38] 

To classify 
nearest 
neighbor 
based on 
weights and 
validity   of   
data point  

1.Partially overcomes 
low accuracy of 
WkNN 
2.Stable and  robust 

1.Computational 

Complexity 
Methods facing 
outlets 
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5. CONCLUSION 
In this paper, the various types of structure based k-Nearest 

Neighbor techniques and Non-structure based k-Nearest 

Neighbor techniques are compared based on key ideas. Their 

merits and demerits are analyzed and the results are given in 

table 1. Limited memory allocation and more execution time 

are the two main issues of structure based algorithms such as 

Ball Tree, k-d Tree, Principal Axis Tree (PAT), and 

Orthogonal Structure Tree (OST), Nearest Feature Line 

(NFL), and Center Line (CL) techniques. But they are easy to 

construct and cost effective. Non structure based kNN 

techniques like simple k-NN technique has the drawback of 

16. 
Pseudo/Generalized 
Nearest          
Neighbor (GNN) [39] 

To utilize 
information 
of      (n-1) 
neighbors 
also  
 

1.Uses(n-1) classes 
which consider the 
whole training data set 

1.Does not hold good 
for small data 
2.Computational 
complexity 

Large data set 

17. 
Clustered    k    
nearest neighbor [40] 

To select the 
nearest 
neighbor 
from the 
clusters 

1.Overcome      defects      
of      uneven 
distributions of training 
samples 2.Robust in 
nature 

1.Selection of threshold 
parameter is difficult 
before running 
algorithm 2.Biased by 
value of k for clustering 

Text Classification 

18. 
Reverse k nearest 
neighbor [41-46] 

Objects that 

have the 

query object 

as their 

nearest 

Neighbour, 

have to be 

found. 

 

1. Approximate results 
can be obtained very 
fast. 
2. Well suited for  2-
Dimensional sets 
3. Well suited for finite, 
stored data sets 
4. Provides decision 
support 

1. requires O(n2) time 
2. do not support 

arbitrary values of k 
3. cannot deal 
efficiently with database 
updates, 
4. are applicable only to 
2D 

Spatial data set 
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 Continuous RkNN 
[47] 

To monitor 

the regions 

upon 

updates 

using FUR 

tree 

1. Overcomes the 
difficulties of using the 
kNN and RkNN queries 
on moving objects. 
2. Best suited for 
monochromatic cases 

1. Not suited for 
bichromatic cases 
2. Not suited for large 
population of 
continuously moving 
objects. 
3. Memory Limitation  

Moving object data set 

20 
Constrained RkNN 
[48] 

To find the 

RkNN on 

moving 

objects 

based on 

constrains 

1. Communication  load 
is minimized. 
2. CRkNN  can be 
applied to both 
monochromatic and 
bichromatic cases. 

1. Approximate result 
can be obtained for 
bichromatic cases. 

Moving object data set 

especially in GPS 

21 Aggregate  kNN [49] 

To use 

aggregate 

function for 

finding the 

nearest 

neighbor 

1.Provides memory-
resident queries and 
cost models that 
accurately predict their 
performance in terms of 
node accesses 
 
2.Approximate result 
can be obtained for 
disk-resident queries 

1. Cost for evaluating 
the disk-resident query 
model is high. 
 
2. Lazy algorithm 

Spatial data set 

22 
Mutual Nearest 
Neighbor [50] 

To find the 

Mutual 

Nearest 

Neighbor 

using TB-

tree. 

1 .Uses batch processing 
and reuse technology for 
reducing I/O cost and 
CPU time. 
 
2. HCMNN is used to 
reduce the searching 
time of all the data 
again and again. 

1. Applied only to the 
monochromatic 
datasets. 
 
2. Computational 
complexity 

 

Moving object data set 
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memory limitation and biased by ‗k‘ value whereas Weighted 

kNN, Condensed NN, Model based k-NN, Ranked NN 

(RNN), Pseudo/Generalized NN, Clustered k-NN(CkNN), 

Continuous RkNN, Mutual kNN (MkNN), Constrained RkNN 

etc., are having more computational complexity. Moreover, 

kNN techniques like Constrained RkNN, Continuous RkNN 

and Mutual Nearest Neighbor are widely used in the moving 

object datasets whereas Aggregate kNN and Reverse kNN 

techniques are used in spatial dataset. Also, Constrained 

RkNN is well suited for both monochromatic and bichromatic 

datasets, Reverse kNN is especially used in  2D sets whereas 

Mutual NN, Aggregate NN, Continuous RkNN are designed 

for monochromatic datasets.In general, to reduce the time 

complexity and computational complexity, various kNN 

algorithms are proposed.  Each algorithm is found to be 

suitable for a particular situation. kNN techniques are not 

suited for multidimensional environment because of large 

volume of data involved in it. Only few algorithms are there to 

reduce the dimensionality and is yet to be analyzed by the 

researchers. 
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